A geometric tool for the analysis of position and force constraints in wave energy converters

Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 65; pp. 10 - 18
Main Authors Bacelli, Giorgio, Ringwood, John V.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of PTO constraints must be made in order to ensure that PTO constraints are not violated and that the trade-off between position and force constraints is made in such as way that maximum energy is captured by the converter. This paper presents a tool to allow device developers to check the satisfaction of constraints for a given hydrodynamic model and set of sea conditions and, where constraints are not satisfied, shows how to relax the constraints to maximize energy capture. The tool is algebraic, requiring no simulation and the results are presented through intuitive geometrical constructs. Sample application results are presented for single- and two-body wave energy systems. •A discretization method is applied to express the system model as a linear system of equations.•Satisfaction of force and position constraints is done purely from the hydrodynamic model.•No simulation is required to evaluate constraints across a set of specific wave conditions.•The method is graphical and intuitively allows constraints to be adjusted to optimism power capture.•Multi-body devices are considered, with results for 1- and 2-body cases presented.
AbstractList Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It is also often the case that greater stroke lengths can reduce the maximum force in the PTO and vice versa. Ultimately, some informed choice of PTO constraints must be made in order to ensure that PTO constraints are not violated and that the trade-off between position and force constraints is made in such as way that maximum energy is captured by the converter. This paper presents a tool to allow device developers to check the satisfaction of constraints for a given hydrodynamic model and set of sea conditions and, where constraints are not satisfied, shows how to relax the constraints to maximize energy capture. The tool is algebraic, requiring no simulation and the results are presented through intuitive geometrical constructs. Sample application results are presented for single- and two-body wave energy systems. •A discretization method is applied to express the system model as a linear system of equations.•Satisfaction of force and position constraints is done purely from the hydrodynamic model.•No simulation is required to evaluate constraints across a set of specific wave conditions.•The method is graphical and intuitively allows constraints to be adjusted to optimism power capture.•Multi-body devices are considered, with results for 1- and 2-body cases presented.
Author Ringwood, John V.
Bacelli, Giorgio
Author_xml – sequence: 1
  givenname: Giorgio
  surname: Bacelli
  fullname: Bacelli, Giorgio
– sequence: 2
  givenname: John V.
  surname: Ringwood
  fullname: Ringwood, John V.
  email: john.ringwood@eeng.nuim.ie
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27391539$$DView record in Pascal Francis
BookMark eNqFUE1L7EAQHETB9eMvyFw8Zu2ZmEkCHhR5foDwLs-jDJ1OZ50lziwzw8r--5ewevEiFDR0V1VTdSIOffAsxIWCpQJlrtbLQIye_WqpQZVLmKDUgViopi6LSlfNoVgA6LZoQDXH4iSlNQAYA-VCvN3JFYcPztGRzCGMcghR5neW6HHcJZdkGOQmJJdd8NOynwnEkoJPOaLzOUnn5SduWbLnuNrNpy3HzDGdiaMBx8TnX_NUvD78-Xf_VLz8fXy-v3spqLzWuTCkasU01FjVBk09IJDumFvNSA11VEEPqDvom7abuMZQdz0FoF53XYd1eSou974bTITjENGTS3YT3QfGndV12aqqbCfezZ5HMaQUebDkMs7J5iijVWDnSu3afldq50otTFBqkpsf8u8Pvwpv90KeStg6jjaRY0_cu8iUbR_cbxb_AZ5vmZU
CODEN OCENBQ
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_10_531
crossref_primary_10_3390_en12214158
crossref_primary_10_1049_rpg2_12302
crossref_primary_10_1016_j_rser_2023_113877
crossref_primary_10_1016_j_apor_2023_103749
crossref_primary_10_1049_iet_rpg_2016_0074
crossref_primary_10_1109_TSTE_2018_2860462
crossref_primary_10_1016_j_conengprac_2024_105949
crossref_primary_10_1007_s40722_015_0021_7
crossref_primary_10_1109_MCS_2014_2333253
crossref_primary_10_1007_s40722_016_0068_0
crossref_primary_10_3390_en81011203
crossref_primary_10_1016_j_apenergy_2021_117100
crossref_primary_10_1016_j_arcontrol_2023_04_004
crossref_primary_10_1016_j_renene_2024_120172
crossref_primary_10_1049_rpg2_12179
crossref_primary_10_1016_j_oceaneng_2022_111434
crossref_primary_10_3182_20140824_6_ZA_1003_00418
crossref_primary_10_3182_20140824_6_ZA_1003_00517
crossref_primary_10_1016_j_arcontrol_2015_08_004
crossref_primary_10_1016_j_ifacol_2024_10_093
crossref_primary_10_1016_j_ymssp_2022_109669
crossref_primary_10_1016_j_ifacol_2020_12_1162
crossref_primary_10_1016_j_renene_2024_121974
crossref_primary_10_1049_rpg2_12021
crossref_primary_10_1109_TSTE_2023_3320190
crossref_primary_10_1109_TCST_2020_3047229
crossref_primary_10_1016_j_arcontrol_2015_09_003
Cites_doi 10.1016/0141-1187(93)90011-L
10.3182/20110828-6-IT-1002.03255
10.1115/1.4001431
10.1115/1.2829552
10.1016/j.oceaneng.2005.07.007
10.3182/20110828-6-IT-1002.03694
10.1016/0141-1187(81)90063-8
10.1016/j.apor.2012.10.008
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.oceaneng.2013.03.011
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
Applied Sciences
EISSN 1873-5258
EndPage 18
ExternalDocumentID 27391539
10_1016_j_oceaneng_2013_03_011
S0029801813001200
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
WUQ
EFKBS
IQODW
ID FETCH-LOGICAL-c342t-6c171ecf7a576a67fa0c2bee92eac8cbc50d0a2b0d89bc1766cb4066cd2bbba73
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Mon Jul 21 09:16:24 EDT 2025
Tue Jul 01 03:26:23 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Fri Feb 23 02:26:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wave energy
Constraints
Power take-off
Discretization
Ocean energy
Wave effect
Force
Position
Wave power generator
Energy convertor
Modeling
Discretization method
Energy of waters
Numerical simulation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-6c171ecf7a576a67fa0c2bee92eac8cbc50d0a2b0d89bc1766cb4066cd2bbba73
PageCount 9
ParticipantIDs pascalfrancis_primary_27391539
crossref_citationtrail_10_1016_j_oceaneng_2013_03_011
crossref_primary_10_1016_j_oceaneng_2013_03_011
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2013_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Ocean engineering
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Falnes (bib7) 1999; 121
Hals, Falnes, Moan (bib10) 2011; 133
Boyd (bib4) 2001
Cretel, J., Lightbody, G., Thomas, G., Lewis, A., 2011. Maximisation of energy capture by a wave-energy point absorber using model predictive control. In: Proceedings of the IFAC World Congress. pp. 3714–3721.
Evans (bib6) 1981; 3
Pizer (bib12) 1993; 15
Ogilvie, T., 1964. Recent progress toward the understanding and prediction of ship motions. In: Proceedings of the Fifth Symposium on Naval Hydrodynamics, Bergen, Norway.
Timan (bib13) 1994
Bjarte-Larsson, Falnes (bib3) 2006; 33
Bacelli, G., Ringwood, J.V., Gilloteaux, J.-C., 2011. A control system for a self-reacting point absorber wave energy converter subject to constraints. In: IFAC World Congress, pp. 11387–11392.
Atkinson, Han (bib1) 2005
Falnes, J., 2000. Maximum wave-energy absorbtion by oscillating systems consisting of bodies and water columns with restricted or unrestricted amplitudes. In: Proceedings of the International Offshore and Polar Engineering Conference. pp. 420–425.
Weller, Stallard, Stansby (bib14) 2013; 39
Falnes (bib9) 2002
Falnes (10.1016/j.oceaneng.2013.03.011_bib9) 2002
Bjarte-Larsson (10.1016/j.oceaneng.2013.03.011_bib3) 2006; 33
Falnes (10.1016/j.oceaneng.2013.03.011_bib7) 1999; 121
Hals (10.1016/j.oceaneng.2013.03.011_bib10) 2011; 133
Atkinson (10.1016/j.oceaneng.2013.03.011_bib1) 2005
10.1016/j.oceaneng.2013.03.011_bib8
Evans (10.1016/j.oceaneng.2013.03.011_bib6) 1981; 3
Pizer (10.1016/j.oceaneng.2013.03.011_bib12) 1993; 15
10.1016/j.oceaneng.2013.03.011_bib5
10.1016/j.oceaneng.2013.03.011_bib2
Boyd (10.1016/j.oceaneng.2013.03.011_bib4) 2001
Timan (10.1016/j.oceaneng.2013.03.011_bib13) 1994
Weller (10.1016/j.oceaneng.2013.03.011_bib14) 2013; 39
10.1016/j.oceaneng.2013.03.011_bib11
References_xml – reference: Falnes, J., 2000. Maximum wave-energy absorbtion by oscillating systems consisting of bodies and water columns with restricted or unrestricted amplitudes. In: Proceedings of the International Offshore and Polar Engineering Conference. pp. 420–425.
– reference: Cretel, J., Lightbody, G., Thomas, G., Lewis, A., 2011. Maximisation of energy capture by a wave-energy point absorber using model predictive control. In: Proceedings of the IFAC World Congress. pp. 3714–3721.
– volume: 3
  start-page: 200
  year: 1981
  end-page: 203
  ident: bib6
  article-title: Maximum wave-power absorbtion under motion constraints
  publication-title: Appl. Ocean Res.
– volume: 121
  start-page: 32
  year: 1999
  end-page: 38
  ident: bib7
  article-title: Wave-energy conversion through relative motion between two single-mode oscillating bodies
  publication-title: J. Offshore Mech. Arct. Eng.
– reference: Ogilvie, T., 1964. Recent progress toward the understanding and prediction of ship motions. In: Proceedings of the Fifth Symposium on Naval Hydrodynamics, Bergen, Norway.
– reference: Bacelli, G., Ringwood, J.V., Gilloteaux, J.-C., 2011. A control system for a self-reacting point absorber wave energy converter subject to constraints. In: IFAC World Congress, pp. 11387–11392.
– volume: 33
  start-page: 847
  year: 2006
  end-page: 877
  ident: bib3
  article-title: Laboratory experiment on heaving body with hydraulic power take-off and latching control
  publication-title: Ocean Eng.
– year: 2002
  ident: bib9
  article-title: Ocean Waves and Oscillating Systems
– volume: 133
  start-page: 011401
  year: 2011
  end-page: 011415
  ident: bib10
  article-title: Constrained optimal control of a heaving buoy wave-energy converter
  publication-title: J. Offshore Mech. Arct. Eng.
– volume: 15
  start-page: 227
  year: 1993
  end-page: 234
  ident: bib12
  article-title: Maximum wave-power absorbtion of point absorbers under motion constraints
  publication-title: Appl. Ocean Res.
– year: 2001
  ident: bib4
  article-title: Chebyshev and Fourier Spectral Methods
– year: 1994
  ident: bib13
  article-title: Theory of Approximation of Functions of a Real Variable
– volume: 39
  start-page: 137
  year: 2013
  end-page: 145
  ident: bib14
  article-title: Experimental measurements of the complex motion of a suspended axisymmetric floating body in regular and near-focused waves
  publication-title: Appl. Ocean Res.
– year: 2005
  ident: bib1
  article-title: Theoretical Numerical Analysis
– volume: 15
  start-page: 227
  issue: 4
  year: 1993
  ident: 10.1016/j.oceaneng.2013.03.011_bib12
  article-title: Maximum wave-power absorbtion of point absorbers under motion constraints
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(93)90011-L
– ident: 10.1016/j.oceaneng.2013.03.011_bib5
  doi: 10.3182/20110828-6-IT-1002.03255
– year: 2001
  ident: 10.1016/j.oceaneng.2013.03.011_bib4
– year: 2002
  ident: 10.1016/j.oceaneng.2013.03.011_bib9
– volume: 133
  start-page: 011401
  issue: 1
  year: 2011
  ident: 10.1016/j.oceaneng.2013.03.011_bib10
  article-title: Constrained optimal control of a heaving buoy wave-energy converter
  publication-title: J. Offshore Mech. Arct. Eng.
  doi: 10.1115/1.4001431
– year: 1994
  ident: 10.1016/j.oceaneng.2013.03.011_bib13
– volume: 121
  start-page: 32
  issue: 1
  year: 1999
  ident: 10.1016/j.oceaneng.2013.03.011_bib7
  article-title: Wave-energy conversion through relative motion between two single-mode oscillating bodies
  publication-title: J. Offshore Mech. Arct. Eng.
  doi: 10.1115/1.2829552
– volume: 33
  start-page: 847
  issue: May (7)
  year: 2006
  ident: 10.1016/j.oceaneng.2013.03.011_bib3
  article-title: Laboratory experiment on heaving body with hydraulic power take-off and latching control
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2005.07.007
– year: 2005
  ident: 10.1016/j.oceaneng.2013.03.011_bib1
– ident: 10.1016/j.oceaneng.2013.03.011_bib2
  doi: 10.3182/20110828-6-IT-1002.03694
– ident: 10.1016/j.oceaneng.2013.03.011_bib8
– volume: 3
  start-page: 200
  issue: 4
  year: 1981
  ident: 10.1016/j.oceaneng.2013.03.011_bib6
  article-title: Maximum wave-power absorbtion under motion constraints
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(81)90063-8
– ident: 10.1016/j.oceaneng.2013.03.011_bib11
– volume: 39
  start-page: 137
  issue: 0
  year: 2013
  ident: 10.1016/j.oceaneng.2013.03.011_bib14
  article-title: Experimental measurements of the complex motion of a suspended axisymmetric floating body in regular and near-focused waves
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2012.10.008
SSID ssj0006603
Score 2.182124
Snippet Most wave energy devices are subject to finite constraints on both the power take-off (PTO) stroke length and the maximum force that the PTO can tolerate. It...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms Applied sciences
Constraints
Discretization
Energy
Energy of waters: ocean thermal energy, wave and tidal energy, etc
Exact sciences and technology
Natural energy
Power take-off
Wave energy
Title A geometric tool for the analysis of position and force constraints in wave energy converters
URI https://dx.doi.org/10.1016/j.oceaneng.2013.03.011
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXnwgPnF9LDl4rdu0adMcF3FZFdeLghcpSZrKiraLW_Xmb3emTdf1IB6EnkKmCTPDzAS--YaQExFoq3movSgOjccDpj0Z-caLjRK5hRJYKGwUvh7Hozt-eR_dd8hZ2wuDsEoX-5uYXkdrt9J32uxPJxPs8Q1kgnxTYd0Biu92zgV6-ennN8wjjv2whXng7oUu4adTSBGqsMUjQrzCmuyUsd8S1PpUzUBteTPvYiEJDTfJhqse6aC54Bbp2GKbrC5wCm6TtRs8zRFR75CHAX205QvOzTK0KstnClUqhaqPKkdHQsucttAtWMxwg7HUYOGI8yOqGZ0U9EO9W2rrRkFaI9URCjrbJXfD89uzkedGKngm5EEFJmCCWZMLBe8MFYtc-QasZWUAATgx2kR-5qtA-1kitUHySKMh5ccmC7TWSoR7ZKkoC7tPaM6lTUSWgHjCmdWKJTbMIx0bmfMsEV0StXpMjeMbx2s_py2w7Clt9Z-i_lMfPsa6pD-XmzaMG39KyNZM6Q_fSSEt_Cnb-2HX-ZFQ1knIBvLgHz8_JCtBMz3D89kRWape3-wx1DCV7tVO2iPLg4ur0fgLLBj0jw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KPfhCfOLbPXiNzea12WMpSqu1Xix4kbC72UhFk2Kj_n1nk02pB-lByGnJZMPMMvMtfPMNwCXzpJaBL50w8pUTeFQ6PHSVEynBMo0QmAnTKHw_ivrj4PYpfGpBr-mFMbRKm_vrnF5la7vSsd7sTCcT0-Pr8djoTflVByje21eMOlXYhpXu4K4_mifkKHL9hulhDBYahV-vsEqIXOcvhuXlV3qnlP5VozanYoaey-qRFwt16GYbtiyAJN36H3egpfNdWF-QFdyFjQezm9Wi3oPnLnnRxbsZnaVIWRRvBIEqQeBHhFUkIUVGGvYWLqbmBaWJMtjRjJAoZ2SSk2_xpYmuegVJRVY3bNDZPoxvrh97fcdOVXCUH3glRoEyqlXGBF41RMQy4SoMmOYe5uBYSRW6qSs86aYxl8roRyqJVT9SqSelFMw_gHZe5PoQSBZwHbM0RvM4oFoKGms_C2WkeBakMTuCsPFjoqzkuPntt6Thlr0mjf8T4__ExYfSI-jM7aa16MZSC96EKfl1fBKsDEttz3_Fdb4lIjuOBYEf_-PjF7Daf7wfJsPB6O4E1rx6mIbj0lNolx-f-gwhTSnP7ZH9AYVE90A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+geometric+tool+for+the+analysis+of+position+and+force+constraints+in+wave+energy+converters&rft.jtitle=Ocean+engineering&rft.au=BACELLI%2C+Giorgio&rft.au=RINGWOOD%2C+John+V&rft.date=2013-06-01&rft.pub=Elsevier&rft.issn=0029-8018&rft.volume=65&rft.spage=10&rft.epage=18&rft_id=info:doi/10.1016%2Fj.oceaneng.2013.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=27391539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon