Evaluation of self-healing properties of asphalt mixture containing steel slag under microwave heating: Mechanical, thermal transfer and voids microstructural characteristics

In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicirc...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 342; p. 130932
Main Authors Liu, Jianan, Zhang, Tonghuan, Guo, Haoyan, Wang, Zhenjun, Wang, Xiaofeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects.
AbstractList In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects.
In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH) were studied. Firstly, the element compositions of steel slag and its absorbing heating mechanism were analyzed. Then, five groups of semicircular bending (SCB) samples with different steel slag content were prepared, and the self-healing performance of the steel slag asphalt mixture was evaluated by the crack-healing test. Subsequently, the surface temperature and thermal transfer process of MH 40 s in SCB and crack propagation zone (CPZ) were compared and analyzed. Finally, the Marshall sample before and after MH were scanned by X-ray computed tomography (CT). The results show that steel slag has good wave absorption performance because it contains a lot of metal oxides. The initial strength of steel slag asphalt mixture does not decrease significantly, but its self-healing index fracture energy healing rate (FEHR) is obviously higher than that of the conventional mixture. And the self-healing properties of samples with higher steel slag content will be better. Besides, compared with the total average temperature of SCB, the FEHR of the sample is more correlated with the surface temperature of CPZ after MH. Based on CT scanning, steel slag is uniformly distributed in the mixture. An appropriate MH cycle can effectively improve the voids microstructural of the mixture, but an excessive MH cycle can bring negative effects.
ArticleNumber 130932
Author Guo, Haoyan
Wang, Zhenjun
Wang, Xiaofeng
Liu, Jianan
Zhang, Tonghuan
Author_xml – sequence: 1
  givenname: Jianan
  orcidid: 0000-0001-5200-8125
  surname: Liu
  fullname: Liu, Jianan
  email: jnliu@chd.edu.cn
  organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China
– sequence: 2
  givenname: Tonghuan
  surname: Zhang
  fullname: Zhang, Tonghuan
  organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China
– sequence: 3
  givenname: Haoyan
  surname: Guo
  fullname: Guo, Haoyan
  organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China
– sequence: 4
  givenname: Zhenjun
  surname: Wang
  fullname: Wang, Zhenjun
  email: zjwang@chd.edu.cn
  organization: School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, PR China
– sequence: 5
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  organization: Henan Provincial Communications Planning & Design Institute, Zhengzhou, 450052, PR China
BookMark eNqFkc1u1DAUhS1UJKaFR0DykgUZbCdOxrBAqCo_UhEbWFs3NzcdjzzOYDtTeCmeEYd0xaYrL_x9x9Y5l-wiTIEYeynFVgrZvjlsD-jpFKetEkptZS1MrZ6wjdx1ppLdrr1gG2G0qVqt2mfsMqWDELITXbNhf27O4GfIbgp8GnkiP1Z7Au_CHS-JJ4rZUVquIJ324DM_ul95jsRxChlcWMCUiTxPHu74HAaKhcE43cOZeMnKBXnLvxLuITgE_5rnPcUjeJ4jhDQWHsLAz5Mb0mqmHGcsjxSkSBEwU3QpO0zP2dMRfKIXD-cV-_Hx5vv15-r226cv1x9uK6wblSttsEOlsZZ9r_SoR0ld1_fQN50RXStKEYhaKA2CTN0Oum8F4Ti2RlIjtamv2Ks1t3Twc6aU7dElJO8h0DQnq9pmt2t0U8uC6hVdPp4ijfYU3RHibyuFXfaxB_uwj132ses-xXv3n4cu_xui1OL8o_b71abSwtlRtAkdBaTBRcJsh8k9kvAXGXK3NQ
CitedBy_id crossref_primary_10_1016_j_cscm_2023_e02250
crossref_primary_10_1016_j_jclepro_2023_139496
crossref_primary_10_1016_j_conbuildmat_2022_130210
crossref_primary_10_1016_j_conbuildmat_2023_132039
crossref_primary_10_1080_10298436_2023_2240471
crossref_primary_10_3390_polym14122476
crossref_primary_10_3390_coatings14101238
crossref_primary_10_1007_s40996_024_01547_x
crossref_primary_10_1016_j_applthermaleng_2025_125887
crossref_primary_10_3390_coatings12040496
crossref_primary_10_1016_j_jclepro_2024_144170
crossref_primary_10_1016_j_cscm_2024_e03658
crossref_primary_10_1016_j_jclepro_2023_138910
crossref_primary_10_1155_2022_3925520
crossref_primary_10_1016_j_jobe_2023_107430
crossref_primary_10_1016_j_conbuildmat_2023_131419
crossref_primary_10_1617_s11527_024_02326_w
crossref_primary_10_1016_j_matdes_2023_112358
crossref_primary_10_1016_j_conbuildmat_2022_128289
crossref_primary_10_1016_j_conbuildmat_2022_128961
crossref_primary_10_1016_j_cscm_2023_e02385
crossref_primary_10_1016_j_jclepro_2024_143265
crossref_primary_10_1016_j_conbuildmat_2023_134054
crossref_primary_10_1088_2053_1591_accd3e
crossref_primary_10_1016_j_conbuildmat_2024_134874
crossref_primary_10_1016_j_renene_2022_11_057
crossref_primary_10_3390_ma15103560
crossref_primary_10_1016_j_eurpolymj_2023_111990
crossref_primary_10_1016_j_conbuildmat_2024_138280
crossref_primary_10_1016_j_fuel_2024_132399
crossref_primary_10_3390_su152115258
crossref_primary_10_1016_j_jclepro_2023_137171
crossref_primary_10_1016_j_jclepro_2024_142768
crossref_primary_10_1016_j_cemconcomp_2022_104732
crossref_primary_10_1016_j_conbuildmat_2023_133304
crossref_primary_10_1016_j_conbuildmat_2023_132778
crossref_primary_10_1080_14680629_2024_2302809
crossref_primary_10_1016_j_conbuildmat_2023_131132
crossref_primary_10_1016_j_conbuildmat_2023_133433
crossref_primary_10_1016_j_conbuildmat_2024_138362
crossref_primary_10_1088_1402_4896_ad1086
crossref_primary_10_1016_j_conbuildmat_2024_139134
crossref_primary_10_3390_buildings14040961
crossref_primary_10_1016_j_cscm_2024_e03038
crossref_primary_10_1016_j_jclepro_2023_138694
crossref_primary_10_1016_j_conbuildmat_2022_128621
crossref_primary_10_1016_j_conbuildmat_2023_132766
crossref_primary_10_1016_j_conbuildmat_2023_134787
crossref_primary_10_1016_j_conbuildmat_2022_129155
crossref_primary_10_1016_j_conbuildmat_2023_131436
crossref_primary_10_1155_2023_8888248
crossref_primary_10_1016_j_coldregions_2023_104028
crossref_primary_10_1016_j_conbuildmat_2024_135660
crossref_primary_10_1061_JMCEE7_MTENG_16026
crossref_primary_10_1016_j_conbuildmat_2024_137247
crossref_primary_10_1016_j_jclepro_2022_134980
crossref_primary_10_3390_polym14245474
crossref_primary_10_3390_ma16093312
Cites_doi 10.1016/j.conbuildmat.2019.117627
10.1016/j.conbuildmat.2019.01.050
10.1016/j.matdes.2016.05.095
10.1016/j.conbuildmat.2019.117035
10.1016/j.conbuildmat.2021.123610
10.1016/j.jclepro.2020.125079
10.1080/08327823.2020.1714105
10.1016/j.conbuildmat.2013.08.034
10.1061/(ASCE)MT.1943-5533.0003148
10.3390/ma13071575
10.1016/j.jclepro.2020.121197
10.1021/acs.energyfuels.1c01035
10.1016/j.matdes.2015.06.098
10.1016/j.conbuildmat.2015.05.070
10.1061/(ASCE)MT.1943-5533.0003332
10.1016/j.jclepro.2018.10.223
10.1016/j.jclepro.2021.127225
10.1016/j.conbuildmat.2020.118510
10.1016/j.cemconcomp.2021.104330
10.1016/j.jclepro.2020.123121
10.1016/j.conbuildmat.2021.126083
10.3390/coatings9120813
10.1617/s11527-020-1453-7
10.1016/j.conbuildmat.2021.124501
10.1016/j.conbuildmat.2018.04.153
10.1061/(ASCE)MT.1943-5533.0002687
10.3390/ma12010146
10.1016/j.conbuildmat.2021.123480
10.1016/j.colsurfa.2021.126287
10.1016/j.jclepro.2020.119963
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.130932
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_130932
S0959652622005704
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c342t-59c7c25c31bb25f5f1e77bbab4790760652cc5025a0e936d5b60ecff691e41593
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Mon Jul 21 11:40:53 EDT 2025
Tue Jul 01 03:23:56 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal transfer
Self-healing
Microwave heating
Steel slag asphalt mixture
Mechanical
Voids microstructural characteristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-59c7c25c31bb25f5f1e77bbab4790760652cc5025a0e936d5b60ecff691e41593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5200-8125
PQID 2648845431
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2648845431
crossref_primary_10_1016_j_jclepro_2022_130932
crossref_citationtrail_10_1016_j_jclepro_2022_130932
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_130932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References JTG E42-2005 (bib15) 2005
Xiao, Erkens, Li, Ma, Liu (bib33) 2020; 13
Garcia, Salih, Gomez-Meijide (bib8) 2020; 238
Norambuena-Contreras, Yalcin, Hudson-Griffiths, Garcia (bib27) 2019; 31
Trigos, Gallego, Ignacio Escavy (bib30) 2020; 230
Esther, Pedro, Irune, Gerardo (bib5) 2020; 275
Fakhri, Bahmai, Javadi, Sharafi (bib6) 2020; 253
Guo, Wang, Liang, Li (bib10) 2022; 125
JTG E20-2011 (bib14) 2011
Chen, Wu, Wen, Zhao, Yi, Wan (bib3) 2015; 93
Sun, Sheng (bib29) 2020; 54
Norambuena-Contreras, Garcia (bib25) 2016; 106
Norambuena-Contreras, Yalcin, Garcia, Al-Mansoori, Yilmaz, Hudson-Griffiths (bib26) 2018; 175
Zhang, Duan, Zhu, Chen, Luo (bib34) 2021; 35
Li, Hao, Zhang (bib16) 2021; 287
Micaelo, Freire, Pereira (bib23) 2020; 53
Wang, Liu, Hao (bib32) 2019; 202
Su, Wang, Xie, Gao (bib28) 2021; 615
Liu, Wang, Guo, Yan (bib17) 2021; 308
Liu, Qi, Wang, Li, Wang (bib19) 2022; 319
Jiao, Sha, Liu, Jiang, Hu, Li (bib13) 2020; 261
Lizasoain-Arteaga, Indacoechea-Vega, Pascual-Munoz, Castro-Fresno (bib20) 2019; 208
Lyu, Li, Chen, Tian, Pei (bib22) 2021; 293
Ameri, Hesami, Goli (bib1) 2013; 49
Hasita, Suddeepong, Horpibulsuk, Samingthong, Arulrajah, Chinkulkijniwat (bib11) 2020; 32
Badroodi, Keymanesh, Shafabakhsh (bib2) 2020; 246
Wang, Zhang, Zhang, Feng, Lu, Cao (bib31) 2019; 12
Chen, Geng, Xia, He, Liu (bib4) 2021; 294
Moreno-Navarro, Iglesias, Rubio-Gamez (bib24) 2015; 84
Feng, Cui, Yi, Chen, Qin (bib7) 2020; 33
Lou, Sha, Li, Wang, Liu, Jiang, Cui (bib21) 2020; 246
He, Zhan, Lyu, Grenfell, Gao, Kowalski Karol, Valentin, Xie, Rzek, Ling (bib12) 2020; 20
Zhu, Yuan, Liu, Fan, Ding (bib35) 2020; 32
Guan, Liu, Zhao, Wu, Liu, Yang (bib9) 2019; 9
Liu, Wang, Luo, Bian, Liang, Yan (bib18) 2021; 303
Chen (10.1016/j.jclepro.2022.130932_bib4) 2021; 294
Wang (10.1016/j.jclepro.2022.130932_bib32) 2019; 202
Zhu (10.1016/j.jclepro.2022.130932_bib35) 2020; 32
Liu (10.1016/j.jclepro.2022.130932_bib19) 2022; 319
Ameri (10.1016/j.jclepro.2022.130932_bib1) 2013; 49
Li (10.1016/j.jclepro.2022.130932_bib16) 2021; 287
He (10.1016/j.jclepro.2022.130932_bib12) 2020; 20
Chen (10.1016/j.jclepro.2022.130932_bib3) 2015; 93
Hasita (10.1016/j.jclepro.2022.130932_bib11) 2020; 32
Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib25) 2016; 106
Fakhri (10.1016/j.jclepro.2022.130932_bib6) 2020; 253
Feng (10.1016/j.jclepro.2022.130932_bib7) 2020; 33
Guo (10.1016/j.jclepro.2022.130932_bib10) 2022; 125
Guan (10.1016/j.jclepro.2022.130932_bib9) 2019; 9
Esther (10.1016/j.jclepro.2022.130932_bib5) 2020; 275
Trigos (10.1016/j.jclepro.2022.130932_bib30) 2020; 230
Jiao (10.1016/j.jclepro.2022.130932_bib13) 2020; 261
Liu (10.1016/j.jclepro.2022.130932_bib18) 2021; 303
Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib27) 2019; 31
Moreno-Navarro (10.1016/j.jclepro.2022.130932_bib24) 2015; 84
Lyu (10.1016/j.jclepro.2022.130932_bib22) 2021; 293
Zhang (10.1016/j.jclepro.2022.130932_bib34) 2021; 35
Liu (10.1016/j.jclepro.2022.130932_bib17) 2021; 308
Wang (10.1016/j.jclepro.2022.130932_bib31) 2019; 12
Lou (10.1016/j.jclepro.2022.130932_bib21) 2020; 246
Garcia (10.1016/j.jclepro.2022.130932_bib8) 2020; 238
JTG E20-2011 (10.1016/j.jclepro.2022.130932_bib14) 2011
Sun (10.1016/j.jclepro.2022.130932_bib29) 2020; 54
Su (10.1016/j.jclepro.2022.130932_bib28) 2021; 615
Lizasoain-Arteaga (10.1016/j.jclepro.2022.130932_bib20) 2019; 208
Xiao (10.1016/j.jclepro.2022.130932_bib33) 2020; 13
Micaelo (10.1016/j.jclepro.2022.130932_bib23) 2020; 53
JTG E42-2005 (10.1016/j.jclepro.2022.130932_bib15) 2005
Badroodi (10.1016/j.jclepro.2022.130932_bib2) 2020; 246
Norambuena-Contreras (10.1016/j.jclepro.2022.130932_bib26) 2018; 175
References_xml – volume: 303
  year: 2021
  ident: bib18
  article-title: Changes of components and rheological properties of bitumen under dynamic thermal aging
  publication-title: Construct. Build. Mater.
– volume: 261
  year: 2020
  ident: bib13
  article-title: Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements
  publication-title: J. Clean. Prod.
– volume: 54
  start-page: 35
  year: 2020
  end-page: 51
  ident: bib29
  article-title: Multi-physical field study of asphalt mixtures containing moisture based on microwave heating
  publication-title: J. Microw. Power Electromagn. Energy
– volume: 31
  year: 2019
  ident: bib27
  article-title: Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators
  publication-title: J. Mater. Civ. Eng.
– volume: 125
  start-page: 104330
  year: 2022
  ident: bib10
  article-title: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated cellulose
  publication-title: Cement Concr. Compos.
– volume: 20
  start-page: 15
  year: 2020
  end-page: 33
  ident: bib12
  article-title: Application status of steel slag asphalt mixture
  publication-title: J. Traffic Transport. Eng.
– volume: 294
  year: 2021
  ident: bib4
  article-title: A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements
  publication-title: Construct. Build. Mater.
– volume: 35
  start-page: 11017
  year: 2021
  end-page: 11036
  ident: bib34
  article-title: Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt
  publication-title: Energy Fuels
– volume: 615
  year: 2021
  ident: bib28
  article-title: Understanding the final surface state of self-healing microcapsules containing rejuvenator in bituminous binder of asphalt
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– year: 2005
  ident: bib15
  article-title: Testing Procedures of Aggregate for Highway Engineering in China
– volume: 106
  start-page: 404
  year: 2016
  end-page: 414
  ident: bib25
  article-title: Self-healing of asphalt mixture by microwave and induction heating
  publication-title: Mater. Des.
– volume: 12
  year: 2019
  ident: bib31
  article-title: Laboratory and numerical investigation of microwave heating properties of asphalt mixture
  publication-title: Materials
– volume: 246
  year: 2020
  ident: bib2
  article-title: Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior
  publication-title: Construct. Build. Mater.
– volume: 32
  year: 2020
  ident: bib11
  article-title: Properties of asphalt concrete using aggregates composed of limestone and steel slag blends
  publication-title: J. Mater. Civ. Eng.
– volume: 319
  year: 2022
  ident: bib19
  article-title: Influence of aging induced by mutation in temperature on property and microstructure development of asphalt binders
  publication-title: Construct. Build. Mater.
– volume: 9
  year: 2019
  ident: bib9
  article-title: Investigation of the microwave absorption of asphalt mixtures containing magnetite powder
  publication-title: Coatings
– volume: 202
  start-page: 692
  year: 2019
  end-page: 703
  ident: bib32
  article-title: Investigation on mechanical and microwave heating characteristics of asphalt mastic using activated carbon powder as electro-magnetic absorbing materials
  publication-title: Construct. Build. Mater.
– volume: 32
  year: 2020
  ident: bib35
  article-title: Evaluation of self-healing performance of asphalt concrete for macrocracks via microwave heating
  publication-title: J. Mater. Civ. Eng.
– volume: 275
  year: 2020
  ident: bib5
  article-title: Comprehensive analysis of the environmental impact of electric arc furnace steel slag on asphalt mixtures
  publication-title: J. Clean. Prod.
– volume: 253
  year: 2020
  ident: bib6
  article-title: An evaluation of the mechanical and self-healing properties of warm mix asphalt containing scrap metal additives
  publication-title: J. Clean. Prod.
– volume: 308
  year: 2021
  ident: bib17
  article-title: Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating
  publication-title: J. Clean. Prod.
– year: 2011
  ident: bib14
  article-title: Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering
– volume: 53
  year: 2020
  ident: bib23
  article-title: Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties
  publication-title: Mater. Struct.
– volume: 287
  year: 2021
  ident: bib16
  article-title: Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: a review
  publication-title: J. Clean. Prod.
– volume: 33
  start-page: 50
  year: 2020
  end-page: 57
  ident: bib7
  article-title: Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test
  publication-title: China J. Highw. Transp.
– volume: 13
  year: 2020
  ident: bib33
  article-title: Sustainable designed pavement materials
  publication-title: Materials
– volume: 293
  year: 2021
  ident: bib22
  article-title: Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer
  publication-title: Construct. Build. Mater.
– volume: 230
  year: 2020
  ident: bib30
  article-title: Heating potential of aggregates in asphalt mixtures exposed to microwaves radiation
  publication-title: Construct. Build. Mater.
– volume: 175
  start-page: 254
  year: 2018
  end-page: 266
  ident: bib26
  article-title: Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules
  publication-title: Construct. Build. Mater.
– volume: 49
  start-page: 611
  year: 2013
  end-page: 617
  ident: bib1
  article-title: Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag
  publication-title: Construct. Build. Mater.
– volume: 208
  start-page: 1546
  year: 2019
  end-page: 1556
  ident: bib20
  article-title: Environmental impact assessment of induction-healed asphalt mixtures
  publication-title: J. Clean. Prod.
– volume: 246
  year: 2020
  ident: bib21
  article-title: Effect of metallic-waste aggregates on microwave self-healing performances of asphalt mixtures
  publication-title: Construct. Build. Mater.
– volume: 238
  year: 2020
  ident: bib8
  article-title: Optimum moment to heal cracks in asphalt roads by means electromagnetic induction
  publication-title: Construct. Build. Mater.
– volume: 93
  start-page: 911
  year: 2015
  end-page: 918
  ident: bib3
  article-title: Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture
  publication-title: Construct. Build. Mater.
– volume: 84
  start-page: 100
  year: 2015
  end-page: 109
  ident: bib24
  article-title: Development of mechanomutable asphalt binders for the construction of smart pavements
  publication-title: Mater. Des.
– volume: 238
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib8
  article-title: Optimum moment to heal cracks in asphalt roads by means electromagnetic induction
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117627
– volume: 202
  start-page: 692
  year: 2019
  ident: 10.1016/j.jclepro.2022.130932_bib32
  article-title: Investigation on mechanical and microwave heating characteristics of asphalt mastic using activated carbon powder as electro-magnetic absorbing materials
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.050
– volume: 246
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib2
  article-title: Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior
  publication-title: Construct. Build. Mater.
– volume: 33
  start-page: 50
  issue: 7
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib7
  article-title: Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test
  publication-title: China J. Highw. Transp.
– volume: 106
  start-page: 404
  year: 2016
  ident: 10.1016/j.jclepro.2022.130932_bib25
  article-title: Self-healing of asphalt mixture by microwave and induction heating
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.095
– volume: 230
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib30
  article-title: Heating potential of aggregates in asphalt mixtures exposed to microwaves radiation
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117035
– volume: 294
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib4
  article-title: A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123610
– volume: 287
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib16
  article-title: Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125079
– volume: 54
  start-page: 35
  issue: 1
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib29
  article-title: Multi-physical field study of asphalt mixtures containing moisture based on microwave heating
  publication-title: J. Microw. Power Electromagn. Energy
  doi: 10.1080/08327823.2020.1714105
– volume: 49
  start-page: 611
  year: 2013
  ident: 10.1016/j.jclepro.2022.130932_bib1
  article-title: Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.034
– volume: 32
  issue: 7
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib11
  article-title: Properties of asphalt concrete using aggregates composed of limestone and steel slag blends
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003148
– volume: 13
  issue: 7
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib33
  article-title: Sustainable designed pavement materials
  publication-title: Materials
  doi: 10.3390/ma13071575
– volume: 261
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib13
  article-title: Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121197
– volume: 35
  start-page: 11017
  issue: 14
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib34
  article-title: Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01035
– volume: 84
  start-page: 100
  year: 2015
  ident: 10.1016/j.jclepro.2022.130932_bib24
  article-title: Development of mechanomutable asphalt binders for the construction of smart pavements
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.06.098
– volume: 93
  start-page: 911
  year: 2015
  ident: 10.1016/j.jclepro.2022.130932_bib3
  article-title: Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.05.070
– volume: 32
  issue: 9
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib35
  article-title: Evaluation of self-healing performance of asphalt concrete for macrocracks via microwave heating
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003332
– volume: 208
  start-page: 1546
  year: 2019
  ident: 10.1016/j.jclepro.2022.130932_bib20
  article-title: Environmental impact assessment of induction-healed asphalt mixtures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.223
– volume: 20
  start-page: 15
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib12
  article-title: Application status of steel slag asphalt mixture
  publication-title: J. Traffic Transport. Eng.
– year: 2005
  ident: 10.1016/j.jclepro.2022.130932_bib15
– volume: 308
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib17
  article-title: Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127225
– volume: 246
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib21
  article-title: Effect of metallic-waste aggregates on microwave self-healing performances of asphalt mixtures
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118510
– volume: 125
  start-page: 104330
  year: 2022
  ident: 10.1016/j.jclepro.2022.130932_bib10
  article-title: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated cellulose
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104330
– volume: 275
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib5
  article-title: Comprehensive analysis of the environmental impact of electric arc furnace steel slag on asphalt mixtures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123121
– volume: 319
  year: 2022
  ident: 10.1016/j.jclepro.2022.130932_bib19
  article-title: Influence of aging induced by mutation in temperature on property and microstructure development of asphalt binders
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126083
– volume: 9
  issue: 12
  year: 2019
  ident: 10.1016/j.jclepro.2022.130932_bib9
  article-title: Investigation of the microwave absorption of asphalt mixtures containing magnetite powder
  publication-title: Coatings
  doi: 10.3390/coatings9120813
– volume: 53
  issue: 1
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib23
  article-title: Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-020-1453-7
– volume: 303
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib18
  article-title: Changes of components and rheological properties of bitumen under dynamic thermal aging
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124501
– volume: 175
  start-page: 254
  year: 2018
  ident: 10.1016/j.jclepro.2022.130932_bib26
  article-title: Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.04.153
– volume: 31
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2022.130932_bib27
  article-title: Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002687
– volume: 12
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2022.130932_bib31
  article-title: Laboratory and numerical investigation of microwave heating properties of asphalt mixture
  publication-title: Materials
  doi: 10.3390/ma12010146
– volume: 293
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib22
  article-title: Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123480
– volume: 615
  year: 2021
  ident: 10.1016/j.jclepro.2022.130932_bib28
  article-title: Understanding the final surface state of self-healing microcapsules containing rejuvenator in bituminous binder of asphalt
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.126287
– volume: 253
  year: 2020
  ident: 10.1016/j.jclepro.2022.130932_bib6
  article-title: An evaluation of the mechanical and self-healing properties of warm mix asphalt containing scrap metal additives
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.119963
– year: 2011
  ident: 10.1016/j.jclepro.2022.130932_bib14
SSID ssj0017074
Score 2.571525
Snippet In this work, the asphalt mixture was prepared by partially replacing limestone with steel slag, and the self-healing properties under microwave heating (MH)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130932
SubjectTerms absorption
bitumen
energy
limestone
Mechanical
Microwave heating
microwave treatment
Self-healing
slags
steel
Steel slag asphalt mixture
surface temperature
Thermal transfer
Voids microstructural characteristics
X-radiation
Title Evaluation of self-healing properties of asphalt mixture containing steel slag under microwave heating: Mechanical, thermal transfer and voids microstructural characteristics
URI https://dx.doi.org/10.1016/j.jclepro.2022.130932
https://www.proquest.com/docview/2648845431
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaC9LIehnUPNF0XaMCOc2LLkhztVhQpsg3pZSvQmyDLdJEgcYIkTXvqT-pvLOlH2g4oCuxomxIEkaY-UeQnxr5p6UsW7yD2JgxwxQsDlzuDW5VcDyAyzpXlYuNzPbqQvy7VZYudNrUwlFZZ-_7Kp5feun7Tr2ezv5xM-n8ogqWV0IICI0nJCSplQlbeu9uleURJWDExU7iLpB-rePrT3hQ7Q0eF20Qh6F5kE4uX1qd_PHW5_Jy9Y29r3MhPqqEdsBYU79n-EzbBD-x-uGPu5oucr2GWB4QD8SNfUsx9ReSp9Mmtl3RMzueTWzpA4JSvXt0UwVHpMONoJ1ecystWKIMDvXFb4OS2UeQHHwOVC5N2v3PCj3Mc2KYEwCjvioxvF5NsXbWs-GmJ24P759zQH9nF2fDv6Sior2MIfCzFJlDGJ14oH0dpKlSu8giSJE1dKhND53s4u94rxFAuBBPrTKU6BJ_n2kSAMMHEn1i7WBRwyLiGAQFJGbrEIZ4DlNSZFg7izIGJZIfJRgnW11zldGXGzDZJaVNb686S7myluw7r7ZotK7KO1xoMGg3bZ1ZncUF5renXxiIs_pF0zOIKWFyvLeUMDiRxDBz9f_ef2Rt6omy3SB2zNioLviD82aTd0r67bO_k5-_R-QNQVgmb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYieqA9oAJF5VEwEsdusuu1vXFvFQoKj3ABJG6W1zuLEiWbiAToqT-J39iZfYRSqULiuh5b1o49_uyZ-YaxIy19yeIdxN6EAZ54YeByZ_CqkusuRMa5Ml1scKn7N_LsVt222HGTC0NhlbXtr2x6aa3rL536b3Zmw2Hnil6wtBJa0MNIQpygHyRuXypj0P69jPOIkrCiYqb3LhJ_SePpjNojHA0tFd4ThaDCyCYW_zug_jHV5flz8pmt1cCR_6zmts5aUGywT3_RCW6y596SuptPcz6HcR4QEMRGPqNH93tiT6UmN5-Rn5xPhr_Ig8ApYL0qFcFR6zDmuFDuOOWX3aMMTvTJPQInu40iP_gAKF-Y1PudE4Cc4MQWJQJGeVdk_HE6zOZVz4qglsg9uH9NDv2F3Zz0ro_7QV2PIfCxFItAGZ94oXwcpalQucojSJI0dalMDDn48O96rxBEuRBMrDOV6hB8nmsTAeIEE2-xlWJawFfGNXQJScrQJQ4BHaCkzrRwEGcOTCS3mWyUYH1NVk41M8a2iUob2Vp3lnRnK91ts_ay26xi63irQ7fRsH217CyeKG91PWxWhMUtSX4WV8D0YW4paLAriWRg5_3DH7DV_vXgwl6cXp7vso_UQqFvkdpjK6g4-IZYaJHul2v9D0MhCyk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+self-healing+properties+of+asphalt+mixture+containing+steel+slag+under+microwave+heating%3A+Mechanical%2C+thermal+transfer+and+voids+microstructural+characteristics&rft.jtitle=Journal+of+cleaner+production&rft.au=Liu%2C+Jianan&rft.au=Zhang%2C+Tonghuan&rft.au=Guo%2C+Haoyan&rft.au=Wang%2C+Zhenjun&rft.date=2022-03-15&rft.issn=0959-6526&rft.volume=342+p.130932-&rft_id=info:doi/10.1016%2Fj.jclepro.2022.130932&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon