Evaluation of self-healing properties of asphalt mixture containing steel slag under microwave heating: Mechanical, thermal transfer and voids microstructural characteristics
In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicirc...
Saved in:
Published in | Journal of cleaner production Vol. 342; p. 130932 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects. |
---|---|
AbstractList | In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects. In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects. |
ArticleNumber | 130932 |
Author | Guo, Haoyan Wang, Zhenjun Wang, Xiaofeng Liu, Jianan Zhang, Tonghuan |
Author_xml | – sequence: 1 givenname: Jianan orcidid: 0000-0001-5200-8125 surname: Liu fullname: Liu, Jianan email: jnliu@chd.edu.cn organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China – sequence: 2 givenname: Tonghuan surname: Zhang fullname: Zhang, Tonghuan organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China – sequence: 3 givenname: Haoyan surname: Guo fullname: Guo, Haoyan organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China – sequence: 4 givenname: Zhenjun surname: Wang fullname: Wang, Zhenjun email: zjwang@chd.edu.cn organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China – sequence: 5 givenname: Xiaofeng surname: Wang fullname: Wang, Xiaofeng organization: Henan Provincial Communications Planning & Design Institute, Zhengzhou, 450052, PR China |
BookMark | eNqFkc1u1DAUhS1UJKaFR0DykgUZbCdOxrBAqCo_UhEbWFs3NzcdjzzOYDtTeCmeEYd0xaYrL_x9x9Y5l-wiTIEYeynFVgrZvjlsD-jpFKetEkptZS1MrZ6wjdx1ppLdrr1gG2G0qVqt2mfsMqWDELITXbNhf27O4GfIbgp8GnkiP1Z7Au_CHS-JJ4rZUVquIJ324DM_ul95jsRxChlcWMCUiTxPHu74HAaKhcE43cOZeMnKBXnLvxLuITgE_5rnPcUjeJ4jhDQWHsLAz5Mb0mqmHGcsjxSkSBEwU3QpO0zP2dMRfKIXD-cV-_Hx5vv15-r226cv1x9uK6wblSttsEOlsZZ9r_SoR0ld1_fQN50RXStKEYhaKA2CTN0Oum8F4Ti2RlIjtamv2Ks1t3Twc6aU7dElJO8h0DQnq9pmt2t0U8uC6hVdPp4ijfYU3RHibyuFXfaxB_uwj132ses-xXv3n4cu_xui1OL8o_b71abSwtlRtAkdBaTBRcJsh8k9kvAXGXK3NQ |
CitedBy_id | crossref_primary_10_1016_j_cscm_2023_e02250 crossref_primary_10_1016_j_jclepro_2023_139496 crossref_primary_10_1016_j_conbuildmat_2022_130210 crossref_primary_10_1016_j_conbuildmat_2023_132039 crossref_primary_10_1080_10298436_2023_2240471 crossref_primary_10_3390_polym14122476 crossref_primary_10_3390_coatings14101238 crossref_primary_10_1007_s40996_024_01547_x crossref_primary_10_1016_j_applthermaleng_2025_125887 crossref_primary_10_3390_coatings12040496 crossref_primary_10_1016_j_jclepro_2024_144170 crossref_primary_10_1016_j_cscm_2024_e03658 crossref_primary_10_1016_j_jclepro_2023_138910 crossref_primary_10_1155_2022_3925520 crossref_primary_10_1016_j_jobe_2023_107430 crossref_primary_10_1016_j_conbuildmat_2023_131419 crossref_primary_10_1617_s11527_024_02326_w crossref_primary_10_1016_j_matdes_2023_112358 crossref_primary_10_1016_j_conbuildmat_2022_128289 crossref_primary_10_1016_j_conbuildmat_2022_128961 crossref_primary_10_1016_j_cscm_2023_e02385 crossref_primary_10_1016_j_jclepro_2024_143265 crossref_primary_10_1016_j_conbuildmat_2023_134054 crossref_primary_10_1088_2053_1591_accd3e crossref_primary_10_1016_j_conbuildmat_2024_134874 crossref_primary_10_1016_j_renene_2022_11_057 crossref_primary_10_3390_ma15103560 crossref_primary_10_1016_j_eurpolymj_2023_111990 crossref_primary_10_1016_j_conbuildmat_2024_138280 crossref_primary_10_1016_j_fuel_2024_132399 crossref_primary_10_3390_su152115258 crossref_primary_10_1016_j_jclepro_2023_137171 crossref_primary_10_1016_j_jclepro_2024_142768 crossref_primary_10_1016_j_cemconcomp_2022_104732 crossref_primary_10_1016_j_conbuildmat_2023_133304 crossref_primary_10_1016_j_conbuildmat_2023_132778 crossref_primary_10_1080_14680629_2024_2302809 crossref_primary_10_1016_j_conbuildmat_2023_131132 crossref_primary_10_1016_j_conbuildmat_2023_133433 crossref_primary_10_1016_j_conbuildmat_2024_138362 crossref_primary_10_1088_1402_4896_ad1086 crossref_primary_10_1016_j_conbuildmat_2024_139134 crossref_primary_10_3390_buildings14040961 crossref_primary_10_1016_j_cscm_2024_e03038 crossref_primary_10_1016_j_jclepro_2023_138694 crossref_primary_10_1016_j_conbuildmat_2022_128621 crossref_primary_10_1016_j_conbuildmat_2023_132766 crossref_primary_10_1016_j_conbuildmat_2023_134787 crossref_primary_10_1016_j_conbuildmat_2022_129155 crossref_primary_10_1016_j_conbuildmat_2023_131436 crossref_primary_10_1155_2023_8888248 crossref_primary_10_1016_j_coldregions_2023_104028 crossref_primary_10_1016_j_conbuildmat_2024_135660 crossref_primary_10_1061_JMCEE7_MTENG_16026 crossref_primary_10_1016_j_conbuildmat_2024_137247 crossref_primary_10_1016_j_jclepro_2022_134980 crossref_primary_10_3390_polym14245474 crossref_primary_10_3390_ma16093312 |
Cites_doi | 10.1016/j.conbuildmat.2019.117627 10.1016/j.conbuildmat.2019.01.050 10.1016/j.matdes.2016.05.095 10.1016/j.conbuildmat.2019.117035 10.1016/j.conbuildmat.2021.123610 10.1016/j.jclepro.2020.125079 10.1080/08327823.2020.1714105 10.1016/j.conbuildmat.2013.08.034 10.1061/(ASCE)MT.1943-5533.0003148 10.3390/ma13071575 10.1016/j.jclepro.2020.121197 10.1021/acs.energyfuels.1c01035 10.1016/j.matdes.2015.06.098 10.1016/j.conbuildmat.2015.05.070 10.1061/(ASCE)MT.1943-5533.0003332 10.1016/j.jclepro.2018.10.223 10.1016/j.jclepro.2021.127225 10.1016/j.conbuildmat.2020.118510 10.1016/j.cemconcomp.2021.104330 10.1016/j.jclepro.2020.123121 10.1016/j.conbuildmat.2021.126083 10.3390/coatings9120813 10.1617/s11527-020-1453-7 10.1016/j.conbuildmat.2021.124501 10.1016/j.conbuildmat.2018.04.153 10.1061/(ASCE)MT.1943-5533.0002687 10.3390/ma12010146 10.1016/j.conbuildmat.2021.123480 10.1016/j.colsurfa.2021.126287 10.1016/j.jclepro.2020.119963 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2022.130932 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2022_130932 S0959652622005704 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-59c7c25c31bb25f5f1e77bbab4790760652cc5025a0e936d5b60ecff691e41593 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Mon Jul 21 11:40:53 EDT 2025 Tue Jul 01 03:23:56 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal transfer Self-healing Microwave heating Steel slag asphalt mixture Mechanical Voids microstructural characteristics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-59c7c25c31bb25f5f1e77bbab4790760652cc5025a0e936d5b60ecff691e41593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5200-8125 |
PQID | 2648845431 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2648845431 crossref_primary_10_1016_j_jclepro_2022_130932 crossref_citationtrail_10_1016_j_jclepro_2022_130932 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_130932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | JTG E42-2005 (bib15) 2005 Xiao, Erkens, Li, Ma, Liu (bib33) 2020; 13 Garcia, Salih, Gomez-Meijide (bib8) 2020; 238 Norambuena-Contreras, Yalcin, Hudson-Griffiths, Garcia (bib27) 2019; 31 Trigos, Gallego, Ignacio Escavy (bib30) 2020; 230 Esther, Pedro, Irune, Gerardo (bib5) 2020; 275 Fakhri, Bahmai, Javadi, Sharafi (bib6) 2020; 253 Guo, Wang, Liang, Li (bib10) 2022; 125 JTG E20-2011 (bib14) 2011 Chen, Wu, Wen, Zhao, Yi, Wan (bib3) 2015; 93 Sun, Sheng (bib29) 2020; 54 Norambuena-Contreras, Garcia (bib25) 2016; 106 Norambuena-Contreras, Yalcin, Garcia, Al-Mansoori, Yilmaz, Hudson-Griffiths (bib26) 2018; 175 Zhang, Duan, Zhu, Chen, Luo (bib34) 2021; 35 Li, Hao, Zhang (bib16) 2021; 287 Micaelo, Freire, Pereira (bib23) 2020; 53 Wang, Liu, Hao (bib32) 2019; 202 Su, Wang, Xie, Gao (bib28) 2021; 615 Liu, Wang, Guo, Yan (bib17) 2021; 308 Liu, Qi, Wang, Li, Wang (bib19) 2022; 319 Jiao, Sha, Liu, Jiang, Hu, Li (bib13) 2020; 261 Lizasoain-Arteaga, Indacoechea-Vega, Pascual-Munoz, Castro-Fresno (bib20) 2019; 208 Lyu, Li, Chen, Tian, Pei (bib22) 2021; 293 Ameri, Hesami, Goli (bib1) 2013; 49 Hasita, Suddeepong, Horpibulsuk, Samingthong, Arulrajah, Chinkulkijniwat (bib11) 2020; 32 Badroodi, Keymanesh, Shafabakhsh (bib2) 2020; 246 Wang, Zhang, Zhang, Feng, Lu, Cao (bib31) 2019; 12 Chen, Geng, Xia, He, Liu (bib4) 2021; 294 Moreno-Navarro, Iglesias, Rubio-Gamez (bib24) 2015; 84 Feng, Cui, Yi, Chen, Qin (bib7) 2020; 33 Lou, Sha, Li, Wang, Liu, Jiang, Cui (bib21) 2020; 246 He, Zhan, Lyu, Grenfell, Gao, Kowalski Karol, Valentin, Xie, Rzek, Ling (bib12) 2020; 20 Zhu, Yuan, Liu, Fan, Ding (bib35) 2020; 32 Guan, Liu, Zhao, Wu, Liu, Yang (bib9) 2019; 9 Liu, Wang, Luo, Bian, Liang, Yan (bib18) 2021; 303 Chen (10.1016/j.jclepro.2022.130932_bib4) 2021; 294 Wang (10.1016/j.jclepro.2022.130932_bib32) 2019; 202 Zhu (10.1016/j.jclepro.2022.130932_bib35) 2020; 32 Liu (10.1016/j.jclepro.2022.130932_bib19) 2022; 319 Ameri (10.1016/j.jclepro.2022.130932_bib1) 2013; 49 Li (10.1016/j.jclepro.2022.130932_bib16) 2021; 287 He (10.1016/j.jclepro.2022.130932_bib12) 2020; 20 Chen (10.1016/j.jclepro.2022.130932_bib3) 2015; 93 Hasita (10.1016/j.jclepro.2022.130932_bib11) 2020; 32 Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib25) 2016; 106 Fakhri (10.1016/j.jclepro.2022.130932_bib6) 2020; 253 Feng (10.1016/j.jclepro.2022.130932_bib7) 2020; 33 Guo (10.1016/j.jclepro.2022.130932_bib10) 2022; 125 Guan (10.1016/j.jclepro.2022.130932_bib9) 2019; 9 Esther (10.1016/j.jclepro.2022.130932_bib5) 2020; 275 Trigos (10.1016/j.jclepro.2022.130932_bib30) 2020; 230 Jiao (10.1016/j.jclepro.2022.130932_bib13) 2020; 261 Liu (10.1016/j.jclepro.2022.130932_bib18) 2021; 303 Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib27) 2019; 31 Moreno-Navarro (10.1016/j.jclepro.2022.130932_bib24) 2015; 84 Lyu (10.1016/j.jclepro.2022.130932_bib22) 2021; 293 Zhang (10.1016/j.jclepro.2022.130932_bib34) 2021; 35 Liu (10.1016/j.jclepro.2022.130932_bib17) 2021; 308 Wang (10.1016/j.jclepro.2022.130932_bib31) 2019; 12 Lou (10.1016/j.jclepro.2022.130932_bib21) 2020; 246 Garcia (10.1016/j.jclepro.2022.130932_bib8) 2020; 238 JTG E20-2011 (10.1016/j.jclepro.2022.130932_bib14) 2011 Sun (10.1016/j.jclepro.2022.130932_bib29) 2020; 54 Su (10.1016/j.jclepro.2022.130932_bib28) 2021; 615 Lizasoain-Arteaga (10.1016/j.jclepro.2022.130932_bib20) 2019; 208 Xiao (10.1016/j.jclepro.2022.130932_bib33) 2020; 13 Micaelo (10.1016/j.jclepro.2022.130932_bib23) 2020; 53 JTG E42-2005 (10.1016/j.jclepro.2022.130932_bib15) 2005 Badroodi (10.1016/j.jclepro.2022.130932_bib2) 2020; 246 Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib26) 2018; 175 |
References_xml | – volume: 303 year: 2021 ident: bib18 article-title: Changes of components and rheological properties of bitumen under dynamic thermal aging publication-title: Construct. Build. Mater. – volume: 261 year: 2020 ident: bib13 article-title: Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements publication-title: J. Clean. Prod. – volume: 54 start-page: 35 year: 2020 end-page: 51 ident: bib29 article-title: Multi-physical field study of asphalt mixtures containing moisture based on microwave heating publication-title: J. Microw. Power Electromagn. Energy – volume: 31 year: 2019 ident: bib27 article-title: Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators publication-title: J. Mater. Civ. Eng. – volume: 125 start-page: 104330 year: 2022 ident: bib10 article-title: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated cellulose publication-title: Cement Concr. Compos. – volume: 20 start-page: 15 year: 2020 end-page: 33 ident: bib12 article-title: Application status of steel slag asphalt mixture publication-title: J. Traffic Transport. Eng. – volume: 294 year: 2021 ident: bib4 article-title: A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements publication-title: Construct. Build. Mater. – volume: 35 start-page: 11017 year: 2021 end-page: 11036 ident: bib34 article-title: Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt publication-title: Energy Fuels – volume: 615 year: 2021 ident: bib28 article-title: Understanding the final surface state of self-healing microcapsules containing rejuvenator in bituminous binder of asphalt publication-title: Colloids Surf. A Physicochem. Eng. Asp. – year: 2005 ident: bib15 article-title: Testing Procedures of Aggregate for Highway Engineering in China – volume: 106 start-page: 404 year: 2016 end-page: 414 ident: bib25 article-title: Self-healing of asphalt mixture by microwave and induction heating publication-title: Mater. Des. – volume: 12 year: 2019 ident: bib31 article-title: Laboratory and numerical investigation of microwave heating properties of asphalt mixture publication-title: Materials – volume: 246 year: 2020 ident: bib2 article-title: Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior publication-title: Construct. Build. Mater. – volume: 32 year: 2020 ident: bib11 article-title: Properties of asphalt concrete using aggregates composed of limestone and steel slag blends publication-title: J. Mater. Civ. Eng. – volume: 319 year: 2022 ident: bib19 article-title: Influence of aging induced by mutation in temperature on property and microstructure development of asphalt binders publication-title: Construct. Build. Mater. – volume: 9 year: 2019 ident: bib9 article-title: Investigation of the microwave absorption of asphalt mixtures containing magnetite powder publication-title: Coatings – volume: 202 start-page: 692 year: 2019 end-page: 703 ident: bib32 article-title: Investigation on mechanical and microwave heating characteristics of asphalt mastic using activated carbon powder as electro-magnetic absorbing materials publication-title: Construct. Build. Mater. – volume: 32 year: 2020 ident: bib35 article-title: Evaluation of self-healing performance of asphalt concrete for macrocracks via microwave heating publication-title: J. Mater. Civ. Eng. – volume: 275 year: 2020 ident: bib5 article-title: Comprehensive analysis of the environmental impact of electric arc furnace steel slag on asphalt mixtures publication-title: J. Clean. Prod. – volume: 253 year: 2020 ident: bib6 article-title: An evaluation of the mechanical and self-healing properties of warm mix asphalt containing scrap metal additives publication-title: J. Clean. Prod. – volume: 308 year: 2021 ident: bib17 article-title: Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating publication-title: J. Clean. Prod. – year: 2011 ident: bib14 article-title: Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering – volume: 53 year: 2020 ident: bib23 article-title: Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties publication-title: Mater. Struct. – volume: 287 year: 2021 ident: bib16 article-title: Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: a review publication-title: J. Clean. Prod. – volume: 33 start-page: 50 year: 2020 end-page: 57 ident: bib7 article-title: Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test publication-title: China J. Highw. Transp. – volume: 13 year: 2020 ident: bib33 article-title: Sustainable designed pavement materials publication-title: Materials – volume: 293 year: 2021 ident: bib22 article-title: Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer publication-title: Construct. Build. Mater. – volume: 230 year: 2020 ident: bib30 article-title: Heating potential of aggregates in asphalt mixtures exposed to microwaves radiation publication-title: Construct. Build. Mater. – volume: 175 start-page: 254 year: 2018 end-page: 266 ident: bib26 article-title: Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules publication-title: Construct. Build. Mater. – volume: 49 start-page: 611 year: 2013 end-page: 617 ident: bib1 article-title: Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag publication-title: Construct. Build. Mater. – volume: 208 start-page: 1546 year: 2019 end-page: 1556 ident: bib20 article-title: Environmental impact assessment of induction-healed asphalt mixtures publication-title: J. Clean. Prod. – volume: 246 year: 2020 ident: bib21 article-title: Effect of metallic-waste aggregates on microwave self-healing performances of asphalt mixtures publication-title: Construct. Build. Mater. – volume: 238 year: 2020 ident: bib8 article-title: Optimum moment to heal cracks in asphalt roads by means electromagnetic induction publication-title: Construct. Build. Mater. – volume: 93 start-page: 911 year: 2015 end-page: 918 ident: bib3 article-title: Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture publication-title: Construct. Build. Mater. – volume: 84 start-page: 100 year: 2015 end-page: 109 ident: bib24 article-title: Development of mechanomutable asphalt binders for the construction of smart pavements publication-title: Mater. Des. – volume: 238 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib8 article-title: Optimum moment to heal cracks in asphalt roads by means electromagnetic induction publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117627 – volume: 202 start-page: 692 year: 2019 ident: 10.1016/j.jclepro.2022.130932_bib32 article-title: Investigation on mechanical and microwave heating characteristics of asphalt mastic using activated carbon powder as electro-magnetic absorbing materials publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.050 – volume: 246 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib2 article-title: Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior publication-title: Construct. Build. Mater. – volume: 33 start-page: 50 issue: 7 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib7 article-title: Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test publication-title: China J. Highw. Transp. – volume: 106 start-page: 404 year: 2016 ident: 10.1016/j.jclepro.2022.130932_bib25 article-title: Self-healing of asphalt mixture by microwave and induction heating publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.095 – volume: 230 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib30 article-title: Heating potential of aggregates in asphalt mixtures exposed to microwaves radiation publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117035 – volume: 294 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib4 article-title: A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123610 – volume: 287 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib16 article-title: Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125079 – volume: 54 start-page: 35 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib29 article-title: Multi-physical field study of asphalt mixtures containing moisture based on microwave heating publication-title: J. Microw. Power Electromagn. Energy doi: 10.1080/08327823.2020.1714105 – volume: 49 start-page: 611 year: 2013 ident: 10.1016/j.jclepro.2022.130932_bib1 article-title: Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.034 – volume: 32 issue: 7 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib11 article-title: Properties of asphalt concrete using aggregates composed of limestone and steel slag blends publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003148 – volume: 13 issue: 7 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib33 article-title: Sustainable designed pavement materials publication-title: Materials doi: 10.3390/ma13071575 – volume: 261 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib13 article-title: Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121197 – volume: 35 start-page: 11017 issue: 14 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib34 article-title: Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01035 – volume: 84 start-page: 100 year: 2015 ident: 10.1016/j.jclepro.2022.130932_bib24 article-title: Development of mechanomutable asphalt binders for the construction of smart pavements publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.06.098 – volume: 93 start-page: 911 year: 2015 ident: 10.1016/j.jclepro.2022.130932_bib3 article-title: Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2015.05.070 – volume: 32 issue: 9 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib35 article-title: Evaluation of self-healing performance of asphalt concrete for macrocracks via microwave heating publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003332 – volume: 208 start-page: 1546 year: 2019 ident: 10.1016/j.jclepro.2022.130932_bib20 article-title: Environmental impact assessment of induction-healed asphalt mixtures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.223 – volume: 20 start-page: 15 issue: 2 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib12 article-title: Application status of steel slag asphalt mixture publication-title: J. Traffic Transport. Eng. – year: 2005 ident: 10.1016/j.jclepro.2022.130932_bib15 – volume: 308 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib17 article-title: Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127225 – volume: 246 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib21 article-title: Effect of metallic-waste aggregates on microwave self-healing performances of asphalt mixtures publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118510 – volume: 125 start-page: 104330 year: 2022 ident: 10.1016/j.jclepro.2022.130932_bib10 article-title: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated cellulose publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104330 – volume: 275 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib5 article-title: Comprehensive analysis of the environmental impact of electric arc furnace steel slag on asphalt mixtures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123121 – volume: 319 year: 2022 ident: 10.1016/j.jclepro.2022.130932_bib19 article-title: Influence of aging induced by mutation in temperature on property and microstructure development of asphalt binders publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126083 – volume: 9 issue: 12 year: 2019 ident: 10.1016/j.jclepro.2022.130932_bib9 article-title: Investigation of the microwave absorption of asphalt mixtures containing magnetite powder publication-title: Coatings doi: 10.3390/coatings9120813 – volume: 53 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib23 article-title: Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties publication-title: Mater. Struct. doi: 10.1617/s11527-020-1453-7 – volume: 303 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib18 article-title: Changes of components and rheological properties of bitumen under dynamic thermal aging publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124501 – volume: 175 start-page: 254 year: 2018 ident: 10.1016/j.jclepro.2022.130932_bib26 article-title: Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2018.04.153 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.jclepro.2022.130932_bib27 article-title: Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002687 – volume: 12 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2022.130932_bib31 article-title: Laboratory and numerical investigation of microwave heating properties of asphalt mixture publication-title: Materials doi: 10.3390/ma12010146 – volume: 293 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib22 article-title: Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123480 – volume: 615 year: 2021 ident: 10.1016/j.jclepro.2022.130932_bib28 article-title: Understanding the final surface state of self-healing microcapsules containing rejuvenator in bituminous binder of asphalt publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.126287 – volume: 253 year: 2020 ident: 10.1016/j.jclepro.2022.130932_bib6 article-title: An evaluation of the mechanical and self-healing properties of warm mix asphalt containing scrap metal additives publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.119963 – year: 2011 ident: 10.1016/j.jclepro.2022.130932_bib14 |
SSID | ssj0017074 |
Score | 2.571525 |
Snippet | In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130932 |
SubjectTerms | absorption bitumen energy limestone Mechanical Microwave heating microwave treatment Self-healing slags steel Steel slag asphalt mixture surface temperature Thermal transfer Voids microstructural characteristics X-radiation |
Title | Evaluation of self-healing properties of asphalt mixture containing steel slag under microwave heating: Mechanical, thermal transfer and voids microstructural characteristics |
URI | https://dx.doi.org/10.1016/j.jclepro.2022.130932 https://www.proquest.com/docview/2648845431 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaC9LIehnUPNF0XaMCOc2LLkhztVhQpsg3pZSvQmyDLdJEgcYIkTXvqT-pvLOlH2g4oCuxomxIEkaY-UeQnxr5p6UsW7yD2JgxwxQsDlzuDW5VcDyAyzpXlYuNzPbqQvy7VZYudNrUwlFZZ-_7Kp5feun7Tr2ezv5xM-n8ogqWV0IICI0nJCSplQlbeu9uleURJWDExU7iLpB-rePrT3hQ7Q0eF20Qh6F5kE4uX1qd_PHW5_Jy9Y29r3MhPqqEdsBYU79n-EzbBD-x-uGPu5oucr2GWB4QD8SNfUsx9ReSp9Mmtl3RMzueTWzpA4JSvXt0UwVHpMONoJ1ecystWKIMDvXFb4OS2UeQHHwOVC5N2v3PCj3Mc2KYEwCjvioxvF5NsXbWs-GmJ24P759zQH9nF2fDv6Sior2MIfCzFJlDGJ14oH0dpKlSu8giSJE1dKhND53s4u94rxFAuBBPrTKU6BJ_n2kSAMMHEn1i7WBRwyLiGAQFJGbrEIZ4DlNSZFg7izIGJZIfJRgnW11zldGXGzDZJaVNb686S7myluw7r7ZotK7KO1xoMGg3bZ1ZncUF5renXxiIs_pF0zOIKWFyvLeUMDiRxDBz9f_ef2Rt6omy3SB2zNioLviD82aTd0r67bO_k5-_R-QNQVgmb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYieqA9oAJF5VEwEsdusuu1vXFvFQoKj3ABJG6W1zuLEiWbiAToqT-J39iZfYRSqULiuh5b1o49_uyZ-YaxIy19yeIdxN6EAZ54YeByZ_CqkusuRMa5Ml1scKn7N_LsVt222HGTC0NhlbXtr2x6aa3rL536b3Zmw2Hnil6wtBJa0MNIQpygHyRuXypj0P69jPOIkrCiYqb3LhJ_SePpjNojHA0tFd4ThaDCyCYW_zug_jHV5flz8pmt1cCR_6zmts5aUGywT3_RCW6y596SuptPcz6HcR4QEMRGPqNH93tiT6UmN5-Rn5xPhr_Ig8ApYL0qFcFR6zDmuFDuOOWX3aMMTvTJPQInu40iP_gAKF-Y1PudE4Cc4MQWJQJGeVdk_HE6zOZVz4qglsg9uH9NDv2F3Zz0ro_7QV2PIfCxFItAGZ94oXwcpalQucojSJI0dalMDDn48O96rxBEuRBMrDOV6hB8nmsTAeIEE2-xlWJawFfGNXQJScrQJQ4BHaCkzrRwEGcOTCS3mWyUYH1NVk41M8a2iUob2Vp3lnRnK91ts_ay26xi63irQ7fRsH217CyeKG91PWxWhMUtSX4WV8D0YW4paLAriWRg5_3DH7DV_vXgwl6cXp7vso_UQqFvkdpjK6g4-IZYaJHul2v9D0MhCyk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+self-healing+properties+of+asphalt+mixture+containing+steel+slag+under+microwave+heating%3A+Mechanical%2C+thermal+transfer+and+voids+microstructural+characteristics&rft.jtitle=Journal+of+cleaner+production&rft.au=Liu%2C+Jianan&rft.au=Zhang%2C+Tonghuan&rft.au=Guo%2C+Haoyan&rft.au=Wang%2C+Zhenjun&rft.date=2022-03-15&rft.issn=0959-6526&rft.volume=342+p.130932-&rft_id=info:doi/10.1016%2Fj.jclepro.2022.130932&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |