Numerical simulation of shower cooling tower based on artificial neural network

This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present s...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 49; no. 4; pp. 724 - 732
Main Authors Qi, Xiaoni, Liu, Zhenyan, Li, Dandan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present study focuses mostly on experimental investigation of the SCT, and no systematic numerical method is available. In this paper, we first developed a one dimensional model and analyzed the heat and mass transfer processes of the SCT; then we used the concept of artificial neural network (ANN) to propose a computer design tool that can help the designer evaluate the outlet water temperature from a given set of experimentally obtained data. For comparison purposes and accurate evaluation of the predictions, part of the experimental data was used to train the neural network and the remainder to test the model. The results predicted by the ANN model were compared with those of the standard model and the experimental data. The ANN model predicted the outlet water temperature with a MAE (mean absolute error) of 1.31%, whereas the standard one dimensional model showed a MAE of 9.42%.
AbstractList This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. The cooling tower analyzed in this study is void of fill, named shower cooling tower (SCT). However, the present study focuses mostly on experimental investigation of the SCT, and no systematic numerical method is available. In this paper, we first developed a one dimensional model and analyzed the heat and mass transfer processes of the SCT; then we used the concept of artificial neural network (ANN) to propose a computer design tool that can help the designer evaluate the outlet water temperature from a given set of experimentally obtained data. For comparison purposes and accurate evaluation of the predictions, part of the experimental data was used to train the neural network and the remainder to test the model. The results predicted by the ANN model were compared with those of the standard model and the experimental data. The ANN model predicted the outlet water temperature with a MAE (mean absolute error) of 1.31%, whereas the standard one dimensional model showed a MAE of 9.42%.
Author Liu, Zhenyan
Qi, Xiaoni
Li, Dandan
Author_xml – sequence: 1
  givenname: Xiaoni
  surname: Qi
  fullname: Qi, Xiaoni
  email: nini@sjtu.edu.cn
– sequence: 2
  givenname: Zhenyan
  surname: Liu
  fullname: Liu, Zhenyan
– sequence: 3
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20163119$$DView record in Pascal Francis
BookMark eNqFkM1LAzEQxYNUsK3-C7IXj7tOst83pfgFxV70HLKTRFO3SUm2Fv97s616FR4MA-_3hnkzMrHOKkIuKWQUaHW9zpRFZzfCZgygzkbl7IRMaVO3KWOsnpAp0LZKmxaKMzILYQ0AeQnVlKyedxvlDYo-CWaz68VgnE2cTsK72yufoHO9sW_JcNg6EZRMokH4wWiDJmJW7fxhDHvnP87JqRZ9UBc_c05e7-9eFo_pcvXwtLhdppgXbEhLzRpA2ZZUAmjGCtYokLVoOkSdU-g6WlctUsSyy2UNSlZQgUSt60gVTT4n1TEXvQvBK8233myE_-IU-FgLX_PfWvhYCx-VswheHcGtCPFr7YVFE_5oFtGc0jb6bo4-Fb_4NMrzgCYmKmm8woFLZ_479Q30Hn-V
CODEN ECMADL
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2014_11_030
crossref_primary_10_1016_j_enconman_2013_04_025
crossref_primary_10_3390_su8050410
crossref_primary_10_3390_jmmp4040097
crossref_primary_10_1016_j_energy_2023_127737
crossref_primary_10_1016_j_ijrefrig_2011_01_006
crossref_primary_10_1061__ASCE_EY_1943_7897_0000666
crossref_primary_10_1016_j_energy_2019_05_078
crossref_primary_10_1016_j_enbuild_2018_11_003
crossref_primary_10_1016_j_energy_2015_12_065
crossref_primary_10_1016_j_enconman_2009_04_005
crossref_primary_10_1115_1_4038479
crossref_primary_10_1016_j_jclepro_2018_11_184
crossref_primary_10_1088_1755_1315_121_5_052001
crossref_primary_10_1016_j_asoc_2011_01_025
crossref_primary_10_1007_s11630_020_1296_0
crossref_primary_10_1016_j_apenergy_2018_09_123
crossref_primary_10_1016_j_enbuild_2011_03_008
crossref_primary_10_4028_www_scientific_net_AMR_1070_1072_1994
crossref_primary_10_1155_2019_8372093
crossref_primary_10_1016_j_anucene_2023_109993
crossref_primary_10_1016_j_energy_2017_03_074
crossref_primary_10_1016_j_enconman_2010_09_036
crossref_primary_10_1177_1351010X21994462
crossref_primary_10_1016_j_applthermaleng_2019_03_043
crossref_primary_10_1016_j_ijthermalsci_2017_10_017
crossref_primary_10_18186_thermal_930791
crossref_primary_10_1016_j_applthermaleng_2009_10_015
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119662
crossref_primary_10_1016_j_jtice_2019_04_046
crossref_primary_10_1007_s10668_021_01678_5
Cites_doi 10.1201/9781420050424.ch4.24
10.1016/0960-1481(96)00059-6
10.1016/S0016-0032(96)00059-2
10.1080/10789669.1999.10391233
10.1142/9789812819451_0006
10.1016/j.ijthermalsci.2005.03.006
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID IQODW
AAYXX
CITATION
DOI 10.1016/j.enconman.2007.07.032
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 732
ExternalDocumentID 10_1016_j_enconman_2007_07_032
20163119
S0196890407002464
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
08R
ABPIF
ABPTK
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c342t-5f280cd951d00f22428e0d7a8bccf310bb1769c1cc5b3d70ed6060dcff7cd9483
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Thu Sep 26 17:43:25 EDT 2024
Sun Oct 29 17:09:57 EDT 2023
Fri Feb 23 02:33:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Shower cooling tower
Heat and mass transfer
Neural network
Salt
Experimental test
One dimensional model
Heat mass transfer
Numerical simulation
Cooling tower
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-5f280cd951d00f22428e0d7a8bccf310bb1769c1cc5b3d70ed6060dcff7cd9483
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_enconman_2007_07_032
pascalfrancis_primary_20163119
elsevier_sciencedirect_doi_10_1016_j_enconman_2007_07_032
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hecht-Nielsen (bib10) 1987; 3
Handbook of fundamentals, ASHRAE, Atlanta,1997, p. 6.8.
Heat exchanger design handbook, Hemisphere Publishing Corporation, NY, 1983.
Sen M, Yang KT. Applications of artificial neural networks and genetic algorithms in thermal engineering. In: Kreith F, editor. CRC Handbook of Thermal Engineering 2000. p. 620–61 [Section 4.24].
Satoshi (bib7) 1996; 10
Ayoubi M, Dynamic multi-layer perception networks: application to the nonlinear identification and predictive control of a heat exchanger. In: Proc of Applications of Neural Adaptive Control Technology, World Scientific series in Robotics and Intelligent Systems, vol. 17, 1997, p. 205–30.
Wei (bib9) 1996
Li, Yang (bib5) 2003
Tsoukalas, Uhrig (bib19) 1997
Shi (bib4) 2002
Berman (bib1) 1961
Diaz, Sen, Yang, McClain (bib12) 1999; 5
Li (bib6) 2003
Givoni (bib8) 1997; 10
Bittanti, Piroddi (bib13) 1997; 334B
Kr€oger (bib2) 1998
Johannes C. Kloppers, Detlev G. Kröger. The Lewis factor and its influence on the performance prediction of wet-cooling towers. Int J Therm Sci Sept 2005; 9 (44): 879–84.
Diaz G, Sen M, Yang KT, McClain RL. Use of artificial neural networks for temperature control. In: Proc of the Fourth ISHMT/ASME Heat and Mass Transfer Conference, Pune, India, 5–7 January 2000.
Guo (bib18) 2002
Berman (10.1016/j.enconman.2007.07.032_bib1) 1961
10.1016/j.enconman.2007.07.032_bib3
Satoshi (10.1016/j.enconman.2007.07.032_bib7) 1996; 10
Guo (10.1016/j.enconman.2007.07.032_bib18) 2002
Givoni (10.1016/j.enconman.2007.07.032_bib8) 1997; 10
Shi (10.1016/j.enconman.2007.07.032_bib4) 2002
Tsoukalas (10.1016/j.enconman.2007.07.032_bib19) 1997
Wei (10.1016/j.enconman.2007.07.032_bib9) 1996
Kr€oger (10.1016/j.enconman.2007.07.032_bib2) 1998
Li (10.1016/j.enconman.2007.07.032_bib5) 2003
10.1016/j.enconman.2007.07.032_bib11
Hecht-Nielsen (10.1016/j.enconman.2007.07.032_bib10) 1987; 3
10.1016/j.enconman.2007.07.032_bib14
Diaz (10.1016/j.enconman.2007.07.032_bib12) 1999; 5
10.1016/j.enconman.2007.07.032_bib15
10.1016/j.enconman.2007.07.032_bib16
Li (10.1016/j.enconman.2007.07.032_bib6) 2003
Bittanti (10.1016/j.enconman.2007.07.032_bib13) 1997; 334B
10.1016/j.enconman.2007.07.032_bib17
References_xml – start-page: 56
  year: 2003
  end-page: 58
  ident: bib6
  article-title: Investigation and application of the no-padding and atomizing cooling tower
  publication-title: Ind Water Treat
  contributor:
    fullname: Li
– volume: 5
  start-page: 195
  year: 1999
  end-page: 208
  ident: bib12
  article-title: Simulation of heat exchanger performance by artificial neural networks
  publication-title: Int J HVAC R Res
  contributor:
    fullname: McClain
– year: 2002
  ident: bib18
  article-title: Two-phase and multi-phase hydrokinetics
  contributor:
    fullname: Guo
– start-page: 56
  year: 2002
  end-page: 59
  ident: bib4
  article-title: Application of the no-padding and atomizing cooling tower to industrial circulating cooling water
  publication-title: Metall Power
  contributor:
    fullname: Shi
– volume: 10
  start-page: 173
  year: 1997
  end-page: 178
  ident: bib8
  article-title: Performance of the “shower” cooling tower in different climates
  publication-title: Renew Energy
  contributor:
    fullname: Givoni
– year: 1961
  ident: bib1
  article-title: Evaporative cooling of circulating water
  contributor:
    fullname: Berman
– year: 1997
  ident: bib19
  article-title: Fuzzy and neural approaches in engineering
  contributor:
    fullname: Uhrig
– volume: 10
  start-page: 179
  year: 1996
  end-page: 183
  ident: bib7
  article-title: Experimental performance of the shower cooling tower In Japan
  publication-title: Renew Energy
  contributor:
    fullname: Satoshi
– volume: 3
  start-page: 11
  year: 1987
  end-page: 13
  ident: bib10
  article-title: Kolmogorov’s mapping neural network existence theorem
  publication-title: Proceedings of the First International Conference on Neural Networks, IEEE
  contributor:
    fullname: Hecht-Nielsen
– year: 1998
  ident: bib2
  article-title: Air-cooled heat exchangers and cooling towers
  contributor:
    fullname: Kr€oger
– start-page: 187
  year: 1996
  end-page: 193
  ident: bib9
  article-title: WFL series cooling tower
  publication-title: Vacuum and Cryogenics
  contributor:
    fullname: Wei
– start-page: 66
  year: 2003
  end-page: 68
  ident: bib5
  article-title: Application of the no-padding and atomizing cooling tower to circulating cooling water in steel industry
  publication-title: Shandong Metall
  contributor:
    fullname: Yang
– volume: 334B
  start-page: 135
  year: 1997
  end-page: 153
  ident: bib13
  article-title: Nonlinear identification and control of a heat exchanger: a neural network approach
  publication-title: J Franklin Inst
  contributor:
    fullname: Piroddi
– year: 1998
  ident: 10.1016/j.enconman.2007.07.032_bib2
  contributor:
    fullname: Kr€oger
– ident: 10.1016/j.enconman.2007.07.032_bib11
  doi: 10.1201/9781420050424.ch4.24
– year: 1961
  ident: 10.1016/j.enconman.2007.07.032_bib1
  contributor:
    fullname: Berman
– volume: 10
  start-page: 173
  issue: 2/3
  year: 1997
  ident: 10.1016/j.enconman.2007.07.032_bib8
  article-title: Performance of the “shower” cooling tower in different climates
  publication-title: Renew Energy
  doi: 10.1016/0960-1481(96)00059-6
  contributor:
    fullname: Givoni
– volume: 10
  start-page: 179
  issue: 2/3
  year: 1996
  ident: 10.1016/j.enconman.2007.07.032_bib7
  article-title: Experimental performance of the shower cooling tower In Japan
  publication-title: Renew Energy
  contributor:
    fullname: Satoshi
– start-page: 56
  issue: 3
  year: 2002
  ident: 10.1016/j.enconman.2007.07.032_bib4
  article-title: Application of the no-padding and atomizing cooling tower to industrial circulating cooling water
  publication-title: Metall Power
  contributor:
    fullname: Shi
– volume: 334B
  start-page: 135
  issue: 1
  year: 1997
  ident: 10.1016/j.enconman.2007.07.032_bib13
  article-title: Nonlinear identification and control of a heat exchanger: a neural network approach
  publication-title: J Franklin Inst
  doi: 10.1016/S0016-0032(96)00059-2
  contributor:
    fullname: Bittanti
– year: 2002
  ident: 10.1016/j.enconman.2007.07.032_bib18
  contributor:
    fullname: Guo
– volume: 5
  start-page: 195
  issue: 3
  year: 1999
  ident: 10.1016/j.enconman.2007.07.032_bib12
  article-title: Simulation of heat exchanger performance by artificial neural networks
  publication-title: Int J HVAC R Res
  doi: 10.1080/10789669.1999.10391233
  contributor:
    fullname: Diaz
– start-page: 187
  issue: 12
  year: 1996
  ident: 10.1016/j.enconman.2007.07.032_bib9
  article-title: WFL series cooling tower
  publication-title: Vacuum and Cryogenics
  contributor:
    fullname: Wei
– start-page: 66
  issue: 4
  year: 2003
  ident: 10.1016/j.enconman.2007.07.032_bib5
  article-title: Application of the no-padding and atomizing cooling tower to circulating cooling water in steel industry
  publication-title: Shandong Metall
  contributor:
    fullname: Li
– ident: 10.1016/j.enconman.2007.07.032_bib15
– ident: 10.1016/j.enconman.2007.07.032_bib16
– year: 1997
  ident: 10.1016/j.enconman.2007.07.032_bib19
  contributor:
    fullname: Tsoukalas
– ident: 10.1016/j.enconman.2007.07.032_bib14
  doi: 10.1142/9789812819451_0006
– ident: 10.1016/j.enconman.2007.07.032_bib17
  doi: 10.1016/j.ijthermalsci.2005.03.006
– start-page: 56
  issue: 8
  year: 2003
  ident: 10.1016/j.enconman.2007.07.032_bib6
  article-title: Investigation and application of the no-padding and atomizing cooling tower
  publication-title: Ind Water Treat
  contributor:
    fullname: Li
– volume: 3
  start-page: 11
  year: 1987
  ident: 10.1016/j.enconman.2007.07.032_bib10
  article-title: Kolmogorov’s mapping neural network existence theorem
  publication-title: Proceedings of the First International Conference on Neural Networks, IEEE
  contributor:
    fullname: Hecht-Nielsen
– ident: 10.1016/j.enconman.2007.07.032_bib3
SSID ssj0003506
Score 2.104181
Snippet This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 724
SubjectTerms Applied sciences
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat and mass transfer
Heat exchangers (included heat transformers, condensers, cooling towers)
Neural network
Shower cooling tower
Title Numerical simulation of shower cooling tower based on artificial neural network
URI https://dx.doi.org/10.1016/j.enconman.2007.07.032
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-yh68pnlsHptjKZaqUA9a6C0ks7vaYtPSx9Xf7kwe2h7EgxAICbt5zA7zzSaz38fYXSqCNETPsaTROEExmbEQFWPLBQXCgBOBLgpkh-Fg5D-Og3GD9eq1MFRWWcX-MqYX0bo6Y1fWtBeTif1CzC4yRieMCGhC4gT1Ef7QpzufP2UeIij0NamxRa23VglPO8QVmc_SvKIyxE14vwHU4SJdodlMqXexBUL9Y3ZUZY-8Wz7gCWvo_JQdbHEKnrHn4ab8CfPBV5NZJc7F54av3kkQjcOcZHreeCGPxgnEFMcG9M4lmQQnistiVxSIn7NR__61N7Aq1QQLhO-trcB40gGFmZNyHIMI7UntqCiVGYDBZC7L3CiMwQUIMqEiRyucwzgKjImwly_FBWvm81xfMh6rzLgpfZYwgQ84l5ChdlNh8EjGoYYWs2tTJYuSHCOpq8amSW1cUrqMEtqE12JxbdFkZ5gTjOB_9m3vDMH3LTGHCYXrxlf_uPg12y8rQagm54Y118uNvsV0Y521C39qs73uw9Ng-AWkJtdj
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtQY4zPiA_fgtfaxfR4NkaAiHoSEW9PuQyFSiMDV3-5MHwoH48GkSdNmt4_Zycxs--33AVwn3Et89Bwj1AonKDrVBmbFyLCFFFwLKxAqB8j2_M7AfRh6wxq0qrUwBKssY38R0_NoXZ4xS2uas9HIfCFmlzBCJwwo0fjuBmy6VB-jU998_uA8uJcLbFJrg5qvLBMe3xBZZDZJspLLEDfu_JahdmfJHO2mC8GLlSzU3oe9snxkt8UTHkBNZYews0IqeATPvWXxF-adzUeTUp2LTTWbv5EiGhNT0ul5Zbk-GqMsJhk2oJcu2CQYcVzmuxwhfgyD9l2_1TFK2QRDcNdZGJ52QktILJ2kZWlM0U6oLBkkYSqExmouTe3Aj4QthJdyGVhK4iTGkkLrAHu5IT-BejbN1CmwSKbaTui7hPZcgZOJ0Fd2wjUehZGvRAPMylTxrGDHiCvY2DiujEtSl0FMG3caEFUWjdfGOcYQ_mff5toQfN8Sixif23Z09o-LX8FWp__Ujbv3vcdz2C5gIQTQuYD64mOpLrH2WKTN3Le-AM1i2Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+shower+cooling+tower+based+on+artificial+neural+network&rft.jtitle=Energy+conversion+and+management&rft.au=Qi%2C+Xiaoni&rft.au=Liu%2C+Zhenyan&rft.au=Li%2C+Dandan&rft.date=2008-04-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=49&rft.issue=4&rft.spage=724&rft.epage=732&rft_id=info:doi/10.1016%2Fj.enconman.2007.07.032&rft.externalDocID=S0196890407002464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon