Numerical simulation of shower cooling tower based on artificial neural network
This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present s...
Saved in:
Published in | Energy conversion and management Vol. 49; no. 4; pp. 724 - 732 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present study focuses mostly on experimental investigation of the SCT, and no systematic numerical method is available. In this paper, we first developed a one dimensional model and analyzed the heat and mass transfer processes of the SCT; then we used the concept of artificial neural network (ANN) to propose a computer design tool that can help the designer evaluate the outlet water temperature from a given set of experimentally obtained data. For comparison purposes and accurate evaluation of the predictions, part of the experimental data was used to train the neural network and the remainder to test the model. The results predicted by the ANN model were compared with those of the standard model and the experimental data. The ANN model predicted the outlet water temperature with a MAE (mean absolute error) of 1.31%, whereas the standard one dimensional model showed a MAE of 9.42%. |
---|---|
AbstractList | This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present study focuses mostly on experimental investigation of the SCT, and no systematic numerical method is available. In this paper, we first developed a one dimensional model and analyzed the heat and mass transfer processes of the SCT; then we used the concept of artificial neural network (ANN) to propose a computer design tool that can help the designer evaluate the outlet water temperature from a given set of experimentally obtained data. For comparison purposes and accurate evaluation of the predictions, part of the experimental data was used to train the neural network and the remainder to test the model. The results predicted by the ANN model were compared with those of the standard model and the experimental data. The ANN model predicted the outlet water temperature with a MAE (mean absolute error) of 1.31%, whereas the standard one dimensional model showed a MAE of 9.42%. |
Author | Liu, Zhenyan Qi, Xiaoni Li, Dandan |
Author_xml | – sequence: 1 givenname: Xiaoni surname: Qi fullname: Qi, Xiaoni email: nini@sjtu.edu.cn – sequence: 2 givenname: Zhenyan surname: Liu fullname: Liu, Zhenyan – sequence: 3 givenname: Dandan surname: Li fullname: Li, Dandan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20163119$$DView record in Pascal Francis |
BookMark | eNqFkM1LAzEQxYNUsK3-C7IXj7tOst83pfgFxV70HLKTRFO3SUm2Fv97s616FR4MA-_3hnkzMrHOKkIuKWQUaHW9zpRFZzfCZgygzkbl7IRMaVO3KWOsnpAp0LZKmxaKMzILYQ0AeQnVlKyedxvlDYo-CWaz68VgnE2cTsK72yufoHO9sW_JcNg6EZRMokH4wWiDJmJW7fxhDHvnP87JqRZ9UBc_c05e7-9eFo_pcvXwtLhdppgXbEhLzRpA2ZZUAmjGCtYokLVoOkSdU-g6WlctUsSyy2UNSlZQgUSt60gVTT4n1TEXvQvBK8233myE_-IU-FgLX_PfWvhYCx-VswheHcGtCPFr7YVFE_5oFtGc0jb6bo4-Fb_4NMrzgCYmKmm8woFLZ_479Q30Hn-V |
CODEN | ECMADL |
CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2014_11_030 crossref_primary_10_1016_j_enconman_2013_04_025 crossref_primary_10_3390_su8050410 crossref_primary_10_3390_jmmp4040097 crossref_primary_10_1016_j_energy_2023_127737 crossref_primary_10_1016_j_ijrefrig_2011_01_006 crossref_primary_10_1061__ASCE_EY_1943_7897_0000666 crossref_primary_10_1016_j_energy_2019_05_078 crossref_primary_10_1016_j_enbuild_2018_11_003 crossref_primary_10_1016_j_energy_2015_12_065 crossref_primary_10_1016_j_enconman_2009_04_005 crossref_primary_10_1115_1_4038479 crossref_primary_10_1016_j_jclepro_2018_11_184 crossref_primary_10_1088_1755_1315_121_5_052001 crossref_primary_10_1016_j_asoc_2011_01_025 crossref_primary_10_1007_s11630_020_1296_0 crossref_primary_10_1016_j_apenergy_2018_09_123 crossref_primary_10_1016_j_enbuild_2011_03_008 crossref_primary_10_4028_www_scientific_net_AMR_1070_1072_1994 crossref_primary_10_1155_2019_8372093 crossref_primary_10_1016_j_anucene_2023_109993 crossref_primary_10_1016_j_energy_2017_03_074 crossref_primary_10_1016_j_enconman_2010_09_036 crossref_primary_10_1177_1351010X21994462 crossref_primary_10_1016_j_applthermaleng_2019_03_043 crossref_primary_10_1016_j_ijthermalsci_2017_10_017 crossref_primary_10_18186_thermal_930791 crossref_primary_10_1016_j_applthermaleng_2009_10_015 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119662 crossref_primary_10_1016_j_jtice_2019_04_046 crossref_primary_10_1007_s10668_021_01678_5 |
Cites_doi | 10.1201/9781420050424.ch4.24 10.1016/0960-1481(96)00059-6 10.1016/S0016-0032(96)00059-2 10.1080/10789669.1999.10391233 10.1142/9789812819451_0006 10.1016/j.ijthermalsci.2005.03.006 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2008 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1016/j.enconman.2007.07.032 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-2227 |
EndPage | 732 |
ExternalDocumentID | 10_1016_j_enconman_2007_07_032 20163119 S0196890407002464 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 08R ABPIF ABPTK IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c342t-5f280cd951d00f22428e0d7a8bccf310bb1769c1cc5b3d70ed6060dcff7cd9483 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Thu Sep 26 17:43:25 EDT 2024 Sun Oct 29 17:09:57 EDT 2023 Fri Feb 23 02:33:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Shower cooling tower Heat and mass transfer Neural network Salt Experimental test One dimensional model Heat mass transfer Numerical simulation Cooling tower |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-5f280cd951d00f22428e0d7a8bccf310bb1769c1cc5b3d70ed6060dcff7cd9483 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_enconman_2007_07_032 pascalfrancis_primary_20163119 elsevier_sciencedirect_doi_10_1016_j_enconman_2007_07_032 |
PublicationCentury | 2000 |
PublicationDate | 2008-04-01 |
PublicationDateYYYYMMDD | 2008-04-01 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2008 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hecht-Nielsen (bib10) 1987; 3 Handbook of fundamentals, ASHRAE, Atlanta,1997, p. 6.8. Heat exchanger design handbook, Hemisphere Publishing Corporation, NY, 1983. Sen M, Yang KT. Applications of artificial neural networks and genetic algorithms in thermal engineering. In: Kreith F, editor. CRC Handbook of Thermal Engineering 2000. p. 620–61 [Section 4.24]. Satoshi (bib7) 1996; 10 Ayoubi M, Dynamic multi-layer perception networks: application to the nonlinear identification and predictive control of a heat exchanger. In: Proc of Applications of Neural Adaptive Control Technology, World Scientific series in Robotics and Intelligent Systems, vol. 17, 1997, p. 205–30. Wei (bib9) 1996 Li, Yang (bib5) 2003 Tsoukalas, Uhrig (bib19) 1997 Shi (bib4) 2002 Berman (bib1) 1961 Diaz, Sen, Yang, McClain (bib12) 1999; 5 Li (bib6) 2003 Givoni (bib8) 1997; 10 Bittanti, Piroddi (bib13) 1997; 334B Kr€oger (bib2) 1998 Johannes C. Kloppers, Detlev G. Kröger. The Lewis factor and its influence on the performance prediction of wet-cooling towers. Int J Therm Sci Sept 2005; 9 (44): 879–84. Diaz G, Sen M, Yang KT, McClain RL. Use of artificial neural networks for temperature control. In: Proc of the Fourth ISHMT/ASME Heat and Mass Transfer Conference, Pune, India, 5–7 January 2000. Guo (bib18) 2002 Berman (10.1016/j.enconman.2007.07.032_bib1) 1961 10.1016/j.enconman.2007.07.032_bib3 Satoshi (10.1016/j.enconman.2007.07.032_bib7) 1996; 10 Guo (10.1016/j.enconman.2007.07.032_bib18) 2002 Givoni (10.1016/j.enconman.2007.07.032_bib8) 1997; 10 Shi (10.1016/j.enconman.2007.07.032_bib4) 2002 Tsoukalas (10.1016/j.enconman.2007.07.032_bib19) 1997 Wei (10.1016/j.enconman.2007.07.032_bib9) 1996 Kr€oger (10.1016/j.enconman.2007.07.032_bib2) 1998 Li (10.1016/j.enconman.2007.07.032_bib5) 2003 10.1016/j.enconman.2007.07.032_bib11 Hecht-Nielsen (10.1016/j.enconman.2007.07.032_bib10) 1987; 3 10.1016/j.enconman.2007.07.032_bib14 Diaz (10.1016/j.enconman.2007.07.032_bib12) 1999; 5 10.1016/j.enconman.2007.07.032_bib15 10.1016/j.enconman.2007.07.032_bib16 Li (10.1016/j.enconman.2007.07.032_bib6) 2003 Bittanti (10.1016/j.enconman.2007.07.032_bib13) 1997; 334B 10.1016/j.enconman.2007.07.032_bib17 |
References_xml | – start-page: 56 year: 2003 end-page: 58 ident: bib6 article-title: Investigation and application of the no-padding and atomizing cooling tower publication-title: Ind Water Treat contributor: fullname: Li – volume: 5 start-page: 195 year: 1999 end-page: 208 ident: bib12 article-title: Simulation of heat exchanger performance by artificial neural networks publication-title: Int J HVAC R Res contributor: fullname: McClain – year: 2002 ident: bib18 article-title: Two-phase and multi-phase hydrokinetics contributor: fullname: Guo – start-page: 56 year: 2002 end-page: 59 ident: bib4 article-title: Application of the no-padding and atomizing cooling tower to industrial circulating cooling water publication-title: Metall Power contributor: fullname: Shi – volume: 10 start-page: 173 year: 1997 end-page: 178 ident: bib8 article-title: Performance of the “shower” cooling tower in different climates publication-title: Renew Energy contributor: fullname: Givoni – year: 1961 ident: bib1 article-title: Evaporative cooling of circulating water contributor: fullname: Berman – year: 1997 ident: bib19 article-title: Fuzzy and neural approaches in engineering contributor: fullname: Uhrig – volume: 10 start-page: 179 year: 1996 end-page: 183 ident: bib7 article-title: Experimental performance of the shower cooling tower In Japan publication-title: Renew Energy contributor: fullname: Satoshi – volume: 3 start-page: 11 year: 1987 end-page: 13 ident: bib10 article-title: Kolmogorov’s mapping neural network existence theorem publication-title: Proceedings of the First International Conference on Neural Networks, IEEE contributor: fullname: Hecht-Nielsen – year: 1998 ident: bib2 article-title: Air-cooled heat exchangers and cooling towers contributor: fullname: Kr€oger – start-page: 187 year: 1996 end-page: 193 ident: bib9 article-title: WFL series cooling tower publication-title: Vacuum and Cryogenics contributor: fullname: Wei – start-page: 66 year: 2003 end-page: 68 ident: bib5 article-title: Application of the no-padding and atomizing cooling tower to circulating cooling water in steel industry publication-title: Shandong Metall contributor: fullname: Yang – volume: 334B start-page: 135 year: 1997 end-page: 153 ident: bib13 article-title: Nonlinear identification and control of a heat exchanger: a neural network approach publication-title: J Franklin Inst contributor: fullname: Piroddi – year: 1998 ident: 10.1016/j.enconman.2007.07.032_bib2 contributor: fullname: Kr€oger – ident: 10.1016/j.enconman.2007.07.032_bib11 doi: 10.1201/9781420050424.ch4.24 – year: 1961 ident: 10.1016/j.enconman.2007.07.032_bib1 contributor: fullname: Berman – volume: 10 start-page: 173 issue: 2/3 year: 1997 ident: 10.1016/j.enconman.2007.07.032_bib8 article-title: Performance of the “shower” cooling tower in different climates publication-title: Renew Energy doi: 10.1016/0960-1481(96)00059-6 contributor: fullname: Givoni – volume: 10 start-page: 179 issue: 2/3 year: 1996 ident: 10.1016/j.enconman.2007.07.032_bib7 article-title: Experimental performance of the shower cooling tower In Japan publication-title: Renew Energy contributor: fullname: Satoshi – start-page: 56 issue: 3 year: 2002 ident: 10.1016/j.enconman.2007.07.032_bib4 article-title: Application of the no-padding and atomizing cooling tower to industrial circulating cooling water publication-title: Metall Power contributor: fullname: Shi – volume: 334B start-page: 135 issue: 1 year: 1997 ident: 10.1016/j.enconman.2007.07.032_bib13 article-title: Nonlinear identification and control of a heat exchanger: a neural network approach publication-title: J Franklin Inst doi: 10.1016/S0016-0032(96)00059-2 contributor: fullname: Bittanti – year: 2002 ident: 10.1016/j.enconman.2007.07.032_bib18 contributor: fullname: Guo – volume: 5 start-page: 195 issue: 3 year: 1999 ident: 10.1016/j.enconman.2007.07.032_bib12 article-title: Simulation of heat exchanger performance by artificial neural networks publication-title: Int J HVAC R Res doi: 10.1080/10789669.1999.10391233 contributor: fullname: Diaz – start-page: 187 issue: 12 year: 1996 ident: 10.1016/j.enconman.2007.07.032_bib9 article-title: WFL series cooling tower publication-title: Vacuum and Cryogenics contributor: fullname: Wei – start-page: 66 issue: 4 year: 2003 ident: 10.1016/j.enconman.2007.07.032_bib5 article-title: Application of the no-padding and atomizing cooling tower to circulating cooling water in steel industry publication-title: Shandong Metall contributor: fullname: Li – ident: 10.1016/j.enconman.2007.07.032_bib15 – ident: 10.1016/j.enconman.2007.07.032_bib16 – year: 1997 ident: 10.1016/j.enconman.2007.07.032_bib19 contributor: fullname: Tsoukalas – ident: 10.1016/j.enconman.2007.07.032_bib14 doi: 10.1142/9789812819451_0006 – ident: 10.1016/j.enconman.2007.07.032_bib17 doi: 10.1016/j.ijthermalsci.2005.03.006 – start-page: 56 issue: 8 year: 2003 ident: 10.1016/j.enconman.2007.07.032_bib6 article-title: Investigation and application of the no-padding and atomizing cooling tower publication-title: Ind Water Treat contributor: fullname: Li – volume: 3 start-page: 11 year: 1987 ident: 10.1016/j.enconman.2007.07.032_bib10 article-title: Kolmogorov’s mapping neural network existence theorem publication-title: Proceedings of the First International Conference on Neural Networks, IEEE contributor: fullname: Hecht-Nielsen – ident: 10.1016/j.enconman.2007.07.032_bib3 |
SSID | ssj0003506 |
Score | 2.104181 |
Snippet | This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 724 |
SubjectTerms | Applied sciences Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat and mass transfer Heat exchangers (included heat transformers, condensers, cooling towers) Neural network Shower cooling tower |
Title | Numerical simulation of shower cooling tower based on artificial neural network |
URI | https://dx.doi.org/10.1016/j.enconman.2007.07.032 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-yh68pnlsHptjKZaqUA9a6C0ks7vaYtPSx9Xf7kwe2h7EgxAICbt5zA7zzSaz38fYXSqCNETPsaTROEExmbEQFWPLBQXCgBOBLgpkh-Fg5D-Og3GD9eq1MFRWWcX-MqYX0bo6Y1fWtBeTif1CzC4yRieMCGhC4gT1Ef7QpzufP2UeIij0NamxRa23VglPO8QVmc_SvKIyxE14vwHU4SJdodlMqXexBUL9Y3ZUZY-8Wz7gCWvo_JQdbHEKnrHn4ab8CfPBV5NZJc7F54av3kkQjcOcZHreeCGPxgnEFMcG9M4lmQQnistiVxSIn7NR__61N7Aq1QQLhO-trcB40gGFmZNyHIMI7UntqCiVGYDBZC7L3CiMwQUIMqEiRyucwzgKjImwly_FBWvm81xfMh6rzLgpfZYwgQ84l5ChdlNh8EjGoYYWs2tTJYuSHCOpq8amSW1cUrqMEtqE12JxbdFkZ5gTjOB_9m3vDMH3LTGHCYXrxlf_uPg12y8rQagm54Y118uNvsV0Y521C39qs73uw9Ng-AWkJtdj |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtQY4zPiA_fgtfaxfR4NkaAiHoSEW9PuQyFSiMDV3-5MHwoH48GkSdNmt4_Zycxs--33AVwn3Et89Bwj1AonKDrVBmbFyLCFFFwLKxAqB8j2_M7AfRh6wxq0qrUwBKssY38R0_NoXZ4xS2uas9HIfCFmlzBCJwwo0fjuBmy6VB-jU998_uA8uJcLbFJrg5qvLBMe3xBZZDZJspLLEDfu_JahdmfJHO2mC8GLlSzU3oe9snxkt8UTHkBNZYews0IqeATPvWXxF-adzUeTUp2LTTWbv5EiGhNT0ul5Zbk-GqMsJhk2oJcu2CQYcVzmuxwhfgyD9l2_1TFK2QRDcNdZGJ52QktILJ2kZWlM0U6oLBkkYSqExmouTe3Aj4QthJdyGVhK4iTGkkLrAHu5IT-BejbN1CmwSKbaTui7hPZcgZOJ0Fd2wjUehZGvRAPMylTxrGDHiCvY2DiujEtSl0FMG3caEFUWjdfGOcYQ_mff5toQfN8Sixif23Z09o-LX8FWp__Ujbv3vcdz2C5gIQTQuYD64mOpLrH2WKTN3Le-AM1i2Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+shower+cooling+tower+based+on+artificial+neural+network&rft.jtitle=Energy+conversion+and+management&rft.au=Qi%2C+Xiaoni&rft.au=Liu%2C+Zhenyan&rft.au=Li%2C+Dandan&rft.date=2008-04-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=49&rft.issue=4&rft.spage=724&rft.epage=732&rft_id=info:doi/10.1016%2Fj.enconman.2007.07.032&rft.externalDocID=S0196890407002464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |