Analysis of wave spectrum for submerged bodies moving near the free surface
The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the mov...
Saved in:
Published in | Ocean engineering Vol. 58; pp. 239 - 251 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2012.10.003 |
Cover
Abstract | The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the moving process, this study treated large submerged bodies, such as submarine and whale, as the research subjects, and integrated dynamic grid technology, volume of fluid method, and finite volume method, to complete their dynamic flow field simulation involving the free surface effect. The dynamic flow simulation of submerged body showed that, the free surface disturbance arising from the moving body is closely related to configuration, dimension, moving speed and submerged depth of the body. Therefore, signal processing technology could be employed to further analyze the characteristics of the disturbed free surface, so as to learn the relationship between the wave spectrum and moving submerged body's geometric and kinematic factors. The proposed research method could not only contribute to analyze the influences of the above mentioned factors on the underwater resistance computation of the marine vehicle, but also allow to further establish the surface wave spectrum database of moving submerged bodies with specific geometric configuration, so as to track and to position the submerged body stealthily.
► Compute the free-surface wave spectrum of underwater moving bodies. ► Employ database of wave spectrum to detect and identify underwater moving objects. ► Spectrum is related to sailing speed, depth, geometric configuration and body size. ► Sailing speed is the most important factor to dominate the wave band range. ► High frequency waves become obvious as sailing depth decreases or speed increases. |
---|---|
AbstractList | The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research topic. To understand the physical phenomena of submerged bodies in underwater movement and their effect on free surface motion during the moving process, this study treated large submerged bodies, such as submarine and whale, as the research subjects, and integrated dynamic grid technology, volume of fluid method, and finite volume method, to complete their dynamic flow field simulation involving the free surface effect. The dynamic flow simulation of submerged body showed that, the free surface disturbance arising from the moving body is closely related to configuration, dimension, moving speed and submerged depth of the body. Therefore, signal processing technology could be employed to further analyze the characteristics of the disturbed free surface, so as to learn the relationship between the wave spectrum and moving submerged body's geometric and kinematic factors. The proposed research method could not only contribute to analyze the influences of the above mentioned factors on the underwater resistance computation of the marine vehicle, but also allow to further establish the surface wave spectrum database of moving submerged bodies with specific geometric configuration, so as to track and to position the submerged body stealthily.
► Compute the free-surface wave spectrum of underwater moving bodies. ► Employ database of wave spectrum to detect and identify underwater moving objects. ► Spectrum is related to sailing speed, depth, geometric configuration and body size. ► Sailing speed is the most important factor to dominate the wave band range. ► High frequency waves become obvious as sailing depth decreases or speed increases. |
Author | Guo, Zong-Ming Liu, Tsung-Lung |
Author_xml | – sequence: 1 givenname: Tsung-Lung surname: Liu fullname: Liu, Tsung-Lung email: tlliu@ndu.edu.tw organization: Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Dashi, Taoyuan 335, Taiwan – sequence: 2 givenname: Zong-Ming surname: Guo fullname: Guo, Zong-Ming organization: Master Program of Naval Architecture and Ocean Engineering, Chung Cheng Institute of Technology, National Defense University, Dashi, Taoyuan 335, Taiwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26900845$$DView record in Pascal Francis |
BookMark | eNqFkM1KAzEYRYNUsK2-gmTjcsYvyfxkwIWl-IcFN7oe0syXmjKTlGRa6ds7perCTVcXLvfcxZmQkfMOCblmkDJgxe069RqVQ7dKOTA-lCmAOCNjJkuR5DyXIzIG4FUigckLMolxDQBFAWJMXmdOtftoI_WGfqkd0rhB3YdtR40PNG6XHYYVNnTpG4uRdn5n3Yo6VIH2n0hNwAHZBqM0XpJzo9qIVz85JR-PD-_z52Tx9vQyny0SLTLeJ7koMl3JCpeMYZlBVQngWlUla5iQMudZw7mUZQPQyBKFNBIzwyErSlVKzcWU3Bx_Nypq1ZqgnLax3gTbqbCveVEByCwfdsVxp4OPMaD5mzCoD-rqdf2rrj6oO_SDugG8-wdq26veetcHZdvT-P0Rx0HCzmKoo7boNDY2DG7rxttTF987Co-7 |
CODEN | OCENBQ |
CitedBy_id | crossref_primary_10_1016_j_apor_2017_07_001 crossref_primary_10_1016_j_apor_2018_07_003 crossref_primary_10_3390_app13053234 crossref_primary_10_26748_KSOE_2023_006 crossref_primary_10_1016_j_oceaneng_2024_120108 crossref_primary_10_1016_j_oceaneng_2014_12_028 crossref_primary_10_54926_gdt_983658 crossref_primary_10_1007_s00773_023_00942_9 crossref_primary_10_1016_j_oceaneng_2023_116190 crossref_primary_10_1063_5_0104210 crossref_primary_10_1016_j_oceaneng_2023_114979 crossref_primary_10_3390_buildings12101683 crossref_primary_10_1080_02533839_2019_1660225 crossref_primary_10_1016_j_ijnaoe_2021_01_002 |
Cites_doi | 10.1016/S1001-6058(09)60067-6 10.1109/TAU.1967.1161901 10.1006/jcph.1996.0183 10.1016/j.cma.2006.06.003 10.1016/j.compfluid.2005.08.001 10.1090/S0025-5718-1965-0178586-1 10.1016/0021-9991(81)90145-5 10.1016/S0029-8018(03)00111-2 10.1016/S1001-6058(09)60078-0 10.1016/S1001-6058(08)60146-8 10.1016/j.oceaneng.2007.11.004 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.oceaneng.2012.10.003 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography Applied Sciences |
EISSN | 1873-5258 |
EndPage | 251 |
ExternalDocumentID | 26900845 10_1016_j_oceaneng_2012_10_003 S0029801812003794 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW SSH WUQ EFKBS IQODW |
ID | FETCH-LOGICAL-c342t-5364c989eb11e74099302ca971d1388524d22887d00d87e38f8e4f20467a78c23 |
IEDL.DBID | AIKHN |
ISSN | 0029-8018 |
IngestDate | Mon Jul 21 09:16:53 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Tue Jul 01 03:26:23 EDT 2025 Fri Feb 23 02:26:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface wave spectrum database Dynamic grid Numerical simulation Finite volume method Submerged body Volume of fluid method Marine animal Immersed body Tracking Modeling Aquatic environment Vertebrata Mammalia Whale Signal processing Free surface flow Cetacea Marine vehicles Submarine vehicle |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-5364c989eb11e74099302ca971d1388524d22887d00d87e38f8e4f20467a78c23 |
PageCount | 13 |
ParticipantIDs | pascalfrancis_primary_26900845 crossref_primary_10_1016_j_oceaneng_2012_10_003 crossref_citationtrail_10_1016_j_oceaneng_2012_10_003 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2012_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-15 |
PublicationDateYYYYMMDD | 2013-01-15 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Ocean engineering |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Tarafder, Suzuki (bib12) 2008; 35 Shen, Ng, Zheng (bib10) 2004; 31 Zhao, Hu, Sun (bib15) 2010; 22 Campana, Peri, Tahara, Stern (bib1) 2006; 196 Tahara, Stern (bib11) 1996; 127 Welch (bib13) 1967 Cooley, Tukey (bib4) 1965; 19 Carrica, Wilson, Stern (bib2) 2006; 35 Chen, Zhu (bib3) 2010; 22 Hirt, Nichols (bib6) 1981; 39 Patankar (bib8) 1980 Lewis (bib7) 1988; 2 Fluent 6.2 User's Guide (3). Fluent Inc, 2006. Zhang, Ma, Ji (bib14) 2009; 21 Sampaio, Nishimoto (bib9) 2001 Sampaio (10.1016/j.oceaneng.2012.10.003_bib9) 2001 Patankar (10.1016/j.oceaneng.2012.10.003_bib8) 1980 Lewis (10.1016/j.oceaneng.2012.10.003_bib7) 1988; 2 Hirt (10.1016/j.oceaneng.2012.10.003_bib6) 1981; 39 Cooley (10.1016/j.oceaneng.2012.10.003_bib4) 1965; 19 Campana (10.1016/j.oceaneng.2012.10.003_bib1) 2006; 196 Chen (10.1016/j.oceaneng.2012.10.003_bib3) 2010; 22 Carrica (10.1016/j.oceaneng.2012.10.003_bib2) 2006; 35 Shen (10.1016/j.oceaneng.2012.10.003_bib10) 2004; 31 Tarafder (10.1016/j.oceaneng.2012.10.003_bib12) 2008; 35 Zhang (10.1016/j.oceaneng.2012.10.003_bib14) 2009; 21 10.1016/j.oceaneng.2012.10.003_bib5 Zhao (10.1016/j.oceaneng.2012.10.003_bib15) 2010; 22 Tahara (10.1016/j.oceaneng.2012.10.003_bib11) 1996; 127 Welch (10.1016/j.oceaneng.2012.10.003_bib13) 1967 |
References_xml | – volume: 35 start-page: 545 year: 2006 end-page: 570 ident: bib2 article-title: Unsteady RANS simulation of the ship forward speed diffraction problem publication-title: Comput. Fluids – volume: 196 start-page: 634 year: 2006 end-page: 651 ident: bib1 article-title: Shape optimization in ship hydrodynamics using computational fluid dynamics publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 31 start-page: 87 year: 2004 end-page: 95 ident: bib10 article-title: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation publication-title: Ocean Eng. – year: 2001 ident: bib9 article-title: Numerical and Experimental Evaluation the Hull Characteristics of Two-semi-displacement Fast Monohulls – volume: 19 start-page: 297 year: 1965 end-page: 301 ident: bib4 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Math. Comput. – volume: 2 start-page: 2 year: 1988 end-page: 3 ident: bib7 article-title: Principles of naval architecture publication-title: Soc. Naval Archit. Mar. Eng. – reference: Fluent 6.2 User's Guide (3). Fluent Inc, 2006. – start-page: 70 year: 1967 end-page: 73 ident: bib13 article-title: The use of FFT for the estimation of power spectra—a method based on time averaging over short modified periodograms publication-title: IEEE Trans. Audio Electroacoust. – volume: 22 start-page: 373 year: 2010 end-page: 380 ident: bib3 article-title: Numerical simulations of wave-induced ship motions in time domain by a rankine panel method publication-title: J. Hydrodyn. – volume: 127 start-page: 398 year: 1996 end-page: 411 ident: bib11 article-title: A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number publication-title: J. Comput. Phys. – year: 1980 ident: bib8 article-title: Numerical Heat Transfer And Fluid Flow – volume: 35 start-page: 536 year: 2008 end-page: 544 ident: bib12 article-title: Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method publication-title: Ocean Eng. – volume: 21 start-page: 277 year: 2009 end-page: 284 ident: bib14 article-title: The optimization of the hull form with the minimum wave-making resistance based on rankine source method publication-title: J. Hydrodyn. – volume: 39 start-page: 201 year: 1981 end-page: 221 ident: bib6 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 22 start-page: 466 year: 2010 end-page: 477 ident: bib15 article-title: Numerical simulation of extreme wave generation using VOF method publication-title: J. Hydrodyn. – volume: 2 start-page: 2 year: 1988 ident: 10.1016/j.oceaneng.2012.10.003_bib7 article-title: Principles of naval architecture publication-title: Soc. Naval Archit. Mar. Eng. – year: 1980 ident: 10.1016/j.oceaneng.2012.10.003_bib8 – volume: 22 start-page: 373 issue: 3 year: 2010 ident: 10.1016/j.oceaneng.2012.10.003_bib3 article-title: Numerical simulations of wave-induced ship motions in time domain by a rankine panel method publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(09)60067-6 – start-page: 70 year: 1967 ident: 10.1016/j.oceaneng.2012.10.003_bib13 article-title: The use of FFT for the estimation of power spectra—a method based on time averaging over short modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 127 start-page: 398 year: 1996 ident: 10.1016/j.oceaneng.2012.10.003_bib11 article-title: A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0183 – ident: 10.1016/j.oceaneng.2012.10.003_bib5 – volume: 196 start-page: 634 year: 2006 ident: 10.1016/j.oceaneng.2012.10.003_bib1 article-title: Shape optimization in ship hydrodynamics using computational fluid dynamics publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2006.06.003 – volume: 35 start-page: 545 year: 2006 ident: 10.1016/j.oceaneng.2012.10.003_bib2 article-title: Unsteady RANS simulation of the ship forward speed diffraction problem publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2005.08.001 – volume: 19 start-page: 297 year: 1965 ident: 10.1016/j.oceaneng.2012.10.003_bib4 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Math. Comput. doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 39 start-page: 201 year: 1981 ident: 10.1016/j.oceaneng.2012.10.003_bib6 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 31 start-page: 87 year: 2004 ident: 10.1016/j.oceaneng.2012.10.003_bib10 article-title: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k−ε turbulence modeling publication-title: Ocean Eng. doi: 10.1016/S0029-8018(03)00111-2 – volume: 22 start-page: 466 issue: 4 year: 2010 ident: 10.1016/j.oceaneng.2012.10.003_bib15 article-title: Numerical simulation of extreme wave generation using VOF method publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(09)60078-0 – year: 2001 ident: 10.1016/j.oceaneng.2012.10.003_bib9 – volume: 21 start-page: 277 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2012.10.003_bib14 article-title: The optimization of the hull form with the minimum wave-making resistance based on rankine source method publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(08)60146-8 – volume: 35 start-page: 536 year: 2008 ident: 10.1016/j.oceaneng.2012.10.003_bib12 article-title: Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2007.11.004 |
SSID | ssj0006603 |
Score | 2.0781786 |
Snippet | The ocean environment is complicated and changing. In ocean engineering, the flow physics around the underwater moving vehicles has been an important research... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 239 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Animals Applied sciences Autoecology Biological and medical sciences Dynamic grid Exact sciences and technology Finite volume method Fundamental and applied biological sciences. Psychology Ground, air and sea transportation, marine construction Mammalia Marine construction Numerical simulation Submerged body Surface wave spectrum database Vertebrata Volume of fluid method |
Title | Analysis of wave spectrum for submerged bodies moving near the free surface |
URI | https://dx.doi.org/10.1016/j.oceaneng.2012.10.003 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BWXgIQQFRHpUH1rSJX7HHCoEKCFhA6ha5jl2BIK3Ka-O3c06Tqh0QA1KWWLo4urPvO1t33wGcIaTnqVNJZJgXEXfSR0NuXORxk6tYGmPSUO98eyf7j_x6IAYrcF7XwoS0ysr3z3x66a2rkW6lze7k6SnU-FKtSr6pQKKi-SqsUaalaMBa7-qmfzd3yFLGrM70CAILhcLPHUQJU7hiFLK8aKdM9GK_YdTWxLyh5vys5cUCDl3uwHYVQJLe7B93YcUVTdhYoBVswuZ9mK3iot6Dm5p4hIw9-TKfjpTlldOPV4IRK3kLiDgduZwMxyGlkLyWlwykwD1AMDwkfupQ5GPqjXX78Hh58XDej6oeCpFlnL5HgklutdLokhOX4mFOs5hao9MkT5hSgvKcUnQ0eRznKnVMeeW4p3hqTk2qLGUH0CjGhTsEgnCqpDMux4cLS_FFMWtjbnPlTWxbIGqtZbYiGA99Ll6yOpPsOau1nQVth3HUdgu6c7nJjGLjTwldGyVbWiwZ4sCfsu0lK86npFKH5gLi6B8fP4Z1WrbLSKJEnEADTelOMWh5H7ZhtfOdtKul-QOIfe0i |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VGHgJ8RRvPLCmTfxInBFVVIXSshSJLXIdGxVBWvUBG7-dc5qUMqAOSFli5eLozr47R999B3CNIT2NjAw8xazwuAmt1-PKeBY3ufRDpVTk6p3bnbD5xO-fxXMF6mUtjINVFr5_5tNzb12M1Apt1ob9vqvxpbHM-aYciUrMV2CNCxY5XF_16wfnEYY-K3Ee7vGFMuHXKsYIlZnsxWG8aDWHebG_ItT2UI1Rb3bW8GIhCjV2YadIH8nN7Av3oGKyfdhcIBXch61HN1vBRH0ArZJ2hAws-VQfhuTFlaPpO8F8lYxdPBy9mJT0Bg5QSN7zXwwkwx1AMDkkdmRQZDqySptDeGrcdutNr-ig4GnG6cQTLOQ6ljE65MBEeJSLmU-1iqMgDZiUgvKUUnQzqe-nMjJMWmm4pXhmjlQkNWVHsJoNMnMMBIOpDI0yKV5caIo3kmntc51Kq3x9AqLUWqILenHX5eItKXFkr0mp7cRp242jtk-gNpcbzgg2lkrEpVGSX0slwSiwVPbylxXnU9Iwdq0FxOk_Xn4F681u-yF5uOu0zmCD5o0zAi8Q57CKZjUXmL5Mepf58vwGicft7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+wave+spectrum+for+submerged+bodies+moving+near+the+free+surface&rft.jtitle=Ocean+engineering&rft.au=Liu%2C+Tsung-Lung&rft.au=Guo%2C+Zong-Ming&rft.date=2013-01-15&rft.issn=0029-8018&rft.volume=58&rft.spage=239&rft.epage=251&rft_id=info:doi/10.1016%2Fj.oceaneng.2012.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2012_10_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |