Resistant rootstocks mitigate ionic toxicity with beneficial effects for growth and photosynthesis in grapevine grafted plants under salinity
•The Na+ exclude trait from shoot is associate to salt-resistance in vine rootstocks.•Salt-sensibility of 1103P and SO4 rootstocks occurred with a higher Na+ levels.•Lower Na+ level was associate to salt-resistance of IAC 313 and IAC 572 rootstocks.•The higher K+/Na+ ratio was associated with salt-r...
Saved in:
Published in | Scientia horticulturae Vol. 317; p. 112053 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The Na+ exclude trait from shoot is associate to salt-resistance in vine rootstocks.•Salt-sensibility of 1103P and SO4 rootstocks occurred with a higher Na+ levels.•Lower Na+ level was associate to salt-resistance of IAC 313 and IAC 572 rootstocks.•The higher K+/Na+ ratio was associated with salt-resistance in IAC 313 and IAC 572.•The grafted plants on the IAC 313 and IAC 572 rootstocks were more salt-resistance.
The identification of salt-tolerant rootstocks can be an important strategy for producing vines in salt-affected areas. In this study, was tested the hypothesis that resistant rootstocks can mitigate the salinity damages by the lower ionic toxicity associated to best growth and photosynthesis in grapevine grafted plants. The four grapevine (Vitis spp.) rootstocks (‘IAC 313,’ ‘IAC 572,’ ‘SO4’ and ‘1103P’) and the grafted plants of ‘BRS Vitória’ variety on these rootstocks were exposed to increase NaCl (0, 40 and 80 mM NaCl) for the salt treatments. Under salinity, ‘IAC 313′ and ‘IAC 572′ rootstocks showed lower Na+content and higher K+ levels in leaves relative to other rootstocks. This response was associated with a higher leaf K+/Na+ ratio in the grafted and nongrafted plants of the ‘IAC 313′ and ‘IAC 572′ rootstocks. Based on the root and leaf dry weight (DW), the growth of the ‘IAC 313′ rootstock was unaffected by salinity, while ‘IAC 572′ showed a lower loss of DW relative to 1103P and SO4 rootstocks. All four rootstocks experienced increased membrane damage under saline conditions, but lipid peroxidation was lower in the ‘IAC 313′ rootstock. Grape plants grafted with the ‘BRS Vitória’ variety onto the IAC rootstocks (Vit/IAC 313 and Vit/IAC 572) presented higher efficiency of gas exchange and electron flow under salt stress, traits that were influenced by the rootstock genotype. Photochemical quenching (qP) and the electron transport rate (ETR) decreased under saline conditions, a response that was more intensive in Vit/1103P plants. In summary, our data showed that among evaluated rootstocks the ‘IAC 313′ and ‘IAC 572′ are better acclimated to salt and can be considered for vine production in salt-affected areas. |
---|---|
AbstractList | The identification of salt-tolerant rootstocks can be an important strategy for producing vines in salt-affected areas. In this study, was tested the hypothesis that resistant rootstocks can mitigate the salinity damages by the lower ionic toxicity associated to best growth and photosynthesis in grapevine grafted plants. The four grapevine (Vitis spp.) rootstocks (‘IAC 313,’ ‘IAC 572,’ ‘SO4’ and ‘1103P’) and the grafted plants of ‘BRS Vitória’ variety on these rootstocks were exposed to increase NaCl (0, 40 and 80 mM NaCl) for the salt treatments. Under salinity, ‘IAC 313′ and ‘IAC 572′ rootstocks showed lower Na⁺content and higher K⁺ levels in leaves relative to other rootstocks. This response was associated with a higher leaf K⁺/Na⁺ ratio in the grafted and nongrafted plants of the ‘IAC 313′ and ‘IAC 572′ rootstocks. Based on the root and leaf dry weight (DW), the growth of the ‘IAC 313′ rootstock was unaffected by salinity, while ‘IAC 572′ showed a lower loss of DW relative to 1103P and SO4 rootstocks. All four rootstocks experienced increased membrane damage under saline conditions, but lipid peroxidation was lower in the ‘IAC 313′ rootstock. Grape plants grafted with the ‘BRS Vitória’ variety onto the IAC rootstocks (Vit/IAC 313 and Vit/IAC 572) presented higher efficiency of gas exchange and electron flow under salt stress, traits that were influenced by the rootstock genotype. Photochemical quenching (qP) and the electron transport rate (ETR) decreased under saline conditions, a response that was more intensive in Vit/1103P plants. In summary, our data showed that among evaluated rootstocks the ‘IAC 313′ and ‘IAC 572′ are better acclimated to salt and can be considered for vine production in salt-affected areas. •The Na+ exclude trait from shoot is associate to salt-resistance in vine rootstocks.•Salt-sensibility of 1103P and SO4 rootstocks occurred with a higher Na+ levels.•Lower Na+ level was associate to salt-resistance of IAC 313 and IAC 572 rootstocks.•The higher K+/Na+ ratio was associated with salt-resistance in IAC 313 and IAC 572.•The grafted plants on the IAC 313 and IAC 572 rootstocks were more salt-resistance. The identification of salt-tolerant rootstocks can be an important strategy for producing vines in salt-affected areas. In this study, was tested the hypothesis that resistant rootstocks can mitigate the salinity damages by the lower ionic toxicity associated to best growth and photosynthesis in grapevine grafted plants. The four grapevine (Vitis spp.) rootstocks (‘IAC 313,’ ‘IAC 572,’ ‘SO4’ and ‘1103P’) and the grafted plants of ‘BRS Vitória’ variety on these rootstocks were exposed to increase NaCl (0, 40 and 80 mM NaCl) for the salt treatments. Under salinity, ‘IAC 313′ and ‘IAC 572′ rootstocks showed lower Na+content and higher K+ levels in leaves relative to other rootstocks. This response was associated with a higher leaf K+/Na+ ratio in the grafted and nongrafted plants of the ‘IAC 313′ and ‘IAC 572′ rootstocks. Based on the root and leaf dry weight (DW), the growth of the ‘IAC 313′ rootstock was unaffected by salinity, while ‘IAC 572′ showed a lower loss of DW relative to 1103P and SO4 rootstocks. All four rootstocks experienced increased membrane damage under saline conditions, but lipid peroxidation was lower in the ‘IAC 313′ rootstock. Grape plants grafted with the ‘BRS Vitória’ variety onto the IAC rootstocks (Vit/IAC 313 and Vit/IAC 572) presented higher efficiency of gas exchange and electron flow under salt stress, traits that were influenced by the rootstock genotype. Photochemical quenching (qP) and the electron transport rate (ETR) decreased under saline conditions, a response that was more intensive in Vit/1103P plants. In summary, our data showed that among evaluated rootstocks the ‘IAC 313′ and ‘IAC 572′ are better acclimated to salt and can be considered for vine production in salt-affected areas. |
ArticleNumber | 112053 |
Author | Simões, Adriano Nascimento Silva, José Raliuson Inácio Santos, Hugo Rafael Bentzen Hermínio, Pedro José Souza, Eduardo Ferreira-Silva, Sérgio Luiz Amorim, Thialla Larangeira Neto, Juracy Barroso Silva, Marcela Maria Albuquerque |
Author_xml | – sequence: 1 givenname: Thialla Larangeira surname: Amorim fullname: Amorim, Thialla Larangeira – sequence: 2 givenname: Hugo Rafael Bentzen surname: Santos fullname: Santos, Hugo Rafael Bentzen – sequence: 3 givenname: Juracy Barroso surname: Neto fullname: Neto, Juracy Barroso – sequence: 4 givenname: Pedro José surname: Hermínio fullname: Hermínio, Pedro José – sequence: 5 givenname: José Raliuson Inácio surname: Silva fullname: Silva, José Raliuson Inácio – sequence: 6 givenname: Marcela Maria Albuquerque surname: Silva fullname: Silva, Marcela Maria Albuquerque – sequence: 7 givenname: Adriano Nascimento surname: Simões fullname: Simões, Adriano Nascimento – sequence: 8 givenname: Eduardo surname: Souza fullname: Souza, Eduardo – sequence: 9 givenname: Sérgio Luiz surname: Ferreira-Silva fullname: Ferreira-Silva, Sérgio Luiz email: sergio.luiz@ufrpe.br |
BookMark | eNqFkMtOGzEUhr2gUoH2EZC87Cbp8SVhRl1UFWppJSSkqqwtx3NMTpjYqX0C5CF45zoaVt2wsq3_Zn1n4iTlhEJcKJgrUMvPm3kNhIn9XIM2c6U0LMyJOAUDdma16d6Ls1o3AKCU7U_Fy2-sVNknliVnrpzDQ5VbYrr3jJJyoiA5P1MgPsgn4rVcYcLY3n6UGCMGrjLmIu9LfmqqT4PcrTPneki8PpZLSk30O3ykhMdbZGyesW1WuU8DFln9SKkNfBDvoh8rfnw9z8Xdj-9_rn7Obm6vf119u5kFYzXPFkFr6BV4q2MXYYjRqlUHykC_8rYP3QqW1uigLPbKeuiwqWaBlzoED2jNufg09e5K_rvHym5LNeDY_oR5X53u2g5c2qVq1sVkDSXXWjC6XaGtLwenwB2Ru417Re6OyN2EvOW-_JdrBD03oFw8jW-mv05pbBQeCcvkCjhQacTdkOmNhn_oAaiG |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2024_106042 crossref_primary_10_1016_j_jenvman_2024_120448 crossref_primary_10_1016_j_cpb_2023_100316 crossref_primary_10_1016_j_scienta_2024_113947 crossref_primary_10_3390_horticulturae10121341 crossref_primary_10_3390_plants12152881 crossref_primary_10_1016_j_envres_2024_118382 |
Cites_doi | 10.1016/j.agwat.2019.105722 10.3389/fpls.2017.00851 10.1016/j.agwat.2015.09.022 10.1590/S1677-04202008000100006 10.1016/j.scienta.2018.07.034 10.1039/C1EE01029H 10.1007/s11738-011-0892-8 10.20870/oeno-one.2019.53.2.2438 10.1093/jxb/erx238 10.1186/s12870-019-1983-8 10.1080/07352689.2011.605739 10.1016/0003-9861(68)90654-1 10.1007/s11120-013-9861-y 10.1007/s00425-005-0074-2 10.3389/fpls.2017.01017 10.17660/ActaHortic.2009.839.37 10.1071/FP06237 10.1016/j.scienta.2015.10.010 10.1590/S1677-04202011000400001 10.1038/srep38775 10.1071/PP9880447 10.1007/s40415-018-0500-x 10.1111/j.1755-0238.2001.tb00187.x 10.1093/jxb/erv027 10.1111/jipb.12238 10.3390/agriculture11080708 10.1111/nph.13519 10.1186/s12870-014-0273-8 10.1016/j.jplph.2009.06.013 10.1104/pp.114.238238 10.1093/jxb/erq326 10.1016/S0168-9452(02)00030-4 10.3389/fbioe.2020.00319 10.1111/j.1365-3040.2005.01364.x 10.1146/annurev.arplant.59.032607.092911 10.1016/j.scienta.2019.109012 10.1093/jxb/err460 10.1007/s10535-010-0026-y 10.1111/ppl.12919 10.1104/pp.51.4.783 10.1111/ppl.12056 10.1007/s11738-016-2087-9 10.1078/0176-1617-00728 10.1016/j.jplph.2016.02.007 10.1016/j.jplph.2014.01.011 10.3390/ijms21082738 10.1023/A:1021119414799 10.1111/ajgw.12054 10.1111/ajgw.12071 10.1111/ajgw.12550 10.1016/j.sajb.2019.12.014 10.1016/j.agwat.2007.10.019 10.1590/1678-992x-2018-0207 10.1002/jsfa.9496 10.1104/pp.107.110262 10.1002/jpln.201200230 10.1007/s13580-020-00231-z |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scienta.2023.112053 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_scienta_2023_112053 S030442382300225X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSZ T5K Y6R ~G- ~KM AALCJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW SSH WUQ XOL 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-5c220910a42f8f0dff41b801309ba49c8b06432c14e914a08eb8035e72cca0e43 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Thu Jul 10 22:47:35 EDT 2025 Tue Jul 01 02:36:10 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Tue Dec 03 03:44:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ionic toxicity Rootstock Photosynthesis Grafting Salinity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-5c220910a42f8f0dff41b801309ba49c8b06432c14e914a08eb8035e72cca0e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2834207461 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834207461 crossref_primary_10_1016_j_scienta_2023_112053 crossref_citationtrail_10_1016_j_scienta_2023_112053 elsevier_sciencedirect_doi_10_1016_j_scienta_2023_112053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wicke, Smeets, Dornburg, Vashev, Gaiser, Turkenburg, Faaij (bib0057) 2011; 4 Chen, Newman, Zhou, Mendham, Zhang, Shabala (bib0007) 2005; 28 Maia, Macedo, Voigt, Freitas, Silveira (bib0031) 2010; 54 Shabala, Cuin, Newman, Shabala (bib0048) 2005; 222 Heath, Packer (bib0022) 1968; 125 Krasensky, Jonak (bib0029) 2012; 63 Behzadi Rad, Roozban, Karimi, Ghahremani, Vahdati (bib0006) 2021; 11 Walker, Blackmore, Dunlevy, Edwards, Walker (bib0055) 2022; 28 Shin, Bhandari, Cho, Lee (bib0051) 2020; 61 Jin, Wang, Xu, Gui, Zhang, Dong, Sikder, Yang, Song (bib0027) 2020; 21 Qin, Kang, Qi, Zhang, Wang (bib0041) 2016; 38 Shabala, Munns (bib0047) 2012 Wu, Shabala, Barry, Zhou, Shabala (bib0058) 2013; 149 Hoagland, Arnon (bib0024) 1950; 347 Ball (bib0005) 1988; 15 Gong, Blackmore, Clingeleffer, Sykes, Jha, Tester, Walker (bib0020) 2011; 62 Galmés, Aranjuelo, Medrano, Flexas (bib0019) 2013; 117 Wu, Zhu, Shabala, Zhou, Shabala (bib0059) 2015; 57 Gutiérrez-Gamboa, Gómez-Plaza, Bautista-Ortín, Garde-Cerdán, Moreno-Simunovic, Martínez-Gi (bib0021) 2019; 99 Rodrigues, Silva, Ferreira-Silva, Voigt, Viégas, Silveira (bib0042) 2013; 176 Bacarin, Deuner, Silva, Cassol, Silva (bib0004) 2011; 23 Chen, Pottosin, Cuin, Fuglsang, Tester, Jha, Zepeda-Jazo, Zhou, Palmgren, Newman, Shabala (bib0008) 2007; 145 Santa-Cruz, Martinez-Rodriguez, Perez-Alfocea, Romero-Aranda, Bolarin (bib0043) 2002; 162 Wu, Zhang, Ervin, Yang, Zhang, X (bib0060) 2017; 8 Zain, Ismail (bib0061) 2016; 164 Henderson, Baumann, Blackmore, Walker, Walker, Gilliham (bib0023) 2014; 14 Simpson, Nelson, Melgar, Jifon, Schuster, Volder (bib0050) 2015; 197 Albacete, Martínez-Andújar, Martínez-Pérez, Thompson, Dodd, Pérez-Alfocea (bib0001) 2015; 66 Munns, Tester (bib0038) 2008; 59 Fullana-Pericàs, Conesa, Douthe, Aou-ouad, Ribas-Carbó, Galmés (bib0018) 2019; 223 Penella, Landi, Guidi, Nebauer, Pellegrini, Bautista, Remorini, Nali, López-Galarza, Calatayud (bib0040) 2016; 193 Mirás-Avalos, Intrigliolo (bib0034) 2017; 8 Munns, Husain, Rivelli, James, Condon, Lindsay, Lagudas, Schachtman, Hare (bib0037) 2002; 247 Elsheery, Helaly, Omar, John, Zabochnicka-Swiątek, Kalaji, Rastogi (bib0013) 2020; 130 Fierascu, Sieniawska, Ortan, Fierascu, Xiao (bib0016) 2020; 8 Meggio, Prinsi, Negri, Di Lorenzo, Lucchini, Pitacco, Failla, Scienza, Cocucci, Espen (bib0033) 2014; 20 Hu, Ren, Meng, Cong, Li, White, Lu (bib0025) 2019; 167 Jamil, Riaz, Ashraf, Foolad (bib0026) 2011; 30 Fu, Tan, Zhai, Du (bib0017) 2019; 243 Lotfi, Vahdati, Kholdebarin, Hassani, Amiri (bib0030) 2009; 839 Zhu, Bie, Huang, Han (bib0062) 2008 Askri, Daldoul, Ammar, Rejeb, Jardak, Rejeb, Mliki, Ghorbel (bib0002) 2012; 34 Shabala (bib0049) 2017; 68 Véry, Nieves-Cordones, Daly, Khain, Fizames, Sentenac (bib0054) 2014; 171 Moya, Tadeo, Gomez-Cadenas, Primo-Millo, Talon (bib0035) 2002; 159 Marschner (bib0032) 1986 Schreiber, Bilger, Neubauer (bib0045) 1994 Keller, Kummer, Vasconcelos (bib0028) 2001; 7 Terry, Ulrich (bib0052) 1973; 51 Askri, Gharbi, Rejeb, Mliki, Ghorbel (bib0003) 2018; 41 Serra, Strever, Myburgh, Deloire (bib0046) 2014; 20 Etehadpour, Fatahi, Zamani, Golien, Naghavi, Gmitter (bib0014) 2020; 261 Munns, Gilliham (bib0036) 2015; 208 Santana-Vieira, Freschi, Almeida, Moraes, Neves, Santos, Bertolde, Soares Filho, Coelho Filho, Gesteira (bib0044) 2016; 6 Zrig, Bem mohamed, Tounekti, Ennajeh, Valero, Khemira (bib0063) 2015; 17 Costa, Rodrigues, Vasconcelos, Costa, Lima (bib0011) 2020; 77 Ferreira-Silva, Silveira, Voigt, Soares, Viégas (bib0015) 2008; 20 Chen, Zhou, Newman, Mendham, Zhang, Shabala (bib0009) 2007; 34 Clingeleffer, Morales, Davis, Smith (bib0010) 2019; 53 Tsai, Chen, Cheng, Lee, Lin, Tung (bib0053) 2019; 19 Walker, Strand, Kramer, Cousins (bib0056) 2014; 165 Degl'Innocenti, Hafsi, Guidi, Navari-Izzo (bib0012) 2009; 166 Paranychianakis, Angelakis (bib0039) 2008; 95 Galmés (10.1016/j.scienta.2023.112053_bib0019) 2013; 117 Costa (10.1016/j.scienta.2023.112053_bib0011) 2020; 77 Munns (10.1016/j.scienta.2023.112053_bib0036) 2015; 208 Terry (10.1016/j.scienta.2023.112053_bib0052) 1973; 51 Wu (10.1016/j.scienta.2023.112053_bib0059) 2015; 57 Clingeleffer (10.1016/j.scienta.2023.112053_bib0010) 2019; 53 Askri (10.1016/j.scienta.2023.112053_bib0003) 2018; 41 Jin (10.1016/j.scienta.2023.112053_bib0027) 2020; 21 Zrig (10.1016/j.scienta.2023.112053_bib0063) 2015; 17 Walker (10.1016/j.scienta.2023.112053_bib0056) 2014; 165 Chen (10.1016/j.scienta.2023.112053_bib0009) 2007; 34 Wu (10.1016/j.scienta.2023.112053_bib0058) 2013; 149 Ball (10.1016/j.scienta.2023.112053_bib0005) 1988; 15 Schreiber (10.1016/j.scienta.2023.112053_bib0045) 1994 Wu (10.1016/j.scienta.2023.112053_bib0060) 2017; 8 Meggio (10.1016/j.scienta.2023.112053_bib0033) 2014; 20 Penella (10.1016/j.scienta.2023.112053_bib0040) 2016; 193 Santana-Vieira (10.1016/j.scienta.2023.112053_bib0044) 2016; 6 Elsheery (10.1016/j.scienta.2023.112053_bib0013) 2020; 130 Fierascu (10.1016/j.scienta.2023.112053_bib0016) 2020; 8 Wicke (10.1016/j.scienta.2023.112053_bib0057) 2011; 4 Walker (10.1016/j.scienta.2023.112053_bib0055) 2022; 28 Jamil (10.1016/j.scienta.2023.112053_bib0026) 2011; 30 Hu (10.1016/j.scienta.2023.112053_bib0025) 2019; 167 Albacete (10.1016/j.scienta.2023.112053_bib0001) 2015; 66 Etehadpour (10.1016/j.scienta.2023.112053_bib0014) 2020; 261 Shabala (10.1016/j.scienta.2023.112053_bib0047) 2012 Shabala (10.1016/j.scienta.2023.112053_bib0049) 2017; 68 Degl'Innocenti (10.1016/j.scienta.2023.112053_bib0012) 2009; 166 Gutiérrez-Gamboa (10.1016/j.scienta.2023.112053_bib0021) 2019; 99 Shabala (10.1016/j.scienta.2023.112053_bib0048) 2005; 222 Behzadi Rad (10.1016/j.scienta.2023.112053_bib0006) 2021; 11 Mirás-Avalos (10.1016/j.scienta.2023.112053_bib0034) 2017; 8 Hoagland (10.1016/j.scienta.2023.112053_bib0024) 1950; 347 Véry (10.1016/j.scienta.2023.112053_bib0054) 2014; 171 Askri (10.1016/j.scienta.2023.112053_bib0002) 2012; 34 Gong (10.1016/j.scienta.2023.112053_bib0020) 2011; 62 Chen (10.1016/j.scienta.2023.112053_bib0008) 2007; 145 Rodrigues (10.1016/j.scienta.2023.112053_bib0042) 2013; 176 Tsai (10.1016/j.scienta.2023.112053_bib0053) 2019; 19 Zhu (10.1016/j.scienta.2023.112053_bib0062) 2008 Henderson (10.1016/j.scienta.2023.112053_bib0023) 2014; 14 Maia (10.1016/j.scienta.2023.112053_bib0031) 2010; 54 Shin (10.1016/j.scienta.2023.112053_bib0051) 2020; 61 Bacarin (10.1016/j.scienta.2023.112053_bib0004) 2011; 23 Chen (10.1016/j.scienta.2023.112053_bib0007) 2005; 28 Keller (10.1016/j.scienta.2023.112053_bib0028) 2001; 7 Qin (10.1016/j.scienta.2023.112053_bib0041) 2016; 38 Zain (10.1016/j.scienta.2023.112053_bib0061) 2016; 164 Ferreira-Silva (10.1016/j.scienta.2023.112053_bib0015) 2008; 20 Marschner (10.1016/j.scienta.2023.112053_bib0032) 1986 Krasensky (10.1016/j.scienta.2023.112053_bib0029) 2012; 63 Heath (10.1016/j.scienta.2023.112053_bib0022) 1968; 125 Moya (10.1016/j.scienta.2023.112053_bib0035) 2002; 159 Fullana-Pericàs (10.1016/j.scienta.2023.112053_bib0018) 2019; 223 Munns (10.1016/j.scienta.2023.112053_bib0038) 2008; 59 Paranychianakis (10.1016/j.scienta.2023.112053_bib0039) 2008; 95 Lotfi (10.1016/j.scienta.2023.112053_bib0030) 2009; 839 Simpson (10.1016/j.scienta.2023.112053_bib0050) 2015; 197 Munns (10.1016/j.scienta.2023.112053_bib0037) 2002; 247 Fu (10.1016/j.scienta.2023.112053_bib0017) 2019; 243 Santa-Cruz (10.1016/j.scienta.2023.112053_bib0043) 2002; 162 Serra (10.1016/j.scienta.2023.112053_bib0046) 2014; 20 |
References_xml | – volume: 4 start-page: 2669 year: 2011 end-page: 2681 ident: bib0057 article-title: The global technical and economic potential of bioenergy from salt–affected soils publication-title: Energy Environ. Sci. – volume: 839 start-page: 293 year: 2009 end-page: 300 ident: bib0030 article-title: Mineral composition of some walnut cultivars ( publication-title: Acta Hortic. – volume: 193 start-page: 1 year: 2016 end-page: 11 ident: bib0040 article-title: Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength publication-title: J. Plant Physiol. – volume: 125 start-page: 189 year: 1968 end-page: 198 ident: bib0022 article-title: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. – volume: 261 year: 2020 ident: bib0014 article-title: Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods publication-title: Sci. Hortic. – volume: 117 start-page: 73 year: 2013 end-page: 90 ident: bib0019 article-title: Variation in Rubisco content and activity under variable climatic factors publication-title: Photosynth. Res. – volume: 165 start-page: 453 year: 2014 end-page: 462 ident: bib0056 article-title: The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation publication-title: Plant Physiol. – volume: 7 start-page: 2 year: 2001 end-page: 11 ident: bib0028 article-title: Soil nitrogen utilization for growth and gas exchange by grapevines in response to nitrogen supply and rootstock publication-title: Aust. J. Grape Wine Res. – volume: 222 start-page: 1041 year: 2005 end-page: 1050 ident: bib0048 article-title: Salinity- induced ion flux patterns from the excised roots of Arabidopsis sos mutants publication-title: Planta – start-page: 49 year: 1994 end-page: 70 ident: bib0045 article-title: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis publication-title: Ecophysiology of Photosynthesis – volume: 15 start-page: 447 year: 1988 end-page: 464 ident: bib0005 article-title: Salinity tolerance in the mangroves, publication-title: Funct. Plant Biol. – volume: 130 start-page: 90 year: 2020 end-page: 102 ident: bib0013 article-title: Physiological and molecular mechanisms of salinity tolerance in grafted cucumber publication-title: S. Afr. J. Bot. – volume: 17 start-page: 675 year: 2015 end-page: 689 ident: bib0063 article-title: A comparative study of salt tolerance of three almond rootstocks: contribution of organic and inorganic solutes to osmotic adjustment publication-title: J. Agricul. Sci. Tech. – volume: 11 start-page: 708 year: 2021 ident: bib0006 article-title: Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of pistachios rootstocks publication-title: Agriculture – volume: 53 start-page: 2 year: 2019 ident: bib0010 article-title: The significance of scion × rootstock interactions publication-title: OENO One – start-page: 54895 year: 2008 end-page: 54902 ident: bib0062 article-title: Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress publication-title: Soil Sci. Plant Nutr. – volume: 20 start-page: 1 year: 2014 end-page: 14 ident: bib0046 article-title: Review: the interaction between rootstocks and cultivars ( publication-title: Aust. J. Grape Wine Res. – volume: 59 start-page: 651 year: 2008 end-page: 681 ident: bib0038 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. – volume: 95 start-page: 375 year: 2008 end-page: 382 ident: bib0039 article-title: The effect of water stress and rootstock on the development of leaf injuries in grapevines irrgated with saline efluente publication-title: Agricult. Water Manag. – volume: 247 start-page: 93 year: 2002 end-page: 105 ident: bib0037 article-title: Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits publication-title: Plant Soil – volume: 8 start-page: 1017 year: 2017 ident: bib0060 article-title: Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24- Epibrassinolide publication-title: Front. Plant Sci – volume: 62 start-page: 989 year: 2011 end-page: 999 ident: bib0020 article-title: Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny publication-title: J. Exp. Bot. – volume: 23 start-page: 245 year: 2011 end-page: 253 ident: bib0004 article-title: Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L publication-title: Braz. J. Plant Physiol. – volume: 171 start-page: 748 year: 2014 end-page: 769 ident: bib0054 article-title: Molecular biology of K publication-title: J. Plant Physiol. – volume: 66 start-page: 2211 year: 2015 end-page: 2226 ident: bib0001 article-title: Unravelling rootstock×scion interactions to improve food security publication-title: J. Exp. Bot. – volume: 19 start-page: 403 year: 2019 ident: bib0053 article-title: Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency publication-title: BMC Plant Biol. – volume: 34 start-page: 150 year: 2007 end-page: 162 ident: bib0009 article-title: Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance publication-title: Funct. Plant Biol. – start-page: 59 year: 2012 end-page: 93 ident: bib0047 article-title: Salinity Stress: physiological constraints and adaptative mechanisms publication-title: Plant Stress Physiology – volume: 28 start-page: 292 year: 2022 end-page: 303 ident: bib0055 article-title: Rootstock type influences salt exclusion response of grafted Shiraz under salt treatment at elevated root zone temperature publication-title: Aust. J. Grape Wine Res. – volume: 14 start-page: 1 year: 2014 end-page: 18 ident: bib0023 article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots publication-title: BMC Plant Biol. – volume: 8 start-page: 851 year: 2017 ident: bib0034 article-title: Grape Composition under Abiotic Constrains: water Stress and Salinity publication-title: Front. Plant Sci. – volume: 61 start-page: 433 year: 2020 end-page: 443 ident: bib0051 article-title: Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions publication-title: Hortic. Environ. Biotechno. – volume: 77 year: 2020 ident: bib0011 article-title: Trellis systems, rootstocks and season influence on the phenolic composition of ‘Chenin Blanc’ grape publication-title: Sci. Agric. – volume: 21 start-page: 2738 year: 2020 ident: bib0027 article-title: Chemical Defoliant Promotes Leaf Abscission by Altering ROS Metabolism and Photosynthetic Efficiency in Gossypium hirsutum publication-title: Int. J. Mol. Sci. – volume: 68 start-page: 4003 year: 2017 end-page: 4007 ident: bib0049 article-title: Signalling by potassium: another second messenger to add to the list? publication-title: J. Exp. Bot. – volume: 54 start-page: 159 year: 2010 end-page: 163 ident: bib0031 article-title: Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity publication-title: Biol. Plant. – volume: 347 start-page: 32 year: 1950 ident: bib0024 article-title: The water-culture method for growing plants without soil publication-title: California Agricult. Exper. Stat. Circul. – volume: 6 start-page: 38775 year: 2016 ident: bib0044 article-title: Survival strategies of citrus rootstocks subjected to drought publication-title: Sci. Rep. – volume: 28 start-page: 1230 year: 2005 end-page: 1246 ident: bib0007 article-title: Screening plants for salt tolerance by measuring K publication-title: Plant Cell Environ. – volume: 243 start-page: 148 year: 2019 end-page: 158 ident: bib0017 article-title: Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks publication-title: Sci. Hortic. – volume: 167 start-page: 418 year: 2019 end-page: 432 ident: bib0025 article-title: Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO publication-title: Physiol. Plant. – volume: 208 start-page: 668 year: 2015 end-page: 673 ident: bib0036 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytol. – volume: 159 start-page: 991 year: 2002 end-page: 998 ident: bib0035 article-title: Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes publication-title: J. Plant Physiol. – volume: 34 start-page: 957 year: 2012 end-page: 968 ident: bib0002 article-title: Short-term response of wild grapevines ( publication-title: Acta Physiol. Plant. – volume: 166 start-page: 1968 year: 2009 end-page: 1981 ident: bib0012 article-title: The effect of salinity on photosynthetic activity in potassium-deficient barley species publication-title: J. Plant Physiol. – volume: 20 start-page: 51 year: 2008 end-page: 59 ident: bib0015 article-title: Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks publication-title: Braz. J. Plant Physiol. – volume: 57 start-page: 171 year: 2015 end-page: 185 ident: bib0059 article-title: K publication-title: J. Integr. Plant Biol. – volume: 176 start-page: 157 year: 2013 end-page: 164 ident: bib0042 article-title: High K publication-title: J. Plant Nutr. Soil Sci. – volume: 30 start-page: 435 year: 2011 end-page: 458 ident: bib0026 article-title: Gene expression profiling of plants under salt stress publication-title: Crit. Rev. Plant Sci. – volume: 38 start-page: 1 year: 2016 end-page: 9 ident: bib0041 article-title: The influence of silicon application on growth and photosynthesis response of salt stressed grapevines ( publication-title: Acta Physiol. Plant. – volume: 223 year: 2019 ident: bib0018 article-title: Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions publication-title: Agricult. Water Manag. – volume: 164 start-page: 83 year: 2016 end-page: 90 ident: bib0061 article-title: Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice ( publication-title: Agric. Water Manage. – volume: 63 start-page: 1593 year: 2012 end-page: 1608 ident: bib0029 article-title: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks publication-title: J. Exp. Bot. – year: 1986 ident: bib0032 article-title: Mineral Nutrition of Higher Plants – volume: 8 start-page: 319 year: 2020 ident: bib0016 article-title: Fruits by-products – a source of valuable active principles. A short review a short review publication-title: Front. Bioeng. Biotechnol. – volume: 149 start-page: 515 year: 2013 end-page: 527 ident: bib0058 article-title: Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley publication-title: Physiol. Plant – volume: 145 start-page: 1714 year: 2007 end-page: 1725 ident: bib0008 article-title: Root plasma membrane transporters controlling K publication-title: Plant Physiol. – volume: 162 start-page: 825 year: 2002 end-page: 831 ident: bib0043 article-title: The rootstock effect on the tomato salinity response depends on the shoot genotype publication-title: Plant Sci. – volume: 20 start-page: 310 year: 2014 end-page: 323 ident: bib0033 article-title: Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments publication-title: Aust. J. Grape Wine Res. – volume: 51 start-page: 783 year: 1973 end-page: 786 ident: bib0052 article-title: Effects of potassium deficiency on the photosynthesis and respiration of leaves of sugar beet publication-title: Plant. Physiol. – volume: 99 start-page: 2846 year: 2019 end-page: 2854 ident: bib0021 article-title: Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines publication-title: J. Sci. Food Agric. – volume: 197 start-page: 483 year: 2015 end-page: 489 ident: bib0050 article-title: Effects of salinity on physiological parameters of grafted and ungrafted citrus trees publication-title: Sci. Horticul. – volume: 41 start-page: 795 year: 2018 end-page: 804 ident: bib0003 article-title: Differential physiological responses of Tunisian wild grapevines ( publication-title: Braz. J. Bot. – volume: 223 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0018 article-title: Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions publication-title: Agricult. Water Manag. doi: 10.1016/j.agwat.2019.105722 – volume: 8 start-page: 851 year: 2017 ident: 10.1016/j.scienta.2023.112053_bib0034 article-title: Grape Composition under Abiotic Constrains: water Stress and Salinity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00851 – volume: 164 start-page: 83 year: 2016 ident: 10.1016/j.scienta.2023.112053_bib0061 article-title: Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2015.09.022 – volume: 20 start-page: 51 year: 2008 ident: 10.1016/j.scienta.2023.112053_bib0015 article-title: Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202008000100006 – volume: 243 start-page: 148 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0017 article-title: Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.07.034 – volume: 4 start-page: 2669 year: 2011 ident: 10.1016/j.scienta.2023.112053_bib0057 article-title: The global technical and economic potential of bioenergy from salt–affected soils publication-title: Energy Environ. Sci. doi: 10.1039/C1EE01029H – volume: 34 start-page: 957 year: 2012 ident: 10.1016/j.scienta.2023.112053_bib0002 article-title: Short-term response of wild grapevines (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes of some physiological and molecular characteristics publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-011-0892-8 – volume: 53 start-page: 2 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0010 article-title: The significance of scion × rootstock interactions publication-title: OENO One doi: 10.20870/oeno-one.2019.53.2.2438 – volume: 68 start-page: 4003 year: 2017 ident: 10.1016/j.scienta.2023.112053_bib0049 article-title: Signalling by potassium: another second messenger to add to the list? publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx238 – volume: 19 start-page: 403 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0053 article-title: Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-1983-8 – start-page: 54895 year: 2008 ident: 10.1016/j.scienta.2023.112053_bib0062 article-title: Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress publication-title: Soil Sci. Plant Nutr. – volume: 30 start-page: 435 year: 2011 ident: 10.1016/j.scienta.2023.112053_bib0026 article-title: Gene expression profiling of plants under salt stress publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2011.605739 – volume: 125 start-page: 189 year: 1968 ident: 10.1016/j.scienta.2023.112053_bib0022 article-title: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 117 start-page: 73 year: 2013 ident: 10.1016/j.scienta.2023.112053_bib0019 article-title: Variation in Rubisco content and activity under variable climatic factors publication-title: Photosynth. Res. doi: 10.1007/s11120-013-9861-y – volume: 222 start-page: 1041 year: 2005 ident: 10.1016/j.scienta.2023.112053_bib0048 article-title: Salinity- induced ion flux patterns from the excised roots of Arabidopsis sos mutants publication-title: Planta doi: 10.1007/s00425-005-0074-2 – volume: 8 start-page: 1017 year: 2017 ident: 10.1016/j.scienta.2023.112053_bib0060 article-title: Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24- Epibrassinolide publication-title: Front. Plant Sci doi: 10.3389/fpls.2017.01017 – volume: 839 start-page: 293 year: 2009 ident: 10.1016/j.scienta.2023.112053_bib0030 article-title: Mineral composition of some walnut cultivars (Juglans regia L.) for evaluation of ionome and ionomics under salt stress condition publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2009.839.37 – volume: 34 start-page: 150 year: 2007 ident: 10.1016/j.scienta.2023.112053_bib0009 article-title: Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance publication-title: Funct. Plant Biol. doi: 10.1071/FP06237 – volume: 197 start-page: 483 year: 2015 ident: 10.1016/j.scienta.2023.112053_bib0050 article-title: Effects of salinity on physiological parameters of grafted and ungrafted citrus trees publication-title: Sci. Horticul. doi: 10.1016/j.scienta.2015.10.010 – volume: 23 start-page: 245 year: 2011 ident: 10.1016/j.scienta.2023.112053_bib0004 article-title: Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202011000400001 – volume: 6 start-page: 38775 year: 2016 ident: 10.1016/j.scienta.2023.112053_bib0044 article-title: Survival strategies of citrus rootstocks subjected to drought publication-title: Sci. Rep. doi: 10.1038/srep38775 – volume: 15 start-page: 447 year: 1988 ident: 10.1016/j.scienta.2023.112053_bib0005 article-title: Salinity tolerance in the mangroves, Aegiceras corniculatum and Avicinnia. I. Water use in relation to growth, carbon partitioning and salt balance publication-title: Funct. Plant Biol. doi: 10.1071/PP9880447 – volume: 41 start-page: 795 year: 2018 ident: 10.1016/j.scienta.2023.112053_bib0003 article-title: Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress publication-title: Braz. J. Bot. doi: 10.1007/s40415-018-0500-x – volume: 7 start-page: 2 year: 2001 ident: 10.1016/j.scienta.2023.112053_bib0028 article-title: Soil nitrogen utilization for growth and gas exchange by grapevines in response to nitrogen supply and rootstock publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.2001.tb00187.x – volume: 66 start-page: 2211 year: 2015 ident: 10.1016/j.scienta.2023.112053_bib0001 article-title: Unravelling rootstock×scion interactions to improve food security publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv027 – volume: 57 start-page: 171 year: 2015 ident: 10.1016/j.scienta.2023.112053_bib0059 article-title: K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12238 – volume: 11 start-page: 708 issue: 8 year: 2021 ident: 10.1016/j.scienta.2023.112053_bib0006 article-title: Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of pistachios rootstocks publication-title: Agriculture doi: 10.3390/agriculture11080708 – volume: 208 start-page: 668 year: 2015 ident: 10.1016/j.scienta.2023.112053_bib0036 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytol. doi: 10.1111/nph.13519 – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.scienta.2023.112053_bib0023 article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0273-8 – volume: 166 start-page: 1968 year: 2009 ident: 10.1016/j.scienta.2023.112053_bib0012 article-title: The effect of salinity on photosynthetic activity in potassium-deficient barley species publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2009.06.013 – volume: 347 start-page: 32 year: 1950 ident: 10.1016/j.scienta.2023.112053_bib0024 article-title: The water-culture method for growing plants without soil publication-title: California Agricult. Exper. Stat. Circul. – volume: 165 start-page: 453 year: 2014 ident: 10.1016/j.scienta.2023.112053_bib0056 article-title: The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation publication-title: Plant Physiol. doi: 10.1104/pp.114.238238 – volume: 62 start-page: 989 year: 2011 ident: 10.1016/j.scienta.2023.112053_bib0020 article-title: Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq326 – volume: 162 start-page: 825 year: 2002 ident: 10.1016/j.scienta.2023.112053_bib0043 article-title: The rootstock effect on the tomato salinity response depends on the shoot genotype publication-title: Plant Sci. doi: 10.1016/S0168-9452(02)00030-4 – volume: 8 start-page: 319 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0016 article-title: Fruits by-products – a source of valuable active principles. A short review a short review publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00319 – volume: 28 start-page: 1230 year: 2005 ident: 10.1016/j.scienta.2023.112053_bib0007 article-title: Screening plants for salt tolerance by measuring K+ flux: a case study for barley publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01364.x – volume: 59 start-page: 651 year: 2008 ident: 10.1016/j.scienta.2023.112053_bib0038 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 261 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0014 article-title: Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.109012 – volume: 63 start-page: 1593 year: 2012 ident: 10.1016/j.scienta.2023.112053_bib0029 article-title: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks publication-title: J. Exp. Bot. doi: 10.1093/jxb/err460 – volume: 54 start-page: 159 year: 2010 ident: 10.1016/j.scienta.2023.112053_bib0031 article-title: Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity publication-title: Biol. Plant. doi: 10.1007/s10535-010-0026-y – volume: 167 start-page: 418 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0025 article-title: Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation publication-title: Physiol. Plant. doi: 10.1111/ppl.12919 – volume: 51 start-page: 783 year: 1973 ident: 10.1016/j.scienta.2023.112053_bib0052 article-title: Effects of potassium deficiency on the photosynthesis and respiration of leaves of sugar beet publication-title: Plant. Physiol. doi: 10.1104/pp.51.4.783 – volume: 149 start-page: 515 year: 2013 ident: 10.1016/j.scienta.2023.112053_bib0058 article-title: Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley publication-title: Physiol. Plant doi: 10.1111/ppl.12056 – start-page: 49 year: 1994 ident: 10.1016/j.scienta.2023.112053_bib0045 article-title: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis – volume: 38 start-page: 1 year: 2016 ident: 10.1016/j.scienta.2023.112053_bib0041 article-title: The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.) publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2087-9 – year: 1986 ident: 10.1016/j.scienta.2023.112053_bib0032 – volume: 159 start-page: 991 year: 2002 ident: 10.1016/j.scienta.2023.112053_bib0035 article-title: Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00728 – volume: 193 start-page: 1 year: 2016 ident: 10.1016/j.scienta.2023.112053_bib0040 article-title: Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2016.02.007 – volume: 17 start-page: 675 year: 2015 ident: 10.1016/j.scienta.2023.112053_bib0063 article-title: A comparative study of salt tolerance of three almond rootstocks: contribution of organic and inorganic solutes to osmotic adjustment publication-title: J. Agricul. Sci. Tech. – volume: 171 start-page: 748 year: 2014 ident: 10.1016/j.scienta.2023.112053_bib0054 article-title: Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.01.011 – start-page: 59 year: 2012 ident: 10.1016/j.scienta.2023.112053_bib0047 article-title: Salinity Stress: physiological constraints and adaptative mechanisms – volume: 21 start-page: 2738 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0027 article-title: Chemical Defoliant Promotes Leaf Abscission by Altering ROS Metabolism and Photosynthetic Efficiency in Gossypium hirsutum publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082738 – volume: 247 start-page: 93 year: 2002 ident: 10.1016/j.scienta.2023.112053_bib0037 article-title: Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits publication-title: Plant Soil doi: 10.1023/A:1021119414799 – volume: 20 start-page: 1 year: 2014 ident: 10.1016/j.scienta.2023.112053_bib0046 article-title: Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine publication-title: Aust. J. Grape Wine Res. doi: 10.1111/ajgw.12054 – volume: 20 start-page: 310 year: 2014 ident: 10.1016/j.scienta.2023.112053_bib0033 article-title: Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments publication-title: Aust. J. Grape Wine Res. doi: 10.1111/ajgw.12071 – volume: 28 start-page: 292 year: 2022 ident: 10.1016/j.scienta.2023.112053_bib0055 article-title: Rootstock type influences salt exclusion response of grafted Shiraz under salt treatment at elevated root zone temperature publication-title: Aust. J. Grape Wine Res. doi: 10.1111/ajgw.12550 – volume: 130 start-page: 90 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0013 article-title: Physiological and molecular mechanisms of salinity tolerance in grafted cucumber publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2019.12.014 – volume: 95 start-page: 375 year: 2008 ident: 10.1016/j.scienta.2023.112053_bib0039 article-title: The effect of water stress and rootstock on the development of leaf injuries in grapevines irrgated with saline efluente publication-title: Agricult. Water Manag. doi: 10.1016/j.agwat.2007.10.019 – volume: 77 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0011 article-title: Trellis systems, rootstocks and season influence on the phenolic composition of ‘Chenin Blanc’ grape publication-title: Sci. Agric. doi: 10.1590/1678-992x-2018-0207 – volume: 99 start-page: 2846 year: 2019 ident: 10.1016/j.scienta.2023.112053_bib0021 article-title: Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9496 – volume: 145 start-page: 1714 year: 2007 ident: 10.1016/j.scienta.2023.112053_bib0008 article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley publication-title: Plant Physiol. doi: 10.1104/pp.107.110262 – volume: 176 start-page: 157 year: 2013 ident: 10.1016/j.scienta.2023.112053_bib0042 article-title: High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200230 – volume: 61 start-page: 433 year: 2020 ident: 10.1016/j.scienta.2023.112053_bib0051 article-title: Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions publication-title: Hortic. Environ. Biotechno. doi: 10.1007/s13580-020-00231-z |
SSID | ssj0001149 |
Score | 2.4248447 |
Snippet | •The Na+ exclude trait from shoot is associate to salt-resistance in vine rootstocks.•Salt-sensibility of 1103P and SO4 rootstocks occurred with a higher Na+... The identification of salt-tolerant rootstocks can be an important strategy for producing vines in salt-affected areas. In this study, was tested the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112053 |
SubjectTerms | electron transfer gas exchange genotype Grafting grapes Ionic toxicity leaf dry mass leaves lipid peroxidation photochemistry Photosynthesis Rootstock rootstocks Salinity salt stress salt tolerance toxicity vines Vitis |
Title | Resistant rootstocks mitigate ionic toxicity with beneficial effects for growth and photosynthesis in grapevine grafted plants under salinity |
URI | https://dx.doi.org/10.1016/j.scienta.2023.112053 https://www.proquest.com/docview/2834207461 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDBaVVaQG5EtfsJs6EdY4rBFpalUMBaW-W7dg0FJzVJkhw4R_0P3dm4xQVqULqLYkfsjyTmc-eF2MHlXETyuyWQOFsAofSJqbSLvF5Ko2vSgOaDorfzg5nl_BlXszX2NEQC0NulVH29zJ9Ja3jl3HczfGirsfnZNRDMECWIlRExZwi2GFCXD56fHLzQLxf9pYEXA_2foriGV-PYtDhiGqIUzBNWuT_0k_PJPVK_ZxssjcRN_Jpv7QttubCW_Z6erWMuTPcNvv13bWEBkPHEQ53iOrsz5bf1qssGo7TxavlXXNfW0TenC5guUFJ16eQ4NGxgyOI5Vd4NsdWHSq--NF0TfsQECfi5LwOnFJc42qDoyePgJUvbsiZhlM42pK3mmItu4d37PLk-OJolsRqC4nNQXRJYYUg8KBBeOnTynvIjCTDZmk0lFYaQi_CZuDKDHQqHbbmhZsIZILUQf6erYcmuA-MZ9oLKU0OlbVghNDeCUFubUVmwJR-h8Gwx8rGVORUEeNGDT5n1yqSRhFpVE-aHTb6M2zR5-J4aYAcCKj-YiqF-uKloZ8Hgiv84ciKooNr7lqFeAwEVWnJPv7_9J_YK3rr_X532Xq3vHN7iG46s79i3322MT39Ojv7DQL8_xk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5dD2UPVTpaWtK_Wa3cRxwDmuEGgpsIcWpL1ZtmNDKHVWmyCVH9H_3JmNQ0UlhNRbFGssK-PMPHtm3gB8qYzbJWa3RBTOJmJH2sRU2iU-T6XxVWmEpoPiyXxndia-LorFBuwNtTCUVhltf2_T19Y6vpnErzlZ1vXkOwX1EAxQpAgdUbF4BJvETlWMYHN6eDSb3xpkhPxlH0zAJaHA30KeyeU41h2OqY041dOkRX6fi_rHWK890MFzeBahI5v2q3sBGy68hKfT81Wkz3Cv4Pc31xIgDB1DRNwhsLM_WvazXhNpOEZ3r5Z1za_aIvhmdAfLDBq7nkWCxdwOhjiWnePxHEd1qNjyouma9iYgVMTJWR0YsVzjaoOjJ4-YlS2vKJ-GUUXairWayi27m9dwdrB_ujdLYsOFxOaCd0lhOSf8oAX30qeV9yIzkmKbpdGitNIQgOE2E67MhE6lw9G8cLsc90HqRP4GRqEJ7i2wTHsupclFZa0wnGvvOKfMtiIzwpR-C8TwjZWNbOTUFONKDWlnlyqqRpFqVK-aLRjfii17Oo6HBOSgQHVnXyl0GQ-Jfh4UrvCfo0CKDq65bhVCMsGpUUv27v-n_wSPZ6cnx-r4cH70Hp7QSJ8GvA2jbnXtPiDY6czHuJn_ALGLAdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistant+rootstocks+mitigate+ionic+toxicity+with+beneficial+effects+for+growth+and+photosynthesis+in+grapevine+grafted+plants+under+salinity&rft.jtitle=Scientia+horticulturae&rft.au=Amorim%2C+Thialla+Larangeira&rft.au=Santos%2C+Hugo+Rafael+Bentzen&rft.au=Neto%2C+Juracy+Barroso&rft.au=Herm%C3%ADnio%2C+Pedro+Jos%C3%A9&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0304-4238&rft.volume=317&rft_id=info:doi/10.1016%2Fj.scienta.2023.112053&rft.externalDocID=S030442382300225X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |