Analysis of wave spectrum for submerged bodies moving near the free surface

The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the mov...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 58; pp. 239 - 251
Main Authors Liu, Tsung-Lung, Guo, Zong-Ming
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.01.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0029-8018
1873-5258
DOI10.1016/j.oceaneng.2012.10.003

Cover

Abstract The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the moving process, this study treated large submerged bodies, such as submarine and whale, as the research subjects, and integrated dynamic grid technology, volume of fluid method, and finite volume method, to complete their dynamic flow field simulation involving the free surface effect. The dynamic flow simulation of submerged body showed that, the free surface disturbance arising from the moving body is closely related to configuration, dimension, moving speed and submerged depth of the body. Therefore, signal processing technology could be employed to further analyze the characteristics of the disturbed free surface, so as to learn the relationship between the wave spectrum and moving submerged body's geometric and kinematic factors. The proposed research method could not only contribute to analyze the influences of the above mentioned factors on the underwater resistance computation of the marine vehicle, but also allow to further establish the surface wave spectrum database of moving submerged bodies with specific geometric configuration, so as to track and to position the submerged body stealthily. ► Compute the free-surface wave spectrum of underwater moving bodies. ► Employ database of wave spectrum to detect and identify underwater moving objects. ► Spectrum is related to sailing speed, depth, geometric configuration and body size. ► Sailing speed is the most important factor to dominate the wave band range. ► High frequency waves become obvious as sailing depth decreases or speed increases.
AbstractList The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the moving process, this study treated large submerged bodies, such as submarine and whale, as the research subjects, and integrated dynamic grid technology, volume of fluid method, and finite volume method, to complete their dynamic flow field simulation involving the free surface effect. The dynamic flow simulation of submerged body showed that, the free surface disturbance arising from the moving body is closely related to configuration, dimension, moving speed and submerged depth of the body. Therefore, signal processing technology could be employed to further analyze the characteristics of the disturbed free surface, so as to learn the relationship between the wave spectrum and moving submerged body's geometric and kinematic factors. The proposed research method could not only contribute to analyze the influences of the above mentioned factors on the underwater resistance computation of the marine vehicle, but also allow to further establish the surface wave spectrum database of moving submerged bodies with specific geometric configuration, so as to track and to position the submerged body stealthily. ► Compute the free-surface wave spectrum of underwater moving bodies. ► Employ database of wave spectrum to detect and identify underwater moving objects. ► Spectrum is related to sailing speed, depth, geometric configuration and body size. ► Sailing speed is the most important factor to dominate the wave band range. ► High frequency waves become obvious as sailing depth decreases or speed increases.
Author Guo, Zong-Ming
Liu, Tsung-Lung
Author_xml – sequence: 1
  givenname: Tsung-Lung
  surname: Liu
  fullname: Liu, Tsung-Lung
  email: tlliu@ndu.edu.tw
  organization: Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Dashi, Taoyuan 335, Taiwan
– sequence: 2
  givenname: Zong-Ming
  surname: Guo
  fullname: Guo, Zong-Ming
  organization: Master Program of Naval Architecture and Ocean Engineering, Chung Cheng Institute of Technology, National Defense University, Dashi, Taoyuan 335, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26900845$$DView record in Pascal Francis
BookMark eNqFkM1KAzEYRYNUsK2-gmTjcsYvyfxkwIWl-IcFN7oe0syXmjKTlGRa6ds7perCTVcXLvfcxZmQkfMOCblmkDJgxe069RqVQ7dKOTA-lCmAOCNjJkuR5DyXIzIG4FUigckLMolxDQBFAWJMXmdOtftoI_WGfqkd0rhB3YdtR40PNG6XHYYVNnTpG4uRdn5n3Yo6VIH2n0hNwAHZBqM0XpJzo9qIVz85JR-PD-_z52Tx9vQyny0SLTLeJ7koMl3JCpeMYZlBVQngWlUla5iQMudZw7mUZQPQyBKFNBIzwyErSlVKzcWU3Bx_Nypq1ZqgnLax3gTbqbCveVEByCwfdsVxp4OPMaD5mzCoD-rqdf2rrj6oO_SDugG8-wdq26veetcHZdvT-P0Rx0HCzmKoo7boNDY2DG7rxttTF987Co-7
CODEN OCENBQ
CitedBy_id crossref_primary_10_1016_j_apor_2017_07_001
crossref_primary_10_1016_j_apor_2018_07_003
crossref_primary_10_3390_app13053234
crossref_primary_10_26748_KSOE_2023_006
crossref_primary_10_1016_j_oceaneng_2024_120108
crossref_primary_10_1016_j_oceaneng_2014_12_028
crossref_primary_10_54926_gdt_983658
crossref_primary_10_1007_s00773_023_00942_9
crossref_primary_10_1016_j_oceaneng_2023_116190
crossref_primary_10_1063_5_0104210
crossref_primary_10_1016_j_oceaneng_2023_114979
crossref_primary_10_3390_buildings12101683
crossref_primary_10_1080_02533839_2019_1660225
crossref_primary_10_1016_j_ijnaoe_2021_01_002
Cites_doi 10.1016/S1001-6058(09)60067-6
10.1109/TAU.1967.1161901
10.1006/jcph.1996.0183
10.1016/j.cma.2006.06.003
10.1016/j.compfluid.2005.08.001
10.1090/S0025-5718-1965-0178586-1
10.1016/0021-9991(81)90145-5
10.1016/S0029-8018(03)00111-2
10.1016/S1001-6058(09)60078-0
10.1016/S1001-6058(08)60146-8
10.1016/j.oceaneng.2007.11.004
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.oceaneng.2012.10.003
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
Applied Sciences
EISSN 1873-5258
EndPage 251
ExternalDocumentID 26900845
10_1016_j_oceaneng_2012_10_003
S0029801812003794
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
WUQ
EFKBS
IQODW
ID FETCH-LOGICAL-c342t-5364c989eb11e74099302ca971d1388524d22887d00d87e38f8e4f20467a78c23
IEDL.DBID AIKHN
ISSN 0029-8018
IngestDate Mon Jul 21 09:16:53 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Tue Jul 01 03:26:23 EDT 2025
Fri Feb 23 02:26:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface wave spectrum database
Dynamic grid
Numerical simulation
Finite volume method
Submerged body
Volume of fluid method
Marine animal
Immersed body
Tracking
Modeling
Aquatic environment
Vertebrata
Mammalia
Whale
Signal processing
Free surface flow
Cetacea
Marine vehicles
Submarine vehicle
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-5364c989eb11e74099302ca971d1388524d22887d00d87e38f8e4f20467a78c23
PageCount 13
ParticipantIDs pascalfrancis_primary_26900845
crossref_primary_10_1016_j_oceaneng_2012_10_003
crossref_citationtrail_10_1016_j_oceaneng_2012_10_003
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2012_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-15
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Ocean engineering
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tarafder, Suzuki (bib12) 2008; 35
Shen, Ng, Zheng (bib10) 2004; 31
Zhao, Hu, Sun (bib15) 2010; 22
Campana, Peri, Tahara, Stern (bib1) 2006; 196
Tahara, Stern (bib11) 1996; 127
Welch (bib13) 1967
Cooley, Tukey (bib4) 1965; 19
Carrica, Wilson, Stern (bib2) 2006; 35
Chen, Zhu (bib3) 2010; 22
Hirt, Nichols (bib6) 1981; 39
Patankar (bib8) 1980
Lewis (bib7) 1988; 2
Fluent 6.2 User's Guide (3). Fluent Inc, 2006.
Zhang, Ma, Ji (bib14) 2009; 21
Sampaio, Nishimoto (bib9) 2001
Sampaio (10.1016/j.oceaneng.2012.10.003_bib9) 2001
Patankar (10.1016/j.oceaneng.2012.10.003_bib8) 1980
Lewis (10.1016/j.oceaneng.2012.10.003_bib7) 1988; 2
Hirt (10.1016/j.oceaneng.2012.10.003_bib6) 1981; 39
Cooley (10.1016/j.oceaneng.2012.10.003_bib4) 1965; 19
Campana (10.1016/j.oceaneng.2012.10.003_bib1) 2006; 196
Chen (10.1016/j.oceaneng.2012.10.003_bib3) 2010; 22
Carrica (10.1016/j.oceaneng.2012.10.003_bib2) 2006; 35
Shen (10.1016/j.oceaneng.2012.10.003_bib10) 2004; 31
Tarafder (10.1016/j.oceaneng.2012.10.003_bib12) 2008; 35
Zhang (10.1016/j.oceaneng.2012.10.003_bib14) 2009; 21
10.1016/j.oceaneng.2012.10.003_bib5
Zhao (10.1016/j.oceaneng.2012.10.003_bib15) 2010; 22
Tahara (10.1016/j.oceaneng.2012.10.003_bib11) 1996; 127
Welch (10.1016/j.oceaneng.2012.10.003_bib13) 1967
References_xml – volume: 35
  start-page: 545
  year: 2006
  end-page: 570
  ident: bib2
  article-title: Unsteady RANS simulation of the ship forward speed diffraction problem
  publication-title: Comput. Fluids
– volume: 196
  start-page: 634
  year: 2006
  end-page: 651
  ident: bib1
  article-title: Shape optimization in ship hydrodynamics using computational fluid dynamics
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 31
  start-page: 87
  year: 2004
  end-page: 95
  ident: bib10
  article-title: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation
  publication-title: Ocean Eng.
– year: 2001
  ident: bib9
  article-title: Numerical and Experimental Evaluation the Hull Characteristics of Two-semi-displacement Fast Monohulls
– volume: 19
  start-page: 297
  year: 1965
  end-page: 301
  ident: bib4
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Math. Comput.
– volume: 2
  start-page: 2
  year: 1988
  end-page: 3
  ident: bib7
  article-title: Principles of naval architecture
  publication-title: Soc. Naval Archit. Mar. Eng.
– reference: Fluent 6.2 User's Guide (3). Fluent Inc, 2006.
– start-page: 70
  year: 1967
  end-page: 73
  ident: bib13
  article-title: The use of FFT for the estimation of power spectra—a method based on time averaging over short modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 22
  start-page: 373
  year: 2010
  end-page: 380
  ident: bib3
  article-title: Numerical simulations of wave-induced ship motions in time domain by a rankine panel method
  publication-title: J. Hydrodyn.
– volume: 127
  start-page: 398
  year: 1996
  end-page: 411
  ident: bib11
  article-title: A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number
  publication-title: J. Comput. Phys.
– year: 1980
  ident: bib8
  article-title: Numerical Heat Transfer And Fluid Flow
– volume: 35
  start-page: 536
  year: 2008
  end-page: 544
  ident: bib12
  article-title: Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method
  publication-title: Ocean Eng.
– volume: 21
  start-page: 277
  year: 2009
  end-page: 284
  ident: bib14
  article-title: The optimization of the hull form with the minimum wave-making resistance based on rankine source method
  publication-title: J. Hydrodyn.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 221
  ident: bib6
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 466
  year: 2010
  end-page: 477
  ident: bib15
  article-title: Numerical simulation of extreme wave generation using VOF method
  publication-title: J. Hydrodyn.
– volume: 2
  start-page: 2
  year: 1988
  ident: 10.1016/j.oceaneng.2012.10.003_bib7
  article-title: Principles of naval architecture
  publication-title: Soc. Naval Archit. Mar. Eng.
– year: 1980
  ident: 10.1016/j.oceaneng.2012.10.003_bib8
– volume: 22
  start-page: 373
  issue: 3
  year: 2010
  ident: 10.1016/j.oceaneng.2012.10.003_bib3
  article-title: Numerical simulations of wave-induced ship motions in time domain by a rankine panel method
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(09)60067-6
– start-page: 70
  year: 1967
  ident: 10.1016/j.oceaneng.2012.10.003_bib13
  article-title: The use of FFT for the estimation of power spectra—a method based on time averaging over short modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume: 127
  start-page: 398
  year: 1996
  ident: 10.1016/j.oceaneng.2012.10.003_bib11
  article-title: A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0183
– ident: 10.1016/j.oceaneng.2012.10.003_bib5
– volume: 196
  start-page: 634
  year: 2006
  ident: 10.1016/j.oceaneng.2012.10.003_bib1
  article-title: Shape optimization in ship hydrodynamics using computational fluid dynamics
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.06.003
– volume: 35
  start-page: 545
  year: 2006
  ident: 10.1016/j.oceaneng.2012.10.003_bib2
  article-title: Unsteady RANS simulation of the ship forward speed diffraction problem
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2005.08.001
– volume: 19
  start-page: 297
  year: 1965
  ident: 10.1016/j.oceaneng.2012.10.003_bib4
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.oceaneng.2012.10.003_bib6
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 31
  start-page: 87
  year: 2004
  ident: 10.1016/j.oceaneng.2012.10.003_bib10
  article-title: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k−ε turbulence modeling
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(03)00111-2
– volume: 22
  start-page: 466
  issue: 4
  year: 2010
  ident: 10.1016/j.oceaneng.2012.10.003_bib15
  article-title: Numerical simulation of extreme wave generation using VOF method
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(09)60078-0
– year: 2001
  ident: 10.1016/j.oceaneng.2012.10.003_bib9
– volume: 21
  start-page: 277
  issue: 2
  year: 2009
  ident: 10.1016/j.oceaneng.2012.10.003_bib14
  article-title: The optimization of the hull form with the minimum wave-making resistance based on rankine source method
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(08)60146-8
– volume: 35
  start-page: 536
  year: 2008
  ident: 10.1016/j.oceaneng.2012.10.003_bib12
  article-title: Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2007.11.004
SSID ssj0006603
Score 2.0781786
Snippet The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 239
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Animals
Applied sciences
Autoecology
Biological and medical sciences
Dynamic grid
Exact sciences and technology
Finite volume method
Fundamental and applied biological sciences. Psychology
Ground, air and sea transportation, marine construction
Mammalia
Marine construction
Numerical simulation
Submerged body
Surface wave spectrum database
Vertebrata
Volume of fluid method
Title Analysis of wave spectrum for submerged bodies moving near the free surface
URI https://dx.doi.org/10.1016/j.oceaneng.2012.10.003
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BWXgIQQFRHpUH1rSJX7HHCoEKCFhA6ha5jl2BIK3Ka-O3c06Tqh0QA1KWWLo4urPvO1t33wGcIaTnqVNJZJgXEXfSR0NuXORxk6tYGmPSUO98eyf7j_x6IAYrcF7XwoS0ysr3z3x66a2rkW6lze7k6SnU-FKtSr6pQKKi-SqsUaalaMBa7-qmfzd3yFLGrM70CAILhcLPHUQJU7hiFLK8aKdM9GK_YdTWxLyh5vys5cUCDl3uwHYVQJLe7B93YcUVTdhYoBVswuZ9mK3iot6Dm5p4hIw9-TKfjpTlldOPV4IRK3kLiDgduZwMxyGlkLyWlwykwD1AMDwkfupQ5GPqjXX78Hh58XDej6oeCpFlnL5HgklutdLokhOX4mFOs5hao9MkT5hSgvKcUnQ0eRznKnVMeeW4p3hqTk2qLGUH0CjGhTsEgnCqpDMux4cLS_FFMWtjbnPlTWxbIGqtZbYiGA99Ll6yOpPsOau1nQVth3HUdgu6c7nJjGLjTwldGyVbWiwZ4sCfsu0lK86npFKH5gLi6B8fP4Z1WrbLSKJEnEADTelOMWh5H7ZhtfOdtKul-QOIfe0i
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VGHgJ8RRvPLCmTfxInBFVVIXSshSJLXIdGxVBWvUBG7-dc5qUMqAOSFli5eLozr47R999B3CNIT2NjAw8xazwuAmt1-PKeBY3ufRDpVTk6p3bnbD5xO-fxXMF6mUtjINVFr5_5tNzb12M1Apt1ob9vqvxpbHM-aYciUrMV2CNCxY5XF_16wfnEYY-K3Ee7vGFMuHXKsYIlZnsxWG8aDWHebG_ItT2UI1Rb3bW8GIhCjV2YadIH8nN7Av3oGKyfdhcIBXch61HN1vBRH0ArZJ2hAws-VQfhuTFlaPpO8F8lYxdPBy9mJT0Bg5QSN7zXwwkwx1AMDkkdmRQZDqySptDeGrcdutNr-ig4GnG6cQTLOQ6ljE65MBEeJSLmU-1iqMgDZiUgvKUUnQzqe-nMjJMWmm4pXhmjlQkNWVHsJoNMnMMBIOpDI0yKV5caIo3kmntc51Kq3x9AqLUWqILenHX5eItKXFkr0mp7cRp242jtk-gNpcbzgg2lkrEpVGSX0slwSiwVPbylxXnU9Iwdq0FxOk_Xn4F681u-yF5uOu0zmCD5o0zAi8Q57CKZjUXmL5Mepf58vwGicft7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+wave+spectrum+for+submerged+bodies+moving+near+the+free+surface&rft.jtitle=Ocean+engineering&rft.au=Liu%2C+Tsung-Lung&rft.au=Guo%2C+Zong-Ming&rft.date=2013-01-15&rft.issn=0029-8018&rft.volume=58&rft.spage=239&rft.epage=251&rft_id=info:doi/10.1016%2Fj.oceaneng.2012.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2012_10_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon