Heat integration of power-to-heat technologies: Case studies on heat recovery systems subject to electrified heating
A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the i...
Saved in:
Published in | Journal of cleaner production Vol. 331; p. 130002 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities.
•Heat Integration of industrial energy systems subject to electrification.•Process design methods and guidelines for heat supply from electrified units.•Cost-effective strategies for the implementation of electrified heating.•Techno-economic impact of power-to-heat for process industries. |
---|---|
AbstractList | A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities. A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and energy-efficient transition from a fossil-fuelled energy system to a renewable-based electricity system. The most appropriate strategy for the implementation of electrified sources for energy systems is proposed in the context of Heat Integration. Design implications related to the introduction of electrified sources for industries are fully investigated for the design of heat recovery systems between conventional fossil-fuelled systems and electrified systems. As the electricity-based heating systems allows more degrees of freedom for the design of the HEN (Heat Exchanger Network) than fossil-fuel-based systems, design complexities of HEN under electrification can be considerably reduced. This is illustrated with a few cases of heat recovery system in which capital cost and design complexities can be minimized by considering the electrified energy supply and their characteristics in an effective and integrated manner. Preliminary techno-economic assessment for electrified energy recovery systems is carried out to understand economic limitation of industrial electrification under current energy prices and its sensitivities. •Heat Integration of industrial energy systems subject to electrification.•Process design methods and guidelines for heat supply from electrified units.•Cost-effective strategies for the implementation of electrified heating.•Techno-economic impact of power-to-heat for process industries. |
ArticleNumber | 130002 |
Author | Kim, Jin-Kuk Yun, Seokwon Son, Hyunsoo |
Author_xml | – sequence: 1 givenname: Jin-Kuk surname: Kim fullname: Kim, Jin-Kuk email: jinkukkim@hanyang.ac.kr – sequence: 2 givenname: Hyunsoo surname: Son fullname: Son, Hyunsoo – sequence: 3 givenname: Seokwon surname: Yun fullname: Yun, Seokwon |
BookMark | eNqFkD1PwzAQQD2AxOdPQPLIknB2EqeGAaEKKBISC8yWcS7FURoX2wH13-M2nVg6nU9-74Z3Ro4GNyAhVwxyBkzcdHlnelx7l3PgLGcFAPAjcgqykpmouDghZyF0AKyGujwlcYE6UjtEXHodrRuoa-na_aLPosu-tp8Rzdfgere0GG7pXAekIY5N2mjCd4hH437Qb2jYhIirQMP42aFJrqPYp4e3rcVmB9theUGOW90HvNzPc_Lx9Pg-X2Svb88v84fXzBQlj5nApuEt_4SymYkKoEZTtVIIPpNS1IWshSx5zVgCWAkGseKylG1ZYNFoNtPFObme7qYe3yOGqFY2GOx7PaAbg-KiEAIgZUloNaHGuxA8tmrt7Ur7jWKgtmVVp_Zl1basmsom7-6fZ2zchYxe2_6gfT_ZmCr8WPQqGIuDwcampFE1zh648AfqMZ1D |
CitedBy_id | crossref_primary_10_1093_ijlct_ctae134 crossref_primary_10_9767_jcerp_20300 crossref_primary_10_1016_j_rser_2024_114472 crossref_primary_10_1021_acs_iecr_2c04325 crossref_primary_10_1016_j_energy_2023_129245 crossref_primary_10_1016_j_renene_2022_12_100 crossref_primary_10_1016_j_jclepro_2024_141156 crossref_primary_10_1016_j_prime_2023_100246 crossref_primary_10_1016_j_rser_2022_112798 crossref_primary_10_1016_j_rser_2024_114522 crossref_primary_10_1021_acsengineeringau_3c00051 crossref_primary_10_1002_aic_18626 crossref_primary_10_1016_j_jclepro_2022_132887 crossref_primary_10_1016_j_rser_2022_112924 crossref_primary_10_3389_fther_2022_861882 crossref_primary_10_1016_j_fuel_2023_128925 crossref_primary_10_1016_j_rser_2022_112718 crossref_primary_10_1016_j_heliyon_2024_e29087 crossref_primary_10_1016_j_coche_2025_101118 crossref_primary_10_1016_j_applthermaleng_2024_125274 crossref_primary_10_3389_fenrg_2022_964511 crossref_primary_10_1016_j_ijrefrig_2024_06_012 crossref_primary_10_1016_j_csite_2024_104601 crossref_primary_10_1016_j_jclepro_2023_136773 |
Cites_doi | 10.1016/j.energy.2017.09.005 10.1016/j.energy.2018.03.166 10.1016/j.energy.2018.10.114 10.1016/j.apenergy.2019.03.184 10.3390/en13102532 10.1016/j.rser.2021.111482 10.1016/S1359-4311(03)00136-4 10.1016/j.csite.2021.101030 10.1016/j.spc.2020.08.013 10.1016/j.apenergy.2019.05.071 10.1016/j.ces.2020.116129 10.1016/j.erss.2019.101320 10.1016/j.enbuild.2020.110663 10.1016/j.rser.2020.109969 10.1016/j.apenergy.2015.08.115 10.3389/fenrg.2020.00192 10.1016/j.energy.2016.07.110 10.1088/1748-9326/abbd02 10.1016/j.energy.2020.119022 10.1016/j.apenergy.2021.116746 10.1016/j.enconman.2019.112276 10.1016/j.energy.2021.121544 10.1016/j.energy.2021.122060 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2021.130002 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jclepro_2021_130002 S0959652621041706 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SEN SES SPC SPCBC SSH SSJ SSR SSZ T5K ~G- 29K AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-6edd2f2b04d865007ec5f9662899673976942711b04140cee52949f43e3da18a3 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Jul 11 05:30:38 EDT 2025 Tue Jul 01 03:23:49 EDT 2025 Thu Apr 24 23:00:40 EDT 2025 Sun Apr 06 06:54:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrification Energy recovery Power-to-Heat Heat exchanger networks Heat integration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-6edd2f2b04d865007ec5f9662899673976942711b04140cee52949f43e3da18a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636600652 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636600652 crossref_primary_10_1016_j_jclepro_2021_130002 crossref_citationtrail_10_1016_j_jclepro_2021_130002 elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_130002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-10 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib32) 2021 Alhajri, Gadalla, Abdelaziz, Ashour (bib2) 2021; 26 Kim, Smith (bib24) 2005 Son, Kim, Kim (bib37) 2022; 239 (bib13) 2016 Nielsen, Morales, Zugno, Pedersen, Madsen (bib45) 2016; 167 Yong, Liew, Woon, Alwi, Klemes (bib41) 2021; 150 Akpomiemie, Smith (bib1) 2018; 146 Hosseinnia, Sorin (bib21) 2021; 232 Ruhnau, Bannik, Otten, Praktiknjo, Robinius (bib33) 2019; 166 Sharma, Basu, Prasad, Dhillon (bib35) 2002 TERI (bib40) 2015 Hamedi, Karimi, Gundersen (bib20) 2020; 203 Peters, Timmerhaus, West (bib31) 2003 Towler, Sinnott (bib39) 2012 Taal, Bulatov, Klemes, Stehlik (bib38) 2003; 23 Janipour, de Nooij, Scholten, Huijbregts, de Coninck (bib22) 2020; 60 Deason, Wei, Leventis, Smith, Schwartz (bib9) 2018 van Delft, de Kler (bib10) 2017 Chen, Lu, Banares-Alcantar (bib48) 2019; 243 Liu, Wang, Yan (bib44) 2021; 214 Schuwer, Schneider (bib34) 2018 (bib14) 2011 (bib4) 2021 Wiertzema, Svensson, Harvey (bib47) 2020; 8 Arpagaus, Bless, Uhlmann, Schiffmann, Bertsch (bib3) 2018; 152 Fan, Friedmann (bib17) 2021 Lopez, Foo, Tan (bib26) 2021; 237 den Ouden, Linttmeijer, van Aken, Afman, Croezen, van Lieshout, Klop, Waggeveld, Crift (bib29) 2017 Hechelmann, Seevers, Otte, Sponer, Stark (bib43) 2020; 13 (bib12) 2015 (bib16) 2018 (bib11) 2015 Grossmann (bib18) 2013 Fonseca, Commenge, Camargo, Falk, Gil (bib42) 2021; 290 Lechtenbohmer, Nilsson, Ahman, Schneider (bib25) 2016; 115 Madeddu, Ueckerdt, Pehl, Peterseim, Lord, Kumar, Krüger, Luderer (bib27) 2020; 15 Paige, McMillan, Steinberg, Muratori, Vimmerstedt, Mai (bib30) 2017 McKinsey, Company (bib28) 2021 Smith (bib36) 2016 Chin, Varbanov, Liew, Klemes (bib7) 2021; 230 Cossutta, Foo, Tan (bib8) 2021; 25 Gundersen (bib19) 2013 Buhler, Zuhlsdorf, Nguyen, Elmegaard (bib6) 2019; 250 Berenschot (bib5) 2017 Kemp (bib23) 2007 Selleneit, Stockl, Holzhammer (bib46) 2020; 130 (bib15) 2021 (10.1016/j.jclepro.2021.130002_bib12) 2015 den Ouden (10.1016/j.jclepro.2021.130002_bib29) Berenschot (10.1016/j.jclepro.2021.130002_bib5) 2017 Towler (10.1016/j.jclepro.2021.130002_bib39) 2012 Smith (10.1016/j.jclepro.2021.130002_bib36) 2016 Buhler (10.1016/j.jclepro.2021.130002_bib6) 2019; 250 Wiertzema (10.1016/j.jclepro.2021.130002_bib47) 2020; 8 van Delft (10.1016/j.jclepro.2021.130002_bib10) 2017 Lechtenbohmer (10.1016/j.jclepro.2021.130002_bib25) 2016; 115 (10.1016/j.jclepro.2021.130002_bib14) 2011 Fan (10.1016/j.jclepro.2021.130002_bib17) 2021 Selleneit (10.1016/j.jclepro.2021.130002_bib46) 2020; 130 Chen (10.1016/j.jclepro.2021.130002_bib48) 2019; 243 Paige (10.1016/j.jclepro.2021.130002_bib30) 2017 Deason (10.1016/j.jclepro.2021.130002_bib9) 2018 Yong (10.1016/j.jclepro.2021.130002_bib41) 2021; 150 Nielsen (10.1016/j.jclepro.2021.130002_bib45) 2016; 167 Fonseca (10.1016/j.jclepro.2021.130002_bib42) 2021; 290 Akpomiemie (10.1016/j.jclepro.2021.130002_bib1) 2018; 146 Arpagaus (10.1016/j.jclepro.2021.130002_bib3) 2018; 152 (10.1016/j.jclepro.2021.130002_bib11) 2015 Hechelmann (10.1016/j.jclepro.2021.130002_bib43) 2020; 13 Sharma (10.1016/j.jclepro.2021.130002_bib35) 2002 McKinsey (10.1016/j.jclepro.2021.130002_bib28) (10.1016/j.jclepro.2021.130002_bib13) 2016 (10.1016/j.jclepro.2021.130002_bib15) 2021 Hamedi (10.1016/j.jclepro.2021.130002_bib20) 2020; 203 Kemp (10.1016/j.jclepro.2021.130002_bib23) 2007 Gundersen (10.1016/j.jclepro.2021.130002_bib19) 2013 Janipour (10.1016/j.jclepro.2021.130002_bib22) 2020; 60 Son (10.1016/j.jclepro.2021.130002_bib37) 2022; 239 Taal (10.1016/j.jclepro.2021.130002_bib38) 2003; 23 Kim (10.1016/j.jclepro.2021.130002_bib24) 2005 Liu (10.1016/j.jclepro.2021.130002_bib44) 2021; 214 TERI (10.1016/j.jclepro.2021.130002_bib40) 2015 Hosseinnia (10.1016/j.jclepro.2021.130002_bib21) 2021; 232 Alhajri (10.1016/j.jclepro.2021.130002_bib2) 2021; 26 Grossmann (10.1016/j.jclepro.2021.130002_bib18) 2013 Chin (10.1016/j.jclepro.2021.130002_bib7) 2021; 230 Peters (10.1016/j.jclepro.2021.130002_bib31) 2003 Lopez (10.1016/j.jclepro.2021.130002_bib26) 2021; 237 (10.1016/j.jclepro.2021.130002_bib16) 2018 Madeddu (10.1016/j.jclepro.2021.130002_bib27) 2020; 15 Schuwer (10.1016/j.jclepro.2021.130002_bib34) 2018 Cossutta (10.1016/j.jclepro.2021.130002_bib8) 2021; 25 Ruhnau (10.1016/j.jclepro.2021.130002_bib33) 2019; 166 |
References_xml | – year: 2021 ident: bib28 article-title: Global energy perspective 2021 – volume: 13 start-page: 2352 year: 2020 ident: bib43 article-title: Renewable energy integration for steam supply of industrial processes—A food processing case study publication-title: Energies – volume: 60 start-page: 101320 year: 2020 ident: bib22 article-title: What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production publication-title: Energy Res.Soc. Sci. – year: 2015 ident: bib11 article-title: Improving Process Heating System Performance: a Sourcebook for Industry – year: 2011 ident: bib14 article-title: Cost Estimation Methodology for NETL Assessments of Power Plant Performance – year: 2018 ident: bib16 article-title: Emission Factors for Greenhouse Gas Inventories – start-page: 411 year: 2018 end-page: 422 ident: bib34 article-title: Electrification of industrial process heat: long-term applications, potentials and impacts publication-title: ECEEE.Ind.Summer.Study. Proc – volume: 150 start-page: 111482 year: 2021 ident: bib41 article-title: A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis publication-title: Renew. Sustain. Energy Rev. – year: 2013 ident: bib19 article-title: What is process integration? publication-title: Int. Process Integration Jubilee Conference, Gothenburg, Sweden – volume: 230 start-page: 116129 year: 2021 ident: bib7 article-title: Pinch-based targeting methodology for multi-contaminant material recycle/reuse publication-title: Chem. Eng. Sci. – volume: 232 start-page: 110663 year: 2021 ident: bib21 article-title: A systematic pinch approach to integrate stratified thermal energy storage in buildings publication-title: Energy Build. – year: 2016 ident: bib13 article-title: Combined Heat and Power Technology Fact Sheet Series – Steam Turbines DOE/EE-1334 – year: 2021 ident: bib32 – year: 2012 ident: bib39 article-title: Chemical Engineering Design – volume: 250 start-page: 1383 year: 2019 end-page: 1401 ident: bib6 article-title: A comparative assessment of electrification strategies for industrial sites: case of milk powder production publication-title: Appl. Energy – volume: 290 start-page: 116746 year: 2021 ident: bib42 article-title: Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach publication-title: Appl. Energy – year: 2007 ident: bib23 article-title: Pinch Analysis and Process Integration – year: 2015 ident: bib40 article-title: Energy efficiency best operating practices guide for foundries. TERI – year: 2013 ident: bib18 article-title: Recent developments in the application of mathematical programming to process integration publication-title: Int. Process Integration Jubilee Conference, Gothenburg, Sweden – volume: 15 start-page: 124004 year: 2020 ident: bib27 article-title: The CO publication-title: Environ. Res. Lett. – year: 2017 ident: bib5 article-title: Electrification in the Dutch Process Industry – year: 2017 ident: bib30 article-title: Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050 – volume: 152 start-page: 985 year: 2018 end-page: 1010 ident: bib3 article-title: High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials publication-title: Energy – volume: 167 start-page: 189 year: 2016 end-page: 200 ident: bib45 article-title: Economic evaluation of heat pumps and electric boilers in the Danish energy system publication-title: Appl. Energy – year: 2016 ident: bib36 article-title: Chemical Process Design and Integration – year: 2021 ident: bib15 article-title: Short-term Energy Outlook – Energy Prices – volume: 243 start-page: 71 year: 2019 end-page: 90 ident: bib48 article-title: Direct and indirect electrification of chemical industry using methanol production as a case study publication-title: Appli. Energy – start-page: 2165 year: 2005 end-page: 2180 ident: bib24 article-title: Pinch Design and Analysis – volume: 166 start-page: 989 year: 2019 end-page: 999 ident: bib33 article-title: Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050 publication-title: Energy – volume: 115 start-page: 1623 year: 2016 end-page: 1631 ident: bib25 article-title: Decarbonising the energy intensive basic materials industry through electrification e Implications for future EU electricity demand publication-title: Energy – volume: 237 start-page: 121544 year: 2021 ident: bib26 article-title: Optimizing regional electricity trading with carbon emissions pinch analysis publication-title: Energy – volume: 146 start-page: 82 year: 2018 end-page: 97 ident: bib1 article-title: Cost-effective strategy for heat exchanger network retrofit publication-title: Energy – year: 2021 ident: bib17 article-title: Low-carbon Production of Iron and Steel: Technology Options, Economic Assessment and Policy – volume: 23 start-page: 1819 year: 2003 end-page: 1835 ident: bib38 article-title: Cost estimation and energy price forecasts for economic evaluation of retrofit projects publication-title: Appl. Therm. Eng. – year: 2015 ident: bib12 article-title: Quadrennial Technology Review 2015: Process Heating – year: 2021 ident: bib4 – year: 2003 ident: bib31 article-title: Plant Design and Economics for Chemical Engineers – volume: 25 start-page: 259 year: 2021 end-page: 270 ident: bib8 article-title: Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector publication-title: Sustainable Production and Consumption – year: 2017 ident: bib10 article-title: Matching Processes with Electrification Technologies (ECN-E-17-008) – volume: 239 start-page: 122060 year: 2022 ident: bib37 article-title: Sustainable process integration of electrification technologies with industrial energy systems publication-title: Energy – volume: 130 start-page: 109969 year: 2020 ident: bib46 article-title: System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach publication-title: Renew. Sustain. Energy Rev. – volume: 26 start-page: 101030 year: 2021 ident: bib2 article-title: Retrofit of heat exchanger networks by graphical pinch analysis – a case study of a crude oil refinery in Kuwait publication-title: Case Stud.Therm. Eng. – volume: 8 start-page: 192 year: 2020 ident: bib47 article-title: Bottom-up assessment framework for electrification options in energy-intensive process industries publication-title: Front. Energy Res. – volume: 214 start-page: 119022 year: 2021 ident: bib44 article-title: Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm publication-title: Energy – volume: 203 start-page: 112276 year: 2020 ident: bib20 article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes publication-title: Energy Convers. Manag. – year: 2017 ident: bib29 article-title: Electrification in the Dutch process industry – year: 2018 ident: bib9 article-title: Electrification of Buildings and Industry in the United States – start-page: 48 year: 2002 end-page: 66 ident: bib35 article-title: Steel Industry and Climate Change – year: 2017 ident: 10.1016/j.jclepro.2021.130002_bib30 – year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib17 – volume: 146 start-page: 82 year: 2018 ident: 10.1016/j.jclepro.2021.130002_bib1 article-title: Cost-effective strategy for heat exchanger network retrofit publication-title: Energy doi: 10.1016/j.energy.2017.09.005 – volume: 152 start-page: 985 year: 2018 ident: 10.1016/j.jclepro.2021.130002_bib3 article-title: High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials publication-title: Energy doi: 10.1016/j.energy.2018.03.166 – year: 2007 ident: 10.1016/j.jclepro.2021.130002_bib23 – volume: 166 start-page: 989 year: 2019 ident: 10.1016/j.jclepro.2021.130002_bib33 article-title: Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050 publication-title: Energy doi: 10.1016/j.energy.2018.10.114 – year: 2018 ident: 10.1016/j.jclepro.2021.130002_bib9 – year: 2016 ident: 10.1016/j.jclepro.2021.130002_bib36 – volume: 243 start-page: 71 year: 2019 ident: 10.1016/j.jclepro.2021.130002_bib48 article-title: Direct and indirect electrification of chemical industry using methanol production as a case study publication-title: Appli. Energy doi: 10.1016/j.apenergy.2019.03.184 – volume: 13 start-page: 2352 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib43 article-title: Renewable energy integration for steam supply of industrial processes—A food processing case study publication-title: Energies doi: 10.3390/en13102532 – volume: 150 start-page: 111482 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib41 article-title: A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111482 – volume: 23 start-page: 1819 year: 2003 ident: 10.1016/j.jclepro.2021.130002_bib38 article-title: Cost estimation and energy price forecasts for economic evaluation of retrofit projects publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00136-4 – volume: 26 start-page: 101030 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib2 article-title: Retrofit of heat exchanger networks by graphical pinch analysis – a case study of a crude oil refinery in Kuwait publication-title: Case Stud.Therm. Eng. doi: 10.1016/j.csite.2021.101030 – volume: 25 start-page: 259 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib8 article-title: Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector publication-title: Sustainable Production and Consumption doi: 10.1016/j.spc.2020.08.013 – ident: 10.1016/j.jclepro.2021.130002_bib29 – volume: 250 start-page: 1383 year: 2019 ident: 10.1016/j.jclepro.2021.130002_bib6 article-title: A comparative assessment of electrification strategies for industrial sites: case of milk powder production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.05.071 – volume: 230 start-page: 116129 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib7 article-title: Pinch-based targeting methodology for multi-contaminant material recycle/reuse publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116129 – volume: 60 start-page: 101320 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib22 article-title: What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production publication-title: Energy Res.Soc. Sci. doi: 10.1016/j.erss.2019.101320 – volume: 232 start-page: 110663 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib21 article-title: A systematic pinch approach to integrate stratified thermal energy storage in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110663 – ident: 10.1016/j.jclepro.2021.130002_bib28 – year: 2018 ident: 10.1016/j.jclepro.2021.130002_bib16 – volume: 130 start-page: 109969 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib46 article-title: System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109969 – year: 2011 ident: 10.1016/j.jclepro.2021.130002_bib14 – year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib15 – start-page: 48 year: 2002 ident: 10.1016/j.jclepro.2021.130002_bib35 – year: 2012 ident: 10.1016/j.jclepro.2021.130002_bib39 – volume: 167 start-page: 189 year: 2016 ident: 10.1016/j.jclepro.2021.130002_bib45 article-title: Economic evaluation of heat pumps and electric boilers in the Danish energy system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.115 – volume: 8 start-page: 192 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib47 article-title: Bottom-up assessment framework for electrification options in energy-intensive process industries publication-title: Front. Energy Res. doi: 10.3389/fenrg.2020.00192 – volume: 115 start-page: 1623 year: 2016 ident: 10.1016/j.jclepro.2021.130002_bib25 article-title: Decarbonising the energy intensive basic materials industry through electrification e Implications for future EU electricity demand publication-title: Energy doi: 10.1016/j.energy.2016.07.110 – year: 2017 ident: 10.1016/j.jclepro.2021.130002_bib10 – volume: 15 start-page: 124004 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib27 article-title: The CO2 reduction potential for the European industry via direct electri cation of heat supply (power-to-heat) publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abbd02 – year: 2013 ident: 10.1016/j.jclepro.2021.130002_bib19 article-title: What is process integration? – volume: 214 start-page: 119022 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib44 article-title: Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2020.119022 – year: 2015 ident: 10.1016/j.jclepro.2021.130002_bib11 – volume: 290 start-page: 116746 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib42 article-title: Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116746 – volume: 203 start-page: 112276 year: 2020 ident: 10.1016/j.jclepro.2021.130002_bib20 article-title: Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112276 – year: 2016 ident: 10.1016/j.jclepro.2021.130002_bib13 – start-page: 2165 year: 2005 ident: 10.1016/j.jclepro.2021.130002_bib24 – year: 2017 ident: 10.1016/j.jclepro.2021.130002_bib5 – year: 2013 ident: 10.1016/j.jclepro.2021.130002_bib18 article-title: Recent developments in the application of mathematical programming to process integration – year: 2015 ident: 10.1016/j.jclepro.2021.130002_bib40 – volume: 237 start-page: 121544 year: 2021 ident: 10.1016/j.jclepro.2021.130002_bib26 article-title: Optimizing regional electricity trading with carbon emissions pinch analysis publication-title: Energy doi: 10.1016/j.energy.2021.121544 – year: 2003 ident: 10.1016/j.jclepro.2021.130002_bib31 – volume: 239 start-page: 122060 year: 2022 ident: 10.1016/j.jclepro.2021.130002_bib37 article-title: Sustainable process integration of electrification technologies with industrial energy systems publication-title: Energy doi: 10.1016/j.energy.2021.122060 – start-page: 411 year: 2018 ident: 10.1016/j.jclepro.2021.130002_bib34 article-title: Electrification of industrial process heat: long-term applications, potentials and impacts publication-title: ECEEE.Ind.Summer.Study. Proc – year: 2015 ident: 10.1016/j.jclepro.2021.130002_bib12 |
SSID | ssj0017074 |
Score | 2.4723253 |
Snippet | A systematic design methodology for the electrified supply of heat in process industries is developed to provide process design guidelines for economic and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130002 |
SubjectTerms | capital costs electricity Electrification energy efficiency Energy recovery fossil fuels Heat exchanger networks heat exchangers Heat integration heat recovery Power-to-Heat process design |
Title | Heat integration of power-to-heat technologies: Case studies on heat recovery systems subject to electrified heating |
URI | https://dx.doi.org/10.1016/j.jclepro.2021.130002 https://www.proquest.com/docview/2636600652 |
Volume | 331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zPWR7MmXimwLEvx1jQ2qLEXbdLbhoUlaWOgEXrw4m93Bpb6iEkTrzC7kJ3hmwfzIOTGx-i9dgD9_EBZPMUekJpzC2xTzT0ldOJi7fDTVEQz_jD35x0ybmthMK3SYH-D6TVamyu2OU17tVjYzxjBEj4T4LRwbAKDFew8QCkffGzSPOBG04kZw11I_VXFYy8HS9gMgArcRObWc5FNdOUP_fQLqWv1Mzkg-8ZupKPm1Q5JR-dHZO9bN8FjUkWAq7Tt_wDnTYuMrnAKmlUVFoIurdpAOvjHt3QMGoyWTSIhBfKaBD1kEO932vR4Lmm5VhiroVVBm5k5iwzM1poYHntCZpO7l3FkmaEKVuJxVllCpynLmHJ4OgTrzAl04mfg86DjJQK0TkLOAtcFAvC9QIX6LORhxj3tpbE7jL1T0s2LXJ8RmsWZYkid8BigIIlZqLhinuKBn4ax6hHeHqVMTMdxHHzxKtvUsqU0HJDIAdlwoEcGm2WrpuXGtgXDlk_yh-xIUAvbll63fJXwXeHPkjjXxbqUTHhCoIHGzv-__QXZZVgu4WDa4CXpVm9rfQVGTKX6tZT2yc7o_jGafgI5xvH_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmeszzXxSoFlWYo302hQ215sk942LCxJGwON0IMXf7szPOojJk28wiyQnd1vHsx-Q8iNi9l7bQH6uZ4yeIwckJpzA3xTzR0ldGTj2eHhSAQT_jR1py3Sb87CYFlljf0VppdoXV8x69k0F7OZ-YIZLOEyAUELRxKYDbLJYftiG4Pux6rOA-5UVMyY70Lxr2M85rw7h6cBUkGcyOyyMXKdXvnDQP2C6tL-POyR3dpxpHfVt-2Tlk4PyM43OsFDUgQArLQhgIAJp1lCF9gGzSgyA1GXFk0mHQLkW9oHE0bzqpKQgngpgiEyrO93WpE85zRfKkzW0CKjVdOcWQJ-aykMrz0ik4f7cT8w6q4KRuRwVhhCxzFLmLJ43AP3zPJ05CYQ9GDkJTx0T3zOPNsGAQi-wIa6zOd-wh3txKHdC51j0k6zVJ8QmoSJYigd8RCwIAqZr7hijuKeG_uh6hDeTKWMaspx7HzxKpvasrmsNSBRA7LSQId0V8MWFefGugG9Rk_yx-KRYBfWDb1u9CphY-HfkjDV2TKXTDhCoIfGTv__-CuyFYyHAzl4HD2fkW2GZycsrCE8J-3ibakvwKMp1GW5Yj8Bw17zjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+integration+of+power-to-heat+technologies%3A+Case+studies+on+heat+recovery+systems+subject+to+electrified+heating&rft.jtitle=Journal+of+cleaner+production&rft.au=Kim%2C+Jin-Kuk&rft.au=Son%2C+Hyunsoo&rft.au=Yun%2C+Seokwon&rft.date=2022-01-10&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.volume=331&rft_id=info:doi/10.1016%2Fj.jclepro.2021.130002&rft.externalDocID=S0959652621041706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |