A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables
Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in...
Saved in:
Published in | Soil biology & biochemistry Vol. 191; p. 109318 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N2O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N2O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N2O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N2O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N2O emissions to promote the sustainable development of intercropping.
•Intercrop overall increased the nifH and amoA-AOA gene abundances.•Plant population rather than individual traits drive changes in N-cycling variables.•Additive intercrop shapes closer links among N-cycling variables than replacement.•Additive intercrop increases microbial biomass nitrogen and reduces N2O emission. |
---|---|
AbstractList | Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N₂O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N₂O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N₂O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N₂O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N₂O emissions to promote the sustainable development of intercropping. Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have frequently concentrated on crop nitrogen uptake and apparent nitrogen balance, ignoring comprehensive evaluations of microbial genes involved in N-cycling, nitrogen pools, and nitrogen fluxes such as nitrification, denitrification, and nitrogen fixation processes. Furthermore, the impact of field configurations on these variables is still not well understood. To investigate the effects of intercropping on these soil N-cycling variables, we integrated data from 79 articles and retrieved 538 observations. Notably, intercropping increased amoA-AOA (−0.29%–45.59%, p = 0.053) and nifH gene abundance (9.81%–71.92%, p = 0.005), but had little impact on the others. Limited variations in soil N-cycling variables were explained by individual plant traits, including the photosynthesis assimilation pathway, crop stature, and crop species. This might be attributed to the mismatched responses of the crop's aboveground and belowground parts, as well as soil microbial activity, to intercropping. On the other hand, plant-population traits, such as spatial arrangement and density design, were key moderators for changes in N2O emissions, amoA-AOA and nosZ gene abundances. Specifically, strip intercropping significantly reduced N2O emissions, increased nitrogen mineralization as well as amoA-AOA, narG, and nosZ gene abundances. While increasing microbial biomass nitrogen, amoA-AOA, amoA-AOB, and nifH gene abundances, additive intercropping significantly lowered N2O emission, nirK, and nosZ gene abundances. Additionally, compared to replacement intercropping, it creates closer connections between microbial genes involved in N-cycling, nitrogen pools and fluxes. Moreover, changes in the mean annual precipitation, N fertilization rate, and initial soil pH were significantly correlated with amoA-AOA gene abundance, although their effects on N2O emissions were inversely related. Our findings indicate that population-level density design predominates intercropping effects on soil N-cycling variables. Strip and additive configurations may be key to enhancing soil nitrogen immobilization and reducing N2O emissions to promote the sustainable development of intercropping. •Intercrop overall increased the nifH and amoA-AOA gene abundances.•Plant population rather than individual traits drive changes in N-cycling variables.•Additive intercrop shapes closer links among N-cycling variables than replacement.•Additive intercrop increases microbial biomass nitrogen and reduces N2O emission. |
ArticleNumber | 109318 |
Author | Yong, Taiwen Yang, Wenyu Li, Yüze Gu, Xiaoyan |
Author_xml | – sequence: 1 givenname: Yüze surname: Li fullname: Li, Yüze email: l_yz_deu@163.com organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China – sequence: 2 givenname: Xiaoyan surname: Gu fullname: Gu, Xiaoyan email: guyan201505@126.com organization: Crop Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, Hunan, China – sequence: 3 givenname: Taiwen surname: Yong fullname: Yong, Taiwen email: yongtaiwen@sicau.edu.cn organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China – sequence: 4 givenname: Wenyu surname: Yang fullname: Yang, Wenyu organization: College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China |
BookMark | eNqFkE9LJDEQxcOisKPuR1jI0UuPSad7O80eRMR_IHpxzyGdVM_WbEzGVByYb78ZxpMXTwWv3ntU_U7YUUwRGPspxVIK-etivaSEYcK0bEXbVW1UUn9jC6mHsVFdq4_YQgilGzHI4Ts7IVoLIdpeqgX7d8VXIU02cNrF8hcIiWfYgg3ErfdYcAvcQyQsuzoJV5H7XEXiGAtkl9Nmg3HFYZ7BFeIp8v01_KlxOxf2m63NaKcAdMaO59oLPz7mKftze_Nyfd88Pt89XF89Nq4eW5re6qmDSWqlBm2d7J2DTo-qHaZpmMXY6d572zvf9X6sghi90lLosVe-c7NVp-z80LvJ6e0dqJhXJAch2AjpnYwSXaXRCqWqtT9Y6x9EGWazyfhq885IYfZwzdp8wDV7uOYAt-Z-f8o5LLZgiiVbDF-mLw9pqBS2CNmQQ4gOPOYK0fiEXzT8B_C0nUE |
CitedBy_id | crossref_primary_10_1016_j_agee_2024_109456 crossref_primary_10_1007_s42832_024_0283_x crossref_primary_10_3390_microorganisms12061108 crossref_primary_10_1002_jsfa_13709 crossref_primary_10_1016_j_apsoil_2025_105934 crossref_primary_10_1016_j_still_2024_106365 crossref_primary_10_1007_s00442_024_05651_7 crossref_primary_10_1016_j_jhazmat_2024_133866 crossref_primary_10_1016_j_jia_2024_09_030 crossref_primary_10_1016_j_fcr_2025_109850 crossref_primary_10_1111_gcb_17302 crossref_primary_10_1016_j_scitotenv_2024_172954 crossref_primary_10_1016_j_cj_2024_10_010 crossref_primary_10_1007_s11104_024_07123_6 |
Cites_doi | 10.1002/ecm.1407 10.1111/1462-2920.13282 10.1111/geb.13030 10.1890/03-0226 10.1016/j.soilbio.2010.08.021 10.1007/s11104-022-05487-1 10.1007/s11104-020-04668-0 10.18637/jss.v036.i03 10.1111/nph.12235 10.1016/j.geoderma.2016.11.004 10.1016/j.eja.2017.09.009 10.1016/j.tibtech.2009.07.006 10.1111/1462-2920.15984 10.1023/A:1010933404324 10.3390/agriculture8060080 10.1016/bs.agron.2020.02.004 10.1016/j.geoderma.2022.115851 10.1038/s41477-020-0680-9 10.1016/j.apsoil.2014.09.008 10.1002/2013MS000293 10.1016/j.fcr.2019.107661 10.1016/j.soilbio.2017.04.006 10.1016/j.cub.2015.12.021 10.1016/j.scitotenv.2019.133984 10.1007/s13593-020-0607-x 10.1016/j.fcr.2021.108122 10.1016/j.fcr.2010.12.016 10.1111/j.1365-2745.2008.01476.x 10.3389/fmicb.2015.01066 10.1016/j.soilbio.2019.107615 10.1016/j.soilbio.2017.06.010 10.1016/j.fcr.2022.108671 10.1016/j.fcr.2015.09.006 10.1016/j.agee.2021.107658 10.1016/j.fcr.2020.107819 10.1111/nph.18302 10.1029/2021EF002479 10.1201/9780429291180-3 10.1111/gcbb.12898 10.1016/j.agee.2020.107147 10.1111/nph.13132 10.1038/ismej.2014.252 10.1016/j.soilbio.2023.109146 10.1016/S2095-3119(17)61789-1 10.1016/j.fcr.2022.108779 10.1016/j.still.2019.04.020 10.1016/j.agwat.2019.105878 10.1016/j.agee.2021.107491 10.1016/j.fcr.2016.10.003 10.1016/j.jhazmat.2023.131440 10.1016/j.soilbio.2016.10.019 10.1016/j.fcr.2023.109174 10.1016/j.rhisph.2023.100686 10.1111/gcb.16742 10.1016/j.apsoil.2019.01.010 10.3389/fenvs.2022.857625 10.1016/0378-4290(93)90119-8 10.1038/ismej.2012.51 10.1111/j.1462-2920.2011.02488.x 10.3389/fmicb.2020.601054 10.1016/j.agee.2022.108239 10.1016/j.agee.2021.107489 10.1111/gcb.12738 10.1016/j.fcr.2020.107923 10.1093/femsle/fny058 10.1016/j.ejsobi.2022.103393 10.1007/s11427-020-1776-y 10.1016/B978-0-12-387046-9.00002-5 10.1016/j.eja.2019.125987 10.1038/nature10176 10.2136/sssaj2017.09.0294 10.1016/j.still.2016.12.014 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2024.109318 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2024_109318 S0038071724000075 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-5a8b4eb183378ac15cce489327bb7f09485dda5cd45d97f009d38108953d4cfa3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 00:44:48 EDT 2025 Tue Jul 01 00:54:08 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Sat Jul 13 15:32:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crop diversification Nitrogen cycle Microbial functional gene Additive intercropping Intraspecific interaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-5a8b4eb183378ac15cce489327bb7f09485dda5cd45d97f009d38108953d4cfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3040382033 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040382033 crossref_primary_10_1016_j_soilbio_2024_109318 crossref_citationtrail_10_1016_j_soilbio_2024_109318 elsevier_sciencedirect_doi_10_1016_j_soilbio_2024_109318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Berghuijs, Wang, Stomph, Weih, Van der Werf, Vico (bib2) 2020; 455 Rocca, Hall, Lennon, Evans, Waldrop, Cotner, Wallenstein (bib57) 2015; 9 Cong, Hoffland, Li, Six, Sun, Bao, Zhang, van der Werf (bib14) 2015; 21 Ouyang, Norton, Stark (bib86) 2017; 113 Muhammad, Sainju, Zhao, Khan, Ghimire, Fu, Wang (bib52) 2019; 192 Trenbath (bib64) 1976; 27 Xiao, Qiu, Tao, Zhang, Chen, Reberg‐Horton, Shi, Shew, Zhang, Hu (bib72) 2020; 29 Meyer, Welp, Bornemann, Amelung (bib50) 2017; 104 Zhang, Jing, Chen, Xiang, Rashti, Li, Deng, Zhang (bib78) 2021; 13 Xiao, Rasmann, Yue, Lian, Zou, Wang (bib73) 2019; 696 Cheriere, Lorin, Corre-Hellou (bib12) 2020; 256 (bib56) 2019 Raseduzzaman, Jensen (bib55) 2017; 91 Weyens, van der Lelie, Taghavi, Newman, Vangronsveld (bib70) 2009; 27 Zhu, Zhu, Zhou, Zhang, Wang, Zhou, Wang, Yang, Wang, Tao, Xiong (bib85) 2023; 342 Viechtbauer (bib66) 2010; 36 Curtright, Tiemann (bib16) 2021; 319 van Groenigen, Osenberg, Hungate (bib65) 2011; 475 Geisseler, Horwath, Joergensen, Ludwig (bib21) 2010; 42 Lehtovirta-Morley (bib36) 2018; 365 Wang, Sun, Zhang, Yang, Feng, Bai, van der Werf (bib67) 2020; 253 Yu, Yang, Xing, Zhang, Lambers, Li (bib76) 2022; 476 Zhang, Li, Gao, Yang, Xu, Yang, Fan, Su, Surigaoge, Weiner, Fornara, Li (bib80) 2023; 291 Zhao, Hao, Zhang, Jiao, Tian, Lambers, Liang, Cong, Zhang (bib82) 2023; 185 Du, Han, Gai, Yong, Sun, Wang, Yang (bib19) 2018; 17 Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (bib37) 2020; 6 Xu, Li, Zhang, Yu, van der Werf, Zhang (bib74) 2020; 246 Breiman (bib4) 2001; 45 Liu, Rahman, Song, Su, Yang, Yong, Wu, Zhang, Yang (bib42) 2017; 200 Li, Hoffland, Kuyper, Yu, Li, Zhang, Zhang, van der Werf (bib38) 2020; 113 Ke, Miki (bib33) 2015; 6 López-Aizpún, Castellano-Hinojosa, González-López, Bedmar, Loick, Barrat, Cardenas (bib44) 2021 Knörzer, Grözinger, Graeff-Hönninger, Hartung, Piepho, Claupein (bib34) 2011; 121 Li, Xie, Ren, Ding, Long, Zhang, Qin, Siddique, Liao (bib40) 2022; 418 Hothorn, Bretz, Westfall, Heiberger, Schuetzenmeister, Scheibe, Hothorn (bib28) 2016 Maestre, Callaway, Valladares, Lortie (bib48) 2009; 97 Nguyen, Xu, Tahmasbian, Che, Xu, Zhou, Wallace, Bai (bib53) 2017; 288 Santonja, Rancon, Fromin, Baldy, Hättenschwiler, Fernandez, Mirleau (bib58) 2017; 111 Wang, Zhang, Zhang, Yang, Zhu, Yan, Fei, Rong, Peng, Luo (bib69) 2022; 287 Grossman, Cavender‐Bares, Hobbie (bib25) 2020; 90 Lu, Cheng, Fang, Yang, Guo, Li, Zhou (bib45) 2022; 109 Liu, Struik, Zhang, Stomph (bib43) 2023; 304 Chen, Chen, Cao (bib10) 2023; 26 Lu, Yang, Wang, Zhu (bib46) 2023; 453 Morris, Garrity (bib51) 1993; 34 Lin, Ye, Ding, Hu, Zheng, Fan, Wan, Duan, He (bib41) 2020; 304 Segal, Miller, McGhee, Loecke, Cook, Shapiro, Drijber (bib60) 2017; 168 Mbava, Mutema, Zengeni, Shimelis, Chaplot (bib49) 2020; 228 Justes, Bedoussac, Dordas, Frak, Louarn, Boudsocq, Li (bib31) 2021; 8 Jensen, Carlsson, Hauggaard-Nielsen (bib32) 2020; 40 Hink, Nicol, Prosser (bib26) 2017; 19 Wu, He, Wang, Liu, Huth, Zhao, Yang (bib71) 2021; 265 Brooker, Bennett, Cong, Daniell, George, Hallett, Hawes, Iannetta, Jones, Karley, Li, McKenzie, Pakeman, Paterson, Schöb, Shen, Squire, Watson, Zhang, Zhang, Zhang, White (bib5) 2015; 206 Dang, Gong, Zhao, Wang, Ivanistau, Feng (bib17) 2020; 11 Bybee-Finley, Ryan (bib6) 2018; 8 Wang, Bicharanloo, Hou, Jiang, Dijkstra (bib68) 2022; 10 Shangguan, Dai, Duan, Liu, Yuan (bib61) 2014; 6 Yu (bib77) 2016 Gou, Reich, Qiu, Shao, Wei, Wang, Wei (bib24) 2023; 29 Cong (bib15) 2020; 63 Glaze-Corcoran, Hashemi, Sadeghpour, Jahanzad, Keshavarz Afshar, Liu, Herbert (bib22) 2020 Petchey, Hector, Gaston (bib54) 2004; 85 Gaby, Buckley (bib20) 2011; 13 Zhu, Friman, Li, Xu, Guo, Guo, Shen, Ling (bib84) 2022; 24 Huppi, Horvath, Dezso, Puhl-Rezsek, Six (bib30) 2022; 10 Kuzyakov, Xu (bib35) 2013; 198 Archer (bib1) 2016 Canisares, Rosolem, Momesso, Crusciol, Villegas, Arango, Ritz, Cantarella (bib7) 2021; 319 Zhang, Sun, Wang, Yang, Yuan, Scow (bib79) 2015; 85 Braker, Conrad (bib3) 2011; 75 Stein, Klotz (bib62) 2016; 26 Collins, Fay, Kimura, Fransen, Himes (bib13) 2017; 81 Chadfield, Hartley, Redeker (bib8) 2022; 235 Chen, Peng, Wang, Fu, Hou, Zhang, Fahad, Peng, Cui, Nie (bib11) 2015; 184 Yan, Levine, Kandlikar (bib75) 2022; 119 Schofield, Brooker, Rowntree, Price, Brearley, Paterson (bib59) 2019; 139 Taylor, Zeglin, Wanzek, Myrold, Bottomley (bib63) 2012; 6 Gu, Bastiaans, Anten, Makowski, van der Werf (bib23) 2021; 322 Huang, Wang, Liu, Li, Xu, Luo, Gao (bib29) 2019; 137 Morris (10.1016/j.soilbio.2024.109318_bib51) 1993; 34 Schofield (10.1016/j.soilbio.2024.109318_bib59) 2019; 139 Segal (10.1016/j.soilbio.2024.109318_bib60) 2017; 168 Collins (10.1016/j.soilbio.2024.109318_bib13) 2017; 81 Lin (10.1016/j.soilbio.2024.109318_bib41) 2020; 304 Wang (10.1016/j.soilbio.2024.109318_bib67) 2020; 253 Brooker (10.1016/j.soilbio.2024.109318_bib5) 2015; 206 Stein (10.1016/j.soilbio.2024.109318_bib62) 2016; 26 Meyer (10.1016/j.soilbio.2024.109318_bib50) 2017; 104 Lu (10.1016/j.soilbio.2024.109318_bib46) 2023; 453 Zhang (10.1016/j.soilbio.2024.109318_bib79) 2015; 85 Nguyen (10.1016/j.soilbio.2024.109318_bib53) 2017; 288 Curtright (10.1016/j.soilbio.2024.109318_bib16) 2021; 319 Braker (10.1016/j.soilbio.2024.109318_bib3) 2011; 75 Chen (10.1016/j.soilbio.2024.109318_bib11) 2015; 184 Lu (10.1016/j.soilbio.2024.109318_bib45) 2022; 109 Zhang (10.1016/j.soilbio.2024.109318_bib78) 2021; 13 Jensen (10.1016/j.soilbio.2024.109318_bib32) 2020; 40 Ke (10.1016/j.soilbio.2024.109318_bib33) 2015; 6 Xiao (10.1016/j.soilbio.2024.109318_bib72) 2020; 29 Grossman (10.1016/j.soilbio.2024.109318_bib25) 2020; 90 Huppi (10.1016/j.soilbio.2024.109318_bib30) 2022; 10 Li (10.1016/j.soilbio.2024.109318_bib40) 2022; 418 Justes (10.1016/j.soilbio.2024.109318_bib31) 2021; 8 Wang (10.1016/j.soilbio.2024.109318_bib69) 2022; 287 Zhang (10.1016/j.soilbio.2024.109318_bib80) 2023; 291 Liu (10.1016/j.soilbio.2024.109318_bib43) 2023; 304 Hink (10.1016/j.soilbio.2024.109318_bib26) 2017; 19 Wang (10.1016/j.soilbio.2024.109318_bib68) 2022; 10 Wu (10.1016/j.soilbio.2024.109318_bib71) 2021; 265 Glaze-Corcoran (10.1016/j.soilbio.2024.109318_bib22) 2020 Gaby (10.1016/j.soilbio.2024.109318_bib20) 2011; 13 Raseduzzaman (10.1016/j.soilbio.2024.109318_bib55) 2017; 91 Taylor (10.1016/j.soilbio.2024.109318_bib63) 2012; 6 Du (10.1016/j.soilbio.2024.109318_bib19) 2018; 17 Santonja (10.1016/j.soilbio.2024.109318_bib58) 2017; 111 Canisares (10.1016/j.soilbio.2024.109318_bib7) 2021; 319 Chen (10.1016/j.soilbio.2024.109318_bib10) 2023; 26 Gou (10.1016/j.soilbio.2024.109318_bib24) 2023; 29 Knörzer (10.1016/j.soilbio.2024.109318_bib34) 2011; 121 Berghuijs (10.1016/j.soilbio.2024.109318_bib2) 2020; 455 Muhammad (10.1016/j.soilbio.2024.109318_bib52) 2019; 192 Xu (10.1016/j.soilbio.2024.109318_bib74) 2020; 246 Xiao (10.1016/j.soilbio.2024.109318_bib73) 2019; 696 Geisseler (10.1016/j.soilbio.2024.109318_bib21) 2010; 42 Yu (10.1016/j.soilbio.2024.109318_bib76) 2022; 476 Yu (10.1016/j.soilbio.2024.109318_bib77) 2016 Bybee-Finley (10.1016/j.soilbio.2024.109318_bib6) 2018; 8 Chadfield (10.1016/j.soilbio.2024.109318_bib8) 2022; 235 van Groenigen (10.1016/j.soilbio.2024.109318_bib65) 2011; 475 Dang (10.1016/j.soilbio.2024.109318_bib17) 2020; 11 Hothorn (10.1016/j.soilbio.2024.109318_bib28) 2016 Li (10.1016/j.soilbio.2024.109318_bib38) 2020; 113 Cong (10.1016/j.soilbio.2024.109318_bib14) 2015; 21 Viechtbauer (10.1016/j.soilbio.2024.109318_bib66) 2010; 36 Zhao (10.1016/j.soilbio.2024.109318_bib82) 2023; 185 Huang (10.1016/j.soilbio.2024.109318_bib29) 2019; 137 Yan (10.1016/j.soilbio.2024.109318_bib75) 2022; 119 Zhu (10.1016/j.soilbio.2024.109318_bib85) 2023; 342 Zhu (10.1016/j.soilbio.2024.109318_bib84) 2022; 24 Liu (10.1016/j.soilbio.2024.109318_bib42) 2017; 200 Lehtovirta-Morley (10.1016/j.soilbio.2024.109318_bib36) 2018; 365 Breiman (10.1016/j.soilbio.2024.109318_bib4) 2001; 45 Cheriere (10.1016/j.soilbio.2024.109318_bib12) 2020; 256 Gu (10.1016/j.soilbio.2024.109318_bib23) 2021; 322 Maestre (10.1016/j.soilbio.2024.109318_bib48) 2009; 97 Petchey (10.1016/j.soilbio.2024.109318_bib54) 2004; 85 Shangguan (10.1016/j.soilbio.2024.109318_bib61) 2014; 6 Mbava (10.1016/j.soilbio.2024.109318_bib49) 2020; 228 (10.1016/j.soilbio.2024.109318_bib56) 2019 Cong (10.1016/j.soilbio.2024.109318_bib15) 2020; 63 Archer (10.1016/j.soilbio.2024.109318_bib1) 2016 López-Aizpún (10.1016/j.soilbio.2024.109318_bib44) 2021 Li (10.1016/j.soilbio.2024.109318_bib37) 2020; 6 Ouyang (10.1016/j.soilbio.2024.109318_bib86) 2017; 113 Trenbath (10.1016/j.soilbio.2024.109318_bib64) 1976; 27 Weyens (10.1016/j.soilbio.2024.109318_bib70) 2009; 27 Rocca (10.1016/j.soilbio.2024.109318_bib57) 2015; 9 Kuzyakov (10.1016/j.soilbio.2024.109318_bib35) 2013; 198 |
References_xml | – volume: 17 start-page: 747 year: 2018 end-page: 754 ident: bib19 article-title: Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability publication-title: Journal of Integrative Agriculture – volume: 85 start-page: 847 year: 2004 end-page: 857 ident: bib54 article-title: How do different measures of functional diversity perform? publication-title: Ecology – volume: 455 start-page: 203 year: 2020 end-page: 226 ident: bib2 article-title: Identification of species traits enhancing yield in wheat-faba bean intercropping: development and sensitivity analysis of a minimalist mixture model publication-title: Plant and Soil – volume: 184 start-page: 50 year: 2015 end-page: 57 ident: bib11 article-title: Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China publication-title: Field Crops Research – volume: 121 start-page: 274 year: 2011 end-page: 285 ident: bib34 article-title: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system publication-title: Field Crops Research – volume: 109 year: 2022 ident: bib45 article-title: Contrasting response of soil N2O release to ammonium, nitrate, and urea addition rates is determined by substrate availability and microbial community abundance and composition publication-title: European Journal of Soil Biology – volume: 104 start-page: 175 year: 2017 end-page: 184 ident: bib50 article-title: Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow publication-title: Soil Biology and Biochemistry – volume: 119 year: 2022 ident: bib75 article-title: A quantitative synthesis of soil microbial effects on plant species coexistence publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 5 year: 2020 ident: bib32 article-title: Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis publication-title: Agronomy for Sustainable Development – volume: 246 year: 2020 ident: bib74 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis publication-title: Field Crops Research – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib4 article-title: Random forests publication-title: Machine Learning – volume: 113 year: 2020 ident: bib38 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning publication-title: European Journal of Agronomy – volume: 304 year: 2020 ident: bib41 article-title: Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations publication-title: Agriculture, Ecosystems & Environment – volume: 91 start-page: 25 year: 2017 end-page: 33 ident: bib55 article-title: Does intercropping enhance yield stability in arable crop production ? A meta-analysis publication-title: European Journal of Agronomy – volume: 137 start-page: 57 year: 2019 end-page: 68 ident: bib29 article-title: Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils publication-title: Applied Soil Ecology – volume: 85 start-page: 76 year: 2015 end-page: 85 ident: bib79 article-title: Effects of intercropping and Rhizobial inoculation on the ammonia-oxidizing microorganisms in rhizospheres of maize and faba bean plants publication-title: Applied Soil Ecology – volume: 34 start-page: 303 year: 1993 end-page: 317 ident: bib51 article-title: Resource capture and utilization in intercropping: water publication-title: Field Crops Research – volume: 29 start-page: 384 year: 2020 end-page: 399 ident: bib72 article-title: Biological controls over the abundances of terrestrial ammonia oxidizers publication-title: Global Ecology and Biogeography – volume: 75 start-page: 33 year: 2011 end-page: 70 ident: bib3 article-title: Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? publication-title: Advances in Applied Microbiology – volume: 265 year: 2021 ident: bib71 article-title: Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations publication-title: Field Crops Research – volume: 475 start-page: 214 year: 2011 end-page: 216 ident: bib65 article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 publication-title: Nature – volume: 319 year: 2021 ident: bib16 article-title: Intercropping increases soil extracellular enzyme activity: a meta-analysis publication-title: Agriculture, Ecosystems & Environment – volume: 26 start-page: R94 year: 2016 end-page: R98 ident: bib62 article-title: The nitrogen cycle publication-title: Current Biology – volume: 322 year: 2021 ident: bib23 article-title: Annual intercropping suppresses weeds: a meta-analysis publication-title: Agriculture, Ecosystems & Environment – volume: 235 start-page: 2393 year: 2022 end-page: 2405 ident: bib8 article-title: Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases publication-title: New Phytologist – start-page: 199 year: 2020 end-page: 256 ident: bib22 article-title: Chapter Five - understanding intercropping to improve agricultural resiliency and environmental sustainability publication-title: Advances in Agronomy – volume: 288 start-page: 79 year: 2017 end-page: 96 ident: bib53 article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis publication-title: Geoderma – volume: 304 year: 2023 ident: bib43 article-title: Forage quality in cereal/legume intercropping: a meta-analysis publication-title: Field Crops Research – volume: 342 year: 2023 ident: bib85 article-title: Intercrop overyielding weakened by high inputs: global meta-analysis with experimental validation publication-title: Agriculture, Ecosystems & Environment – volume: 6 start-page: 1066 year: 2015 ident: bib33 article-title: Incorporating the soil environment and microbial community into plant competition theory publication-title: Frontiers in Microbiology – volume: 198 start-page: 656 year: 2013 end-page: 669 ident: bib35 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytologist – volume: 13 start-page: 1790 year: 2011 end-page: 1799 ident: bib20 article-title: A global census of nitrogenase diversity publication-title: Environmental Microbiology – volume: 111 start-page: 124 year: 2017 end-page: 134 ident: bib58 article-title: Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland publication-title: Soil Biology and Biochemistry – volume: 319 year: 2021 ident: bib7 article-title: Maize-Brachiaria intercropping: a strategy to supply recycled N to maize and reduce soil N2O emissions? publication-title: Agriculture, Ecosystems & Environment – volume: 8 start-page: 3 year: 2021 ident: bib31 article-title: The 4C approach as a way to understand species interactions determining intercropping productivity publication-title: Frontiers of Agricultural Science and Engineering – volume: 476 start-page: 263 year: 2022 end-page: 288 ident: bib76 article-title: Belowground processes and sustainability in agroecosystems with intercropping publication-title: Plant and Soil – volume: 6 start-page: 653 year: 2020 end-page: 660 ident: bib37 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nature Plants – volume: 228 year: 2020 ident: bib49 article-title: Factors affecting crop water use efficiency: a worldwide meta-analysis publication-title: Agricultural Water Management – start-page: 1 year: 2016 ident: bib1 article-title: rfPermute: Estimate Permutation P-Values for Random Forest Importance Metrics – volume: 29 start-page: 4028 year: 2023 end-page: 4043 ident: bib24 article-title: Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types publication-title: Global Change Biology – year: 2016 ident: bib28 article-title: Package ‘multcomp’. Simultaneous Inference in General Parametric Models – volume: 27 start-page: 591 year: 2009 end-page: 598 ident: bib70 article-title: Exploiting plant–microbe partnerships to improve biomass production and remediation publication-title: Trends in biotechnology – volume: 696 year: 2019 ident: bib73 article-title: The effect of biochar amendment on N-cycling genes in soils: a meta-analysis publication-title: Science of the Total Environment – start-page: 34 year: 2021 end-page: 59 ident: bib44 article-title: Nitrogen cycle in agriculture: biotic and abiotic factors regulating nitrogen losses publication-title: Nitrogen Cycle – volume: 9 start-page: 1693 year: 2015 end-page: 1699 ident: bib57 article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed publication-title: The ISME journal – volume: 139 year: 2019 ident: bib59 article-title: Plant-plant competition influences temporal dynamism of soil microbial enzyme activity publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 1859 year: 2021 end-page: 1873 ident: bib78 article-title: Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies publication-title: Global Change Biology Bioenergy – volume: 11 year: 2020 ident: bib17 article-title: Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield publication-title: Frontiers in Microbiology – volume: 27 start-page: 129 year: 1976 end-page: 169 ident: bib64 article-title: Plant interactions in mixed crop communities publication-title: Multiple cropping – volume: 24 start-page: 2013 year: 2022 end-page: 2028 ident: bib84 article-title: Meta‐analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale publication-title: Environmental Microbiology – volume: 168 start-page: 110 year: 2017 end-page: 117 ident: bib60 article-title: Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site publication-title: Soil and Tillage Research – volume: 453 year: 2023 ident: bib46 article-title: A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility publication-title: Journal of Hazardous Materials – volume: 185 year: 2023 ident: bib82 article-title: Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation publication-title: Soil Biology and Biochemistry – volume: 287 year: 2022 ident: bib69 article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment publication-title: Field Crops Research – volume: 8 start-page: 80 year: 2018 ident: bib6 article-title: Advancing intercropping research and practices in industrialized agricultural landscapes publication-title: Agriculture – volume: 253 year: 2020 ident: bib67 article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping publication-title: Field Crops Research – volume: 97 start-page: 199 year: 2009 end-page: 205 ident: bib48 article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities publication-title: Journal of Ecology – volume: 192 start-page: 103 year: 2019 end-page: 112 ident: bib52 article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis publication-title: Soil and Tillage Research – volume: 206 start-page: 107 year: 2015 end-page: 117 ident: bib5 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytologist – volume: 113 start-page: 161 year: 2017 end-page: 172 ident: bib86 article-title: Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil publication-title: Soil Biology and Biochemistry – volume: 418 year: 2022 ident: bib40 article-title: Response of soil microbial community parameters to plastic film mulch: a meta-analysis publication-title: Geoderma – volume: 42 start-page: 2058 year: 2010 end-page: 2067 ident: bib21 article-title: Pathways of nitrogen utilization by soil microorganisms - a review publication-title: Soil Biology and Biochemistry – volume: 10 year: 2022 ident: bib30 article-title: Soil nitrous oxide emission and methane exchange from diversified cropping systems in pannonian region publication-title: Frontiers in Environmental Science – year: 2016 ident: bib77 article-title: Crop Yields in Intercropping: Meta-Analysis and Virtual Plant Modelling – volume: 6 start-page: 249 year: 2014 end-page: 263 ident: bib61 article-title: A global soil data set for earth system modeling publication-title: Journal of Advances in Modeling Earth Systems – volume: 6 start-page: 2024 year: 2012 end-page: 2032 ident: bib63 article-title: Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials publication-title: ISME Journal – volume: 21 start-page: 1715 year: 2015 end-page: 1726 ident: bib14 article-title: Intercropping enhances soil carbon and nitrogen publication-title: Global Change Biology – volume: 63 start-page: 1612 year: 2020 end-page: 1614 ident: bib15 article-title: China's intercropping leads to higher grain yield gains publication-title: Science China Life Sciences – volume: 19 start-page: 4829 year: 2017 end-page: 4837 ident: bib26 article-title: Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil publication-title: Environmental Microbiology – year: 2019 ident: bib56 article-title: R: A Language and Environment for Statistical Computing – volume: 291 year: 2023 ident: bib80 article-title: Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize publication-title: Field Crops Research – volume: 26 year: 2023 ident: bib10 article-title: Intercropping increases soil N-targeting enzyme activities: a meta-analysis publication-title: Rhizosphere – volume: 81 start-page: 781 year: 2017 end-page: 795 ident: bib13 article-title: Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil publication-title: Soil Science Society of America Journal – volume: 36 start-page: 1 year: 2010 end-page: 48 ident: bib66 article-title: Conducting meta-analyses in R with the metafor package publication-title: Journal of Statistical Software – volume: 365 start-page: fny058 year: 2018 ident: bib36 article-title: Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together publication-title: FEMS Microbiology Letters – volume: 256 year: 2020 ident: bib12 article-title: Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control publication-title: Field Crops Research – volume: 90 year: 2020 ident: bib25 article-title: Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years publication-title: Ecological Monographs – volume: 10 year: 2022 ident: bib68 article-title: Phosphorus supply increases nitrogen transformation rates and retention in soil: a global meta-analysis publication-title: Earth's Future – volume: 200 start-page: 38 year: 2017 end-page: 46 ident: bib42 article-title: Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems publication-title: Field Crops Research – volume: 90 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib25 article-title: Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years publication-title: Ecological Monographs doi: 10.1002/ecm.1407 – volume: 19 start-page: 4829 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib26 article-title: Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil publication-title: Environmental Microbiology doi: 10.1111/1462-2920.13282 – volume: 29 start-page: 384 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib72 article-title: Biological controls over the abundances of terrestrial ammonia oxidizers publication-title: Global Ecology and Biogeography doi: 10.1111/geb.13030 – volume: 85 start-page: 847 year: 2004 ident: 10.1016/j.soilbio.2024.109318_bib54 article-title: How do different measures of functional diversity perform? publication-title: Ecology doi: 10.1890/03-0226 – volume: 42 start-page: 2058 year: 2010 ident: 10.1016/j.soilbio.2024.109318_bib21 article-title: Pathways of nitrogen utilization by soil microorganisms - a review publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.08.021 – volume: 476 start-page: 263 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib76 article-title: Belowground processes and sustainability in agroecosystems with intercropping publication-title: Plant and Soil doi: 10.1007/s11104-022-05487-1 – year: 2019 ident: 10.1016/j.soilbio.2024.109318_bib56 – volume: 455 start-page: 203 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib2 article-title: Identification of species traits enhancing yield in wheat-faba bean intercropping: development and sensitivity analysis of a minimalist mixture model publication-title: Plant and Soil doi: 10.1007/s11104-020-04668-0 – volume: 36 start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2024.109318_bib66 article-title: Conducting meta-analyses in R with the metafor package publication-title: Journal of Statistical Software doi: 10.18637/jss.v036.i03 – volume: 198 start-page: 656 year: 2013 ident: 10.1016/j.soilbio.2024.109318_bib35 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytologist doi: 10.1111/nph.12235 – volume: 288 start-page: 79 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib53 article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.004 – volume: 91 start-page: 25 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib55 article-title: Does intercropping enhance yield stability in arable crop production ? A meta-analysis publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2017.09.009 – volume: 27 start-page: 591 year: 2009 ident: 10.1016/j.soilbio.2024.109318_bib70 article-title: Exploiting plant–microbe partnerships to improve biomass production and remediation publication-title: Trends in biotechnology doi: 10.1016/j.tibtech.2009.07.006 – volume: 24 start-page: 2013 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib84 article-title: Meta‐analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale publication-title: Environmental Microbiology doi: 10.1111/1462-2920.15984 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.soilbio.2024.109318_bib4 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 8 start-page: 80 year: 2018 ident: 10.1016/j.soilbio.2024.109318_bib6 article-title: Advancing intercropping research and practices in industrialized agricultural landscapes publication-title: Agriculture doi: 10.3390/agriculture8060080 – start-page: 199 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib22 article-title: Chapter Five - understanding intercropping to improve agricultural resiliency and environmental sustainability doi: 10.1016/bs.agron.2020.02.004 – volume: 418 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib40 article-title: Response of soil microbial community parameters to plastic film mulch: a meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115851 – volume: 6 start-page: 653 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib37 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nature Plants doi: 10.1038/s41477-020-0680-9 – volume: 85 start-page: 76 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib79 article-title: Effects of intercropping and Rhizobial inoculation on the ammonia-oxidizing microorganisms in rhizospheres of maize and faba bean plants publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2014.09.008 – volume: 6 start-page: 249 year: 2014 ident: 10.1016/j.soilbio.2024.109318_bib61 article-title: A global soil data set for earth system modeling publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1002/2013MS000293 – volume: 246 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib74 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis publication-title: Field Crops Research doi: 10.1016/j.fcr.2019.107661 – volume: 111 start-page: 124 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib58 article-title: Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.04.006 – volume: 26 start-page: R94 year: 2016 ident: 10.1016/j.soilbio.2024.109318_bib62 article-title: The nitrogen cycle publication-title: Current Biology doi: 10.1016/j.cub.2015.12.021 – volume: 696 year: 2019 ident: 10.1016/j.soilbio.2024.109318_bib73 article-title: The effect of biochar amendment on N-cycling genes in soils: a meta-analysis publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2019.133984 – volume: 40 start-page: 5 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib32 article-title: Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis publication-title: Agronomy for Sustainable Development doi: 10.1007/s13593-020-0607-x – volume: 265 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib71 article-title: Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations publication-title: Field Crops Research doi: 10.1016/j.fcr.2021.108122 – volume: 121 start-page: 274 year: 2011 ident: 10.1016/j.soilbio.2024.109318_bib34 article-title: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system publication-title: Field Crops Research doi: 10.1016/j.fcr.2010.12.016 – volume: 97 start-page: 199 year: 2009 ident: 10.1016/j.soilbio.2024.109318_bib48 article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2008.01476.x – volume: 6 start-page: 1066 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib33 article-title: Incorporating the soil environment and microbial community into plant competition theory publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2015.01066 – volume: 139 year: 2019 ident: 10.1016/j.soilbio.2024.109318_bib59 article-title: Plant-plant competition influences temporal dynamism of soil microbial enzyme activity publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107615 – volume: 113 start-page: 161 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib86 article-title: Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.06.010 – volume: 287 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib69 article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment publication-title: Field Crops Research doi: 10.1016/j.fcr.2022.108671 – volume: 184 start-page: 50 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib11 article-title: Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China publication-title: Field Crops Research doi: 10.1016/j.fcr.2015.09.006 – volume: 322 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib23 article-title: Annual intercropping suppresses weeds: a meta-analysis publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107658 – volume: 253 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib67 article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping publication-title: Field Crops Research doi: 10.1016/j.fcr.2020.107819 – volume: 235 start-page: 2393 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib8 article-title: Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases publication-title: New Phytologist doi: 10.1111/nph.18302 – volume: 10 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib68 article-title: Phosphorus supply increases nitrogen transformation rates and retention in soil: a global meta-analysis publication-title: Earth's Future doi: 10.1029/2021EF002479 – year: 2016 ident: 10.1016/j.soilbio.2024.109318_bib28 – start-page: 34 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib44 article-title: Nitrogen cycle in agriculture: biotic and abiotic factors regulating nitrogen losses publication-title: Nitrogen Cycle doi: 10.1201/9780429291180-3 – volume: 13 start-page: 1859 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib78 article-title: Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies publication-title: Global Change Biology Bioenergy doi: 10.1111/gcbb.12898 – volume: 304 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib41 article-title: Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2020.107147 – volume: 206 start-page: 107 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib5 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytologist doi: 10.1111/nph.13132 – volume: 9 start-page: 1693 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib57 article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed publication-title: The ISME journal doi: 10.1038/ismej.2014.252 – volume: 185 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib82 article-title: Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2023.109146 – volume: 17 start-page: 747 year: 2018 ident: 10.1016/j.soilbio.2024.109318_bib19 article-title: Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability publication-title: Journal of Integrative Agriculture doi: 10.1016/S2095-3119(17)61789-1 – volume: 291 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib80 article-title: Resistance vs. surrender: different responses of functional traits of soybean and peanut to intercropping with maize publication-title: Field Crops Research doi: 10.1016/j.fcr.2022.108779 – volume: 192 start-page: 103 year: 2019 ident: 10.1016/j.soilbio.2024.109318_bib52 article-title: Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis publication-title: Soil and Tillage Research doi: 10.1016/j.still.2019.04.020 – year: 2016 ident: 10.1016/j.soilbio.2024.109318_bib77 – volume: 228 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib49 article-title: Factors affecting crop water use efficiency: a worldwide meta-analysis publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2019.105878 – volume: 319 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib7 article-title: Maize-Brachiaria intercropping: a strategy to supply recycled N to maize and reduce soil N2O emissions? publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107491 – volume: 8 start-page: 3 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib31 article-title: The 4C approach as a way to understand species interactions determining intercropping productivity publication-title: Frontiers of Agricultural Science and Engineering – volume: 200 start-page: 38 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib42 article-title: Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems publication-title: Field Crops Research doi: 10.1016/j.fcr.2016.10.003 – volume: 453 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib46 article-title: A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2023.131440 – volume: 104 start-page: 175 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib50 article-title: Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.10.019 – volume: 27 start-page: 129 year: 1976 ident: 10.1016/j.soilbio.2024.109318_bib64 article-title: Plant interactions in mixed crop communities publication-title: Multiple cropping – volume: 304 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib43 article-title: Forage quality in cereal/legume intercropping: a meta-analysis publication-title: Field Crops Research doi: 10.1016/j.fcr.2023.109174 – volume: 26 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib10 article-title: Intercropping increases soil N-targeting enzyme activities: a meta-analysis publication-title: Rhizosphere doi: 10.1016/j.rhisph.2023.100686 – volume: 29 start-page: 4028 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib24 article-title: Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types publication-title: Global Change Biology doi: 10.1111/gcb.16742 – start-page: 1 year: 2016 ident: 10.1016/j.soilbio.2024.109318_bib1 – volume: 137 start-page: 57 year: 2019 ident: 10.1016/j.soilbio.2024.109318_bib29 article-title: Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2019.01.010 – volume: 10 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib30 article-title: Soil nitrous oxide emission and methane exchange from diversified cropping systems in pannonian region publication-title: Frontiers in Environmental Science doi: 10.3389/fenvs.2022.857625 – volume: 34 start-page: 303 year: 1993 ident: 10.1016/j.soilbio.2024.109318_bib51 article-title: Resource capture and utilization in intercropping: water publication-title: Field Crops Research doi: 10.1016/0378-4290(93)90119-8 – volume: 6 start-page: 2024 year: 2012 ident: 10.1016/j.soilbio.2024.109318_bib63 article-title: Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials publication-title: ISME Journal doi: 10.1038/ismej.2012.51 – volume: 13 start-page: 1790 year: 2011 ident: 10.1016/j.soilbio.2024.109318_bib20 article-title: A global census of nitrogenase diversity publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2011.02488.x – volume: 11 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib17 article-title: Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2020.601054 – volume: 342 year: 2023 ident: 10.1016/j.soilbio.2024.109318_bib85 article-title: Intercrop overyielding weakened by high inputs: global meta-analysis with experimental validation publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2022.108239 – volume: 319 year: 2021 ident: 10.1016/j.soilbio.2024.109318_bib16 article-title: Intercropping increases soil extracellular enzyme activity: a meta-analysis publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107489 – volume: 21 start-page: 1715 year: 2015 ident: 10.1016/j.soilbio.2024.109318_bib14 article-title: Intercropping enhances soil carbon and nitrogen publication-title: Global Change Biology doi: 10.1111/gcb.12738 – volume: 256 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib12 article-title: Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control publication-title: Field Crops Research doi: 10.1016/j.fcr.2020.107923 – volume: 365 start-page: fny058 year: 2018 ident: 10.1016/j.soilbio.2024.109318_bib36 article-title: Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together publication-title: FEMS Microbiology Letters doi: 10.1093/femsle/fny058 – volume: 109 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib45 article-title: Contrasting response of soil N2O release to ammonium, nitrate, and urea addition rates is determined by substrate availability and microbial community abundance and composition publication-title: European Journal of Soil Biology doi: 10.1016/j.ejsobi.2022.103393 – volume: 119 year: 2022 ident: 10.1016/j.soilbio.2024.109318_bib75 article-title: A quantitative synthesis of soil microbial effects on plant species coexistence publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 63 start-page: 1612 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib15 article-title: China's intercropping leads to higher grain yield gains publication-title: Science China Life Sciences doi: 10.1007/s11427-020-1776-y – volume: 75 start-page: 33 year: 2011 ident: 10.1016/j.soilbio.2024.109318_bib3 article-title: Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? publication-title: Advances in Applied Microbiology doi: 10.1016/B978-0-12-387046-9.00002-5 – volume: 113 year: 2020 ident: 10.1016/j.soilbio.2024.109318_bib38 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2019.125987 – volume: 475 start-page: 214 year: 2011 ident: 10.1016/j.soilbio.2024.109318_bib65 article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 publication-title: Nature doi: 10.1038/nature10176 – volume: 81 start-page: 781 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib13 article-title: Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2017.09.0294 – volume: 168 start-page: 110 year: 2017 ident: 10.1016/j.soilbio.2024.109318_bib60 article-title: Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site publication-title: Soil and Tillage Research doi: 10.1016/j.still.2016.12.014 |
SSID | ssj0002513 |
Score | 2.520076 |
Snippet | Intercropping controls a variety of agroecosystem processes that are crucial for effective crop production by increasing crop diversity. Prior studies have... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109318 |
SubjectTerms | Additive intercropping agroecosystems atmospheric precipitation Crop diversification crop production crops denitrification fertilizer rates genes Intraspecific interaction microbial activity Microbial functional gene microbial nitrogen mineralization nitrification nitrogen balance Nitrogen cycle nitrogen fixation photosynthesis soil pH sustainable development |
Title | A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables |
URI | https://dx.doi.org/10.1016/j.soilbio.2024.109318 https://www.proquest.com/docview/3040382033 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD-pBdCrOHyOC125dk67pcQzHVNjJwW6hTdKxObrRbsIu_u2-16YORRh4aWloSpv3eO-VfN_3CHlUkHcg6yqHCx7CIe44kRHG4bEREe5zekmBthh1h2P-MvEnNdKvuDAIq7Sxv4zpRbS2I227mu3VbIYcXxRLhwTMy_04ZLDzAL289bmDeUD-tsK7Ask6wY7F056jXu4iniEH0OOFsBL2_vg7P_2K1EX6GZyRU1s30l75auekZtI6OelNM6udYerkqF81b7sg7z1aSn3QfJtCjZfPcopiTeBsFCFEGOSoRvD6egtnRHFQnaEELUUBiQwbeyGTilq8B12mFD-Djhy1RTbllH7AXzbyrvJLMh48vfWHju2r4CjGvbXjRyLmEKMFY4GIVMdXyqAGjRfEcZC4qBejdeQrzX0dwoAbatQBE6HPNFdJxK7IQbpMzTWhXeEh5YoncDv3lCsSHSaJ70ZCeYYHQYPwajWlsqLj2PtiISt02VxaI0g0giyN0CCt72mrUnVj3wRRmUr-cB8JmWHf1IfKtBKMhPslUWqWm1wyCHAMKiTGbv7_-FtyjFcl2OeOHKyzjbmHOmYdNwtHbZLD3vPrcPQFCIvzuQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3EfRYt6apTQ8eFh-srz0peIttki6r0pXtquzFP-UfdKZNFUUQBC8tpE2gM-lMQr7vG4BtjXkHs672hBQxXtI9L7HSeiK1MqFzTp6VaIv2futanN2ENyPwVnNhCFbpYn8V08to7VoazpqNx26XOL4klo4JWFTncQ5ZeW6HL7hvKw5Oj9DJO5yfHF8dtjxXWsDTgeADL0xkKjBMySCIZKL3Qq0tybDwKE2jzCfJFGOSUBsRmhgb_NiQFJaMw8AInSUBjjsK4wLDBZVN2H39xJXggsEp_UpiB0WftKHGHQn0PqRdIh1yUSo5UbGRnxPit9RQ5ruTGZh2C1XWrGwxCyM2n4OpZqfvxDrsHEwc1tXi5uG-ySptEVYMc1xUFt2CkToUzm5GmCWKqswQWn4wxDvBRpjpk-YtI8WKPlUSI-oWcwAT1ssZfQZre3pI9M0Oe8ZtPRG9igW4_hdrL8JY3svtErB9yYnjJTJ8XXDty8zEWRb6idTciihaBlFbU2mnck7FNh5UDWe7U84JipygKicsw-5Ht8dK5uO3DrJ2lfoyXxWmot-6btWuVegkOqBJctt7KlSAERUnlB8EK38ffhMmWleXF-ritH2-CpP0pEIarcHYoP9k13ERNUg3yknL4Pa__5J3VVIvSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+synthesis+reveals+additive+density+design+drives+intercropping+effects+on+soil+N-cycling+variables&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Li%2C+Y%C3%BCze&rft.au=Gu%2C+Xiaoyan&rft.au=Yong%2C+Taiwen&rft.au=Yang%2C+Wenyu&rft.date=2024-04-01&rft.issn=0038-0717&rft.volume=191&rft.spage=109318&rft_id=info:doi/10.1016%2Fj.soilbio.2024.109318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2024_109318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |