RE-STNet: relational enhancement spatio-temporal networks based on skeleton action recognition

Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 8; pp. 4049 - 4069
Main Authors Chen, Hongwei, He, Shiqi, Chen, Zexi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary information on the acquired joint features. Additionally, using a single-level topology restricts the exploration of global node relationships, leading to potential loss of implicit node correlations that can impact model fusion. To address these challenges, this study introduces the Relational Enhancement Spatio-Temporal Networks (RE-STNet). RE-STNet employs a complementary relationship graph convolution method to capture crucial joint connections and corresponding positional information within the region. The joint cross-connection module captures the global receptive field of the current pose. Furthermore, since there will be a lot of invalid information in the action sequence, this paper proposes a temporal incentive module to capture the salient temporal frame information and combines it with a multi-scale temporal convolution module to enrich the temporal features. The resulting architecture RE-STNet is evaluated through experiments across three skeleton datasets, achieving an accuracy of 92.2% in the NTU RGB+D 60 cross-subject split, 88.6% in the NTU RGB+D 120 cross-subject split, and 95.5% in NW-UCLA. The experimental results demonstrate that our model enables the learning of more comprehensive spatial-temporal joint information.
AbstractList Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary information on the acquired joint features. Additionally, using a single-level topology restricts the exploration of global node relationships, leading to potential loss of implicit node correlations that can impact model fusion. To address these challenges, this study introduces the Relational Enhancement Spatio-Temporal Networks (RE-STNet). RE-STNet employs a complementary relationship graph convolution method to capture crucial joint connections and corresponding positional information within the region. The joint cross-connection module captures the global receptive field of the current pose. Furthermore, since there will be a lot of invalid information in the action sequence, this paper proposes a temporal incentive module to capture the salient temporal frame information and combines it with a multi-scale temporal convolution module to enrich the temporal features. The resulting architecture RE-STNet is evaluated through experiments across three skeleton datasets, achieving an accuracy of 92.2% in the NTU RGB+D 60 cross-subject split, 88.6% in the NTU RGB+D 120 cross-subject split, and 95.5% in NW-UCLA. The experimental results demonstrate that our model enables the learning of more comprehensive spatial-temporal joint information.
Author Chen, Hongwei
Chen, Zexi
He, Shiqi
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Chen
  fullname: Chen, Hongwei
  organization: School of Computer Science, Hubei University of Technology
– sequence: 2
  givenname: Shiqi
  orcidid: 0009-0000-6837-1455
  surname: He
  fullname: He, Shiqi
  email: sqiiHe@outlook.com
  organization: School of Computer Science, Hubei University of Technology
– sequence: 3
  givenname: Zexi
  surname: Chen
  fullname: Chen, Zexi
  organization: Xiaomi Technology (Wuhan) Co., Ltd
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqNJJo-pOyn1AUVB69aQydypbadJTVKk_94ZR9CVq3u493wH7hmhgfMOEDqn5JISoq4ipYQzTBjHtCgkx4cjNKRC5VgpRgd_9AkaxbgmhErB-BC9Pc_wy-IR0nUWoDFp5Z1pMnDvxlnYgktZ3HVbnGC786G9OUifPmxiVpoIVeZdFjfQQGqFsR3fBlm_dKtOn6Lj2jQRzn7mGL3ezhbTezx_unuY3syxzTlLWFJbAmNCAZ9IW9XMqEoYSWQ94ZZXisiC2gKU4KS2TJaTwpZlrQqwhksBIh-jiz53F_zHHmLSa78P7StR57RovxWF6lysd9ngYwxQ611YbU04aEp016Pue9Rtj_q7R31oobyHYmt2Swi_0f9QX5GceZY
Cites_doi 10.1109/CVPR52729.2023.01022
10.3390/diagnostics13040686
10.1016/j.patcog.2022.109231
10.1109/CVPR.2018.00572
10.1016/j.patcog.2023.109540
10.1109/CVPR42600.2020.00099
10.1016/j.patcog.2023.109455
10.1109/CVPR.2014.339
10.1109/CVPR.2019.00810
10.1109/TPAMI.2019.2896631
10.1109/CVPR42600.2020.00022
10.1016/j.patcog.2020.107511
10.1007/s11042-023-15778-z
10.1145/3240508.3240675
10.1109/ICCV48922.2021.01311
10.1109/CVPR42600.2020.00026
10.1016/j.cviu.2021.103219
10.1109/WACV56688.2023.00340
10.1609/aaai.v32i1.12328
10.1609/aaai.v35i2.16197
10.1109/CVPR.2019.01230
10.1109/ICMEW.2017.8026285
10.1109/TVCG.2023.3247075
10.1145/3474085.3475574
10.1145/3394171.3413941
10.1109/TIP.2022.3230249
10.1109/CVPR52688.2022.01955
10.1007/978-3-030-69541-5_3
10.1109/CVPR52729.2023.00626
10.1109/CVPR.2016.115
10.1016/j.patcog.2017.02.030
10.1007/978-981-99-8429-9_4
10.1109/AVSS.2019.8909840
10.1109/CVPR.2018.00745
10.1007/s11760-023-02934-z
10.1016/j.patcog.2023.109905
10.1109/CVPR.2019.00132
10.1109/TMM.2023.3239751
10.1007/978-3-031-26316-3_11
10.1109/CVPR46437.2021.01301
10.1109/TPAMI.2019.2916873
10.1109/CVPR.2018.00813
10.1007/978-3-030-58586-0_32
10.1016/j.patcog.2024.110262
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18864-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 4069
ExternalDocumentID 10_1007_s11042_024_18864_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 61772180
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key R &D plan of Hubei Province
  grantid: 2020BHB004, 2020BAB012
– fundername: Natural Science Foundation of Hubei Province
  grantid: No.2020CFB798
  funderid: http://dx.doi.org/10.13039/501100003819
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABBRH
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c342t-61cbe2257e496cdf2a7d5a606f94c4d70681c8e7540fc26b98cbbf78eca465e53
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 21:09:52 EDT 2025
Tue Jul 01 05:13:44 EDT 2025
Sat Mar 22 01:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Action recognition
Topology learning
Graph convolutional networks
Temporal incentive information
Complementary information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-61cbe2257e496cdf2a7d5a606f94c4d70681c8e7540fc26b98cbbf78eca465e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-6837-1455
PQID 3180015875
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_3180015875
crossref_primary_10_1007_s11042_024_18864_y
springer_journals_10_1007_s11042_024_18864_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References P Zhang (18864_CR7) 2019; 41
Y Ma (18864_CR27) 2024; 145
Y Liu (18864_CR15) 2023; 29
18864_CR19
18864_CR18
18864_CR39
18864_CR38
18864_CR37
C Si (18864_CR1) 2020; 107
18864_CR36
M Dai (18864_CR42) 2023; 140
18864_CR12
L Wu (18864_CR13) 2023; 136
18864_CR34
18864_CR22
C Plizzari (18864_CR35) 2021; 208–209
18864_CR44
18864_CR21
18864_CR43
18864_CR41
18864_CR40
H Liu (18864_CR5) 2024; 83
C Pang (18864_CR16) 2023; 25
Y Zhu (18864_CR17) 2023; 32
18864_CR29
M Liu (18864_CR2) 2017; 68
G Kumie (18864_CR14) 2023; 139
18864_CR28
X Yin (18864_CR20) 2024; 150
18864_CR26
18864_CR48
18864_CR25
18864_CR47
18864_CR24
18864_CR46
18864_CR23
18864_CR45
18864_CR11
18864_CR33
18864_CR6
18864_CR10
18864_CR32
18864_CR3
18864_CR31
18864_CR4
18864_CR30
18864_CR9
18864_CR8
References_xml – ident: 18864_CR46
  doi: 10.1109/CVPR52729.2023.01022
– ident: 18864_CR47
  doi: 10.3390/diagnostics13040686
– volume: 136
  start-page: 109231
  year: 2023
  ident: 18864_CR13
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.109231
– ident: 18864_CR8
  doi: 10.1109/CVPR.2018.00572
– volume: 140
  start-page: 109540
  year: 2023
  ident: 18864_CR42
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109540
– ident: 18864_CR28
  doi: 10.1109/CVPR42600.2020.00099
– ident: 18864_CR30
– volume: 139
  start-page: 109455
  year: 2023
  ident: 18864_CR14
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109455
– ident: 18864_CR34
  doi: 10.1109/CVPR.2014.339
– ident: 18864_CR18
  doi: 10.1109/CVPR.2019.00810
– volume: 41
  start-page: 1963
  issue: 8
  year: 2019
  ident: 18864_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2896631
– ident: 18864_CR37
  doi: 10.1109/CVPR42600.2020.00022
– volume: 107
  start-page: 107511
  year: 2020
  ident: 18864_CR1
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107511
– volume: 83
  start-page: 2935
  year: 2024
  ident: 18864_CR5
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15778-z
– ident: 18864_CR3
  doi: 10.1145/3240508.3240675
– ident: 18864_CR12
  doi: 10.1109/ICCV48922.2021.01311
– ident: 18864_CR39
  doi: 10.1109/CVPR42600.2020.00026
– ident: 18864_CR21
– volume: 208–209
  start-page: 103219
  year: 2021
  ident: 18864_CR35
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2021.103219
– ident: 18864_CR43
  doi: 10.1109/WACV56688.2023.00340
– ident: 18864_CR6
  doi: 10.1609/aaai.v32i1.12328
– ident: 18864_CR38
  doi: 10.1609/aaai.v35i2.16197
– ident: 18864_CR11
  doi: 10.1109/CVPR.2019.01230
– ident: 18864_CR9
  doi: 10.1109/ICMEW.2017.8026285
– volume: 29
  start-page: 2575
  issue: 5
  year: 2023
  ident: 18864_CR15
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2023.3247075
– ident: 18864_CR24
  doi: 10.1145/3474085.3475574
– ident: 18864_CR40
  doi: 10.1145/3394171.3413941
– volume: 32
  start-page: 496
  year: 2023
  ident: 18864_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3230249
– ident: 18864_CR26
  doi: 10.1109/CVPR52688.2022.01955
– ident: 18864_CR41
  doi: 10.1007/978-3-030-69541-5_3
– ident: 18864_CR4
  doi: 10.1109/CVPR52729.2023.00626
– ident: 18864_CR31
– ident: 18864_CR32
  doi: 10.1109/CVPR.2016.115
– volume: 68
  start-page: 346
  year: 2017
  ident: 18864_CR2
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.02.030
– ident: 18864_CR19
  doi: 10.1007/978-981-99-8429-9_4
– ident: 18864_CR10
  doi: 10.1109/AVSS.2019.8909840
– ident: 18864_CR25
  doi: 10.1109/CVPR.2018.00745
– ident: 18864_CR48
  doi: 10.1007/s11760-023-02934-z
– volume: 145
  start-page: 109905
  year: 2024
  ident: 18864_CR27
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109905
– ident: 18864_CR44
  doi: 10.1109/CVPR.2019.00132
– volume: 25
  start-page: 8699
  year: 2023
  ident: 18864_CR16
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2023.3239751
– ident: 18864_CR36
  doi: 10.1007/978-3-031-26316-3_11
– ident: 18864_CR29
  doi: 10.1109/CVPR46437.2021.01301
– ident: 18864_CR33
  doi: 10.1109/TPAMI.2019.2916873
– ident: 18864_CR22
  doi: 10.1109/CVPR.2018.00813
– ident: 18864_CR45
  doi: 10.1007/978-3-030-58586-0_32
– ident: 18864_CR23
– volume: 150
  start-page: 110262
  year: 2024
  ident: 18864_CR20
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2024.110262
SSID ssj0016524
Score 2.3810883
Snippet Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4049
SubjectTerms Computer Communication Networks
Computer Science
Convolution
Data Structures and Information Theory
Learning
Methods
Modules
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Topology
Track 6: Computer Vision for Multimedia Applications
Title RE-STNet: relational enhancement spatio-temporal networks based on skeleton action recognition
URI https://link.springer.com/article/10.1007/s11042-024-18864-y
https://www.proquest.com/docview/3180015875
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DARwFRKJUHNrDUJHZis7WopQLRAVqpLESJ4wgJlKImDP33nPPRAIKBKUMSD2ef3zv73R3AOaKQpWTMqQikoiwSIZVcaepJz0F4C3oiMOcd9xN3PGO3cz4vk8LSSu1eXUnmO3Wd7GaZVBLEFGoJ4TK62oQmx9jdCLlmdn99d-Bym5XpMb__9x2Cal754yo0R5jRHuyU1JD0i7nchw2dtGC3artASi9swfaXGoIH8PwwpI_Tic6uyLIUtuEgOnkx02mO_kiai6ZpWYTqjSSF8jslBsEiskhI-orggySQFFkOZK0qWiSHMBsNp9djWjZNoMphdoahoAo1OqmnmXRVFNuBF_EAw5RYMsUir-cKSwntIVOLle2GUqgwjD2hVcBcrrlzBI1kkehjIFZoOy6XGHszwZApyFgKGbMeCzHIs-OgDReVHf33ojaGX1dBNlb30ep-bnV_1YZOZWq_9JPUxx3FsDYMmtpwWZm_fv33aCf_-_wUtmzTuDcXj3WgkS0_9BmyiSzsQrM_Ggwm5nnzdDfs5ovpEzLqxvQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED1VZQAGPgqI8ukBJrDUuE5iIzEgoGqh7QCt1ImQOI6QQClqglD_Dz-Uc5q0gGBg6JzIii53fu_sd3cAR4hClpKRTYUvFeWhCKi0laaudOsIb35N-Oa8o9N1mn1-M7AHJfgoamEytXtxJZnt1LNiN8uUkiCmUEsIh9NxLqW81eN3TNSS89YV_tVjxhrXvcsmzWcJUFXnLMUMSQUafdfVXDoqjJjvhraP7D2SXPHQrTnCUkK7SGAixZxAChUEkSu08rljazMbAjf6BSQfwsROn11M7yocm_G8HOf37_wOeTMe--PqNUO0xhqs5FSUXEx8Zx1KOq7AajHmgeRRX4HlLz0LN-Dh7pre97o6PSOjXEiHi-j4ybiPOWokSSbSpnnTqxcST5TmCTGIGZJhTJJnBDsknWRSVUGmKqZhvAn9uRh2C8rxMNbbQKyA1R1bYq7PBUdmIiMpZMRrPMCkkkV-FU4KO3qvk14c3qzrsrG6h1b3Mqt74yrsFab28rhMPNzBDEvEJK0Kp4X5Z4__Xm3nf68fwmKz12l77Vb3dheWmBkanAnX9qCcjt70PjKZNDjIHInA47w99xOBOQGm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB4WBdGDb3F95qAnDW6zaZsIHkR3WV-LqAuerG2aIChdsRXZf-VPdNLHrooePHhuCWU6me-bZL4ZgC1EIUdJ41IRSkV5LCIqXaWpL_0mwlvYEKE977joep0eP711b2vwXmlh8mr36kqy0DTYLk1Jtvccm72R8M2xshLEF-oI4XE6KMsqz_TgDZO29ODkGP_wNmPt1s1Rh5ZzBahqcpZhtqQijX7say49FRsW-rEbIpM3kise-w1POEpoH8mMUcyLpFBRZHyhVcg9V9s5ERj0x7lVH-MO6rHD4b2F5zJeSnN-_s6v8DfitN-uYXN0a8_CdElLyWHhR3NQ08k8zFQjH0gZAeZh6lP_wgW4u2rR65uuzvbJS1lUh4vo5MG6kj12JGlesE3LBlhPJCmqzlNi0TMm_YSkjwh8SEBJobAgw4qmfrIIvX8x7BKMJf1ELwNxItb0XIl5PxccWYo0UkjDGzzCBJOZsA47lR2D56IvRzDqwGytHqDVg9zqwaAOa5Wpg3KPpgFGM8sYMWGrw25l_tHj31db-dvrmzBxedwOzk-6Z6swyez84LyGbQ3GspdXvY6kJos2cj8icP_fjvsBiHEF2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RE-STNet%3A+relational+enhancement+spatio-temporal+networks+based+on+skeleton+action+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=8&rft.spage=4049&rft.epage=4069&rft_id=info:doi/10.1007%2Fs11042-024-18864-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon