A geometric tool for the analysis of position and force constraints in wave energy converters
Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of...
Saved in:
Published in | Ocean engineering Vol. 65; pp. 10 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of PTO constraints must be made in order to ensure that PTO constraints are not violated and that the trade-off between position and force constraints is made in such as way that maximum energy is captured by the converter. This paper presents a tool to allow device developers to check the satisfaction of constraints for a given hydrodynamic model and set of sea conditions and, where constraints are not satisfied, shows how to relax the constraints to maximize energy capture. The tool is algebraic, requiring no simulation and the results are presented through intuitive geometrical constructs. Sample application results are presented for single- and two-body wave energy systems.
•A discretization method is applied to express the system model as a linear system of equations.•Satisfaction of force and position constraints is done purely from the hydrodynamic model.•No simulation is required to evaluate constraints across a set of specific wave conditions.•The method is graphical and intuitively allows constraints to be adjusted to optimism power capture.•Multi-body devices are considered, with results for 1- and 2-body cases presented. |
---|---|
AbstractList | Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of PTO constraints must be made in order to ensure that PTO constraints are not violated and that the trade-off between position and force constraints is made in such as way that maximum energy is captured by the converter. This paper presents a tool to allow device developers to check the satisfaction of constraints for a given hydrodynamic model and set of sea conditions and, where constraints are not satisfied, shows how to relax the constraints to maximize energy capture. The tool is algebraic, requiring no simulation and the results are presented through intuitive geometrical constructs. Sample application results are presented for single- and two-body wave energy systems.
•A discretization method is applied to express the system model as a linear system of equations.•Satisfaction of force and position constraints is done purely from the hydrodynamic model.•No simulation is required to evaluate constraints across a set of specific wave conditions.•The method is graphical and intuitively allows constraints to be adjusted to optimism power capture.•Multi-body devices are considered, with results for 1- and 2-body cases presented. |
Author | Ringwood, John V. Bacelli, Giorgio |
Author_xml | – sequence: 1 givenname: Giorgio surname: Bacelli fullname: Bacelli, Giorgio – sequence: 2 givenname: John V. surname: Ringwood fullname: Ringwood, John V. email: john.ringwood@eeng.nuim.ie |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27391539$$DView record in Pascal Francis |
BookMark | eNqFUE1L7EAQHETB9eMvyFw8Zu2ZmEkCHhR5foDwLs-jDJ1OZ50lziwzw8r--5ewevEiFDR0V1VTdSIOffAsxIWCpQJlrtbLQIye_WqpQZVLmKDUgViopi6LSlfNoVgA6LZoQDXH4iSlNQAYA-VCvN3JFYcPztGRzCGMcghR5neW6HHcJZdkGOQmJJdd8NOynwnEkoJPOaLzOUnn5SduWbLnuNrNpy3HzDGdiaMBx8TnX_NUvD78-Xf_VLz8fXy-v3spqLzWuTCkasU01FjVBk09IJDumFvNSA11VEEPqDvom7abuMZQdz0FoF53XYd1eSou974bTITjENGTS3YT3QfGndV12aqqbCfezZ5HMaQUebDkMs7J5iijVWDnSu3afldq50otTFBqkpsf8u8Pvwpv90KeStg6jjaRY0_cu8iUbR_cbxb_AZ5vmZU |
CODEN | OCENBQ |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2022_10_531 crossref_primary_10_3390_en12214158 crossref_primary_10_1049_rpg2_12302 crossref_primary_10_1016_j_rser_2023_113877 crossref_primary_10_1016_j_apor_2023_103749 crossref_primary_10_1049_iet_rpg_2016_0074 crossref_primary_10_1109_TSTE_2018_2860462 crossref_primary_10_1016_j_conengprac_2024_105949 crossref_primary_10_1007_s40722_015_0021_7 crossref_primary_10_1109_MCS_2014_2333253 crossref_primary_10_1007_s40722_016_0068_0 crossref_primary_10_3390_en81011203 crossref_primary_10_1016_j_apenergy_2021_117100 crossref_primary_10_1016_j_arcontrol_2023_04_004 crossref_primary_10_1016_j_renene_2024_120172 crossref_primary_10_1049_rpg2_12179 crossref_primary_10_1016_j_oceaneng_2022_111434 crossref_primary_10_3182_20140824_6_ZA_1003_00418 crossref_primary_10_3182_20140824_6_ZA_1003_00517 crossref_primary_10_1016_j_arcontrol_2015_08_004 crossref_primary_10_1016_j_ifacol_2024_10_093 crossref_primary_10_1016_j_ymssp_2022_109669 crossref_primary_10_1016_j_ifacol_2020_12_1162 crossref_primary_10_1016_j_renene_2024_121974 crossref_primary_10_1049_rpg2_12021 crossref_primary_10_1109_TSTE_2023_3320190 crossref_primary_10_1109_TCST_2020_3047229 crossref_primary_10_1016_j_arcontrol_2015_09_003 |
Cites_doi | 10.1016/0141-1187(93)90011-L 10.3182/20110828-6-IT-1002.03255 10.1115/1.4001431 10.1115/1.2829552 10.1016/j.oceaneng.2005.07.007 10.3182/20110828-6-IT-1002.03694 10.1016/0141-1187(81)90063-8 10.1016/j.apor.2012.10.008 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.oceaneng.2013.03.011 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography Applied Sciences |
EISSN | 1873-5258 |
EndPage | 18 |
ExternalDocumentID | 27391539 10_1016_j_oceaneng_2013_03_011 S0029801813001200 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW SSH WUQ EFKBS IQODW |
ID | FETCH-LOGICAL-c342t-6c171ecf7a576a67fa0c2bee92eac8cbc50d0a2b0d89bc1766cb4066cd2bbba73 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Mon Jul 21 09:16:24 EDT 2025 Tue Jul 01 03:26:23 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Fri Feb 23 02:26:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wave energy Constraints Power take-off Discretization Ocean energy Wave effect Force Position Wave power generator Energy convertor Modeling Discretization method Energy of waters Numerical simulation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-6c171ecf7a576a67fa0c2bee92eac8cbc50d0a2b0d89bc1766cb4066cd2bbba73 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_27391539 crossref_citationtrail_10_1016_j_oceaneng_2013_03_011 crossref_primary_10_1016_j_oceaneng_2013_03_011 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2013_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Ocean engineering |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Falnes (bib7) 1999; 121 Hals, Falnes, Moan (bib10) 2011; 133 Boyd (bib4) 2001 Cretel, J., Lightbody, G., Thomas, G., Lewis, A., 2011. Maximisation of energy capture by a wave-energy point absorber using model predictive control. In: Proceedings of the IFAC World Congress. pp. 3714–3721. Evans (bib6) 1981; 3 Pizer (bib12) 1993; 15 Ogilvie, T., 1964. Recent progress toward the understanding and prediction of ship motions. In: Proceedings of the Fifth Symposium on Naval Hydrodynamics, Bergen, Norway. Timan (bib13) 1994 Bjarte-Larsson, Falnes (bib3) 2006; 33 Bacelli, G., Ringwood, J.V., Gilloteaux, J.-C., 2011. A control system for a self-reacting point absorber wave energy converter subject to constraints. In: IFAC World Congress, pp. 11387–11392. Atkinson, Han (bib1) 2005 Falnes, J., 2000. Maximum wave-energy absorbtion by oscillating systems consisting of bodies and water columns with restricted or unrestricted amplitudes. In: Proceedings of the International Offshore and Polar Engineering Conference. pp. 420–425. Weller, Stallard, Stansby (bib14) 2013; 39 Falnes (bib9) 2002 Falnes (10.1016/j.oceaneng.2013.03.011_bib9) 2002 Bjarte-Larsson (10.1016/j.oceaneng.2013.03.011_bib3) 2006; 33 Falnes (10.1016/j.oceaneng.2013.03.011_bib7) 1999; 121 Hals (10.1016/j.oceaneng.2013.03.011_bib10) 2011; 133 Atkinson (10.1016/j.oceaneng.2013.03.011_bib1) 2005 10.1016/j.oceaneng.2013.03.011_bib8 Evans (10.1016/j.oceaneng.2013.03.011_bib6) 1981; 3 Pizer (10.1016/j.oceaneng.2013.03.011_bib12) 1993; 15 10.1016/j.oceaneng.2013.03.011_bib5 10.1016/j.oceaneng.2013.03.011_bib2 Boyd (10.1016/j.oceaneng.2013.03.011_bib4) 2001 Timan (10.1016/j.oceaneng.2013.03.011_bib13) 1994 Weller (10.1016/j.oceaneng.2013.03.011_bib14) 2013; 39 10.1016/j.oceaneng.2013.03.011_bib11 |
References_xml | – reference: Falnes, J., 2000. Maximum wave-energy absorbtion by oscillating systems consisting of bodies and water columns with restricted or unrestricted amplitudes. In: Proceedings of the International Offshore and Polar Engineering Conference. pp. 420–425. – reference: Cretel, J., Lightbody, G., Thomas, G., Lewis, A., 2011. Maximisation of energy capture by a wave-energy point absorber using model predictive control. In: Proceedings of the IFAC World Congress. pp. 3714–3721. – volume: 3 start-page: 200 year: 1981 end-page: 203 ident: bib6 article-title: Maximum wave-power absorbtion under motion constraints publication-title: Appl. Ocean Res. – volume: 121 start-page: 32 year: 1999 end-page: 38 ident: bib7 article-title: Wave-energy conversion through relative motion between two single-mode oscillating bodies publication-title: J. Offshore Mech. Arct. Eng. – reference: Ogilvie, T., 1964. Recent progress toward the understanding and prediction of ship motions. In: Proceedings of the Fifth Symposium on Naval Hydrodynamics, Bergen, Norway. – reference: Bacelli, G., Ringwood, J.V., Gilloteaux, J.-C., 2011. A control system for a self-reacting point absorber wave energy converter subject to constraints. In: IFAC World Congress, pp. 11387–11392. – volume: 33 start-page: 847 year: 2006 end-page: 877 ident: bib3 article-title: Laboratory experiment on heaving body with hydraulic power take-off and latching control publication-title: Ocean Eng. – year: 2002 ident: bib9 article-title: Ocean Waves and Oscillating Systems – volume: 133 start-page: 011401 year: 2011 end-page: 011415 ident: bib10 article-title: Constrained optimal control of a heaving buoy wave-energy converter publication-title: J. Offshore Mech. Arct. Eng. – volume: 15 start-page: 227 year: 1993 end-page: 234 ident: bib12 article-title: Maximum wave-power absorbtion of point absorbers under motion constraints publication-title: Appl. Ocean Res. – year: 2001 ident: bib4 article-title: Chebyshev and Fourier Spectral Methods – year: 1994 ident: bib13 article-title: Theory of Approximation of Functions of a Real Variable – volume: 39 start-page: 137 year: 2013 end-page: 145 ident: bib14 article-title: Experimental measurements of the complex motion of a suspended axisymmetric floating body in regular and near-focused waves publication-title: Appl. Ocean Res. – year: 2005 ident: bib1 article-title: Theoretical Numerical Analysis – volume: 15 start-page: 227 issue: 4 year: 1993 ident: 10.1016/j.oceaneng.2013.03.011_bib12 article-title: Maximum wave-power absorbtion of point absorbers under motion constraints publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(93)90011-L – ident: 10.1016/j.oceaneng.2013.03.011_bib5 doi: 10.3182/20110828-6-IT-1002.03255 – year: 2001 ident: 10.1016/j.oceaneng.2013.03.011_bib4 – year: 2002 ident: 10.1016/j.oceaneng.2013.03.011_bib9 – volume: 133 start-page: 011401 issue: 1 year: 2011 ident: 10.1016/j.oceaneng.2013.03.011_bib10 article-title: Constrained optimal control of a heaving buoy wave-energy converter publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4001431 – year: 1994 ident: 10.1016/j.oceaneng.2013.03.011_bib13 – volume: 121 start-page: 32 issue: 1 year: 1999 ident: 10.1016/j.oceaneng.2013.03.011_bib7 article-title: Wave-energy conversion through relative motion between two single-mode oscillating bodies publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.2829552 – volume: 33 start-page: 847 issue: May (7) year: 2006 ident: 10.1016/j.oceaneng.2013.03.011_bib3 article-title: Laboratory experiment on heaving body with hydraulic power take-off and latching control publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2005.07.007 – year: 2005 ident: 10.1016/j.oceaneng.2013.03.011_bib1 – ident: 10.1016/j.oceaneng.2013.03.011_bib2 doi: 10.3182/20110828-6-IT-1002.03694 – ident: 10.1016/j.oceaneng.2013.03.011_bib8 – volume: 3 start-page: 200 issue: 4 year: 1981 ident: 10.1016/j.oceaneng.2013.03.011_bib6 article-title: Maximum wave-power absorbtion under motion constraints publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(81)90063-8 – ident: 10.1016/j.oceaneng.2013.03.011_bib11 – volume: 39 start-page: 137 issue: 0 year: 2013 ident: 10.1016/j.oceaneng.2013.03.011_bib14 article-title: Experimental measurements of the complex motion of a suspended axisymmetric floating body in regular and near-focused waves publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2012.10.008 |
SSID | ssj0006603 |
Score | 2.182124 |
Snippet | Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | Applied sciences Constraints Discretization Energy Energy of waters: ocean thermal energy, wave and tidal energy, etc Exact sciences and technology Natural energy Power take-off Wave energy |
Title | A geometric tool for the analysis of position and force constraints in wave energy converters |
URI | https://dx.doi.org/10.1016/j.oceaneng.2013.03.011 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXnwgPnF9LDl4rdu0adMcF3FZFdeLghcpSZrKiraLW_Xmb3emTdf1IB6EnkKmCTPDzAS--YaQExFoq3movSgOjccDpj0Z-caLjRK5hRJYKGwUvh7Hozt-eR_dd8hZ2wuDsEoX-5uYXkdrt9J32uxPJxPs8Q1kgnxTYd0Biu92zgV6-ennN8wjjv2whXng7oUu4adTSBGqsMUjQrzCmuyUsd8S1PpUzUBteTPvYiEJDTfJhqse6aC54Bbp2GKbrC5wCm6TtRs8zRFR75CHAX205QvOzTK0KstnClUqhaqPKkdHQsucttAtWMxwg7HUYOGI8yOqGZ0U9EO9W2rrRkFaI9URCjrbJXfD89uzkedGKngm5EEFJmCCWZMLBe8MFYtc-QasZWUAATgx2kR-5qtA-1kitUHySKMh5ccmC7TWSoR7ZKkoC7tPaM6lTUSWgHjCmdWKJTbMIx0bmfMsEV0StXpMjeMbx2s_py2w7Clt9Z-i_lMfPsa6pD-XmzaMG39KyNZM6Q_fSSEt_Cnb-2HX-ZFQ1knIBvLgHz8_JCtBMz3D89kRWape3-wx1DCV7tVO2iPLg4ur0fgLLBj0jw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KPfhCfOLbPXiNzea12WMpSqu1Xix4kbC72UhFk2Kj_n1nk02pB-lByGnJZMPMMvMtfPMNwCXzpJaBL50w8pUTeFQ6PHSVEynBMo0QmAnTKHw_ivrj4PYpfGpBr-mFMbRKm_vrnF5la7vSsd7sTCcT0-Pr8djoTflVByje21eMOlXYhpXu4K4_mifkKHL9hulhDBYahV-vsEqIXOcvhuXlV3qnlP5VozanYoaey-qRFwt16GYbtiyAJN36H3egpfNdWF-QFdyFjQezm9Wi3oPnLnnRxbsZnaVIWRRvBIEqQeBHhFUkIUVGGvYWLqbmBaWJMtjRjJAoZ2SSk2_xpYmuegVJRVY3bNDZPoxvrh97fcdOVXCUH3glRoEyqlXGBF41RMQy4SoMmOYe5uBYSRW6qSs86aYxl8roRyqJVT9SqSelFMw_gHZe5PoQSBZwHbM0RvM4oFoKGms_C2WkeBakMTuCsPFjoqzkuPntt6Thlr0mjf8T4__ExYfSI-jM7aa16MZSC96EKfl1fBKsDEttz3_Fdb4lIjuOBYEf_-PjF7Daf7wfJsPB6O4E1rx6mIbj0lNolx-f-gwhTSnP7ZH9AYVE90A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+geometric+tool+for+the+analysis+of+position+and+force+constraints+in+wave+energy+converters&rft.jtitle=Ocean+engineering&rft.au=BACELLI%2C+Giorgio&rft.au=RINGWOOD%2C+John+V&rft.date=2013-06-01&rft.pub=Elsevier&rft.issn=0029-8018&rft.volume=65&rft.spage=10&rft.epage=18&rft_id=info:doi/10.1016%2Fj.oceaneng.2013.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=27391539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |