Heat integration of power-to-heat technologies: Case studies on heat recovery systems subject to electrified heating

A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the i...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 331; p. 130002
Main Authors Kim, Jin-Kuk, Son, Hyunsoo, Yun, Seokwon
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities. •Heat Integration of industrial energy systems subject to electrification.•Process design methods and guidelines for heat supply from electrified units.•Cost-effective strategies for the implementation of electrified heating.•Techno-economic impact of power-to-heat for process industries.
AbstractList A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities.
A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities. •Heat Integration of industrial energy systems subject to electrification.•Process design methods and guidelines for heat supply from electrified units.•Cost-effective strategies for the implementation of electrified heating.•Techno-economic impact of power-to-heat for process industries.
ArticleNumber 130002
Author Kim, Jin-Kuk
Yun, Seokwon
Son, Hyunsoo
Author_xml – sequence: 1
  givenname: Jin-Kuk
  surname: Kim
  fullname: Kim, Jin-Kuk
  email: jinkukkim@hanyang.ac.kr
– sequence: 2
  givenname: Hyunsoo
  surname: Son
  fullname: Son, Hyunsoo
– sequence: 3
  givenname: Seokwon
  surname: Yun
  fullname: Yun, Seokwon
BookMark eNqFkD1PwzAQQD2AxOdPQPLIknB2EqeGAaEKKBISC8yWcS7FURoX2wH13-M2nVg6nU9-74Z3Ro4GNyAhVwxyBkzcdHlnelx7l3PgLGcFAPAjcgqykpmouDghZyF0AKyGujwlcYE6UjtEXHodrRuoa-na_aLPosu-tp8Rzdfgere0GG7pXAekIY5N2mjCd4hH437Qb2jYhIirQMP42aFJrqPYp4e3rcVmB9theUGOW90HvNzPc_Lx9Pg-X2Svb88v84fXzBQlj5nApuEt_4SymYkKoEZTtVIIPpNS1IWshSx5zVgCWAkGseKylG1ZYNFoNtPFObme7qYe3yOGqFY2GOx7PaAbg-KiEAIgZUloNaHGuxA8tmrt7Ur7jWKgtmVVp_Zl1basmsom7-6fZ2zchYxe2_6gfT_ZmCr8WPQqGIuDwcampFE1zh648AfqMZ1D
CitedBy_id crossref_primary_10_1093_ijlct_ctae134
crossref_primary_10_9767_jcerp_20300
crossref_primary_10_1016_j_rser_2024_114472
crossref_primary_10_1021_acs_iecr_2c04325
crossref_primary_10_1016_j_energy_2023_129245
crossref_primary_10_1016_j_renene_2022_12_100
crossref_primary_10_1016_j_jclepro_2024_141156
crossref_primary_10_1016_j_prime_2023_100246
crossref_primary_10_1016_j_rser_2022_112798
crossref_primary_10_1016_j_rser_2024_114522
crossref_primary_10_1021_acsengineeringau_3c00051
crossref_primary_10_1002_aic_18626
crossref_primary_10_1016_j_jclepro_2022_132887
crossref_primary_10_1016_j_rser_2022_112924
crossref_primary_10_3389_fther_2022_861882
crossref_primary_10_1016_j_fuel_2023_128925
crossref_primary_10_1016_j_rser_2022_112718
crossref_primary_10_1016_j_heliyon_2024_e29087
crossref_primary_10_1016_j_coche_2025_101118
crossref_primary_10_1016_j_applthermaleng_2024_125274
crossref_primary_10_3389_fenrg_2022_964511
crossref_primary_10_1016_j_ijrefrig_2024_06_012
crossref_primary_10_1016_j_csite_2024_104601
crossref_primary_10_1016_j_jclepro_2023_136773
Cites_doi 10.1016/j.energy.2017.09.005
10.1016/j.energy.2018.03.166
10.1016/j.energy.2018.10.114
10.1016/j.apenergy.2019.03.184
10.3390/en13102532
10.1016/j.rser.2021.111482
10.1016/S1359-4311(03)00136-4
10.1016/j.csite.2021.101030
10.1016/j.spc.2020.08.013
10.1016/j.apenergy.2019.05.071
10.1016/j.ces.2020.116129
10.1016/j.erss.2019.101320
10.1016/j.enbuild.2020.110663
10.1016/j.rser.2020.109969
10.1016/j.apenergy.2015.08.115
10.3389/fenrg.2020.00192
10.1016/j.energy.2016.07.110
10.1088/1748-9326/abbd02
10.1016/j.energy.2020.119022
10.1016/j.apenergy.2021.116746
10.1016/j.enconman.2019.112276
10.1016/j.energy.2021.121544
10.1016/j.energy.2021.122060
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2021.130002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jclepro_2021_130002
S0959652621041706
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSH
SSJ
SSR
SSZ
T5K
~G-
29K
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c342t-6edd2f2b04d865007ec5f9662899673976942711b04140cee52949f43e3da18a3
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Jul 11 05:30:38 EDT 2025
Tue Jul 01 03:23:49 EDT 2025
Thu Apr 24 23:00:40 EDT 2025
Sun Apr 06 06:54:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electrification
Energy recovery
Power-to-Heat
Heat exchanger networks
Heat integration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-6edd2f2b04d865007ec5f9662899673976942711b04140cee52949f43e3da18a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636600652
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636600652
crossref_primary_10_1016_j_jclepro_2021_130002
crossref_citationtrail_10_1016_j_jclepro_2021_130002
elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_130002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-10
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib32) 2021
Alhajri, Gadalla, Abdelaziz, Ashour (bib2) 2021; 26
Kim, Smith (bib24) 2005
Son, Kim, Kim (bib37) 2022; 239
(bib13) 2016
Nielsen, Morales, Zugno, Pedersen, Madsen (bib45) 2016; 167
Yong, Liew, Woon, Alwi, Klemes (bib41) 2021; 150
Akpomiemie, Smith (bib1) 2018; 146
Hosseinnia, Sorin (bib21) 2021; 232
Ruhnau, Bannik, Otten, Praktiknjo, Robinius (bib33) 2019; 166
Sharma, Basu, Prasad, Dhillon (bib35) 2002
TERI (bib40) 2015
Hamedi, Karimi, Gundersen (bib20) 2020; 203
Peters, Timmerhaus, West (bib31) 2003
Towler, Sinnott (bib39) 2012
Taal, Bulatov, Klemes, Stehlik (bib38) 2003; 23
Janipour, de Nooij, Scholten, Huijbregts, de Coninck (bib22) 2020; 60
Deason, Wei, Leventis, Smith, Schwartz (bib9) 2018
van Delft, de Kler (bib10) 2017
Chen, Lu, Banares-Alcantar (bib48) 2019; 243
Liu, Wang, Yan (bib44) 2021; 214
Schuwer, Schneider (bib34) 2018
(bib14) 2011
(bib4) 2021
Wiertzema, Svensson, Harvey (bib47) 2020; 8
Arpagaus, Bless, Uhlmann, Schiffmann, Bertsch (bib3) 2018; 152
Fan, Friedmann (bib17) 2021
Lopez, Foo, Tan (bib26) 2021; 237
den Ouden, Linttmeijer, van Aken, Afman, Croezen, van Lieshout, Klop, Waggeveld, Crift (bib29) 2017
Hechelmann, Seevers, Otte, Sponer, Stark (bib43) 2020; 13
(bib12) 2015
(bib16) 2018
(bib11) 2015
Grossmann (bib18) 2013
Fonseca, Commenge, Camargo, Falk, Gil (bib42) 2021; 290
Lechtenbohmer, Nilsson, Ahman, Schneider (bib25) 2016; 115
Madeddu, Ueckerdt, Pehl, Peterseim, Lord, Kumar, Krüger, Luderer (bib27) 2020; 15
Paige, McMillan, Steinberg, Muratori, Vimmerstedt, Mai (bib30) 2017
McKinsey, Company (bib28) 2021
Smith (bib36) 2016
Chin, Varbanov, Liew, Klemes (bib7) 2021; 230
Cossutta, Foo, Tan (bib8) 2021; 25
Gundersen (bib19) 2013
Buhler, Zuhlsdorf, Nguyen, Elmegaard (bib6) 2019; 250
Berenschot (bib5) 2017
Kemp (bib23) 2007
Selleneit, Stockl, Holzhammer (bib46) 2020; 130
(bib15) 2021
(10.1016/j.jclepro.2021.130002_bib12) 2015
den Ouden (10.1016/j.jclepro.2021.130002_bib29)
Berenschot (10.1016/j.jclepro.2021.130002_bib5) 2017
Towler (10.1016/j.jclepro.2021.130002_bib39) 2012
Smith (10.1016/j.jclepro.2021.130002_bib36) 2016
Buhler (10.1016/j.jclepro.2021.130002_bib6) 2019; 250
Wiertzema (10.1016/j.jclepro.2021.130002_bib47) 2020; 8
van Delft (10.1016/j.jclepro.2021.130002_bib10) 2017
Lechtenbohmer (10.1016/j.jclepro.2021.130002_bib25) 2016; 115
(10.1016/j.jclepro.2021.130002_bib14) 2011
Fan (10.1016/j.jclepro.2021.130002_bib17) 2021
Selleneit (10.1016/j.jclepro.2021.130002_bib46) 2020; 130
Chen (10.1016/j.jclepro.2021.130002_bib48) 2019; 243
Paige (10.1016/j.jclepro.2021.130002_bib30) 2017
Deason (10.1016/j.jclepro.2021.130002_bib9) 2018
Yong (10.1016/j.jclepro.2021.130002_bib41) 2021; 150
Nielsen (10.1016/j.jclepro.2021.130002_bib45) 2016; 167
Fonseca (10.1016/j.jclepro.2021.130002_bib42) 2021; 290
Akpomiemie (10.1016/j.jclepro.2021.130002_bib1) 2018; 146
Arpagaus (10.1016/j.jclepro.2021.130002_bib3) 2018; 152
(10.1016/j.jclepro.2021.130002_bib11) 2015
Hechelmann (10.1016/j.jclepro.2021.130002_bib43) 2020; 13
Sharma (10.1016/j.jclepro.2021.130002_bib35) 2002
McKinsey (10.1016/j.jclepro.2021.130002_bib28)
(10.1016/j.jclepro.2021.130002_bib13) 2016
(10.1016/j.jclepro.2021.130002_bib15) 2021
Hamedi (10.1016/j.jclepro.2021.130002_bib20) 2020; 203
Kemp (10.1016/j.jclepro.2021.130002_bib23) 2007
Gundersen (10.1016/j.jclepro.2021.130002_bib19) 2013
Janipour (10.1016/j.jclepro.2021.130002_bib22) 2020; 60
Son (10.1016/j.jclepro.2021.130002_bib37) 2022; 239
Taal (10.1016/j.jclepro.2021.130002_bib38) 2003; 23
Kim (10.1016/j.jclepro.2021.130002_bib24) 2005
Liu (10.1016/j.jclepro.2021.130002_bib44) 2021; 214
TERI (10.1016/j.jclepro.2021.130002_bib40) 2015
Hosseinnia (10.1016/j.jclepro.2021.130002_bib21) 2021; 232
Alhajri (10.1016/j.jclepro.2021.130002_bib2) 2021; 26
Grossmann (10.1016/j.jclepro.2021.130002_bib18) 2013
Chin (10.1016/j.jclepro.2021.130002_bib7) 2021; 230
Peters (10.1016/j.jclepro.2021.130002_bib31) 2003
Lopez (10.1016/j.jclepro.2021.130002_bib26) 2021; 237
(10.1016/j.jclepro.2021.130002_bib16) 2018
Madeddu (10.1016/j.jclepro.2021.130002_bib27) 2020; 15
Schuwer (10.1016/j.jclepro.2021.130002_bib34) 2018
Cossutta (10.1016/j.jclepro.2021.130002_bib8) 2021; 25
Ruhnau (10.1016/j.jclepro.2021.130002_bib33) 2019; 166
References_xml – year: 2021
  ident: bib28
  article-title: Global energy perspective 2021
– volume: 13
  start-page: 2352
  year: 2020
  ident: bib43
  article-title: Renewable energy integration for steam supply of industrial processes—A food processing case study
  publication-title: Energies
– volume: 60
  start-page: 101320
  year: 2020
  ident: bib22
  article-title: What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production
  publication-title: Energy Res.Soc. Sci.
– year: 2015
  ident: bib11
  article-title: Improving Process Heating System Performance: a Sourcebook for Industry
– year: 2011
  ident: bib14
  article-title: Cost Estimation Methodology for NETL Assessments of Power Plant Performance
– year: 2018
  ident: bib16
  article-title: Emission Factors for Greenhouse Gas Inventories
– start-page: 411
  year: 2018
  end-page: 422
  ident: bib34
  article-title: Electrification of industrial process heat: long-term applications, potentials and impacts
  publication-title: ECEEE.Ind.Summer.Study. Proc
– volume: 150
  start-page: 111482
  year: 2021
  ident: bib41
  article-title: A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis
  publication-title: Renew. Sustain. Energy Rev.
– year: 2013
  ident: bib19
  article-title: What is process integration?
  publication-title: Int. Process Integration Jubilee Conference, Gothenburg, Sweden
– volume: 230
  start-page: 116129
  year: 2021
  ident: bib7
  article-title: Pinch-based targeting methodology for multi-contaminant material recycle/reuse
  publication-title: Chem. Eng. Sci.
– volume: 232
  start-page: 110663
  year: 2021
  ident: bib21
  article-title: A systematic pinch approach to integrate stratified thermal energy storage in buildings
  publication-title: Energy Build.
– year: 2016
  ident: bib13
  article-title: Combined Heat and Power Technology Fact Sheet Series – Steam Turbines DOE/EE-1334
– year: 2021
  ident: bib32
– year: 2012
  ident: bib39
  article-title: Chemical Engineering Design
– volume: 250
  start-page: 1383
  year: 2019
  end-page: 1401
  ident: bib6
  article-title: A comparative assessment of electrification strategies for industrial sites: case of milk powder production
  publication-title: Appl. Energy
– volume: 290
  start-page: 116746
  year: 2021
  ident: bib42
  article-title: Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach
  publication-title: Appl. Energy
– year: 2007
  ident: bib23
  article-title: Pinch Analysis and Process Integration
– year: 2015
  ident: bib40
  article-title: Energy efficiency best operating practices guide for foundries. TERI
– year: 2013
  ident: bib18
  article-title: Recent developments in the application of mathematical programming to process integration
  publication-title: Int. Process Integration Jubilee Conference, Gothenburg, Sweden
– volume: 15
  start-page: 124004
  year: 2020
  ident: bib27
  article-title: The CO
  publication-title: Environ. Res. Lett.
– year: 2017
  ident: bib5
  article-title: Electrification in the Dutch Process Industry
– year: 2017
  ident: bib30
  article-title: Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050
– volume: 152
  start-page: 985
  year: 2018
  end-page: 1010
  ident: bib3
  article-title: High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials
  publication-title: Energy
– volume: 167
  start-page: 189
  year: 2016
  end-page: 200
  ident: bib45
  article-title: Economic evaluation of heat pumps and electric boilers in the Danish energy system
  publication-title: Appl. Energy
– year: 2016
  ident: bib36
  article-title: Chemical Process Design and Integration
– year: 2021
  ident: bib15
  article-title: Short-term Energy Outlook – Energy Prices
– volume: 243
  start-page: 71
  year: 2019
  end-page: 90
  ident: bib48
  article-title: Direct and indirect electrification of chemical industry using methanol production as a case study
  publication-title: Appli. Energy
– start-page: 2165
  year: 2005
  end-page: 2180
  ident: bib24
  article-title: Pinch Design and Analysis
– volume: 166
  start-page: 989
  year: 2019
  end-page: 999
  ident: bib33
  article-title: Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050
  publication-title: Energy
– volume: 115
  start-page: 1623
  year: 2016
  end-page: 1631
  ident: bib25
  article-title: Decarbonising the energy intensive basic materials industry through electrification e Implications for future EU electricity demand
  publication-title: Energy
– volume: 237
  start-page: 121544
  year: 2021
  ident: bib26
  article-title: Optimizing regional electricity trading with carbon emissions pinch analysis
  publication-title: Energy
– volume: 146
  start-page: 82
  year: 2018
  end-page: 97
  ident: bib1
  article-title: Cost-effective strategy for heat exchanger network retrofit
  publication-title: Energy
– year: 2021
  ident: bib17
  article-title: Low-carbon Production of Iron and Steel: Technology Options, Economic Assessment and Policy
– volume: 23
  start-page: 1819
  year: 2003
  end-page: 1835
  ident: bib38
  article-title: Cost estimation and energy price forecasts for economic evaluation of retrofit projects
  publication-title: Appl. Therm. Eng.
– year: 2015
  ident: bib12
  article-title: Quadrennial Technology Review 2015: Process Heating
– year: 2021
  ident: bib4
– year: 2003
  ident: bib31
  article-title: Plant Design and Economics for Chemical Engineers
– volume: 25
  start-page: 259
  year: 2021
  end-page: 270
  ident: bib8
  article-title: Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector
  publication-title: Sustainable Production and Consumption
– year: 2017
  ident: bib10
  article-title: Matching Processes with Electrification Technologies (ECN-E-17-008)
– volume: 239
  start-page: 122060
  year: 2022
  ident: bib37
  article-title: Sustainable process integration of electrification technologies with industrial energy systems
  publication-title: Energy
– volume: 130
  start-page: 109969
  year: 2020
  ident: bib46
  article-title: System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach
  publication-title: Renew. Sustain. Energy Rev.
– volume: 26
  start-page: 101030
  year: 2021
  ident: bib2
  article-title: Retrofit of heat exchanger networks by graphical pinch analysis – a case study of a crude oil refinery in Kuwait
  publication-title: Case Stud.Therm. Eng.
– volume: 8
  start-page: 192
  year: 2020
  ident: bib47
  article-title: Bottom-up assessment framework for electrification options in energy-intensive process industries
  publication-title: Front. Energy Res.
– volume: 214
  start-page: 119022
  year: 2021
  ident: bib44
  article-title: Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm
  publication-title: Energy
– volume: 203
  start-page: 112276
  year: 2020
  ident: bib20
  article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes
  publication-title: Energy Convers. Manag.
– year: 2017
  ident: bib29
  article-title: Electrification in the Dutch process industry
– year: 2018
  ident: bib9
  article-title: Electrification of Buildings and Industry in the United States
– start-page: 48
  year: 2002
  end-page: 66
  ident: bib35
  article-title: Steel Industry and Climate Change
– year: 2017
  ident: 10.1016/j.jclepro.2021.130002_bib30
– year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib17
– volume: 146
  start-page: 82
  year: 2018
  ident: 10.1016/j.jclepro.2021.130002_bib1
  article-title: Cost-effective strategy for heat exchanger network retrofit
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.005
– volume: 152
  start-page: 985
  year: 2018
  ident: 10.1016/j.jclepro.2021.130002_bib3
  article-title: High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.166
– year: 2007
  ident: 10.1016/j.jclepro.2021.130002_bib23
– volume: 166
  start-page: 989
  year: 2019
  ident: 10.1016/j.jclepro.2021.130002_bib33
  article-title: Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.114
– year: 2018
  ident: 10.1016/j.jclepro.2021.130002_bib9
– year: 2016
  ident: 10.1016/j.jclepro.2021.130002_bib36
– volume: 243
  start-page: 71
  year: 2019
  ident: 10.1016/j.jclepro.2021.130002_bib48
  article-title: Direct and indirect electrification of chemical industry using methanol production as a case study
  publication-title: Appli. Energy
  doi: 10.1016/j.apenergy.2019.03.184
– volume: 13
  start-page: 2352
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib43
  article-title: Renewable energy integration for steam supply of industrial processes—A food processing case study
  publication-title: Energies
  doi: 10.3390/en13102532
– volume: 150
  start-page: 111482
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib41
  article-title: A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111482
– volume: 23
  start-page: 1819
  year: 2003
  ident: 10.1016/j.jclepro.2021.130002_bib38
  article-title: Cost estimation and energy price forecasts for economic evaluation of retrofit projects
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00136-4
– volume: 26
  start-page: 101030
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib2
  article-title: Retrofit of heat exchanger networks by graphical pinch analysis – a case study of a crude oil refinery in Kuwait
  publication-title: Case Stud.Therm. Eng.
  doi: 10.1016/j.csite.2021.101030
– volume: 25
  start-page: 259
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib8
  article-title: Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector
  publication-title: Sustainable Production and Consumption
  doi: 10.1016/j.spc.2020.08.013
– ident: 10.1016/j.jclepro.2021.130002_bib29
– volume: 250
  start-page: 1383
  year: 2019
  ident: 10.1016/j.jclepro.2021.130002_bib6
  article-title: A comparative assessment of electrification strategies for industrial sites: case of milk powder production
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.05.071
– volume: 230
  start-page: 116129
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib7
  article-title: Pinch-based targeting methodology for multi-contaminant material recycle/reuse
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116129
– volume: 60
  start-page: 101320
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib22
  article-title: What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production
  publication-title: Energy Res.Soc. Sci.
  doi: 10.1016/j.erss.2019.101320
– volume: 232
  start-page: 110663
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib21
  article-title: A systematic pinch approach to integrate stratified thermal energy storage in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110663
– ident: 10.1016/j.jclepro.2021.130002_bib28
– year: 2018
  ident: 10.1016/j.jclepro.2021.130002_bib16
– volume: 130
  start-page: 109969
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib46
  article-title: System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109969
– year: 2011
  ident: 10.1016/j.jclepro.2021.130002_bib14
– year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib15
– start-page: 48
  year: 2002
  ident: 10.1016/j.jclepro.2021.130002_bib35
– year: 2012
  ident: 10.1016/j.jclepro.2021.130002_bib39
– volume: 167
  start-page: 189
  year: 2016
  ident: 10.1016/j.jclepro.2021.130002_bib45
  article-title: Economic evaluation of heat pumps and electric boilers in the Danish energy system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.115
– volume: 8
  start-page: 192
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib47
  article-title: Bottom-up assessment framework for electrification options in energy-intensive process industries
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2020.00192
– volume: 115
  start-page: 1623
  year: 2016
  ident: 10.1016/j.jclepro.2021.130002_bib25
  article-title: Decarbonising the energy intensive basic materials industry through electrification e Implications for future EU electricity demand
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.110
– year: 2017
  ident: 10.1016/j.jclepro.2021.130002_bib10
– volume: 15
  start-page: 124004
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib27
  article-title: The CO2 reduction potential for the European industry via direct electri cation of heat supply (power-to-heat)
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abbd02
– year: 2013
  ident: 10.1016/j.jclepro.2021.130002_bib19
  article-title: What is process integration?
– volume: 214
  start-page: 119022
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib44
  article-title: Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119022
– year: 2015
  ident: 10.1016/j.jclepro.2021.130002_bib11
– volume: 290
  start-page: 116746
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib42
  article-title: Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116746
– volume: 203
  start-page: 112276
  year: 2020
  ident: 10.1016/j.jclepro.2021.130002_bib20
  article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112276
– year: 2016
  ident: 10.1016/j.jclepro.2021.130002_bib13
– start-page: 2165
  year: 2005
  ident: 10.1016/j.jclepro.2021.130002_bib24
– year: 2017
  ident: 10.1016/j.jclepro.2021.130002_bib5
– year: 2013
  ident: 10.1016/j.jclepro.2021.130002_bib18
  article-title: Recent developments in the application of mathematical programming to process integration
– year: 2015
  ident: 10.1016/j.jclepro.2021.130002_bib40
– volume: 237
  start-page: 121544
  year: 2021
  ident: 10.1016/j.jclepro.2021.130002_bib26
  article-title: Optimizing regional electricity trading with carbon emissions pinch analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121544
– year: 2003
  ident: 10.1016/j.jclepro.2021.130002_bib31
– volume: 239
  start-page: 122060
  year: 2022
  ident: 10.1016/j.jclepro.2021.130002_bib37
  article-title: Sustainable process integration of electrification technologies with industrial energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122060
– start-page: 411
  year: 2018
  ident: 10.1016/j.jclepro.2021.130002_bib34
  article-title: Electrification of industrial process heat: long-term applications, potentials and impacts
  publication-title: ECEEE.Ind.Summer.Study. Proc
– year: 2015
  ident: 10.1016/j.jclepro.2021.130002_bib12
SSID ssj0017074
Score 2.4723253
Snippet A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130002
SubjectTerms capital costs
electricity
Electrification
energy efficiency
Energy recovery
fossil fuels
Heat exchanger networks
heat exchangers
Heat integration
heat recovery
Power-to-Heat
process design
Title Heat integration of power-to-heat technologies: Case studies on heat recovery systems subject to electrified heating
URI https://dx.doi.org/10.1016/j.jclepro.2021.130002
https://www.proquest.com/docview/2636600652
Volume 331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zPWR7MmXimwLEvx1jQ2qLEXbdLbhoUlaWOgEXrw4m93Bpb6iEkTrzC7kJ3hmwfzIOTGx-i9dgD9_EBZPMUekJpzC2xTzT0ldOJi7fDTVEQz_jD35x0ybmthMK3SYH-D6TVamyu2OU17tVjYzxjBEj4T4LRwbAKDFew8QCkffGzSPOBG04kZw11I_VXFYy8HS9gMgArcRObWc5FNdOUP_fQLqWv1Mzkg-8ZupKPm1Q5JR-dHZO9bN8FjUkWAq7Tt_wDnTYuMrnAKmlUVFoIurdpAOvjHt3QMGoyWTSIhBfKaBD1kEO932vR4Lmm5VhiroVVBm5k5iwzM1poYHntCZpO7l3FkmaEKVuJxVllCpynLmHJ4OgTrzAl04mfg86DjJQK0TkLOAtcFAvC9QIX6LORhxj3tpbE7jL1T0s2LXJ8RmsWZYkid8BigIIlZqLhinuKBn4ax6hHeHqVMTMdxHHzxKtvUsqU0HJDIAdlwoEcGm2WrpuXGtgXDlk_yh-xIUAvbll63fJXwXeHPkjjXxbqUTHhCoIHGzv-__QXZZVgu4WDa4CXpVm9rfQVGTKX6tZT2yc7o_jGafgI5xvH_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmeszzXxSoFlWYo302hQ215sk942LCxJGwON0IMXf7szPOojJk28wiyQnd1vHsx-Q8iNi9l7bQH6uZ4yeIwckJpzA3xTzR0ldGTj2eHhSAQT_jR1py3Sb87CYFlljf0VppdoXV8x69k0F7OZ-YIZLOEyAUELRxKYDbLJYftiG4Pux6rOA-5UVMyY70Lxr2M85rw7h6cBUkGcyOyyMXKdXvnDQP2C6tL-POyR3dpxpHfVt-2Tlk4PyM43OsFDUgQArLQhgIAJp1lCF9gGzSgyA1GXFk0mHQLkW9oHE0bzqpKQgngpgiEyrO93WpE85zRfKkzW0CKjVdOcWQJ-aykMrz0ik4f7cT8w6q4KRuRwVhhCxzFLmLJ43AP3zPJ05CYQ9GDkJTx0T3zOPNsGAQi-wIa6zOd-wh3txKHdC51j0k6zVJ8QmoSJYigd8RCwIAqZr7hijuKeG_uh6hDeTKWMaspx7HzxKpvasrmsNSBRA7LSQId0V8MWFefGugG9Rk_yx-KRYBfWDb1u9CphY-HfkjDV2TKXTDhCoIfGTv__-CuyFYyHAzl4HD2fkW2GZycsrCE8J-3ibakvwKMp1GW5Yj8Bw17zjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+integration+of+power-to-heat+technologies%3A+Case+studies+on+heat+recovery+systems+subject+to+electrified+heating&rft.jtitle=Journal+of+cleaner+production&rft.au=Kim%2C+Jin-Kuk&rft.au=Son%2C+Hyunsoo&rft.au=Yun%2C+Seokwon&rft.date=2022-01-10&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.volume=331&rft_id=info:doi/10.1016%2Fj.jclepro.2021.130002&rft.externalDocID=S0959652621041706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon