RE-STNet: relational enhancement spatio-temporal networks based on skeleton action recognition
Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary...
Saved in:
Published in | Multimedia tools and applications Vol. 84; no. 8; pp. 4049 - 4069 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary information on the acquired joint features. Additionally, using a single-level topology restricts the exploration of global node relationships, leading to potential loss of implicit node correlations that can impact model fusion. To address these challenges, this study introduces the Relational Enhancement Spatio-Temporal Networks (RE-STNet). RE-STNet employs a complementary relationship graph convolution method to capture crucial joint connections and corresponding positional information within the region. The joint cross-connection module captures the global receptive field of the current pose. Furthermore, since there will be a lot of invalid information in the action sequence, this paper proposes a temporal incentive module to capture the salient temporal frame information and combines it with a multi-scale temporal convolution module to enrich the temporal features. The resulting architecture RE-STNet is evaluated through experiments across three skeleton datasets, achieving an accuracy of 92.2% in the NTU RGB+D 60 cross-subject split, 88.6% in the NTU RGB+D 120 cross-subject split, and 95.5% in NW-UCLA. The experimental results demonstrate that our model enables the learning of more comprehensive spatial-temporal joint information. |
---|---|
AbstractList | Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research methods equally extract spatio-temporal features without focusing on critical joint connections, and failing to provide effective complementary information on the acquired joint features. Additionally, using a single-level topology restricts the exploration of global node relationships, leading to potential loss of implicit node correlations that can impact model fusion. To address these challenges, this study introduces the Relational Enhancement Spatio-Temporal Networks (RE-STNet). RE-STNet employs a complementary relationship graph convolution method to capture crucial joint connections and corresponding positional information within the region. The joint cross-connection module captures the global receptive field of the current pose. Furthermore, since there will be a lot of invalid information in the action sequence, this paper proposes a temporal incentive module to capture the salient temporal frame information and combines it with a multi-scale temporal convolution module to enrich the temporal features. The resulting architecture RE-STNet is evaluated through experiments across three skeleton datasets, achieving an accuracy of 92.2% in the NTU RGB+D 60 cross-subject split, 88.6% in the NTU RGB+D 120 cross-subject split, and 95.5% in NW-UCLA. The experimental results demonstrate that our model enables the learning of more comprehensive spatial-temporal joint information. |
Author | Chen, Hongwei Chen, Zexi He, Shiqi |
Author_xml | – sequence: 1 givenname: Hongwei surname: Chen fullname: Chen, Hongwei organization: School of Computer Science, Hubei University of Technology – sequence: 2 givenname: Shiqi orcidid: 0009-0000-6837-1455 surname: He fullname: He, Shiqi email: sqiiHe@outlook.com organization: School of Computer Science, Hubei University of Technology – sequence: 3 givenname: Zexi surname: Chen fullname: Chen, Zexi organization: Xiaomi Technology (Wuhan) Co., Ltd |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrqNJJo-pOyn1AUVB69aQydypbadJTVKk_94ZR9CVq3u493wH7hmhgfMOEDqn5JISoq4ipYQzTBjHtCgkx4cjNKRC5VgpRgd_9AkaxbgmhErB-BC9Pc_wy-IR0nUWoDFp5Z1pMnDvxlnYgktZ3HVbnGC786G9OUifPmxiVpoIVeZdFjfQQGqFsR3fBlm_dKtOn6Lj2jQRzn7mGL3ezhbTezx_unuY3syxzTlLWFJbAmNCAZ9IW9XMqEoYSWQ94ZZXisiC2gKU4KS2TJaTwpZlrQqwhksBIh-jiz53F_zHHmLSa78P7StR57RovxWF6lysd9ngYwxQ611YbU04aEp016Pue9Rtj_q7R31oobyHYmt2Swi_0f9QX5GceZY |
Cites_doi | 10.1109/CVPR52729.2023.01022 10.3390/diagnostics13040686 10.1016/j.patcog.2022.109231 10.1109/CVPR.2018.00572 10.1016/j.patcog.2023.109540 10.1109/CVPR42600.2020.00099 10.1016/j.patcog.2023.109455 10.1109/CVPR.2014.339 10.1109/CVPR.2019.00810 10.1109/TPAMI.2019.2896631 10.1109/CVPR42600.2020.00022 10.1016/j.patcog.2020.107511 10.1007/s11042-023-15778-z 10.1145/3240508.3240675 10.1109/ICCV48922.2021.01311 10.1109/CVPR42600.2020.00026 10.1016/j.cviu.2021.103219 10.1109/WACV56688.2023.00340 10.1609/aaai.v32i1.12328 10.1609/aaai.v35i2.16197 10.1109/CVPR.2019.01230 10.1109/ICMEW.2017.8026285 10.1109/TVCG.2023.3247075 10.1145/3474085.3475574 10.1145/3394171.3413941 10.1109/TIP.2022.3230249 10.1109/CVPR52688.2022.01955 10.1007/978-3-030-69541-5_3 10.1109/CVPR52729.2023.00626 10.1109/CVPR.2016.115 10.1016/j.patcog.2017.02.030 10.1007/978-981-99-8429-9_4 10.1109/AVSS.2019.8909840 10.1109/CVPR.2018.00745 10.1007/s11760-023-02934-z 10.1016/j.patcog.2023.109905 10.1109/CVPR.2019.00132 10.1109/TMM.2023.3239751 10.1007/978-3-031-26316-3_11 10.1109/CVPR46437.2021.01301 10.1109/TPAMI.2019.2916873 10.1109/CVPR.2018.00813 10.1007/978-3-030-58586-0_32 10.1016/j.patcog.2024.110262 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-18864-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 4069 |
ExternalDocumentID | 10_1007_s11042_024_18864_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 61772180 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key R &D plan of Hubei Province grantid: 2020BHB004, 2020BAB012 – fundername: Natural Science Foundation of Hubei Province grantid: No.2020CFB798 funderid: http://dx.doi.org/10.13039/501100003819 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABBRH ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c342t-61cbe2257e496cdf2a7d5a606f94c4d70681c8e7540fc26b98cbbf78eca465e53 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 21:09:52 EDT 2025 Tue Jul 01 05:13:44 EDT 2025 Sat Mar 22 01:17:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Action recognition Topology learning Graph convolutional networks Temporal incentive information Complementary information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-61cbe2257e496cdf2a7d5a606f94c4d70681c8e7540fc26b98cbbf78eca465e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-6837-1455 |
PQID | 3180015875 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3180015875 crossref_primary_10_1007_s11042_024_18864_y springer_journals_10_1007_s11042_024_18864_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | P Zhang (18864_CR7) 2019; 41 Y Ma (18864_CR27) 2024; 145 Y Liu (18864_CR15) 2023; 29 18864_CR19 18864_CR18 18864_CR39 18864_CR38 18864_CR37 C Si (18864_CR1) 2020; 107 18864_CR36 M Dai (18864_CR42) 2023; 140 18864_CR12 L Wu (18864_CR13) 2023; 136 18864_CR34 18864_CR22 C Plizzari (18864_CR35) 2021; 208–209 18864_CR44 18864_CR21 18864_CR43 18864_CR41 18864_CR40 H Liu (18864_CR5) 2024; 83 C Pang (18864_CR16) 2023; 25 Y Zhu (18864_CR17) 2023; 32 18864_CR29 M Liu (18864_CR2) 2017; 68 G Kumie (18864_CR14) 2023; 139 18864_CR28 X Yin (18864_CR20) 2024; 150 18864_CR26 18864_CR48 18864_CR25 18864_CR47 18864_CR24 18864_CR46 18864_CR23 18864_CR45 18864_CR11 18864_CR33 18864_CR6 18864_CR10 18864_CR32 18864_CR3 18864_CR31 18864_CR4 18864_CR30 18864_CR9 18864_CR8 |
References_xml | – ident: 18864_CR46 doi: 10.1109/CVPR52729.2023.01022 – ident: 18864_CR47 doi: 10.3390/diagnostics13040686 – volume: 136 start-page: 109231 year: 2023 ident: 18864_CR13 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.109231 – ident: 18864_CR8 doi: 10.1109/CVPR.2018.00572 – volume: 140 start-page: 109540 year: 2023 ident: 18864_CR42 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109540 – ident: 18864_CR28 doi: 10.1109/CVPR42600.2020.00099 – ident: 18864_CR30 – volume: 139 start-page: 109455 year: 2023 ident: 18864_CR14 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109455 – ident: 18864_CR34 doi: 10.1109/CVPR.2014.339 – ident: 18864_CR18 doi: 10.1109/CVPR.2019.00810 – volume: 41 start-page: 1963 issue: 8 year: 2019 ident: 18864_CR7 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2896631 – ident: 18864_CR37 doi: 10.1109/CVPR42600.2020.00022 – volume: 107 start-page: 107511 year: 2020 ident: 18864_CR1 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107511 – volume: 83 start-page: 2935 year: 2024 ident: 18864_CR5 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15778-z – ident: 18864_CR3 doi: 10.1145/3240508.3240675 – ident: 18864_CR12 doi: 10.1109/ICCV48922.2021.01311 – ident: 18864_CR39 doi: 10.1109/CVPR42600.2020.00026 – ident: 18864_CR21 – volume: 208–209 start-page: 103219 year: 2021 ident: 18864_CR35 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2021.103219 – ident: 18864_CR43 doi: 10.1109/WACV56688.2023.00340 – ident: 18864_CR6 doi: 10.1609/aaai.v32i1.12328 – ident: 18864_CR38 doi: 10.1609/aaai.v35i2.16197 – ident: 18864_CR11 doi: 10.1109/CVPR.2019.01230 – ident: 18864_CR9 doi: 10.1109/ICMEW.2017.8026285 – volume: 29 start-page: 2575 issue: 5 year: 2023 ident: 18864_CR15 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2023.3247075 – ident: 18864_CR24 doi: 10.1145/3474085.3475574 – ident: 18864_CR40 doi: 10.1145/3394171.3413941 – volume: 32 start-page: 496 year: 2023 ident: 18864_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3230249 – ident: 18864_CR26 doi: 10.1109/CVPR52688.2022.01955 – ident: 18864_CR41 doi: 10.1007/978-3-030-69541-5_3 – ident: 18864_CR4 doi: 10.1109/CVPR52729.2023.00626 – ident: 18864_CR31 – ident: 18864_CR32 doi: 10.1109/CVPR.2016.115 – volume: 68 start-page: 346 year: 2017 ident: 18864_CR2 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.02.030 – ident: 18864_CR19 doi: 10.1007/978-981-99-8429-9_4 – ident: 18864_CR10 doi: 10.1109/AVSS.2019.8909840 – ident: 18864_CR25 doi: 10.1109/CVPR.2018.00745 – ident: 18864_CR48 doi: 10.1007/s11760-023-02934-z – volume: 145 start-page: 109905 year: 2024 ident: 18864_CR27 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109905 – ident: 18864_CR44 doi: 10.1109/CVPR.2019.00132 – volume: 25 start-page: 8699 year: 2023 ident: 18864_CR16 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2023.3239751 – ident: 18864_CR36 doi: 10.1007/978-3-031-26316-3_11 – ident: 18864_CR29 doi: 10.1109/CVPR46437.2021.01301 – ident: 18864_CR33 doi: 10.1109/TPAMI.2019.2916873 – ident: 18864_CR22 doi: 10.1109/CVPR.2018.00813 – ident: 18864_CR45 doi: 10.1007/978-3-030-58586-0_32 – ident: 18864_CR23 – volume: 150 start-page: 110262 year: 2024 ident: 18864_CR20 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2024.110262 |
SSID | ssj0016524 |
Score | 2.3810883 |
Snippet | Learning comprehensive spatio-temporal joint connections in complex actions is crucial for recognizing skeleton sequence actions. However, existing research... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4049 |
SubjectTerms | Computer Communication Networks Computer Science Convolution Data Structures and Information Theory Learning Methods Modules Multimedia Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Topology Track 6: Computer Vision for Multimedia Applications |
Title | RE-STNet: relational enhancement spatio-temporal networks based on skeleton action recognition |
URI | https://link.springer.com/article/10.1007/s11042-024-18864-y https://www.proquest.com/docview/3180015875 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DARwFRKJUHNrDUJHZis7WopQLRAVqpLESJ4wgJlKImDP33nPPRAIKBKUMSD2ef3zv73R3AOaKQpWTMqQikoiwSIZVcaepJz0F4C3oiMOcd9xN3PGO3cz4vk8LSSu1eXUnmO3Wd7GaZVBLEFGoJ4TK62oQmx9jdCLlmdn99d-Bym5XpMb__9x2Cal754yo0R5jRHuyU1JD0i7nchw2dtGC3artASi9swfaXGoIH8PwwpI_Tic6uyLIUtuEgOnkx02mO_kiai6ZpWYTqjSSF8jslBsEiskhI-orggySQFFkOZK0qWiSHMBsNp9djWjZNoMphdoahoAo1OqmnmXRVFNuBF_EAw5RYMsUir-cKSwntIVOLle2GUqgwjD2hVcBcrrlzBI1kkehjIFZoOy6XGHszwZApyFgKGbMeCzHIs-OgDReVHf33ojaGX1dBNlb30ep-bnV_1YZOZWq_9JPUxx3FsDYMmtpwWZm_fv33aCf_-_wUtmzTuDcXj3WgkS0_9BmyiSzsQrM_Ggwm5nnzdDfs5ovpEzLqxvQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED1VZQAGPgqI8ukBJrDUuE5iIzEgoGqh7QCt1ImQOI6QQClqglD_Dz-Uc5q0gGBg6JzIii53fu_sd3cAR4hClpKRTYUvFeWhCKi0laaudOsIb35N-Oa8o9N1mn1-M7AHJfgoamEytXtxJZnt1LNiN8uUkiCmUEsIh9NxLqW81eN3TNSS89YV_tVjxhrXvcsmzWcJUFXnLMUMSQUafdfVXDoqjJjvhraP7D2SXPHQrTnCUkK7SGAixZxAChUEkSu08rljazMbAjf6BSQfwsROn11M7yocm_G8HOf37_wOeTMe--PqNUO0xhqs5FSUXEx8Zx1KOq7AajHmgeRRX4HlLz0LN-Dh7pre97o6PSOjXEiHi-j4ybiPOWokSSbSpnnTqxcST5TmCTGIGZJhTJJnBDsknWRSVUGmKqZhvAn9uRh2C8rxMNbbQKyA1R1bYq7PBUdmIiMpZMRrPMCkkkV-FU4KO3qvk14c3qzrsrG6h1b3Mqt74yrsFab28rhMPNzBDEvEJK0Kp4X5Z4__Xm3nf68fwmKz12l77Vb3dheWmBkanAnX9qCcjt70PjKZNDjIHInA47w99xOBOQGm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB4WBdGDb3F95qAnDW6zaZsIHkR3WV-LqAuerG2aIChdsRXZf-VPdNLHrooePHhuCWU6me-bZL4ZgC1EIUdJ41IRSkV5LCIqXaWpL_0mwlvYEKE977joep0eP711b2vwXmlh8mr36kqy0DTYLk1Jtvccm72R8M2xshLEF-oI4XE6KMsqz_TgDZO29ODkGP_wNmPt1s1Rh5ZzBahqcpZhtqQijX7say49FRsW-rEbIpM3kise-w1POEpoH8mMUcyLpFBRZHyhVcg9V9s5ERj0x7lVH-MO6rHD4b2F5zJeSnN-_s6v8DfitN-uYXN0a8_CdElLyWHhR3NQ08k8zFQjH0gZAeZh6lP_wgW4u2rR65uuzvbJS1lUh4vo5MG6kj12JGlesE3LBlhPJCmqzlNi0TMm_YSkjwh8SEBJobAgw4qmfrIIvX8x7BKMJf1ELwNxItb0XIl5PxccWYo0UkjDGzzCBJOZsA47lR2D56IvRzDqwGytHqDVg9zqwaAOa5Wpg3KPpgFGM8sYMWGrw25l_tHj31db-dvrmzBxedwOzk-6Z6swyez84LyGbQ3GspdXvY6kJos2cj8icP_fjvsBiHEF2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RE-STNet%3A+relational+enhancement+spatio-temporal+networks+based+on+skeleton+action+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=8&rft.spage=4049&rft.epage=4069&rft_id=info:doi/10.1007%2Fs11042-024-18864-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |