A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables

Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 191; p. 109318
Main Authors Li, Yüze, Gu, Xiaoyan, Yong, Taiwen, Yang, Wenyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N2O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N2O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N2O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N2O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N2O emissions to promote the sustainable development of intercropping. •Intercrop overall increased the nifH and amoA-AOA gene abundances.•Plant population rather than individual traits drive changes in N-cycling variables.•Additive intercrop shapes closer links among N-cycling variables than replacement.•Additive intercrop increases microbial biomass nitrogen and reduces N2O emission.
AbstractList Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N₂O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N₂O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N₂O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N₂O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N₂O emissions to promote the sustainable development of intercropping.
Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N2O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N2O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N2O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N2O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N2O emissions to promote the sustainable development of intercropping. •Intercrop overall increased the nifH and amoA-AOA gene abundances.•Plant population rather than individual traits drive changes in N-cycling variables.•Additive intercrop shapes closer links among N-cycling variables than replacement.•Additive intercrop increases microbial biomass nitrogen and reduces N2O emission.
ArticleNumber 109318
Author Yong, Taiwen
Yang, Wenyu
Li, Yüze
Gu, Xiaoyan
Author_xml – sequence: 1
  givenname: Yüze
  surname: Li
  fullname: Li, Yüze
  email: l_yz_deu@163.com
  organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
– sequence: 2
  givenname: Xiaoyan
  surname: Gu
  fullname: Gu, Xiaoyan
  email: guyan201505@126.com
  organization: Crop Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, Hunan, China
– sequence: 3
  givenname: Taiwen
  surname: Yong
  fullname: Yong, Taiwen
  email: yongtaiwen@sicau.edu.cn
  organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
– sequence: 4
  givenname: Wenyu
  surname: Yang
  fullname: Yang, Wenyu
  organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
BookMark eNqFkE9LJDEQxcOisKPuR1jI0UuPSad7O80eRMR_IHpxzyGdVM_WbEzGVByYb78ZxpMXTwWv3ntU_U7YUUwRGPspxVIK-etivaSEYcK0bEXbVW1UUn9jC6mHsVFdq4_YQgilGzHI4Ts7IVoLIdpeqgX7d8VXIU02cNrF8hcIiWfYgg3ErfdYcAvcQyQsuzoJV5H7XEXiGAtkl9Nmg3HFYZ7BFeIp8v01_KlxOxf2m63NaKcAdMaO59oLPz7mKftze_Nyfd88Pt89XF89Nq4eW5re6qmDSWqlBm2d7J2DTo-qHaZpmMXY6d572zvf9X6sghi90lLosVe-c7NVp-z80LvJ6e0dqJhXJAch2AjpnYwSXaXRCqWqtT9Y6x9EGWazyfhq885IYfZwzdp8wDV7uOYAt-Z-f8o5LLZgiiVbDF-mLw9pqBS2CNmQQ4gOPOYK0fiEXzT8B_C0nUE
CitedBy_id crossref_primary_10_1016_j_agee_2024_109456
crossref_primary_10_1007_s42832_024_0283_x
crossref_primary_10_3390_microorganisms12061108
crossref_primary_10_1002_jsfa_13709
crossref_primary_10_1016_j_apsoil_2025_105934
crossref_primary_10_1016_j_still_2024_106365
crossref_primary_10_1007_s00442_024_05651_7
crossref_primary_10_1016_j_jhazmat_2024_133866
crossref_primary_10_1016_j_jia_2024_09_030
crossref_primary_10_1016_j_fcr_2025_109850
crossref_primary_10_1111_gcb_17302
crossref_primary_10_1016_j_scitotenv_2024_172954
crossref_primary_10_1016_j_cj_2024_10_010
crossref_primary_10_1007_s11104_024_07123_6
Cites_doi 10.1002/ecm.1407
10.1111/1462-2920.13282
10.1111/geb.13030
10.1890/03-0226
10.1016/j.soilbio.2010.08.021
10.1007/s11104-022-05487-1
10.1007/s11104-020-04668-0
10.18637/jss.v036.i03
10.1111/nph.12235
10.1016/j.geoderma.2016.11.004
10.1016/j.eja.2017.09.009
10.1016/j.tibtech.2009.07.006
10.1111/1462-2920.15984
10.1023/A:1010933404324
10.3390/agriculture8060080
10.1016/bs.agron.2020.02.004
10.1016/j.geoderma.2022.115851
10.1038/s41477-020-0680-9
10.1016/j.apsoil.2014.09.008
10.1002/2013MS000293
10.1016/j.fcr.2019.107661
10.1016/j.soilbio.2017.04.006
10.1016/j.cub.2015.12.021
10.1016/j.scitotenv.2019.133984
10.1007/s13593-020-0607-x
10.1016/j.fcr.2021.108122
10.1016/j.fcr.2010.12.016
10.1111/j.1365-2745.2008.01476.x
10.3389/fmicb.2015.01066
10.1016/j.soilbio.2019.107615
10.1016/j.soilbio.2017.06.010
10.1016/j.fcr.2022.108671
10.1016/j.fcr.2015.09.006
10.1016/j.agee.2021.107658
10.1016/j.fcr.2020.107819
10.1111/nph.18302
10.1029/2021EF002479
10.1201/9780429291180-3
10.1111/gcbb.12898
10.1016/j.agee.2020.107147
10.1111/nph.13132
10.1038/ismej.2014.252
10.1016/j.soilbio.2023.109146
10.1016/S2095-3119(17)61789-1
10.1016/j.fcr.2022.108779
10.1016/j.still.2019.04.020
10.1016/j.agwat.2019.105878
10.1016/j.agee.2021.107491
10.1016/j.fcr.2016.10.003
10.1016/j.jhazmat.2023.131440
10.1016/j.soilbio.2016.10.019
10.1016/j.fcr.2023.109174
10.1016/j.rhisph.2023.100686
10.1111/gcb.16742
10.1016/j.apsoil.2019.01.010
10.3389/fenvs.2022.857625
10.1016/0378-4290(93)90119-8
10.1038/ismej.2012.51
10.1111/j.1462-2920.2011.02488.x
10.3389/fmicb.2020.601054
10.1016/j.agee.2022.108239
10.1016/j.agee.2021.107489
10.1111/gcb.12738
10.1016/j.fcr.2020.107923
10.1093/femsle/fny058
10.1016/j.ejsobi.2022.103393
10.1007/s11427-020-1776-y
10.1016/B978-0-12-387046-9.00002-5
10.1016/j.eja.2019.125987
10.1038/nature10176
10.2136/sssaj2017.09.0294
10.1016/j.still.2016.12.014
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2024.109318
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2024_109318
S0038071724000075
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-5a8b4eb183378ac15cce489327bb7f09485dda5cd45d97f009d38108953d4cfa3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 00:44:48 EDT 2025
Tue Jul 01 00:54:08 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Sat Jul 13 15:32:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Crop diversification
Nitrogen cycle
Microbial functional gene
Additive intercropping
Intraspecific interaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-5a8b4eb183378ac15cce489327bb7f09485dda5cd45d97f009d38108953d4cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3040382033
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040382033
crossref_primary_10_1016_j_soilbio_2024_109318
crossref_citationtrail_10_1016_j_soilbio_2024_109318
elsevier_sciencedirect_doi_10_1016_j_soilbio_2024_109318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Berghuijs, Wang, Stomph, Weih, Van der Werf, Vico (bib2) 2020; 455
Rocca, Hall, Lennon, Evans, Waldrop, Cotner, Wallenstein (bib57) 2015; 9
Cong, Hoffland, Li, Six, Sun, Bao, Zhang, van der Werf (bib14) 2015; 21
Ouyang, Norton, Stark (bib86) 2017; 113
Muhammad, Sainju, Zhao, Khan, Ghimire, Fu, Wang (bib52) 2019; 192
Trenbath (bib64) 1976; 27
Xiao, Qiu, Tao, Zhang, Chen, Reberg‐Horton, Shi, Shew, Zhang, Hu (bib72) 2020; 29
Meyer, Welp, Bornemann, Amelung (bib50) 2017; 104
Zhang, Jing, Chen, Xiang, Rashti, Li, Deng, Zhang (bib78) 2021; 13
Xiao, Rasmann, Yue, Lian, Zou, Wang (bib73) 2019; 696
Cheriere, Lorin, Corre-Hellou (bib12) 2020; 256
(bib56) 2019
Raseduzzaman, Jensen (bib55) 2017; 91
Weyens, van der Lelie, Taghavi, Newman, Vangronsveld (bib70) 2009; 27
Zhu, Zhu, Zhou, Zhang, Wang, Zhou, Wang, Yang, Wang, Tao, Xiong (bib85) 2023; 342
Viechtbauer (bib66) 2010; 36
Curtright, Tiemann (bib16) 2021; 319
van Groenigen, Osenberg, Hungate (bib65) 2011; 475
Geisseler, Horwath, Joergensen, Ludwig (bib21) 2010; 42
Lehtovirta-Morley (bib36) 2018; 365
Wang, Sun, Zhang, Yang, Feng, Bai, van der Werf (bib67) 2020; 253
Yu, Yang, Xing, Zhang, Lambers, Li (bib76) 2022; 476
Zhang, Li, Gao, Yang, Xu, Yang, Fan, Su, Surigaoge, Weiner, Fornara, Li (bib80) 2023; 291
Zhao, Hao, Zhang, Jiao, Tian, Lambers, Liang, Cong, Zhang (bib82) 2023; 185
Du, Han, Gai, Yong, Sun, Wang, Yang (bib19) 2018; 17
Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (bib37) 2020; 6
Xu, Li, Zhang, Yu, van der Werf, Zhang (bib74) 2020; 246
Breiman (bib4) 2001; 45
Liu, Rahman, Song, Su, Yang, Yong, Wu, Zhang, Yang (bib42) 2017; 200
Li, Hoffland, Kuyper, Yu, Li, Zhang, Zhang, van der Werf (bib38) 2020; 113
Ke, Miki (bib33) 2015; 6
López-Aizpún, Castellano-Hinojosa, González-López, Bedmar, Loick, Barrat, Cardenas (bib44) 2021
Knörzer, Grözinger, Graeff-Hönninger, Hartung, Piepho, Claupein (bib34) 2011; 121
Li, Xie, Ren, Ding, Long, Zhang, Qin, Siddique, Liao (bib40) 2022; 418
Hothorn, Bretz, Westfall, Heiberger, Schuetzenmeister, Scheibe, Hothorn (bib28) 2016
Maestre, Callaway, Valladares, Lortie (bib48) 2009; 97
Nguyen, Xu, Tahmasbian, Che, Xu, Zhou, Wallace, Bai (bib53) 2017; 288
Santonja, Rancon, Fromin, Baldy, Hättenschwiler, Fernandez, Mirleau (bib58) 2017; 111
Wang, Zhang, Zhang, Yang, Zhu, Yan, Fei, Rong, Peng, Luo (bib69) 2022; 287
Grossman, Cavender‐Bares, Hobbie (bib25) 2020; 90
Lu, Cheng, Fang, Yang, Guo, Li, Zhou (bib45) 2022; 109
Liu, Struik, Zhang, Stomph (bib43) 2023; 304
Chen, Chen, Cao (bib10) 2023; 26
Lu, Yang, Wang, Zhu (bib46) 2023; 453
Morris, Garrity (bib51) 1993; 34
Lin, Ye, Ding, Hu, Zheng, Fan, Wan, Duan, He (bib41) 2020; 304
Segal, Miller, McGhee, Loecke, Cook, Shapiro, Drijber (bib60) 2017; 168
Mbava, Mutema, Zengeni, Shimelis, Chaplot (bib49) 2020; 228
Justes, Bedoussac, Dordas, Frak, Louarn, Boudsocq, Li (bib31) 2021; 8
Jensen, Carlsson, Hauggaard-Nielsen (bib32) 2020; 40
Hink, Nicol, Prosser (bib26) 2017; 19
Wu, He, Wang, Liu, Huth, Zhao, Yang (bib71) 2021; 265
Brooker, Bennett, Cong, Daniell, George, Hallett, Hawes, Iannetta, Jones, Karley, Li, McKenzie, Pakeman, Paterson, Schöb, Shen, Squire, Watson, Zhang, Zhang, Zhang, White (bib5) 2015; 206
Dang, Gong, Zhao, Wang, Ivanistau, Feng (bib17) 2020; 11
Bybee-Finley, Ryan (bib6) 2018; 8
Wang, Bicharanloo, Hou, Jiang, Dijkstra (bib68) 2022; 10
Shangguan, Dai, Duan, Liu, Yuan (bib61) 2014; 6
Yu (bib77) 2016
Gou, Reich, Qiu, Shao, Wei, Wang, Wei (bib24) 2023; 29
Cong (bib15) 2020; 63
Glaze-Corcoran, Hashemi, Sadeghpour, Jahanzad, Keshavarz Afshar, Liu, Herbert (bib22) 2020
Petchey, Hector, Gaston (bib54) 2004; 85
Gaby, Buckley (bib20) 2011; 13
Zhu, Friman, Li, Xu, Guo, Guo, Shen, Ling (bib84) 2022; 24
Huppi, Horvath, Dezso, Puhl-Rezsek, Six (bib30) 2022; 10
Kuzyakov, Xu (bib35) 2013; 198
Archer (bib1) 2016
Canisares, Rosolem, Momesso, Crusciol, Villegas, Arango, Ritz, Cantarella (bib7) 2021; 319
Zhang, Sun, Wang, Yang, Yuan, Scow (bib79) 2015; 85
Braker, Conrad (bib3) 2011; 75
Stein, Klotz (bib62) 2016; 26
Collins, Fay, Kimura, Fransen, Himes (bib13) 2017; 81
Chadfield, Hartley, Redeker (bib8) 2022; 235
Chen, Peng, Wang, Fu, Hou, Zhang, Fahad, Peng, Cui, Nie (bib11) 2015; 184
Yan, Levine, Kandlikar (bib75) 2022; 119
Schofield, Brooker, Rowntree, Price, Brearley, Paterson (bib59) 2019; 139
Taylor, Zeglin, Wanzek, Myrold, Bottomley (bib63) 2012; 6
Gu, Bastiaans, Anten, Makowski, van der Werf (bib23) 2021; 322
Huang, Wang, Liu, Li, Xu, Luo, Gao (bib29) 2019; 137
Morris (10.1016/j.soilbio.2024.109318_bib51) 1993; 34
Schofield (10.1016/j.soilbio.2024.109318_bib59) 2019; 139
Segal (10.1016/j.soilbio.2024.109318_bib60) 2017; 168
Collins (10.1016/j.soilbio.2024.109318_bib13) 2017; 81
Lin (10.1016/j.soilbio.2024.109318_bib41) 2020; 304
Wang (10.1016/j.soilbio.2024.109318_bib67) 2020; 253
Brooker (10.1016/j.soilbio.2024.109318_bib5) 2015; 206
Stein (10.1016/j.soilbio.2024.109318_bib62) 2016; 26
Meyer (10.1016/j.soilbio.2024.109318_bib50) 2017; 104
Lu (10.1016/j.soilbio.2024.109318_bib46) 2023; 453
Zhang (10.1016/j.soilbio.2024.109318_bib79) 2015; 85
Nguyen (10.1016/j.soilbio.2024.109318_bib53) 2017; 288
Curtright (10.1016/j.soilbio.2024.109318_bib16) 2021; 319
Braker (10.1016/j.soilbio.2024.109318_bib3) 2011; 75
Chen (10.1016/j.soilbio.2024.109318_bib11) 2015; 184
Lu (10.1016/j.soilbio.2024.109318_bib45) 2022; 109
Zhang (10.1016/j.soilbio.2024.109318_bib78) 2021; 13
Jensen (10.1016/j.soilbio.2024.109318_bib32) 2020; 40
Ke (10.1016/j.soilbio.2024.109318_bib33) 2015; 6
Xiao (10.1016/j.soilbio.2024.109318_bib72) 2020; 29
Grossman (10.1016/j.soilbio.2024.109318_bib25) 2020; 90
Huppi (10.1016/j.soilbio.2024.109318_bib30) 2022; 10
Li (10.1016/j.soilbio.2024.109318_bib40) 2022; 418
Justes (10.1016/j.soilbio.2024.109318_bib31) 2021; 8
Wang (10.1016/j.soilbio.2024.109318_bib69) 2022; 287
Zhang (10.1016/j.soilbio.2024.109318_bib80) 2023; 291
Liu (10.1016/j.soilbio.2024.109318_bib43) 2023; 304
Hink (10.1016/j.soilbio.2024.109318_bib26) 2017; 19
Wang (10.1016/j.soilbio.2024.109318_bib68) 2022; 10
Wu (10.1016/j.soilbio.2024.109318_bib71) 2021; 265
Glaze-Corcoran (10.1016/j.soilbio.2024.109318_bib22) 2020
Gaby (10.1016/j.soilbio.2024.109318_bib20) 2011; 13
Raseduzzaman (10.1016/j.soilbio.2024.109318_bib55) 2017; 91
Taylor (10.1016/j.soilbio.2024.109318_bib63) 2012; 6
Du (10.1016/j.soilbio.2024.109318_bib19) 2018; 17
Santonja (10.1016/j.soilbio.2024.109318_bib58) 2017; 111
Canisares (10.1016/j.soilbio.2024.109318_bib7) 2021; 319
Chen (10.1016/j.soilbio.2024.109318_bib10) 2023; 26
Gou (10.1016/j.soilbio.2024.109318_bib24) 2023; 29
Knörzer (10.1016/j.soilbio.2024.109318_bib34) 2011; 121
Berghuijs (10.1016/j.soilbio.2024.109318_bib2) 2020; 455
Muhammad (10.1016/j.soilbio.2024.109318_bib52) 2019; 192
Xu (10.1016/j.soilbio.2024.109318_bib74) 2020; 246
Xiao (10.1016/j.soilbio.2024.109318_bib73) 2019; 696
Geisseler (10.1016/j.soilbio.2024.109318_bib21) 2010; 42
Yu (10.1016/j.soilbio.2024.109318_bib76) 2022; 476
Yu (10.1016/j.soilbio.2024.109318_bib77) 2016
Bybee-Finley (10.1016/j.soilbio.2024.109318_bib6) 2018; 8
Chadfield (10.1016/j.soilbio.2024.109318_bib8) 2022; 235
van Groenigen (10.1016/j.soilbio.2024.109318_bib65) 2011; 475
Dang (10.1016/j.soilbio.2024.109318_bib17) 2020; 11
Hothorn (10.1016/j.soilbio.2024.109318_bib28) 2016
Li (10.1016/j.soilbio.2024.109318_bib38) 2020; 113
Cong (10.1016/j.soilbio.2024.109318_bib14) 2015; 21
Viechtbauer (10.1016/j.soilbio.2024.109318_bib66) 2010; 36
Zhao (10.1016/j.soilbio.2024.109318_bib82) 2023; 185
Huang (10.1016/j.soilbio.2024.109318_bib29) 2019; 137
Yan (10.1016/j.soilbio.2024.109318_bib75) 2022; 119
Zhu (10.1016/j.soilbio.2024.109318_bib85) 2023; 342
Zhu (10.1016/j.soilbio.2024.109318_bib84) 2022; 24
Liu (10.1016/j.soilbio.2024.109318_bib42) 2017; 200
Lehtovirta-Morley (10.1016/j.soilbio.2024.109318_bib36) 2018; 365
Breiman (10.1016/j.soilbio.2024.109318_bib4) 2001; 45
Cheriere (10.1016/j.soilbio.2024.109318_bib12) 2020; 256
Gu (10.1016/j.soilbio.2024.109318_bib23) 2021; 322
Maestre (10.1016/j.soilbio.2024.109318_bib48) 2009; 97
Petchey (10.1016/j.soilbio.2024.109318_bib54) 2004; 85
Shangguan (10.1016/j.soilbio.2024.109318_bib61) 2014; 6
Mbava (10.1016/j.soilbio.2024.109318_bib49) 2020; 228
(10.1016/j.soilbio.2024.109318_bib56) 2019
Cong (10.1016/j.soilbio.2024.109318_bib15) 2020; 63
Archer (10.1016/j.soilbio.2024.109318_bib1) 2016
López-Aizpún (10.1016/j.soilbio.2024.109318_bib44) 2021
Li (10.1016/j.soilbio.2024.109318_bib37) 2020; 6
Ouyang (10.1016/j.soilbio.2024.109318_bib86) 2017; 113
Trenbath (10.1016/j.soilbio.2024.109318_bib64) 1976; 27
Weyens (10.1016/j.soilbio.2024.109318_bib70) 2009; 27
Rocca (10.1016/j.soilbio.2024.109318_bib57) 2015; 9
Kuzyakov (10.1016/j.soilbio.2024.109318_bib35) 2013; 198
References_xml – volume: 17
  start-page: 747
  year: 2018
  end-page: 754
  ident: bib19
  article-title: Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability
  publication-title: Journal of Integrative Agriculture
– volume: 85
  start-page: 847
  year: 2004
  end-page: 857
  ident: bib54
  article-title: How do different measures of functional diversity perform?
  publication-title: Ecology
– volume: 455
  start-page: 203
  year: 2020
  end-page: 226
  ident: bib2
  article-title: Identification of species traits enhancing yield in wheat-faba bean intercropping: development and sensitivity analysis of a minimalist mixture model
  publication-title: Plant and Soil
– volume: 184
  start-page: 50
  year: 2015
  end-page: 57
  ident: bib11
  article-title: Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China
  publication-title: Field Crops Research
– volume: 121
  start-page: 274
  year: 2011
  end-page: 285
  ident: bib34
  article-title: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system
  publication-title: Field Crops Research
– volume: 109
  year: 2022
  ident: bib45
  article-title: Contrasting response of soil N2O release to ammonium, nitrate, and urea addition rates is determined by substrate availability and microbial community abundance and composition
  publication-title: European Journal of Soil Biology
– volume: 104
  start-page: 175
  year: 2017
  end-page: 184
  ident: bib50
  article-title: Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow
  publication-title: Soil Biology and Biochemistry
– volume: 119
  year: 2022
  ident: bib75
  article-title: A quantitative synthesis of soil microbial effects on plant species coexistence
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 5
  year: 2020
  ident: bib32
  article-title: Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis
  publication-title: Agronomy for Sustainable Development
– volume: 246
  year: 2020
  ident: bib74
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis
  publication-title: Field Crops Research
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib4
  article-title: Random forests
  publication-title: Machine Learning
– volume: 113
  year: 2020
  ident: bib38
  article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning
  publication-title: European Journal of Agronomy
– volume: 304
  year: 2020
  ident: bib41
  article-title: Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations
  publication-title: Agriculture, Ecosystems & Environment
– volume: 91
  start-page: 25
  year: 2017
  end-page: 33
  ident: bib55
  article-title: Does intercropping enhance yield stability in arable crop production ? A meta-analysis
  publication-title: European Journal of Agronomy
– volume: 137
  start-page: 57
  year: 2019
  end-page: 68
  ident: bib29
  article-title: Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils
  publication-title: Applied Soil Ecology
– volume: 85
  start-page: 76
  year: 2015
  end-page: 85
  ident: bib79
  article-title: Effects of intercropping and Rhizobial inoculation on the ammonia-oxidizing microorganisms in rhizospheres of maize and faba bean plants
  publication-title: Applied Soil Ecology
– volume: 34
  start-page: 303
  year: 1993
  end-page: 317
  ident: bib51
  article-title: Resource capture and utilization in intercropping: water
  publication-title: Field Crops Research
– volume: 29
  start-page: 384
  year: 2020
  end-page: 399
  ident: bib72
  article-title: Biological controls over the abundances of terrestrial ammonia oxidizers
  publication-title: Global Ecology and Biogeography
– volume: 75
  start-page: 33
  year: 2011
  end-page: 70
  ident: bib3
  article-title: Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?
  publication-title: Advances in Applied Microbiology
– volume: 265
  year: 2021
  ident: bib71
  article-title: Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations
  publication-title: Field Crops Research
– volume: 475
  start-page: 214
  year: 2011
  end-page: 216
  ident: bib65
  article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2
  publication-title: Nature
– volume: 319
  year: 2021
  ident: bib16
  article-title: Intercropping increases soil extracellular enzyme activity: a meta-analysis
  publication-title: Agriculture, Ecosystems & Environment
– volume: 26
  start-page: R94
  year: 2016
  end-page: R98
  ident: bib62
  article-title: The nitrogen cycle
  publication-title: Current Biology
– volume: 322
  year: 2021
  ident: bib23
  article-title: Annual intercropping suppresses weeds: a meta-analysis
  publication-title: Agriculture, Ecosystems & Environment
– volume: 235
  start-page: 2393
  year: 2022
  end-page: 2405
  ident: bib8
  article-title: Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases
  publication-title: New Phytologist
– start-page: 199
  year: 2020
  end-page: 256
  ident: bib22
  article-title: Chapter Five - understanding intercropping to improve agricultural resiliency and environmental sustainability
  publication-title: Advances in Agronomy
– volume: 288
  start-page: 79
  year: 2017
  end-page: 96
  ident: bib53
  article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis
  publication-title: Geoderma
– volume: 304
  year: 2023
  ident: bib43
  article-title: Forage quality in cereal/legume intercropping: a meta-analysis
  publication-title: Field Crops Research
– volume: 342
  year: 2023
  ident: bib85
  article-title: Intercrop overyielding weakened by high inputs: global meta-analysis with experimental validation
  publication-title: Agriculture, Ecosystems & Environment
– volume: 6
  start-page: 1066
  year: 2015
  ident: bib33
  article-title: Incorporating the soil environment and microbial community into plant competition theory
  publication-title: Frontiers in Microbiology
– volume: 198
  start-page: 656
  year: 2013
  end-page: 669
  ident: bib35
  article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
  publication-title: New Phytologist
– volume: 13
  start-page: 1790
  year: 2011
  end-page: 1799
  ident: bib20
  article-title: A global census of nitrogenase diversity
  publication-title: Environmental Microbiology
– volume: 111
  start-page: 124
  year: 2017
  end-page: 134
  ident: bib58
  article-title: Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland
  publication-title: Soil Biology and Biochemistry
– volume: 319
  year: 2021
  ident: bib7
  article-title: Maize-Brachiaria intercropping: a strategy to supply recycled N to maize and reduce soil N2O emissions?
  publication-title: Agriculture, Ecosystems & Environment
– volume: 8
  start-page: 3
  year: 2021
  ident: bib31
  article-title: The 4C approach as a way to understand species interactions determining intercropping productivity
  publication-title: Frontiers of Agricultural Science and Engineering
– volume: 476
  start-page: 263
  year: 2022
  end-page: 288
  ident: bib76
  article-title: Belowground processes and sustainability in agroecosystems with intercropping
  publication-title: Plant and Soil
– volume: 6
  start-page: 653
  year: 2020
  end-page: 660
  ident: bib37
  article-title: Syndromes of production in intercropping impact yield gains
  publication-title: Nature Plants
– volume: 228
  year: 2020
  ident: bib49
  article-title: Factors affecting crop water use efficiency: a worldwide meta-analysis
  publication-title: Agricultural Water Management
– start-page: 1
  year: 2016
  ident: bib1
  article-title: rfPermute: Estimate Permutation P-Values for Random Forest Importance Metrics
– volume: 29
  start-page: 4028
  year: 2023
  end-page: 4043
  ident: bib24
  article-title: Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types
  publication-title: Global Change Biology
– year: 2016
  ident: bib28
  article-title: Package ‘multcomp’. Simultaneous Inference in General Parametric Models
– volume: 27
  start-page: 591
  year: 2009
  end-page: 598
  ident: bib70
  article-title: Exploiting plant–microbe partnerships to improve biomass production and remediation
  publication-title: Trends in biotechnology
– volume: 696
  year: 2019
  ident: bib73
  article-title: The effect of biochar amendment on N-cycling genes in soils: a meta-analysis
  publication-title: Science of the Total Environment
– start-page: 34
  year: 2021
  end-page: 59
  ident: bib44
  article-title: Nitrogen cycle in agriculture: biotic and abiotic factors regulating nitrogen losses
  publication-title: Nitrogen Cycle
– volume: 9
  start-page: 1693
  year: 2015
  end-page: 1699
  ident: bib57
  article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed
  publication-title: The ISME journal
– volume: 139
  year: 2019
  ident: bib59
  article-title: Plant-plant competition influences temporal dynamism of soil microbial enzyme activity
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 1859
  year: 2021
  end-page: 1873
  ident: bib78
  article-title: Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies
  publication-title: Global Change Biology Bioenergy
– volume: 11
  year: 2020
  ident: bib17
  article-title: Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield
  publication-title: Frontiers in Microbiology
– volume: 27
  start-page: 129
  year: 1976
  end-page: 169
  ident: bib64
  article-title: Plant interactions in mixed crop communities
  publication-title: Multiple cropping
– volume: 24
  start-page: 2013
  year: 2022
  end-page: 2028
  ident: bib84
  article-title: Meta‐analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale
  publication-title: Environmental Microbiology
– volume: 168
  start-page: 110
  year: 2017
  end-page: 117
  ident: bib60
  article-title: Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site
  publication-title: Soil and Tillage Research
– volume: 453
  year: 2023
  ident: bib46
  article-title: A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility
  publication-title: Journal of Hazardous Materials
– volume: 185
  year: 2023
  ident: bib82
  article-title: Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation
  publication-title: Soil Biology and Biochemistry
– volume: 287
  year: 2022
  ident: bib69
  article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment
  publication-title: Field Crops Research
– volume: 8
  start-page: 80
  year: 2018
  ident: bib6
  article-title: Advancing intercropping research and practices in industrialized agricultural landscapes
  publication-title: Agriculture
– volume: 253
  year: 2020
  ident: bib67
  article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping
  publication-title: Field Crops Research
– volume: 97
  start-page: 199
  year: 2009
  end-page: 205
  ident: bib48
  article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities
  publication-title: Journal of Ecology
– volume: 192
  start-page: 103
  year: 2019
  end-page: 112
  ident: bib52
  article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis
  publication-title: Soil and Tillage Research
– volume: 206
  start-page: 107
  year: 2015
  end-page: 117
  ident: bib5
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytologist
– volume: 113
  start-page: 161
  year: 2017
  end-page: 172
  ident: bib86
  article-title: Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil
  publication-title: Soil Biology and Biochemistry
– volume: 418
  year: 2022
  ident: bib40
  article-title: Response of soil microbial community parameters to plastic film mulch: a meta-analysis
  publication-title: Geoderma
– volume: 42
  start-page: 2058
  year: 2010
  end-page: 2067
  ident: bib21
  article-title: Pathways of nitrogen utilization by soil microorganisms - a review
  publication-title: Soil Biology and Biochemistry
– volume: 10
  year: 2022
  ident: bib30
  article-title: Soil nitrous oxide emission and methane exchange from diversified cropping systems in pannonian region
  publication-title: Frontiers in Environmental Science
– year: 2016
  ident: bib77
  article-title: Crop Yields in Intercropping: Meta-Analysis and Virtual Plant Modelling
– volume: 6
  start-page: 249
  year: 2014
  end-page: 263
  ident: bib61
  article-title: A global soil data set for earth system modeling
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 6
  start-page: 2024
  year: 2012
  end-page: 2032
  ident: bib63
  article-title: Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials
  publication-title: ISME Journal
– volume: 21
  start-page: 1715
  year: 2015
  end-page: 1726
  ident: bib14
  article-title: Intercropping enhances soil carbon and nitrogen
  publication-title: Global Change Biology
– volume: 63
  start-page: 1612
  year: 2020
  end-page: 1614
  ident: bib15
  article-title: China's intercropping leads to higher grain yield gains
  publication-title: Science China Life Sciences
– volume: 19
  start-page: 4829
  year: 2017
  end-page: 4837
  ident: bib26
  article-title: Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil
  publication-title: Environmental Microbiology
– year: 2019
  ident: bib56
  article-title: R: A Language and Environment for Statistical Computing
– volume: 291
  year: 2023
  ident: bib80
  article-title: Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize
  publication-title: Field Crops Research
– volume: 26
  year: 2023
  ident: bib10
  article-title: Intercropping increases soil N-targeting enzyme activities: a meta-analysis
  publication-title: Rhizosphere
– volume: 81
  start-page: 781
  year: 2017
  end-page: 795
  ident: bib13
  article-title: Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil
  publication-title: Soil Science Society of America Journal
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  ident: bib66
  article-title: Conducting meta-analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– volume: 365
  start-page: fny058
  year: 2018
  ident: bib36
  article-title: Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together
  publication-title: FEMS Microbiology Letters
– volume: 256
  year: 2020
  ident: bib12
  article-title: Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control
  publication-title: Field Crops Research
– volume: 90
  year: 2020
  ident: bib25
  article-title: Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years
  publication-title: Ecological Monographs
– volume: 10
  year: 2022
  ident: bib68
  article-title: Phosphorus supply increases nitrogen transformation rates and retention in soil: a global meta-analysis
  publication-title: Earth's Future
– volume: 200
  start-page: 38
  year: 2017
  end-page: 46
  ident: bib42
  article-title: Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems
  publication-title: Field Crops Research
– volume: 90
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib25
  article-title: Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years
  publication-title: Ecological Monographs
  doi: 10.1002/ecm.1407
– volume: 19
  start-page: 4829
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib26
  article-title: Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil
  publication-title: Environmental Microbiology
  doi: 10.1111/1462-2920.13282
– volume: 29
  start-page: 384
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib72
  article-title: Biological controls over the abundances of terrestrial ammonia oxidizers
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.13030
– volume: 85
  start-page: 847
  year: 2004
  ident: 10.1016/j.soilbio.2024.109318_bib54
  article-title: How do different measures of functional diversity perform?
  publication-title: Ecology
  doi: 10.1890/03-0226
– volume: 42
  start-page: 2058
  year: 2010
  ident: 10.1016/j.soilbio.2024.109318_bib21
  article-title: Pathways of nitrogen utilization by soil microorganisms - a review
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.08.021
– volume: 476
  start-page: 263
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib76
  article-title: Belowground processes and sustainability in agroecosystems with intercropping
  publication-title: Plant and Soil
  doi: 10.1007/s11104-022-05487-1
– year: 2019
  ident: 10.1016/j.soilbio.2024.109318_bib56
– volume: 455
  start-page: 203
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib2
  article-title: Identification of species traits enhancing yield in wheat-faba bean intercropping: development and sensitivity analysis of a minimalist mixture model
  publication-title: Plant and Soil
  doi: 10.1007/s11104-020-04668-0
– volume: 36
  start-page: 1
  year: 2010
  ident: 10.1016/j.soilbio.2024.109318_bib66
  article-title: Conducting meta-analyses in R with the metafor package
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v036.i03
– volume: 198
  start-page: 656
  year: 2013
  ident: 10.1016/j.soilbio.2024.109318_bib35
  article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
  publication-title: New Phytologist
  doi: 10.1111/nph.12235
– volume: 288
  start-page: 79
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib53
  article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.004
– volume: 91
  start-page: 25
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib55
  article-title: Does intercropping enhance yield stability in arable crop production ? A meta-analysis
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2017.09.009
– volume: 27
  start-page: 591
  year: 2009
  ident: 10.1016/j.soilbio.2024.109318_bib70
  article-title: Exploiting plant–microbe partnerships to improve biomass production and remediation
  publication-title: Trends in biotechnology
  doi: 10.1016/j.tibtech.2009.07.006
– volume: 24
  start-page: 2013
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib84
  article-title: Meta‐analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale
  publication-title: Environmental Microbiology
  doi: 10.1111/1462-2920.15984
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.soilbio.2024.109318_bib4
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 80
  year: 2018
  ident: 10.1016/j.soilbio.2024.109318_bib6
  article-title: Advancing intercropping research and practices in industrialized agricultural landscapes
  publication-title: Agriculture
  doi: 10.3390/agriculture8060080
– start-page: 199
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib22
  article-title: Chapter Five - understanding intercropping to improve agricultural resiliency and environmental sustainability
  doi: 10.1016/bs.agron.2020.02.004
– volume: 418
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib40
  article-title: Response of soil microbial community parameters to plastic film mulch: a meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115851
– volume: 6
  start-page: 653
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib37
  article-title: Syndromes of production in intercropping impact yield gains
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-0680-9
– volume: 85
  start-page: 76
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib79
  article-title: Effects of intercropping and Rhizobial inoculation on the ammonia-oxidizing microorganisms in rhizospheres of maize and faba bean plants
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2014.09.008
– volume: 6
  start-page: 249
  year: 2014
  ident: 10.1016/j.soilbio.2024.109318_bib61
  article-title: A global soil data set for earth system modeling
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2013MS000293
– volume: 246
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib74
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2019.107661
– volume: 111
  start-page: 124
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib58
  article-title: Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.04.006
– volume: 26
  start-page: R94
  year: 2016
  ident: 10.1016/j.soilbio.2024.109318_bib62
  article-title: The nitrogen cycle
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.12.021
– volume: 696
  year: 2019
  ident: 10.1016/j.soilbio.2024.109318_bib73
  article-title: The effect of biochar amendment on N-cycling genes in soils: a meta-analysis
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.133984
– volume: 40
  start-page: 5
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib32
  article-title: Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis
  publication-title: Agronomy for Sustainable Development
  doi: 10.1007/s13593-020-0607-x
– volume: 265
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib71
  article-title: Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2021.108122
– volume: 121
  start-page: 274
  year: 2011
  ident: 10.1016/j.soilbio.2024.109318_bib34
  article-title: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2010.12.016
– volume: 97
  start-page: 199
  year: 2009
  ident: 10.1016/j.soilbio.2024.109318_bib48
  article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2008.01476.x
– volume: 6
  start-page: 1066
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib33
  article-title: Incorporating the soil environment and microbial community into plant competition theory
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2015.01066
– volume: 139
  year: 2019
  ident: 10.1016/j.soilbio.2024.109318_bib59
  article-title: Plant-plant competition influences temporal dynamism of soil microbial enzyme activity
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.107615
– volume: 113
  start-page: 161
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib86
  article-title: Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.06.010
– volume: 287
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib69
  article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2022.108671
– volume: 184
  start-page: 50
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib11
  article-title: Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2015.09.006
– volume: 322
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib23
  article-title: Annual intercropping suppresses weeds: a meta-analysis
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2021.107658
– volume: 253
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib67
  article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2020.107819
– volume: 235
  start-page: 2393
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib8
  article-title: Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases
  publication-title: New Phytologist
  doi: 10.1111/nph.18302
– volume: 10
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib68
  article-title: Phosphorus supply increases nitrogen transformation rates and retention in soil: a global meta-analysis
  publication-title: Earth's Future
  doi: 10.1029/2021EF002479
– year: 2016
  ident: 10.1016/j.soilbio.2024.109318_bib28
– start-page: 34
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib44
  article-title: Nitrogen cycle in agriculture: biotic and abiotic factors regulating nitrogen losses
  publication-title: Nitrogen Cycle
  doi: 10.1201/9780429291180-3
– volume: 13
  start-page: 1859
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib78
  article-title: Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies
  publication-title: Global Change Biology Bioenergy
  doi: 10.1111/gcbb.12898
– volume: 304
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib41
  article-title: Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2020.107147
– volume: 206
  start-page: 107
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib5
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytologist
  doi: 10.1111/nph.13132
– volume: 9
  start-page: 1693
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib57
  article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed
  publication-title: The ISME journal
  doi: 10.1038/ismej.2014.252
– volume: 185
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib82
  article-title: Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2023.109146
– volume: 17
  start-page: 747
  year: 2018
  ident: 10.1016/j.soilbio.2024.109318_bib19
  article-title: Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability
  publication-title: Journal of Integrative Agriculture
  doi: 10.1016/S2095-3119(17)61789-1
– volume: 291
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib80
  article-title: Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2022.108779
– volume: 192
  start-page: 103
  year: 2019
  ident: 10.1016/j.soilbio.2024.109318_bib52
  article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2019.04.020
– year: 2016
  ident: 10.1016/j.soilbio.2024.109318_bib77
– volume: 228
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib49
  article-title: Factors affecting crop water use efficiency: a worldwide meta-analysis
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2019.105878
– volume: 319
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib7
  article-title: Maize-Brachiaria intercropping: a strategy to supply recycled N to maize and reduce soil N2O emissions?
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2021.107491
– volume: 8
  start-page: 3
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib31
  article-title: The 4C approach as a way to understand species interactions determining intercropping productivity
  publication-title: Frontiers of Agricultural Science and Engineering
– volume: 200
  start-page: 38
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib42
  article-title: Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2016.10.003
– volume: 453
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib46
  article-title: A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2023.131440
– volume: 104
  start-page: 175
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib50
  article-title: Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.10.019
– volume: 27
  start-page: 129
  year: 1976
  ident: 10.1016/j.soilbio.2024.109318_bib64
  article-title: Plant interactions in mixed crop communities
  publication-title: Multiple cropping
– volume: 304
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib43
  article-title: Forage quality in cereal/legume intercropping: a meta-analysis
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2023.109174
– volume: 26
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib10
  article-title: Intercropping increases soil N-targeting enzyme activities: a meta-analysis
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2023.100686
– volume: 29
  start-page: 4028
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib24
  article-title: Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types
  publication-title: Global Change Biology
  doi: 10.1111/gcb.16742
– start-page: 1
  year: 2016
  ident: 10.1016/j.soilbio.2024.109318_bib1
– volume: 137
  start-page: 57
  year: 2019
  ident: 10.1016/j.soilbio.2024.109318_bib29
  article-title: Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2019.01.010
– volume: 10
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib30
  article-title: Soil nitrous oxide emission and methane exchange from diversified cropping systems in pannonian region
  publication-title: Frontiers in Environmental Science
  doi: 10.3389/fenvs.2022.857625
– volume: 34
  start-page: 303
  year: 1993
  ident: 10.1016/j.soilbio.2024.109318_bib51
  article-title: Resource capture and utilization in intercropping: water
  publication-title: Field Crops Research
  doi: 10.1016/0378-4290(93)90119-8
– volume: 6
  start-page: 2024
  year: 2012
  ident: 10.1016/j.soilbio.2024.109318_bib63
  article-title: Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials
  publication-title: ISME Journal
  doi: 10.1038/ismej.2012.51
– volume: 13
  start-page: 1790
  year: 2011
  ident: 10.1016/j.soilbio.2024.109318_bib20
  article-title: A global census of nitrogenase diversity
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2011.02488.x
– volume: 11
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib17
  article-title: Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2020.601054
– volume: 342
  year: 2023
  ident: 10.1016/j.soilbio.2024.109318_bib85
  article-title: Intercrop overyielding weakened by high inputs: global meta-analysis with experimental validation
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2022.108239
– volume: 319
  year: 2021
  ident: 10.1016/j.soilbio.2024.109318_bib16
  article-title: Intercropping increases soil extracellular enzyme activity: a meta-analysis
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2021.107489
– volume: 21
  start-page: 1715
  year: 2015
  ident: 10.1016/j.soilbio.2024.109318_bib14
  article-title: Intercropping enhances soil carbon and nitrogen
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12738
– volume: 256
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib12
  article-title: Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2020.107923
– volume: 365
  start-page: fny058
  year: 2018
  ident: 10.1016/j.soilbio.2024.109318_bib36
  article-title: Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together
  publication-title: FEMS Microbiology Letters
  doi: 10.1093/femsle/fny058
– volume: 109
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib45
  article-title: Contrasting response of soil N2O release to ammonium, nitrate, and urea addition rates is determined by substrate availability and microbial community abundance and composition
  publication-title: European Journal of Soil Biology
  doi: 10.1016/j.ejsobi.2022.103393
– volume: 119
  year: 2022
  ident: 10.1016/j.soilbio.2024.109318_bib75
  article-title: A quantitative synthesis of soil microbial effects on plant species coexistence
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 63
  start-page: 1612
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib15
  article-title: China's intercropping leads to higher grain yield gains
  publication-title: Science China Life Sciences
  doi: 10.1007/s11427-020-1776-y
– volume: 75
  start-page: 33
  year: 2011
  ident: 10.1016/j.soilbio.2024.109318_bib3
  article-title: Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?
  publication-title: Advances in Applied Microbiology
  doi: 10.1016/B978-0-12-387046-9.00002-5
– volume: 113
  year: 2020
  ident: 10.1016/j.soilbio.2024.109318_bib38
  article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2019.125987
– volume: 475
  start-page: 214
  year: 2011
  ident: 10.1016/j.soilbio.2024.109318_bib65
  article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2
  publication-title: Nature
  doi: 10.1038/nature10176
– volume: 81
  start-page: 781
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib13
  article-title: Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2017.09.0294
– volume: 168
  start-page: 110
  year: 2017
  ident: 10.1016/j.soilbio.2024.109318_bib60
  article-title: Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2016.12.014
SSID ssj0002513
Score 2.520076
Snippet Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109318
SubjectTerms Additive intercropping
agroecosystems
atmospheric precipitation
Crop diversification
crop production
crops
denitrification
fertilizer rates
genes
Intraspecific interaction
microbial activity
Microbial functional gene
microbial nitrogen
mineralization
nitrification
nitrogen balance
Nitrogen cycle
nitrogen fixation
photosynthesis
soil pH
sustainable development
Title A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables
URI https://dx.doi.org/10.1016/j.soilbio.2024.109318
https://www.proquest.com/docview/3040382033
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD-pBdCrOHyOC125dk67pcQzHVNjJwW6hTdKxObrRbsIu_u2-16YORRh4aWloSpv3eO-VfN_3CHlUkHcg6yqHCx7CIe44kRHG4bEREe5zekmBthh1h2P-MvEnNdKvuDAIq7Sxv4zpRbS2I227mu3VbIYcXxRLhwTMy_04ZLDzAL289bmDeUD-tsK7Ask6wY7F056jXu4iniEH0OOFsBL2_vg7P_2K1EX6GZyRU1s30l75auekZtI6OelNM6udYerkqF81b7sg7z1aSn3QfJtCjZfPcopiTeBsFCFEGOSoRvD6egtnRHFQnaEELUUBiQwbeyGTilq8B12mFD-Djhy1RTbllH7AXzbyrvJLMh48vfWHju2r4CjGvbXjRyLmEKMFY4GIVMdXyqAGjRfEcZC4qBejdeQrzX0dwoAbatQBE6HPNFdJxK7IQbpMzTWhXeEh5YoncDv3lCsSHSaJ70ZCeYYHQYPwajWlsqLj2PtiISt02VxaI0g0giyN0CCt72mrUnVj3wRRmUr-cB8JmWHf1IfKtBKMhPslUWqWm1wyCHAMKiTGbv7_-FtyjFcl2OeOHKyzjbmHOmYdNwtHbZLD3vPrcPQFCIvzuQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3EfRYt6apTQ8eFh-srz0peIttki6r0pXtquzFP-UfdKZNFUUQBC8tpE2gM-lMQr7vG4BtjXkHs672hBQxXtI9L7HSeiK1MqFzTp6VaIv2futanN2ENyPwVnNhCFbpYn8V08to7VoazpqNx26XOL4klo4JWFTncQ5ZeW6HL7hvKw5Oj9DJO5yfHF8dtjxXWsDTgeADL0xkKjBMySCIZKL3Qq0tybDwKE2jzCfJFGOSUBsRmhgb_NiQFJaMw8AInSUBjjsK4wLDBZVN2H39xJXggsEp_UpiB0WftKHGHQn0PqRdIh1yUSo5UbGRnxPit9RQ5ruTGZh2C1XWrGwxCyM2n4OpZqfvxDrsHEwc1tXi5uG-ySptEVYMc1xUFt2CkToUzm5GmCWKqswQWn4wxDvBRpjpk-YtI8WKPlUSI-oWcwAT1ssZfQZre3pI9M0Oe8ZtPRG9igW4_hdrL8JY3svtErB9yYnjJTJ8XXDty8zEWRb6idTciihaBlFbU2mnck7FNh5UDWe7U84JipygKicsw-5Ht8dK5uO3DrJ2lfoyXxWmot-6btWuVegkOqBJctt7KlSAERUnlB8EK38ffhMmWleXF-ritH2-CpP0pEIarcHYoP9k13ERNUg3yknL4Pa__5J3VVIvSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+synthesis+reveals+additive+density+design+drives+intercropping+effects+on+soil+N-cycling+variables&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Li%2C+Y%C3%BCze&rft.au=Gu%2C+Xiaoyan&rft.au=Yong%2C+Taiwen&rft.au=Yang%2C+Wenyu&rft.date=2024-04-01&rft.issn=0038-0717&rft.volume=191&rft.spage=109318&rft_id=info:doi/10.1016%2Fj.soilbio.2024.109318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2024_109318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon