Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines
Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying i...
Saved in:
Published in | Journal of cleaner production Vol. 296; p. 126562 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOx emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology. |
---|---|
AbstractList | Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOₓ emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology. Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOx emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology. |
ArticleNumber | 126562 |
Author | Cardoso, João Sousa Costa, Mário Eusébio, Daniela Silva, Valter Hall, Matthew J. Rocha, Rodolfo C. |
Author_xml | – sequence: 1 givenname: João Sousa surname: Cardoso fullname: Cardoso, João Sousa email: joaoscardoso@tecnico.ulisboa.pt, jps.cardoso@ipportalegre.pt organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal – sequence: 2 givenname: Valter surname: Silva fullname: Silva, Valter email: valter.silva@ipportalegre.pt, valter.silva@forestwise.pt organization: Polytechnic Institute of Portalegre, Portalegre, Portugal – sequence: 3 givenname: Rodolfo C. orcidid: 0000-0003-1780-3347 surname: Rocha fullname: Rocha, Rodolfo C. email: rodolfocrocha@tecnico.ulisboa.pt organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal – sequence: 4 givenname: Matthew J. orcidid: 0000-0002-9816-5860 surname: Hall fullname: Hall, Matthew J. email: mjhall@mail.utexas.edu organization: Department of Mechanical Engineering, University of Texas at Austin, TX, USA – sequence: 5 givenname: Mário surname: Costa fullname: Costa, Mário email: mcosta@tecnico.ulisboa.pt organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal – sequence: 6 givenname: Daniela surname: Eusébio fullname: Eusébio, Daniela email: danielafle@ipportalegre.pt organization: Polytechnic Institute of Portalegre, Portalegre, Portugal |
BookMark | eNqFkE1rGzEQhkVJoY6bn1DQsZd1JK2ktdpDCSZJA4ZcmrPQameNjFbaStoU__vKdU69BAYG5p13Pp5rdBViAIS-ULKhhMrb4-ZoPcwpbhhhdEOZFJJ9QCu67VRDu628QiuihGqkYPITus75SAjtSMdX6HQ3TTE4g03GJmAIkA4n_Aq2xPQN75aUIJSqDHhcypIA1zV5rnLGY0zYxz-NNamPoergsZln76wpLoaMXahRIAXjsY1Tv-Rzve44uAD5M_o4Gp_h5i2v0cvD_a_dz2b__Pi0u9s3tuWsNBzGnm87M6hBypaAIgTGrhcCBFVMtUPXmp7zvpeGUkUsDK3oGZHWjJSPnLdr9PUyt17-e4Fc9OSyBe9NgLhkzQTjLSOdIrVVXFptfTInGPWc3GTSSVOiz6j1Ub-h1mfU-oK6-r7_57Ou_INQknH-XfePixsqhVcHSWfrINRPXKqg9RDdOxP-AtrXooE |
CitedBy_id | crossref_primary_10_3390_en16062545 crossref_primary_10_1016_j_energy_2025_135226 crossref_primary_10_5916_jamet_2023_47_3_143 crossref_primary_10_1016_j_fuel_2021_122723 crossref_primary_10_1016_j_combustflame_2024_113488 crossref_primary_10_1016_j_energy_2024_131823 crossref_primary_10_2139_ssrn_3982131 crossref_primary_10_1016_j_fuel_2023_129244 crossref_primary_10_1021_acs_energyfuels_4c01654 crossref_primary_10_1016_S1872_2067_23_64465_1 crossref_primary_10_1177_14680874221105161 crossref_primary_10_1002_aenm_202203751 crossref_primary_10_1016_j_fuel_2023_129009 crossref_primary_10_1016_j_joei_2022_04_009 crossref_primary_10_1016_j_ijhydene_2023_04_073 crossref_primary_10_1016_j_fuproc_2023_107761 crossref_primary_10_1016_j_ijhydene_2021_09_208 crossref_primary_10_1016_j_joei_2025_102063 crossref_primary_10_1016_j_ijhydene_2022_01_027 crossref_primary_10_1016_j_combustflame_2022_112391 crossref_primary_10_1016_j_jaecs_2023_100149 crossref_primary_10_1016_j_fuel_2025_134948 crossref_primary_10_1016_j_ijhydene_2023_11_136 crossref_primary_10_1016_j_segan_2022_100736 crossref_primary_10_1016_j_checat_2024_101000 crossref_primary_10_1016_j_fuel_2022_127116 crossref_primary_10_1016_j_enconman_2024_118819 crossref_primary_10_3390_en18010177 crossref_primary_10_1016_j_combustflame_2024_113908 crossref_primary_10_1016_j_joei_2023_101406 crossref_primary_10_1016_j_applthermaleng_2024_123092 crossref_primary_10_1016_j_combustflame_2025_114061 crossref_primary_10_1016_j_energy_2024_130275 crossref_primary_10_1115_1_4066876 crossref_primary_10_1016_j_ijhydene_2024_07_461 crossref_primary_10_1016_j_energy_2023_129562 crossref_primary_10_1016_j_mattod_2021_05_004 crossref_primary_10_1016_j_fuel_2023_129384 crossref_primary_10_1115_1_4066879 crossref_primary_10_1016_j_fuel_2024_132831 crossref_primary_10_1016_j_combustflame_2024_113466 crossref_primary_10_1021_acsomega_4c04272 crossref_primary_10_1016_j_apsusc_2022_155040 crossref_primary_10_1016_j_ijhydene_2022_09_198 crossref_primary_10_1039_D4TA08427F crossref_primary_10_1016_j_combustflame_2025_113989 crossref_primary_10_1016_j_fuel_2023_129389 crossref_primary_10_1016_j_fuproc_2023_107780 crossref_primary_10_1360_TB_2023_0531 crossref_primary_10_1016_j_jhazmat_2024_136744 crossref_primary_10_1016_j_ijhydene_2024_09_148 crossref_primary_10_1016_j_applthermaleng_2024_125183 crossref_primary_10_1016_j_jenvman_2024_123584 crossref_primary_10_1016_j_fuel_2023_129709 crossref_primary_10_1021_acs_energyfuels_3c01551 crossref_primary_10_1021_acs_jpcc_2c02586 crossref_primary_10_3390_world2040029 crossref_primary_10_1016_j_fuel_2023_129490 crossref_primary_10_1016_j_energy_2024_132686 crossref_primary_10_1021_acs_energyfuels_3c01897 crossref_primary_10_1016_j_energy_2024_133891 crossref_primary_10_1002_adfm_202422585 crossref_primary_10_1016_j_fuel_2024_132601 crossref_primary_10_1016_j_ijhydene_2025_02_450 crossref_primary_10_1016_j_aej_2024_05_030 crossref_primary_10_1016_j_fuel_2025_134806 crossref_primary_10_3390_su141911904 crossref_primary_10_1016_j_fuel_2024_132726 crossref_primary_10_1016_j_ccst_2022_100072 crossref_primary_10_1016_j_fuel_2025_134808 crossref_primary_10_1016_j_fuel_2023_127992 crossref_primary_10_1016_j_ijhydene_2024_06_407 crossref_primary_10_1016_j_rser_2024_114699 crossref_primary_10_1016_j_scitotenv_2023_166108 crossref_primary_10_1016_j_ijhydene_2024_12_482 crossref_primary_10_3390_en16176304 crossref_primary_10_1016_j_joei_2023_101425 crossref_primary_10_1016_j_fuel_2024_131635 crossref_primary_10_1016_j_fuel_2024_131513 crossref_primary_10_1016_j_jclepro_2023_136305 crossref_primary_10_1177_14680874241292891 crossref_primary_10_1016_j_fuel_2024_133253 crossref_primary_10_1016_j_combustflame_2022_112160 crossref_primary_10_1016_j_proci_2024_105194 crossref_primary_10_1016_j_energy_2025_134457 crossref_primary_10_1016_j_energy_2025_134699 crossref_primary_10_1021_acs_energyfuels_4c00409 crossref_primary_10_1016_j_enconman_2023_116670 crossref_primary_10_1016_j_energy_2023_130014 crossref_primary_10_1149_2754_2726_ad0736 crossref_primary_10_1016_S1872_5813_24_60473_1 crossref_primary_10_1016_j_enconman_2024_119306 crossref_primary_10_1016_j_jece_2023_110872 crossref_primary_10_1016_j_jece_2023_111723 crossref_primary_10_1177_09544070251321225 crossref_primary_10_1016_j_apsusc_2025_162635 crossref_primary_10_1016_j_jfueco_2022_100064 crossref_primary_10_1021_acs_energyfuels_4c02035 crossref_primary_10_3390_en14185604 crossref_primary_10_1016_j_fuel_2024_134075 crossref_primary_10_1021_acs_energyfuels_3c03158 crossref_primary_10_2139_ssrn_4200247 crossref_primary_10_1080_15567036_2024_2440057 crossref_primary_10_1016_j_energy_2025_134589 crossref_primary_10_1007_s13762_023_05450_2 crossref_primary_10_1016_j_seta_2024_103723 crossref_primary_10_1021_acs_energyfuels_4c02830 crossref_primary_10_1016_j_combustflame_2024_113954 crossref_primary_10_1016_j_rser_2024_114995 crossref_primary_10_1016_j_fuel_2024_131808 crossref_primary_10_1016_j_ijhydene_2024_06_155 crossref_primary_10_1016_j_jfueco_2022_100053 crossref_primary_10_1016_j_renene_2024_120602 crossref_primary_10_1016_j_fuel_2024_131019 crossref_primary_10_1016_j_jfueco_2022_100055 crossref_primary_10_1007_s10668_023_04081_4 crossref_primary_10_1016_j_fuel_2022_125936 crossref_primary_10_3390_en17092130 crossref_primary_10_1016_j_fuel_2023_128906 crossref_primary_10_1016_j_jclepro_2023_139478 crossref_primary_10_5604_01_3001_0016_3417 crossref_primary_10_1016_j_ijhydene_2025_02_481 crossref_primary_10_1016_j_ijhydene_2023_11_088 crossref_primary_10_3390_app13169468 crossref_primary_10_1016_j_proci_2022_07_032 crossref_primary_10_1016_j_cplett_2024_141658 crossref_primary_10_1016_j_jclepro_2023_140546 crossref_primary_10_1016_j_energy_2024_132770 crossref_primary_10_1016_j_ijhydene_2023_08_146 crossref_primary_10_1016_j_fuel_2025_134734 crossref_primary_10_1016_j_enconman_2024_118910 crossref_primary_10_1038_s43017_024_00586_2 crossref_primary_10_1016_j_ijhydene_2024_11_121 crossref_primary_10_1038_s43016_024_00979_y crossref_primary_10_1016_j_jclepro_2024_143332 crossref_primary_10_1016_j_joei_2024_101778 crossref_primary_10_1016_j_psep_2024_06_061 crossref_primary_10_1039_D1SE00979F crossref_primary_10_1016_j_jclepro_2024_141959 crossref_primary_10_1016_j_ijhydene_2024_05_128 crossref_primary_10_1016_j_energy_2023_126927 crossref_primary_10_1016_j_jclepro_2022_133960 crossref_primary_10_1016_j_fuel_2024_132230 crossref_primary_10_1016_j_fuel_2024_133440 crossref_primary_10_1039_D3RE00160A crossref_primary_10_1016_j_apenergy_2022_120349 crossref_primary_10_1016_j_ijhydene_2024_05_022 crossref_primary_10_2298_TSCI221008029S crossref_primary_10_2516_stet_2024015 crossref_primary_10_3390_en16196973 crossref_primary_10_1016_j_proci_2024_105642 crossref_primary_10_1016_j_ijhydene_2022_06_007 crossref_primary_10_1016_j_energy_2024_133977 crossref_primary_10_1016_j_jclepro_2024_143323 crossref_primary_10_1039_D2CC05132J crossref_primary_10_1016_j_enconman_2022_115611 crossref_primary_10_1080_13647830_2025_2475169 crossref_primary_10_1016_j_combustflame_2024_113807 crossref_primary_10_1016_j_fuel_2023_128920 crossref_primary_10_1557_s43581_022_00042_y crossref_primary_10_1016_j_psep_2025_106810 crossref_primary_10_1021_acssuschemeng_3c04694 crossref_primary_10_1016_j_fuel_2024_130986 crossref_primary_10_1016_j_joei_2024_101645 crossref_primary_10_1002_aesr_202400257 crossref_primary_10_1016_j_ijhydene_2024_07_404 crossref_primary_10_1016_j_cej_2023_143492 crossref_primary_10_1016_j_ecmx_2022_100269 crossref_primary_10_1016_j_fuel_2024_132483 crossref_primary_10_1016_j_fuel_2025_134678 crossref_primary_10_1016_j_fuel_2024_134038 crossref_primary_10_1021_acs_energyfuels_3c03104 crossref_primary_10_1016_j_marpol_2024_106444 crossref_primary_10_1016_j_applthermaleng_2024_122854 crossref_primary_10_1016_j_energy_2024_133848 crossref_primary_10_1016_j_combustflame_2024_113886 crossref_primary_10_1016_j_combustflame_2023_112707 crossref_primary_10_1016_j_fuel_2023_128797 crossref_primary_10_1016_j_combustflame_2023_112832 crossref_primary_10_1016_j_memsci_2022_121161 crossref_primary_10_1115_1_4062418 crossref_primary_10_1016_j_ijhydene_2022_04_190 crossref_primary_10_3390_su141911884 crossref_primary_10_1016_j_apcatb_2025_125020 crossref_primary_10_1016_j_energy_2025_135753 crossref_primary_10_1016_j_pecs_2025_101230 crossref_primary_10_1016_j_enconman_2023_116980 crossref_primary_10_1016_j_ijhydene_2024_07_279 crossref_primary_10_1016_j_enconman_2024_118425 crossref_primary_10_1016_j_combustflame_2024_113756 crossref_primary_10_1016_j_ijhydene_2021_09_162 crossref_primary_10_1016_j_psep_2024_01_020 crossref_primary_10_1051_e3sconf_202560601010 crossref_primary_10_1016_j_rser_2023_113367 crossref_primary_10_1021_acs_energyfuels_4c00974 crossref_primary_10_1016_j_combustflame_2023_112845 crossref_primary_10_1016_j_ijhydene_2023_09_158 crossref_primary_10_1016_j_fuel_2023_130508 crossref_primary_10_1016_j_fuel_2023_130626 crossref_primary_10_1061_JPSEA2_PSENG_1431 crossref_primary_10_1016_j_jclepro_2022_135014 crossref_primary_10_1021_acscatal_3c05376 crossref_primary_10_1016_j_fuel_2024_131457 crossref_primary_10_1080_14484846_2024_2408079 crossref_primary_10_1016_j_combustflame_2023_113131 crossref_primary_10_1016_j_energy_2024_133164 crossref_primary_10_3390_en16135196 crossref_primary_10_3390_en17133183 crossref_primary_10_1016_j_fuel_2023_129785 crossref_primary_10_1177_14680874221117686 crossref_primary_10_1016_j_ijhydene_2022_03_281 crossref_primary_10_1016_j_ijhydene_2024_11_047 crossref_primary_10_1016_j_scitotenv_2024_174096 crossref_primary_10_1016_j_fuel_2022_123363 crossref_primary_10_1016_j_applthermaleng_2024_124133 crossref_primary_10_3390_microorganisms13020268 crossref_primary_10_1016_j_fuel_2023_129427 crossref_primary_10_3390_en17122960 crossref_primary_10_7467_KSAE_2023_31_10_781 crossref_primary_10_1016_j_fuel_2023_130776 crossref_primary_10_1039_D4CC02372B crossref_primary_10_1016_j_fuel_2024_131228 crossref_primary_10_1016_j_apenergy_2024_123859 crossref_primary_10_1016_j_ijhydene_2023_10_087 crossref_primary_10_3390_suschem3020011 crossref_primary_10_1016_j_ijhydene_2025_01_005 crossref_primary_10_1002_adfm_202204881 crossref_primary_10_1016_j_fuel_2024_133774 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1016_j_enbenv_2024_02_007 crossref_primary_10_1021_acssuschemeng_4c05181 crossref_primary_10_1016_j_dche_2022_100082 crossref_primary_10_1016_j_adapen_2024_100178 crossref_primary_10_1016_j_jclepro_2023_136150 crossref_primary_10_1016_j_combustflame_2024_113610 crossref_primary_10_1016_j_scitotenv_2024_178220 crossref_primary_10_3390_jmse11040689 crossref_primary_10_1016_j_apenergy_2022_119272 crossref_primary_10_1016_j_joei_2024_101606 crossref_primary_10_1016_j_jclepro_2022_134067 crossref_primary_10_1016_j_molliq_2023_123808 crossref_primary_10_1016_j_cej_2023_141391 crossref_primary_10_1016_j_jclepro_2023_139412 crossref_primary_10_1016_j_jaecs_2023_100119 crossref_primary_10_1016_j_ijhydene_2022_03_103 crossref_primary_10_1177_09544062231207566 crossref_primary_10_1016_j_applthermaleng_2025_125769 crossref_primary_10_1016_j_fuel_2023_127668 crossref_primary_10_1016_j_joei_2024_101718 crossref_primary_10_1080_00102202_2025_2461125 crossref_primary_10_1016_j_enconman_2022_115226 crossref_primary_10_1016_j_joei_2024_101715 crossref_primary_10_1080_00102202_2023_2204518 crossref_primary_10_1016_j_ijhydene_2023_10_308 crossref_primary_10_1016_j_ijhydene_2022_01_189 crossref_primary_10_1021_acs_energyfuels_2c01822 crossref_primary_10_1016_j_joei_2024_101951 crossref_primary_10_1016_j_ijhydene_2024_04_151 crossref_primary_10_1016_j_fuel_2024_134110 crossref_primary_10_1016_j_energy_2024_132387 crossref_primary_10_1016_j_ijhydene_2023_05_222 crossref_primary_10_1016_j_ijhydene_2023_05_343 crossref_primary_10_1016_j_fuel_2024_131090 crossref_primary_10_1016_j_combustflame_2024_113555 crossref_primary_10_1016_j_combustflame_2024_113678 crossref_primary_10_1016_j_conengprac_2023_105526 crossref_primary_10_1016_j_psep_2024_07_102 crossref_primary_10_1016_j_rser_2023_113204 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1021_acs_energyfuels_4c01590 crossref_primary_10_1016_j_fuel_2023_128507 crossref_primary_10_1016_j_joule_2023_12_002 crossref_primary_10_1016_j_seppur_2025_132609 crossref_primary_10_1016_j_jclepro_2023_138667 crossref_primary_10_3390_en16145451 crossref_primary_10_1016_j_est_2022_105714 crossref_primary_10_1016_j_ifacol_2024_11_121 crossref_primary_10_1002_ep_14465 crossref_primary_10_1016_j_psep_2023_06_016 crossref_primary_10_1016_j_energy_2024_133221 crossref_primary_10_1016_j_fuel_2023_129063 crossref_primary_10_1021_acs_energyfuels_2c03550 crossref_primary_10_1016_j_fuel_2022_125187 crossref_primary_10_1016_j_applthermaleng_2025_125544 crossref_primary_10_1016_j_joei_2024_101938 crossref_primary_10_1016_j_fuel_2023_128899 crossref_primary_10_1016_j_jcat_2024_115530 crossref_primary_10_1016_j_fuel_2022_126831 crossref_primary_10_1016_j_ijhydene_2023_10_207 crossref_primary_10_1016_j_enconman_2021_114990 crossref_primary_10_1016_j_ijhydene_2023_09_105 crossref_primary_10_1016_j_ijhydene_2024_04_172 crossref_primary_10_1016_j_est_2022_105804 crossref_primary_10_1016_j_enconman_2022_116090 crossref_primary_10_1016_j_fuel_2025_134333 crossref_primary_10_1016_j_enconman_2024_119160 crossref_primary_10_1016_j_ijhydene_2023_05_122 crossref_primary_10_1039_D1EE02118D crossref_primary_10_1016_j_scitotenv_2024_173375 crossref_primary_10_1016_j_combustflame_2024_113530 crossref_primary_10_1016_j_ijhydene_2024_08_159 crossref_primary_10_1016_j_combustflame_2024_113896 crossref_primary_10_1016_j_energy_2023_127056 crossref_primary_10_1039_D4SC03609C crossref_primary_10_1115_1_4065198 crossref_primary_10_3390_en15228583 crossref_primary_10_3390_en18010041 crossref_primary_10_1007_s11804_024_00600_5 crossref_primary_10_1016_j_energy_2022_125122 crossref_primary_10_1016_j_isci_2022_105120 crossref_primary_10_1021_acs_energyfuels_1c01928 |
Cites_doi | 10.1016/j.combustflame.2017.09.002 10.1038/s41929-019-0414-4 10.1016/j.proci.2008.06.036 10.1016/j.enconman.2020.112709 10.1016/j.ijhydene.2017.07.203 10.1021/acs.iecr.5b04937 10.1016/j.egyr.2015.08.001 10.1039/C9EE02873K 10.1016/j.apenergy.2013.07.065 10.1021/acssuschemeng.9b01158 10.1016/j.ijhydene.2011.12.137 10.1016/j.combustflame.2009.03.016 10.1016/j.fuel.2019.116059 10.1016/j.egypro.2017.03.1002 10.1016/j.apenergy.2014.02.029 10.1016/j.fuel.2020.117742 10.1115/1.4042507 10.1007/s12583-017-0782-0 10.1016/j.ijhydene.2020.10.045 10.1155/2009/459813 10.1016/j.fuel.2010.07.055 10.1016/j.ijhydene.2019.12.209 10.1016/j.rser.2018.12.023 10.1016/j.pecs.2007.02.004 10.1016/j.pecs.2018.01.002 10.1016/j.fuel.2017.01.095 10.1016/j.jclepro.2013.09.011 10.1016/j.ijhydene.2017.08.090 10.1016/j.ijhydene.2017.12.066 10.1016/j.combustflame.2014.08.022 10.1016/j.combustflame.2010.12.013 10.1016/j.egypro.2017.12.504 10.1016/j.rser.2019.05.041 10.1016/j.combustflame.2003.12.008 10.1016/j.ijhydene.2019.10.174 10.1016/j.ijhydene.2016.11.208 10.4271/680401 10.1016/j.combustflame.2017.06.021 10.1021/acs.energyfuels.7b00709 10.1021/acssuschemeng.7b02219 10.1016/j.cpc.2016.02.013 10.1016/j.ijhydene.2019.10.105 10.1016/0360-1285(89)90017-8 10.1016/j.ijhydene.2017.04.261 10.4271/2014-01-1231 10.1016/j.proci.2018.09.029 10.1016/j.jhazmat.2007.11.089 10.1080/00102209508960400 10.1016/j.fuel.2019.115693 10.1016/j.fuel.2019.116768 10.1016/j.fuel.2020.117448 10.1016/j.fuel.2015.06.070 10.1039/C8EE01157E 10.1016/0360-3199(88)90037-7 10.1016/S0082-0784(67)80213-3 10.1016/j.fuproc.2012.09.045 10.1016/j.fuel.2015.06.075 10.1016/j.combustflame.2019.05.003 10.1016/j.fuel.2010.09.042 10.1007/s12206-018-0347-x 10.1016/j.ijhydene.2013.11.098 10.1016/j.fuel.2012.08.026 10.4271/2014-01-2759 10.1080/00102209408935436 10.1038/s41929-019-0280-0 10.1016/j.apenergy.2019.114135 10.1016/j.ijhydene.2019.11.028 10.3390/jmse8020109 10.1016/j.ijhydene.2012.10.114 10.4271/2017-24-0087 10.1016/j.joule.2019.07.005 10.1016/j.energy.2014.02.108 10.1016/j.apenergy.2020.115580 10.1021/acs.chemrev.9b00538 10.1115/1.4030443 10.1080/00102208308923691 10.1016/j.applthermaleng.2019.02.072 10.1016/j.pecs.2018.07.001 10.1016/j.energy.2017.03.085 10.1016/j.ijhydene.2017.09.089 10.1016/j.apenergy.2018.10.023 10.1002/kin.21154 10.1002/er.3141 10.1016/j.energy.2017.02.175 10.1016/j.fuel.2019.02.102 10.1038/s41560-018-0293-y 10.1016/j.rser.2019.109292 10.1016/j.fuel.2016.04.100 10.1016/j.combustflame.2019.03.008 10.1115/1.4035911 10.1016/j.combustflame.2012.06.003 10.1016/j.apenergy.2018.09.106 10.1016/j.jpowsour.2005.11.086 10.1115/1.2898837 10.1016/B978-0-444-64087-1.00005-X 10.1016/j.fuel.2010.06.008 10.4271/2014-32-0082 10.1016/j.ijhydene.2012.01.091 10.1039/tf9514700743 10.1016/j.protcy.2014.08.016 10.1016/j.fuel.2020.117166 10.1002/cjce.22126 10.1109/JPROC.2012.2192469 10.1016/j.combustflame.2015.10.012 10.1016/j.joule.2018.04.017 10.1016/j.rser.2016.01.120 10.1016/j.combustflame.2009.03.005 10.1016/j.energy.2011.07.024 10.1016/S0010-2180(00)00152-8 10.1016/j.rser.2019.109262 10.1002/ep.11886 10.1016/j.ijhydene.2015.06.080 10.1021/j100820a027 10.1021/acs.iecr.8b02447 10.1016/j.renene.2014.06.034 10.1016/j.apenergy.2017.03.100 10.1016/j.rser.2019.109620 10.1016/j.combustflame.2009.07.006 10.1016/j.fuel.2013.03.055 10.1021/acs.energyfuels.9b02948 10.1016/j.biortech.2008.03.041 10.1016/j.rser.2019.109339 10.1016/j.combustflame.2019.04.050 10.1016/j.combustflame.2018.05.008 10.1016/j.rser.2019.109616 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2021.126562 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2021_126562 S0959652621007824 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-4efb487ad9d6630e900ef7b55e519293d73ab44bb6a1190ced35b206caf14f443 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Wed Jul 02 03:22:42 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Tue Jul 01 03:23:23 EDT 2025 Fri Feb 23 02:40:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ammonia Green ammonia transition Pure ammonia-fuelled vehicles Internal combustion engines Carbon-free fuel Dual-fuel concept |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-4efb487ad9d6630e900ef7b55e519293d73ab44bb6a1190ced35b206caf14f443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1780-3347 0000-0002-9816-5860 |
PQID | 2524320790 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524320790 crossref_primary_10_1016_j_jclepro_2021_126562 crossref_citationtrail_10_1016_j_jclepro_2021_126562 elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_126562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-10 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Arora, Hoadley, Mahajani, Ganesh (bib10) 2016; 55 Duynslaegher, Contino, Vandooren, Jeanmart (bib40) 2012; 159 Ishihara, Zhang, Ito (bib74) 2020; 274 Lasocki, Bednarski, Sikora (bib90) 2019 Lindstedt, Lockwood, Selim (bib100) 1995; 108 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib124) 2019; 204 Lee, Park, Lee, Byun, Yoon, Lim (bib94) 2019; 113 Frankl, Gleis, Karmann, Prager, Wachtmeister (bib48) 2020 Silva, Couto, Eusébio, Rouboa, Brito, Cardoso, Trninic (bib150) 2017; 42 Granovskii, Dincer, Rosen (bib62) 2006; 159 Kumar, Sreekumar, Mohanan (bib87) 2014; 14 Larbi, Bessrour (bib89) 2009 Silva, Rouboa (bib149) 2013; 109 Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bib161) 2008; 155 Abdin, Zafaranloo, Rafiee, Mérida, Lipiński, Khalilpour (bib1) 2020; 120 Ryu, Zacharakis-Jutz, Kong (bib140) 2014; 113 IEA (bib71) 2017 Mørch, Bjerre, Gøttrup, Sorenson, Schramm (bib110) 2011; 90 Bartels (bib13) 2008 Runge, Sölch, Albert, Wasserscheid, Zöttl, Grimm (bib139) 2019; 233–234 SIP (bib151) 2016 Elishav, Lis, Miller, Arent, Valera-Medina, Dana, Shter, Grader (bib43) 2020; 120 Kobayashi, Hayakawa, Somarathne, Okafor (bib81) 2019; 37 Li, Huang, Kobayashi, Wang, Yuan (bib97) 2017; 126 Kang (bib78) 2014 Mendiara, Glarborg (bib105) 2009; 156 Skreiberg, Kilpinen, Glarborg (bib152) 2004; 136 Brackmann, Nilsson, Nauclér, Aldén, Konnov (bib20) 2018; 194 Yapicioglu, Dincer (bib182) 2019; 154 Tamura, Gotou, Ishii, Riechelmann (bib162) 2020; 277 Pollet, Staffell, Shang, Molkov (bib129) 2014 EEA (bib42) 2019 Niki, Yoo, Hirata, Sekiguchi (bib119) 2016 Tunå, Hulteberg, Ahlgren (bib170) 2014; 33 Li, Huang, Kobayashi, He, Nagai (bib96) 2014; 38 Ryu, Zacharakis-Jutz, Kong (bib141) 2014; 39 Siemens (bib147) 2016 Gray, Dimitroff, Meckel, Quillian (bib11) 1967; 75 Xiao, Valera-Medina, Bowen, Dooley (bib179) 2017; 142 Lauer (bib92) 2017 Silva, Cardoso (bib148) 2020 . Niki, Nitta, Sekiguchi, Hirata (bib121) 2019; 141 Sarkar, Kumar, Sultana (bib143) 2011; 36 Brohi (bib22) 2014 Yapicioglu, Dincer (bib183) 2019; 103 Latarche (bib91) 2019 Cardiff University (bib25) 2019 Cornelius, Huellmantel, Mitchell (bib28) 1965; 74 Lindstedt, Lockwood, Selim (bib99) 1993; 99 Veser (bib172) 2018; 3 Armijo, Philibert (bib9) 2020; 13 Tay, Yang, Li, Zhou, Yu, Zhao, Chou, Mohan (bib164) 2017; 204 Gong, Willi (bib59) 2008 Sánchez, Martín, Vega (bib145) 2019; 7 Haputhanthri, Maxwell, Fleming, Austin (bib67) 2015; 137 Rouwenhorst, Krzywda, Benes, Mul, Lefferts (bib138) 2020 Zhang, Wang, herle, Maréchal, Desideri (bib184) 2020; 259 Coelho, Costa (bib26) 2012 Crolius (bib29) 2016 He, Shu, Nascimento, Moshammer, Costa, Fernandes (bib69) 2019; 206 Ramos, Rocha, Oliveira, Costa, Bai (bib130) 2019; 254 Rocha, Ramos, Costa, Bai (bib134) 2019; 33 World Energy Council (bib177) 2019 Zhang, Ito, Ishii, Ishihara, Fujimori (bib185) 2020; 267 Lhuillier, Brequigny, Contino, Mounaïm-Rousselle (bib95) 2020; 269 Grannell, Assanis, Bohac, Gillespie (bib61) 2008; 130 Fenimore, Jones (bib47) 1961; 65 Koike, Miyagawa, Suzuoki, Ogasawara (bib83) 2012 Reiter, Kong (bib131) 2010 Lee, Song (bib93) 2018; 32 Gilbert, Alexander, Thornley, Brammer (bib55) 2014; 64 Blarigan (bib15) 2000 Li, Konnov, He, Qin, Zhang (bib98) 2019; 257 Smith, Hill, Torrente-Murciano (bib154) 2020; 13 Sawyer, Starkman, Muzio, Schmidt (bib144) 1968 Tock, Maréchal, Perrenoud (bib168) 2015; 93 Ecuity (bib41) 2020 MRFR (bib112) 2019 Murray, Hall (bib113) 1951; 47 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib123) 2018; 187 Eurostat (bib45) 2019 The Royal Society (bib166) 2020 Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bib127) 2000; 123 Rocha, Costa, Bai (bib133) 2019; 246 Rouwenhorst, Ham, Mul, Kersten (bib137) 2019; 114 ICCT (bib36) 2017 Koike, Suzuoki (bib82) 2019; 44 Tay, Wenming, Chou, Zhou, Li, Yu, Zhao, Mohan (bib163) 2017; 105 Mathieu, Petersen (bib104) 2015; 162 Zumdahl (bib187) 2013 Ahlgren, Baky, Bernesson, Nordberg, Norén, Hansson (bib4) 2008; 99 Niki, Nitta, Sekiguchi, Hirata (bib120) 2018 Will (bib176) 2018 Armijo, Philibert (bib8) 2020; 45 Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bib125) 2018; 43 Duynslaegher (bib37) 2011 Service (bib146) 2018 Navas-Anguita, García-Gusano, Iribarren (bib116) 2019; 112 Boretti (bib18) 2017; 42 Duynslaegher, Jeanmart, Vandooren (bib39) 2010; 89 Manna, Sabia, Ragucci, Joannon (bib103) 2020; 264 (bib73) 2019 Lamas, Rodriguez (bib88) 2017; 42 Benjamin, Gall, Sturgess, Roberts (bib14) 2012 Dana, Ranasinghe, Wu, Grambow, Dong, Johnson, Goldman, Liu, Green (bib33) 2019 Konnov (bib86) 2009; 156 Westlye, Ivarsson, Schramm (bib175) 2013; 111 Frigo, Gentili, Doveri (bib51) 2012 Kojima (bib84) 2013 Han, Wang, Costa, Sun, He, Cen (bib65) 2019; 206 Reiter, Kong (bib132) 2011; 90 Deloitte (bib34) 2018 Glarborg, Miller, Ruscic, Klippenstein (bib57) 2018; 67 Kane, Zarling, Northrop (bib77) 2019 Sarafraz, Tran, Pourali, Rebrov, Hessel (bib142) 2020; 210 Miller, Smooke, Green, Kee (bib108) 1983; 34 Morgan, Manwell, McGowan (bib111) 2014; 72 Nayak-Luke, Bañares-Alcántara, Wilkinson (bib117) 2018; 57 Brackmann, Alekseev, Zhou, Nordström, Bengtsson, Li, Aldén, Konnov (bib19) 2016; 163 NH3 Fuel Association (bib118) 2017 Frigo, Gentili (bib49) 2013; 38 Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bib68) 2015; 159 Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts, Farooq (bib75) 2020 Nakamura, Hasegawa, Tezuka (bib114) 2017; 185 The Royal Society (bib165) 2018 IEA (bib72) 2020 Andersson, Lundgren (bib5) 2014; 130 Kang, Holbrook (bib79) 2015; 1 Xiao, Valera-Medina (bib178) 2017; 139 Brasington (bib21) 2019 Gross, Kong (bib64) 2013; 103 Nozari, Karabeyoglu (bib122) 2015; 159 Splitter, Szybist (bib158) 2014; 7 Maclean, Wagner (bib101) 1967; 11 Arena (bib7) 2019 Zhao, Setzler, Wang, Nash, Wang, Xu, Yan (bib186) 2019; 3 Capdevila-Cortada (bib24) 2019; 2 Comotti, Frigo (bib27) 2015; 40 Dagaut, Glarborg, Alzueta (bib31) 2008; 34 Kojima, Nakamura, Shimizu, Sugimoto, Kim (bib85) 2009 Avery (bib12) 1988; 13 Duynslaegher, Jeanmart, Vandooren (bib38) 2009; 32 European Commission (bib44) Frigo, Gentili (bib50) 2014 Song, Hashemi, Christensen, Zou, Marshall, Glarborg (bib157) 2016; 181 Valera-Medina, Xiao, Owen-Jones, David, Bowen (bib171) 2018; 69 Apostolou, Xydis (bib6) 2019; 113 Penkuhn, Tsatsaronis (bib126) 2017; 137 Starkman, Newhall, Sutton, Maguire, Farbar (bib160) 1967; 75 Meyer, Kumar, Li, Redfern, Diaz (bib106) 2018 Tian, Li, Zhang, Glarborg, Qi (bib167) 2009; 156 Ezzat, Dincer (bib46) 2018; 43 Afif, Radenahmad, Cheok, Shams, Kim, Azad (bib2) 2016; 60 Gao, Allen, Green, West (bib53) 2016; 203 Rocha, Costa, Bai (bib135) 2020 Crolius (bib30) 2020 Haputhanthri (bib66) 2014 Hoxha, Dervishi, Sweeney (bib70) 2019; 30 Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (bib173) 2018; 2 Staffell, Scamman, Abad, Balcombe, Dodds, Ekins, Shahd, Ward (bib159) 2019; 12 Bongartz, Doré, Eichler, Grube, Heuser, Hombach, Robinius, Pischinger, Stolten, Walther, Mitsos (bib16) 2018; 231 Green (bib63) 2019 Dimitriou, Javaid (bib35) 2020; 45 Soloveichik (bib155) 2019; 2 Xiao, Valera-Medina, Marsh, Bowen (bib181) 2017; 196 Bannon (bib169) 2018 Wang, Ji, Wang, Yang, Wang (bib174) 2021; 46 Brown (bib23) 2013 Miller, Bowman (bib107) 1989; 15 Pochet, Truedsson, Foucher, Jeanmart, Contino (bib128) 2017 Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., William C. Gardiner, J., Lissianski, V.V., Qin, Z., 2000. GRI-mech 3.0. Ahlgren (bib3) 2012; 100 Boretti (bib17) 2012; 37 Dana, Buesser, Merchant, Green (bib32) 2018; 50 Grannell, Assanis, Bohac, Gillespie (bib60) 2006 Somarathne, Hatakeyama, Hayakawa, Kobayashi (bib156) 2017; 42 Jolaoso, Zaman (bib76) 2020 Nash, Aklil, Johnson, Gazey, Ortisi (bib115) 2012 Galdo, Castro-Santos, Vidal (bib52) 2020; 8 Miura, Tezuka (bib109) 2014; 68 Klippenstein, Harding, Glarborg, Miller (bib80) 2011; 158 Gill, Chatha, Tsolakis, Golunski, York (bib56) 2012; 37 Xiao, Valera-Medina, Bowen (bib180) 2017; 31 Rogóż, Kapusta, Bachanek, Vankan, Andrzej (bib136) 2020; 120 Giddey, Badwal, Munnings, Dolan (bib54) 2017; 5 MAN Energy Solutions (bib102) 2019 Gomez, Baca, Garzon (bib58) 2020; 45 Runge (10.1016/j.jclepro.2021.126562_bib139) 2019; 233–234 Li (10.1016/j.jclepro.2021.126562_bib98) 2019; 257 Brackmann (10.1016/j.jclepro.2021.126562_bib19) 2016; 163 Coelho (10.1016/j.jclepro.2021.126562_bib26) 2012 Ishihara (10.1016/j.jclepro.2021.126562_bib74) 2020; 274 Nakamura (10.1016/j.jclepro.2021.126562_bib114) 2017; 185 The Royal Society (10.1016/j.jclepro.2021.126562_bib166) 2020 Xiao (10.1016/j.jclepro.2021.126562_bib178) 2017; 139 Dagaut (10.1016/j.jclepro.2021.126562_bib31) 2008; 34 Koike (10.1016/j.jclepro.2021.126562_bib82) 2019; 44 Tay (10.1016/j.jclepro.2021.126562_bib164) 2017; 204 IEA (10.1016/j.jclepro.2021.126562_bib71) 2017 Duynslaegher (10.1016/j.jclepro.2021.126562_bib39) 2010; 89 Hoxha (10.1016/j.jclepro.2021.126562_bib70) 2019; 30 Siemens (10.1016/j.jclepro.2021.126562_bib147) 2016 Pochet (10.1016/j.jclepro.2021.126562_bib128) 2017 Blarigan (10.1016/j.jclepro.2021.126562_bib15) 2000 Frankl (10.1016/j.jclepro.2021.126562_bib48) 2020 Maclean (10.1016/j.jclepro.2021.126562_bib101) 1967; 11 Eurostat (10.1016/j.jclepro.2021.126562_bib45) 2019 Haputhanthri (10.1016/j.jclepro.2021.126562_bib67) 2015; 137 Dimitriou (10.1016/j.jclepro.2021.126562_bib35) 2020; 45 Gilbert (10.1016/j.jclepro.2021.126562_bib55) 2014; 64 Staffell (10.1016/j.jclepro.2021.126562_bib159) 2019; 12 Cardiff University (10.1016/j.jclepro.2021.126562_bib25) 2019 World Energy Council (10.1016/j.jclepro.2021.126562_bib177) 2019 MRFR (10.1016/j.jclepro.2021.126562_bib112) 2019 Tunå (10.1016/j.jclepro.2021.126562_bib170) 2014; 33 Galdo (10.1016/j.jclepro.2021.126562_bib52) 2020; 8 Smith (10.1016/j.jclepro.2021.126562_bib154) 2020; 13 Soloveichik (10.1016/j.jclepro.2021.126562_bib155) 2019; 2 Nash (10.1016/j.jclepro.2021.126562_bib115) 2012 SIP (10.1016/j.jclepro.2021.126562_bib151) 2016 Nayak-Luke (10.1016/j.jclepro.2021.126562_bib117) 2018; 57 Kang (10.1016/j.jclepro.2021.126562_bib79) 2015; 1 Xiao (10.1016/j.jclepro.2021.126562_bib181) 2017; 196 Miura (10.1016/j.jclepro.2021.126562_bib109) 2014; 68 Grannell (10.1016/j.jclepro.2021.126562_bib60) 2006 Silva (10.1016/j.jclepro.2021.126562_bib148) 2020 Abdin (10.1016/j.jclepro.2021.126562_bib1) 2020; 120 Boretti (10.1016/j.jclepro.2021.126562_bib18) 2017; 42 Navas-Anguita (10.1016/j.jclepro.2021.126562_bib116) 2019; 112 EEA (10.1016/j.jclepro.2021.126562_bib42) 2019 Brown (10.1016/j.jclepro.2021.126562_bib23) Koike (10.1016/j.jclepro.2021.126562_bib83) 2012 Apostolou (10.1016/j.jclepro.2021.126562_bib6) 2019; 113 Murray (10.1016/j.jclepro.2021.126562_bib113) 1951; 47 Comotti (10.1016/j.jclepro.2021.126562_bib27) 2015; 40 Morgan (10.1016/j.jclepro.2021.126562_bib111) 2014; 72 Larbi (10.1016/j.jclepro.2021.126562_bib89) 2009 Jolaoso (10.1016/j.jclepro.2021.126562_bib76) 2020 Latarche (10.1016/j.jclepro.2021.126562_bib91) Glarborg (10.1016/j.jclepro.2021.126562_bib57) 2018; 67 Cornelius (10.1016/j.jclepro.2021.126562_bib28) 1965; 74 Granovskii (10.1016/j.jclepro.2021.126562_bib62) 2006; 159 Wang (10.1016/j.jclepro.2021.126562_bib173) 2018; 2 Avery (10.1016/j.jclepro.2021.126562_bib12) 1988; 13 Ryu (10.1016/j.jclepro.2021.126562_bib141) 2014; 39 Brohi (10.1016/j.jclepro.2021.126562_bib22) 2014 Wang (10.1016/j.jclepro.2021.126562_bib174) 2021; 46 Gong (10.1016/j.jclepro.2021.126562_bib59) 2008 Niki (10.1016/j.jclepro.2021.126562_bib121) 2019; 141 Kojima (10.1016/j.jclepro.2021.126562_bib85) 2009 Li (10.1016/j.jclepro.2021.126562_bib96) 2014; 38 Manna (10.1016/j.jclepro.2021.126562_bib103) 2020; 264 Miller (10.1016/j.jclepro.2021.126562_bib107) 1989; 15 Xiao (10.1016/j.jclepro.2021.126562_bib179) 2017; 142 Rocha (10.1016/j.jclepro.2021.126562_bib134) 2019; 33 Crolius (10.1016/j.jclepro.2021.126562_bib29) Okafor (10.1016/j.jclepro.2021.126562_bib124) 2019; 204 Rogóż (10.1016/j.jclepro.2021.126562_bib136) 2020; 120 Duynslaegher (10.1016/j.jclepro.2021.126562_bib37) 2011 Gao (10.1016/j.jclepro.2021.126562_bib53) 2016; 203 Niki (10.1016/j.jclepro.2021.126562_bib119) 2016 Somarathne (10.1016/j.jclepro.2021.126562_bib156) 2017; 42 Klippenstein (10.1016/j.jclepro.2021.126562_bib80) 2011; 158 Sarkar (10.1016/j.jclepro.2021.126562_bib143) 2011; 36 Reiter (10.1016/j.jclepro.2021.126562_bib131) 2010 Reiter (10.1016/j.jclepro.2021.126562_bib132) 2011; 90 Okafor (10.1016/j.jclepro.2021.126562_bib123) 2018; 187 Arora (10.1016/j.jclepro.2021.126562_bib10) 2016; 55 Zhao (10.1016/j.jclepro.2021.126562_bib186) 2019; 3 Gray (10.1016/j.jclepro.2021.126562_bib11) 1967; 75 Yapicioglu (10.1016/j.jclepro.2021.126562_bib182) 2019; 154 Issayev (10.1016/j.jclepro.2021.126562_bib75) 2020 Kumar (10.1016/j.jclepro.2021.126562_bib87) 2014; 14 Nozari (10.1016/j.jclepro.2021.126562_bib122) 2015; 159 Armijo (10.1016/j.jclepro.2021.126562_bib9) 2020; 13 European Commission (10.1016/j.jclepro.2021.126562_bib44) Otomo (10.1016/j.jclepro.2021.126562_bib125) 2018; 43 Rouwenhorst (10.1016/j.jclepro.2021.126562_bib138) 2020 Tay (10.1016/j.jclepro.2021.126562_bib163) 2017; 105 (10.1016/j.jclepro.2021.126562_bib73) 2019 Bannon (10.1016/j.jclepro.2021.126562_bib169) 2018 Valera-Medina (10.1016/j.jclepro.2021.126562_bib171) 2018; 69 Brackmann (10.1016/j.jclepro.2021.126562_bib20) 2018; 194 Duynslaegher (10.1016/j.jclepro.2021.126562_bib40) 2012; 159 Han (10.1016/j.jclepro.2021.126562_bib65) 2019; 206 IEA (10.1016/j.jclepro.2021.126562_bib72) 2020 Westlye (10.1016/j.jclepro.2021.126562_bib175) 2013; 111 Ahlgren (10.1016/j.jclepro.2021.126562_bib4) 2008; 99 Silva (10.1016/j.jclepro.2021.126562_bib149) 2013; 109 Kojima (10.1016/j.jclepro.2021.126562_bib84) 2013 The Royal Society (10.1016/j.jclepro.2021.126562_bib165) 2018 Green (10.1016/j.jclepro.2021.126562_bib63) 2019 Konnov (10.1016/j.jclepro.2021.126562_bib86) 2009; 156 Giddey (10.1016/j.jclepro.2021.126562_bib54) 2017; 5 Meyer (10.1016/j.jclepro.2021.126562_bib106) 2018 Deloitte (10.1016/j.jclepro.2021.126562_bib34) 2018 Tian (10.1016/j.jclepro.2021.126562_bib167) 2009; 156 Lindstedt (10.1016/j.jclepro.2021.126562_bib99) 1993; 99 Bongartz (10.1016/j.jclepro.2021.126562_bib16) 2018; 231 Frigo (10.1016/j.jclepro.2021.126562_bib49) 2013; 38 Lauer (10.1016/j.jclepro.2021.126562_bib92) 2017 Yapicioglu (10.1016/j.jclepro.2021.126562_bib183) 2019; 103 Zhang (10.1016/j.jclepro.2021.126562_bib185) 2020; 267 ICCT (10.1016/j.jclepro.2021.126562_bib36) 2017 Veser (10.1016/j.jclepro.2021.126562_bib172) 2018; 3 Lee (10.1016/j.jclepro.2021.126562_bib94) 2019; 113 Benjamin (10.1016/j.jclepro.2021.126562_bib14) 2012 Gill (10.1016/j.jclepro.2021.126562_bib56) 2012; 37 Kang (10.1016/j.jclepro.2021.126562_bib78) 2014 Dana (10.1016/j.jclepro.2021.126562_bib33) Mørch (10.1016/j.jclepro.2021.126562_bib110) 2011; 90 Boretti (10.1016/j.jclepro.2021.126562_bib17) 2012; 37 Zhang (10.1016/j.jclepro.2021.126562_bib184) 2020; 259 Service (10.1016/j.jclepro.2021.126562_bib146) 2018 Sawyer (10.1016/j.jclepro.2021.126562_bib144) 1968 Frigo (10.1016/j.jclepro.2021.126562_bib51) 2012 Tock (10.1016/j.jclepro.2021.126562_bib168) 2015; 93 Sarafraz (10.1016/j.jclepro.2021.126562_bib142) 2020; 210 Xiao (10.1016/j.jclepro.2021.126562_bib180) 2017; 31 Gomez (10.1016/j.jclepro.2021.126562_bib58) 2020; 45 Pfahl (10.1016/j.jclepro.2021.126562_bib127) 2000; 123 Skreiberg (10.1016/j.jclepro.2021.126562_bib152) 2004; 136 Elishav (10.1016/j.jclepro.2021.126562_bib43) 2020; 120 Miller (10.1016/j.jclepro.2021.126562_bib108) 1983; 34 Kobayashi (10.1016/j.jclepro.2021.126562_bib81) 2019; 37 Pollet (10.1016/j.jclepro.2021.126562_bib129) 2014 Penkuhn (10.1016/j.jclepro.2021.126562_bib126) 2017; 137 Ecuity (10.1016/j.jclepro.2021.126562_bib41) 2020 Brasington (10.1016/j.jclepro.2021.126562_bib21) Dana (10.1016/j.jclepro.2021.126562_bib32) 2018; 50 Bartels (10.1016/j.jclepro.2021.126562_bib13) 2008 Mendiara (10.1016/j.jclepro.2021.126562_bib105) 2009; 156 Afif (10.1016/j.jclepro.2021.126562_bib2) 2016; 60 Armijo (10.1016/j.jclepro.2021.126562_bib8) 2020; 45 Gross (10.1016/j.jclepro.2021.126562_bib64) 2013; 103 Fenimore (10.1016/j.jclepro.2021.126562_bib47) 1961; 65 Song (10.1016/j.jclepro.2021.126562_bib157) 2016; 181 Ahlgren (10.1016/j.jclepro.2021.126562_bib3) 2012; 100 Rouwenhorst (10.1016/j.jclepro.2021.126562_bib137) 2019; 114 Lhuillier (10.1016/j.jclepro.2021.126562_bib95) 2020; 269 Duynslaegher (10.1016/j.jclepro.2021.126562_bib38) 2009; 32 Ezzat (10.1016/j.jclepro.2021.126562_bib46) 2018; 43 Rocha (10.1016/j.jclepro.2021.126562_bib135) 2020 Splitter (10.1016/j.jclepro.2021.126562_bib158) 2014; 7 Will (10.1016/j.jclepro.2021.126562_bib176) 2018 Mathieu (10.1016/j.jclepro.2021.126562_bib104) 2015; 162 Grannell (10.1016/j.jclepro.2021.126562_bib61) 2008; 130 Lamas (10.1016/j.jclepro.2021.126562_bib88) 2017; 42 Tamura (10.1016/j.jclepro.2021.126562_bib162) 2020; 277 Zumdahl (10.1016/j.jclepro.2021.126562_bib187) Frigo (10.1016/j.jclepro.2021.126562_bib50) 2014 He (10.1016/j.jclepro.2021.126562_bib69) 2019; 206 Ryu (10.1016/j.jclepro.2021.126562_bib140) 2014; 113 Sánchez (10.1016/j.jclepro.2021.126562_bib145) 2019; 7 NH3 Fuel Association (10.1016/j.jclepro.2021.126562_bib118) Takizawa (10.1016/j.jclepro.2021.126562_bib161) 2008; 155 Crolius (10.1016/j.jclepro.2021.126562_bib30) Lee (10.1016/j.jclepro.2021.126562_bib93) 2018; 32 Capdevila-Cortada (10.1016/j.jclepro.2021.126562_bib24) 2019; 2 Kane (10.1016/j.jclepro.2021.126562_bib77) 2019 Li (10.1016/j.jclepro.2021.126562_bib97) 2017; 126 Lasocki (10.1016/j.jclepro.2021.126562_bib90) 2019 MAN Energy Solutions (10.1016/j.jclepro.2021.126562_bib102) 2019 Andersson (10.1016/j.jclepro.2021.126562_bib5) 2014; 130 Haputhanthri (10.1016/j.jclepro.2021.126562_bib66) 2014 10.1016/j.jclepro.2021.126562_bib153 Niki (10.1016/j.jclepro.2021.126562_bib120) 2018 Lindstedt (10.1016/j.jclepro.2021.126562_bib100) 1995; 108 Starkman (10.1016/j.jclepro.2021.126562_bib160) 1967; 75 Arena (10.1016/j.jclepro.2021.126562_bib7) Hayakawa (10.1016/j.jclepro.2021.126562_bib68) 2015; 159 Rocha (10.1016/j.jclepro.2021.126562_bib133) 2019; 246 Silva (10.1016/j.jclepro.2021.126562_bib150) 2017; 42 Ramos (10.1016/j.jclepro.2021.126562_bib130) 2019; 254 |
References_xml | – volume: 37 start-page: 6074 year: 2012 end-page: 6083 ident: bib56 article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia publication-title: Int. J. Hydrogen Energy – volume: 185 start-page: 16 year: 2017 end-page: 27 ident: bib114 article-title: Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile publication-title: Combust. Flame – year: 2016 ident: bib29 article-title: Ammonia-powered internal combustion engines – year: 2018 ident: bib120 article-title: Emission and Combustion Characteristics of Diesel Engine Fumigated with Ammonia, ASME 2018 Internal Combustion Engine Division Fall Technical Conference – volume: 233–234 start-page: 1078 year: 2019 end-page: 1093 ident: bib139 article-title: Economic comparison of different electric fuels for energy scenarios in 2035 publication-title: Appl. Energy – year: 2020 ident: bib148 article-title: Computational Fluid Dynamics Applied to Waste-To-Energy Processes: A Hands-On Approach – year: 2016 ident: bib147 article-title: ’Green’ ammonia – volume: 13 start-page: 761 year: 1988 end-page: 773 ident: bib12 article-title: A role for ammonia in the hydrogen economy publication-title: Int. J. Hydrogen Energy – year: 2019 ident: bib91 article-title: Ammonia – another new fuel for the future? – year: 2014 ident: bib66 article-title: Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance publication-title: SAE Technical Paper Series – year: 2008 ident: bib59 article-title: Power System Having an Ammonia Fueled Engine (US20100019506A1) – year: 2020 ident: bib138 article-title: Ammonia, 4. Green Ammonia Production, Ullmann’s Encyclopedia of Industrial Chemistry – volume: 204 start-page: 1476 year: 2017 end-page: 1488 ident: bib164 article-title: Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation publication-title: Appl. Energy – volume: 100 start-page: 3001 year: 2012 end-page: 3052 ident: bib3 article-title: The dual-fuel strategy: an energy transition plan publication-title: Proc. IEEE – volume: 103 start-page: 1069 year: 2013 end-page: 1079 ident: bib64 article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures publication-title: Fuel – year: 2014 ident: bib78 article-title: Combating climate change with ammonia-fueled vehicles, Bulletin of the Atomic Scientists – year: 2019 ident: bib112 article-title: Ammonia market research report - global forecast till 2025. Market research future, India – year: 2020 ident: bib166 article-title: Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store – volume: 269 start-page: 117448 year: 2020 ident: bib95 article-title: Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions publication-title: Fuel – volume: 74 start-page: 300 year: 1965 end-page: 326 ident: bib28 article-title: Ammonia as an engine fuel publication-title: SAE Trans. – year: 2017 ident: bib92 article-title: White Paper | Improving the Air Quality in Our Cities. Reducing Airborne Pollution with Simcenter STAR-CCM+. Siemens Digital Industries Software – volume: 158 start-page: 774 year: 2011 end-page: 789 ident: bib80 article-title: The role of NNH in NO formation and control publication-title: Combust. Flame – start-page: 639 year: 2000 end-page: 656 ident: bib15 article-title: Advanced internal combustion engine research, 2000 U.S DOE hydrogen program review. San ramon publication-title: California – volume: 159 start-page: 98 year: 2015 end-page: 106 ident: bib68 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel – year: 2019 ident: bib90 article-title: Simulation of ammonia combustion in dual-fuel compression ignition engine IOP Conference Series: earth and Environmental Science – year: 2019 ident: bib45 article-title: Energy, Transport and Environment Statistics – year: 2018 ident: bib169 publication-title: CO – volume: 64 start-page: 581 year: 2014 end-page: 589 ident: bib55 article-title: Assessing economically viable carbon reductions for the production of ammonia from biomass gasification publication-title: J. Clean. Prod. – volume: 156 start-page: 2093 year: 2009 end-page: 2105 ident: bib86 article-title: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism publication-title: Combust. Flame – volume: 139 start-page: 81504 year: 2017 ident: bib178 article-title: Chemical kinetic mechanism study on premixed combustion of ammonia/hydrogen fuels for gas turbine use publication-title: J. Eng. Gas Turbines Power – year: 2020 ident: bib72 article-title: ETP clean energy technology guide. International energy agency – volume: 259 start-page: 114135 year: 2020 ident: bib184 article-title: Techno-economic comparison of green ammonia production processes publication-title: Appl. Energy – volume: 7 year: 2014 ident: bib158 article-title: Intermediate alcohol-gasoline blends, fuels for enabling increased engine efficiency and powertrain possibilities publication-title: SAE international journal of fuels and lubricants – volume: 155 start-page: 144 year: 2008 end-page: 152 ident: bib161 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J. Hazard Mater. – volume: 210 start-page: 112709 year: 2020 ident: bib142 article-title: Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals publication-title: Energy Convers. Manag. – volume: 44 start-page: 32271 year: 2019 end-page: 32279 ident: bib82 article-title: In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen publication-title: Int. J. Hydrogen Energy – volume: 123 start-page: 140 year: 2000 end-page: 158 ident: bib127 article-title: Flammability limits, ignition energy, and flame speeds in H publication-title: Combust. Flame – volume: 111 start-page: 239 year: 2013 end-page: 247 ident: bib175 article-title: Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine publication-title: Fuel – volume: 274 start-page: 117742 year: 2020 ident: bib74 article-title: Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions publication-title: Fuel – year: 2020 ident: bib30 article-title: Literature review: ammonia as a fuel for compression ignition engines – volume: 162 start-page: 554 year: 2015 end-page: 570 ident: bib104 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NO publication-title: Combust. Flame – volume: 39 start-page: 2390 year: 2014 end-page: 2398 ident: bib141 article-title: Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation publication-title: Int. J. Hydrogen Energy – start-page: 680401 year: 1968 ident: bib144 article-title: Oxides of nitrogen in the combustion products of an ammonia fueled reciprocating engine publication-title: Soc. Automotive Eng. – volume: 2 start-page: 1055 year: 2019 ident: bib24 article-title: Electrifying the haber–bosch publication-title: Nature Catalysis – year: 2019 ident: bib73 article-title: Ammonia market - growth, trends, and forecasts – volume: 68 start-page: 428 year: 2014 end-page: 436 ident: bib109 article-title: A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan publication-title: Energy – volume: 254 start-page: 115693 year: 2019 ident: bib130 article-title: Experimental and kinetic modelling investigation on NO, CO and NH publication-title: Fuel – volume: 114 start-page: 109339 year: 2019 ident: bib137 article-title: Islanded ammonia power systems: technology review & conceptual process design publication-title: Renew. Sustain. Energy Rev. – year: 2019 ident: bib21 article-title: Green ammonia – potential as an energy carrier and beyond – volume: 12 start-page: 463 year: 2019 end-page: 491 ident: bib159 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. – volume: 159 start-page: 2799 year: 2012 end-page: 2805 ident: bib40 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust. Flame – volume: 43 start-page: 3004 year: 2018 end-page: 3014 ident: bib125 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int. J. Hydrogen Energy – ident: bib44 article-title: DG ENER working paper - the future role and challenges of energy storage – year: 2018 ident: bib176 article-title: Realization of large-scale green ammonia plants, solutions for sustainable NH – volume: 33 start-page: 12767 year: 2019 end-page: 12780 ident: bib134 article-title: Combustion of NH publication-title: Energy Fuels – volume: 108 start-page: 231 year: 1995 end-page: 254 ident: bib100 article-title: A detailed kinetic study of ammonia oxidation publication-title: Combust. Sci. Technol. – year: 2020 ident: bib75 article-title: Combustion behavior of ammonia blended with diethyl ether publication-title: Proc. Combust. Inst. – volume: 113 start-page: 488 year: 2014 end-page: 499 ident: bib140 article-title: Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether publication-title: Appl. Energy – volume: 105 start-page: 4621 year: 2017 end-page: 4626 ident: bib163 article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study publication-title: Energy Procedia – volume: 203 start-page: 212 year: 2016 end-page: 225 ident: bib53 article-title: Reaction Mechanism Generator: automatic construction of chemical kinetic mechanisms publication-title: Comput. Phys. Commun. – volume: 13 start-page: 331 year: 2020 end-page: 344 ident: bib154 article-title: Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape publication-title: Energy Environ. Sci. – volume: 2 start-page: 377 year: 2019 end-page: 380 ident: bib155 article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process publication-title: Nature Catalysis – volume: 3 start-page: 2472 year: 2019 end-page: 2484 ident: bib186 article-title: An efficient direct ammonia fuel cell for affordable carbon-neutral transportation publication-title: Joule – volume: 42 start-page: 27388 year: 2017 end-page: 27399 ident: bib156 article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure publication-title: Int. J. Hydrogen Energy – volume: 75 start-page: 765 year: 1967 end-page: 784 ident: bib160 article-title: Ammonia as a spark ignition engine fuel: theory and application publication-title: SAE Trans. – volume: 257 start-page: 116059 year: 2019 ident: bib98 article-title: Chemical mechanism development and reduction for combustion of NH publication-title: Fuel – volume: 38 start-page: 1607 year: 2013 end-page: 1615 ident: bib49 article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen publication-title: Int. J. Hydrogen Energy – year: 2016 ident: bib151 article-title: Cross-ministerial strategic innovation promotion program (SIP) energy carriers publication-title: Japan Sci. Technol. Agency – volume: 264 start-page: 116768 year: 2020 ident: bib103 article-title: Oxidation and pyrolysis of ammonia mixtures in model reactors publication-title: Fuel – volume: 120 start-page: 5352 year: 2020 end-page: 5436 ident: bib43 article-title: Progress and prospective of nitrogen-based alternative fuels publication-title: Chem. Rev. – year: 2018 ident: bib165 article-title: Options for Producing Low-Carbon Hydrogen at Scale – year: 2013 ident: bib23 article-title: The AmVeh – an ammonia fueled car from South Korea – volume: 55 start-page: 6422 year: 2016 end-page: 6434 ident: bib10 article-title: Small-scale Ammonia production from biomass: a techno-enviro-economic perspective publication-title: Ind. Eng. Chem. Res. – volume: 38 start-page: 1214 year: 2014 end-page: 1223 ident: bib96 article-title: Study on using hydrogen and ammonia as fuels: combustion characteristics and NO publication-title: Int. J. Energy Res. – volume: 31 start-page: 8631 year: 2017 end-page: 8642 ident: bib180 article-title: Modelling combustion of ammonia/hydrogen fuel blends under gas turbine conditions publication-title: Energy Fuels – volume: 130 start-page: 42802 year: 2008 ident: bib61 article-title: The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine publication-title: J. Eng. Gas Turbines Power – start-page: 131 year: 2012 end-page: 155 ident: bib115 article-title: Hydrogen storage: compressed gas publication-title: Comprehensive Renewable Energy – volume: 60 start-page: 822 year: 2016 end-page: 835 ident: bib2 article-title: Ammonia-fed fuel cells: a comprehensive review publication-title: Renew. Sustain. Energy Rev. – year: 2014 ident: bib50 article-title: Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen publication-title: SAE Technical Paper Series – year: 2018 ident: bib146 article-title: Ammonia - a renewable fuel made from sun, air, and water - could power the globe without carbon publication-title: Science. AAAS – volume: 136 start-page: 501 year: 2004 end-page: 518 ident: bib152 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust. Flame – volume: 5 start-page: 10231 year: 2017 end-page: 10239 ident: bib54 article-title: Ammonia as a renewable energy transportation media publication-title: ACS Sustain. Chem. Eng. – volume: 90 start-page: 854 year: 2011 end-page: 864 ident: bib110 article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system publication-title: Fuel – volume: 30 start-page: 1311 year: 2019 end-page: 1325 ident: bib70 article-title: Waste-to-Fuel technology in Albania—how to implement a renewable energy system in europe’s largest onshore oilfield publication-title: J. Earth Sci. – volume: 11 start-page: 871 year: 1967 end-page: 878 ident: bib101 article-title: The structure of the reaction zones of ammonia-oxygen and hydrazine-decomposition flames publication-title: Symp Combust – year: 2018 ident: bib34 article-title: Supercharged: Challenges and Opportunities in Global Battery Storage Markets – year: 2017 ident: bib71 article-title: Energy technology perspectives. International energy agency – volume: 113 start-page: 109262 year: 2019 ident: bib94 article-title: Assessment of the economic potential: CO publication-title: Renew. Sustain. Energy Rev. – year: 2008 ident: bib13 article-title: A feasibility study of implementing an Ammonia Economy publication-title: Mechanical Engineering – volume: 34 start-page: 1 year: 2008 end-page: 46 ident: bib31 article-title: The oxidation of hydrogen cyanide and related chemistry publication-title: Prog. Energy Combust. Sci. – volume: 267 start-page: 117166 year: 2020 ident: bib185 article-title: Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio publication-title: Fuel – year: 2014 ident: bib22 article-title: Ammonia as fuel for internal combustion engines? An evaluation of the feasibility of using nitrogen-based fuels in ICE publication-title: Department of Applied Mechanics – year: 2017 ident: bib118 article-title: Comparisons, the logical path forward – volume: 103 start-page: 96 year: 2019 end-page: 108 ident: bib183 article-title: A review on clean ammonia as a potential fuel for power generators publication-title: Renew. Sustain. Energy Rev. – volume: 45 start-page: 1541 year: 2020 end-page: 1558 ident: bib8 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 1025 year: 2018 end-page: 1026 ident: bib172 article-title: Ammonia synthesis, taking the pressure off publication-title: Nature Energy – volume: 50 start-page: 243 year: 2018 end-page: 258 ident: bib32 article-title: Automated reaction mechanism generation including nitrogen as a heteroatom publication-title: Int. J. Chem. Kinet. – year: 2019 ident: bib42 article-title: Air quality in Europe — 2019 report publication-title: European Environment Agency – volume: 206 start-page: 189 year: 2019 end-page: 200 ident: bib69 article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures publication-title: Combust. Flame – volume: 120 start-page: 109620 year: 2020 ident: bib1 article-title: Hydrogen as an energy vector publication-title: Renew. Sustain. Energy Rev. – year: 2018 ident: bib106 article-title: Ammonia Combustion with Near-Zero Pollutant Emissions – volume: 163 start-page: 370 year: 2016 end-page: 381 ident: bib19 article-title: Structure of premixed ammonia + air flames at atmospheric pressure: laser diagnostics and kinetic modeling publication-title: Combust. Flame – year: 2013 ident: bib84 article-title: A green ammonia economy publication-title: 10 – volume: 42 start-page: 23878 year: 2017 end-page: 23890 ident: bib150 article-title: Multi-stage optimization in a pilot scale gasification plant publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 26132 year: 2017 end-page: 26141 ident: bib88 article-title: Numerical model to analyze NO publication-title: Int. J. Hydrogen Energy – volume: 90 start-page: 87 year: 2011 end-page: 97 ident: bib132 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel – volume: 32 start-page: 1905 year: 2018 end-page: 1925 ident: bib93 article-title: Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics publication-title: J. Mech. Sci. Technol. – volume: 89 start-page: 3540 year: 2010 end-page: 3545 ident: bib39 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel – year: 2019 ident: bib7 article-title: Renewable future beckons for Queensland ammonia plants – year: 2012 ident: bib51 article-title: Ammonia Plus Hydrogen as Fuel in a S.I. Engine: Experimental Results – volume: 142 start-page: 1294 year: 2017 end-page: 1299 ident: bib179 article-title: 3D simulation of ammonia combustion in a lean premixed swirl burner publication-title: Energy Procedia – volume: 231 start-page: 757 year: 2018 end-page: 767 ident: bib16 article-title: Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide publication-title: Appl. Energy – year: 2020 ident: bib41 article-title: Ammonia to green hydrogen project, feasibility study – volume: 126 start-page: 796 year: 2017 end-page: 809 ident: bib97 article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition publication-title: Energy – volume: 36 start-page: 6251 year: 2011 end-page: 6262 ident: bib143 article-title: Biofuels and biochemicals production from forest biomass in Western Canada publication-title: Energy – year: 2019 ident: bib25 article-title: World First Green Ammonia Power Demonstrator Developed by Siemens – volume: 7 start-page: 9995 year: 2019 end-page: 10007 ident: bib145 article-title: Biomass based sustainable ammonia production: digestion vs gasification publication-title: ACS Sustain. Chem. Eng. – volume: 156 start-page: 1937 year: 2009 end-page: 1949 ident: bib105 article-title: Ammonia chemistry in oxy-fuel combustion of methane publication-title: Combust. Flame – volume: 159 start-page: 1186 year: 2006 end-page: 1193 ident: bib62 article-title: Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles publication-title: J. Power Sources – volume: 246 start-page: 24 year: 2019 end-page: 33 ident: bib133 article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission publication-title: Fuel – start-page: 219 year: 2012 end-page: 234 ident: bib14 article-title: Experiments on a light duty SCR test exhaust system using ammonia gas to provide data for validation of a CFD model publication-title: Internal Combustion Engines: Improving Performance, Fuel Economy and Emissions – start-page: 459813 year: 2009 ident: bib89 article-title: Measurement and simulation of pollutant emissions from marine diesel combustion engine and their reduction by ammonia injection publication-title: Adv. Mech. Eng. – year: 2016 ident: bib119 article-title: Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine, ASME 2016 internal combustion engine fall technical conference publication-title: Am. Soc. Mech. Eng. – volume: 14 start-page: 116 year: 2014 end-page: 124 ident: bib87 article-title: Experimental and CFD analysis of selective catalytic reduction system on DeNOx efficiency of single cylinder diesel engine using NH publication-title: Procedia Technology – volume: 15 start-page: 287 year: 1989 end-page: 338 ident: bib107 article-title: Mechanism and modeling of nitrogen chemistry in combustion publication-title: Prog. Energy Combust. Sci. – year: 2017 ident: bib128 article-title: Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine publication-title: SAE technical paper series – year: 2010 ident: bib131 article-title: Diesel Engine Operation Using Ammonia as a Carbon-free Fuel, ICEF 2010, International Combustion Engine Division Fall Technical Conference. ASME, the American Society of Mechanical Engineers – volume: 120 start-page: 109616 year: 2020 ident: bib136 article-title: Improved urea-water solution spray model for simulations of selective catalytic reduction systems publication-title: Renew. Sustain. Energy Rev. – volume: 45 start-page: 721 year: 2020 end-page: 737 ident: bib58 article-title: Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane publication-title: Int. J. Hydrogen Energy – volume: 159 start-page: 223 year: 2015 end-page: 233 ident: bib122 article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms publication-title: Fuel – volume: 93 start-page: 356 year: 2015 end-page: 362 ident: bib168 article-title: Thermo-environomic evaluation of the ammonia production publication-title: Can. J. Chem. Eng. – volume: 33 start-page: 1290 year: 2014 end-page: 1297 ident: bib170 article-title: Techno-economic assessment of nonfossil ammonia production publication-title: AIChE Environmental Progress & Sustainable Energy – volume: 130 start-page: 484 year: 2014 end-page: 490 ident: bib5 article-title: Techno-economic analysis of ammonia production via integrated biomass gasification publication-title: Appl. Energy – start-page: 61 year: 2012 end-page: 70 ident: bib83 article-title: Ammonia as a hydrogen energy carrier and its application to internal combustion engines, Sustainable Vehicle Technologies, Driving the Green Agenda publication-title: Woodhead Publishing Limited, Gaydon, Warwichshire, UK – volume: 137 start-page: 854 year: 2017 end-page: 864 ident: bib126 article-title: Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis publication-title: Energy – volume: 40 start-page: 10673 year: 2015 end-page: 10686 ident: bib27 article-title: Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines publication-title: Int. J. Hydrogen Energy – volume: 67 start-page: 31 year: 2018 end-page: 68 ident: bib57 article-title: Modeling nitrogen chemistry in combustion publication-title: Prog. Energy Combust. Sci. – volume: 187 start-page: 185 year: 2018 end-page: 198 ident: bib123 article-title: Experimental and numerical study of the laminar burning velocity of CH publication-title: Combust. Flame – volume: 156 start-page: 1413 year: 2009 end-page: 1426 ident: bib167 article-title: An experimental and kinetic modeling study of premixed NH publication-title: Combust. Flame – volume: 42 start-page: 7071 year: 2017 end-page: 7076 ident: bib18 article-title: Novel dual fuel diesel-ammonia combustion system in advanced TDI engines publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2017 end-page: 13 ident: bib36 article-title: China’s stage 6 emission standard for new light-duty vehicles (final rule) publication-title: ICCT, Int. Council Clean Transport. – volume: 2 start-page: 1055 year: 2018 end-page: 1074 ident: bib173 article-title: Greening ammonia toward the solar ammonia refinery publication-title: Joule – volume: 99 start-page: 253 year: 1993 end-page: 276 ident: bib99 article-title: Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation publication-title: Combust. Sci. Technol. – volume: 277 start-page: 115580 year: 2020 ident: bib162 article-title: Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace publication-title: Appl. Energy – volume: 137 year: 2015 ident: bib67 article-title: Ammonia and gasoline fuel blends for spark ignited internal combustion engines publication-title: ASME journal of energy resources technology – volume: 37 start-page: 109 year: 2019 end-page: 133 ident: bib81 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. – start-page: 685 year: 2014 end-page: 735 ident: bib129 article-title: Fuel-cell (Hydrogen) Electric Hybrid Vehicles, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance – start-page: 15 year: 2006 end-page: 27 ident: bib60 article-title: The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. Energy conversion and resources, ASME 2006 international mechanical engineering congress and exposition publication-title: American society of mechanical engineers – year: 2019 ident: bib77 article-title: Thermochemical and Sensible Energy Recuperation Using Thermally-Integrated Reactor and Diesel-Ammonia Dual Fueling Strategy, ASME 2019 Internal Combustion Engine Division Fall Technical Conference – volume: 34 start-page: 149 year: 1983 end-page: 176 ident: bib108 article-title: Kinetic modeling of the oxidation of ammonia in flames publication-title: Combust. Sci. Technol. – start-page: 259 year: 2019 end-page: 294 ident: bib63 article-title: Automatic generation of reaction mechanisms, computer aided chemical engineering – volume: 69 start-page: 63 year: 2018 end-page: 102 ident: bib171 article-title: Ammonia for power publication-title: Prog. Energy Combust. Sci. – volume: 32 start-page: 1277 year: 2009 end-page: 1284 ident: bib38 article-title: Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation publication-title: Proc. Combust. Inst. – volume: 46 start-page: 2667 year: 2021 end-page: 2683 ident: bib174 article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions publication-title: Int. J. Hydrogen Energy – volume: 99 start-page: 8034 year: 2008 end-page: 8041 ident: bib4 article-title: Ammonium nitrate fertiliser production based on biomass - environmental effects from a life cycle perspective publication-title: Bioresour. Technol. – start-page: 1 year: 2009 end-page: 10 ident: bib85 article-title: Ammonia burning internal combustion engine publication-title: International Patent No WO 2010/079846 A1 – volume: 65 start-page: 298 year: 1961 end-page: 303 ident: bib47 article-title: Oxidation of ammonia in flames publication-title: J. Phys. Chem. – volume: 181 start-page: 358 year: 2016 end-page: 365 ident: bib157 article-title: Ammonia oxidation at high pressure and intermediate temperatures publication-title: Fuel – volume: 47 start-page: 743 year: 1951 ident: bib113 article-title: Flame speeds in hydrazine vapour and in mixtures of hydrazine and ammonia with oxygen publication-title: Trans. Faraday Soc. – volume: 57 start-page: 14607 year: 2018 end-page: 14616 ident: bib117 article-title: “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia publication-title: Ind. Eng. Chem. Res. – volume: 109 start-page: 111 year: 2013 end-page: 117 ident: bib149 article-title: Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues publication-title: Fuel Process. Technol. – year: 2011 ident: bib37 article-title: Experimental and numerical study of ammonia combustion publication-title: Université Catholique de Louvain – volume: 204 start-page: 162 year: 2019 end-page: 175 ident: bib124 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust. Flame – volume: 72 start-page: 51 year: 2014 end-page: 61 ident: bib111 article-title: Wind-powered ammonia fuel production for remote islands: a case study publication-title: Renew. Energy – volume: 75 start-page: 785 year: 1967 end-page: 807 ident: bib11 article-title: Ammonia fuel - engine compatibility and combustion publication-title: SAE Trans. – year: 2019 ident: bib102 article-title: Engineering the future two-stroke green-ammonia engine. Denmark – volume: 196 start-page: 344 year: 2017 end-page: 351 ident: bib181 article-title: Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions publication-title: Fuel – year: 2020 ident: bib76 article-title: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell publication-title: Sustainable Ammonia Production – volume: 194 start-page: 278 year: 2018 end-page: 284 ident: bib20 article-title: Formation of NO and NH in NH publication-title: Combust. Flame – volume: 112 start-page: 11 year: 2019 end-page: 26 ident: bib116 article-title: A review of techno-economic data for road transportation fuels publication-title: Renew. Sustain. Energy Rev. – volume: 43 start-page: 4597 year: 2018 end-page: 4608 ident: bib46 article-title: Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications publication-title: Int. J. Hydrogen Energy – year: 2012 ident: bib26 article-title: Combustão – volume: 13 start-page: 1541 year: 2020 end-page: 1558 ident: bib9 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina publication-title: Int. J. Hydrogen Energy – year: 2020 ident: bib48 article-title: Investigation of ammonia and hydrogen as CO publication-title: Int. J. Engine Res. – volume: 45 start-page: 7098 year: 2020 end-page: 7118 ident: bib35 article-title: A review of ammonia as a compression ignition engine fuel publication-title: Int. J. Hydrogen Energy – volume: 206 start-page: 214 year: 2019 end-page: 226 ident: bib65 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH publication-title: Combust. Flame – reference: Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., William C. Gardiner, J., Lissianski, V.V., Qin, Z., 2000. GRI-mech 3.0. – reference: . – volume: 154 start-page: 1 year: 2019 end-page: 8 ident: bib182 article-title: Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators publication-title: Appl. Therm. Eng. – volume: 8 start-page: 109 year: 2020 ident: bib52 article-title: Numerical analysis of NO publication-title: J. Mar. Sci. Eng. – year: 2019 ident: bib177 article-title: Innovation Insights Brief 2019-Energy Infrastructure Affordability Enabler or Decarbonisation Constraint? – volume: 1 start-page: 164 year: 2015 end-page: 168 ident: bib79 article-title: Use of NH publication-title: Energy Rep. – volume: 113 start-page: 109292 year: 2019 ident: bib6 article-title: A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects publication-title: Renew. Sustain. Energy Rev. – volume: 37 start-page: 7869 year: 2012 end-page: 7876 ident: bib17 article-title: Novel heavy duty engine concept for operation dual fuel H publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2020 end-page: 20 ident: bib135 article-title: Combustion and emission characteristics of ammonia under conditions relevant to modern gas turbines publication-title: Combust. Sci. Technol. – year: 2019 ident: bib33 article-title: Reaction mechanism generator/ARC: ARC 1.1.0 – volume: 141 start-page: 61020 year: 2019 ident: bib121 article-title: Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air publication-title: J. Eng. Gas Turbines Power – year: 2013 ident: bib187 article-title: Ammonia - chemical compound – volume: 187 start-page: 185 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib123 article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.09.002 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib177 – volume: 2 start-page: 1055 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib24 article-title: Electrifying the haber–bosch publication-title: Nature Catalysis doi: 10.1038/s41929-019-0414-4 – ident: 10.1016/j.jclepro.2021.126562_bib44 – volume: 32 start-page: 1277 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib38 article-title: Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.036 – volume: 210 start-page: 112709 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib142 article-title: Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112709 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib45 – volume: 43 start-page: 4597 issue: 9 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib46 article-title: Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.203 – start-page: 1 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib85 article-title: Ammonia burning internal combustion engine publication-title: International Patent No WO 2010/079846 A1 – volume: 55 start-page: 6422 issue: 22 year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib10 article-title: Small-scale Ammonia production from biomass: a techno-enviro-economic perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04937 – volume: 1 start-page: 164 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib79 article-title: Use of NH3 fuel to achieve deep greenhouse gas reductions from US transportation publication-title: Energy Rep. doi: 10.1016/j.egyr.2015.08.001 – volume: 13 start-page: 331 issue: 2 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib154 article-title: Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02873K – volume: 113 start-page: 488 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib140 article-title: Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.07.065 – volume: 7 start-page: 9995 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib145 article-title: Biomass based sustainable ammonia production: digestion vs gasification publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01158 – ident: 10.1016/j.jclepro.2021.126562_bib30 – start-page: 131 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib115 article-title: Hydrogen storage: compressed gas – year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib119 article-title: Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine, ASME 2016 internal combustion engine fall technical conference publication-title: Am. Soc. Mech. Eng. – volume: 37 start-page: 6074 issue: 7 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib56 article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.12.137 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib112 – volume: 156 start-page: 2093 issue: 11 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib86 article-title: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.03.016 – volume: 257 start-page: 116059 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib98 article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures publication-title: Fuel doi: 10.1016/j.fuel.2019.116059 – volume: 105 start-page: 4621 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib163 article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1002 – volume: 130 start-page: 484 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib5 article-title: Techno-economic analysis of ammonia production via integrated biomass gasification publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.02.029 – volume: 274 start-page: 117742 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib74 article-title: Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions publication-title: Fuel doi: 10.1016/j.fuel.2020.117742 – volume: 141 start-page: 61020 issue: 6 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib121 article-title: Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4042507 – volume: 30 start-page: 1311 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib70 article-title: Waste-to-Fuel technology in Albania—how to implement a renewable energy system in europe’s largest onshore oilfield publication-title: J. Earth Sci. doi: 10.1007/s12583-017-0782-0 – volume: 46 start-page: 2667 issue: 2 year: 2021 ident: 10.1016/j.jclepro.2021.126562_bib174 article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.045 – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib34 – start-page: 459813 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib89 article-title: Measurement and simulation of pollutant emissions from marine diesel combustion engine and their reduction by ammonia injection publication-title: Adv. Mech. Eng. doi: 10.1155/2009/459813 – volume: 90 start-page: 87 year: 2011 ident: 10.1016/j.jclepro.2021.126562_bib132 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel doi: 10.1016/j.fuel.2010.07.055 – volume: 45 start-page: 7098 issue: 11 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib35 article-title: A review of ammonia as a compression ignition engine fuel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.209 – volume: 103 start-page: 96 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib183 article-title: A review on clean ammonia as a potential fuel for power generators publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.023 – volume: 34 start-page: 1 year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib31 article-title: The oxidation of hydrogen cyanide and related chemistry publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2007.02.004 – volume: 67 start-page: 31 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib57 article-title: Modeling nitrogen chemistry in combustion publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.01.002 – year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib26 – volume: 196 start-page: 344 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib181 article-title: Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions publication-title: Fuel doi: 10.1016/j.fuel.2017.01.095 – volume: 64 start-page: 581 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib55 article-title: Assessing economically viable carbon reductions for the production of ammonia from biomass gasification publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.09.011 – volume: 42 start-page: 26132 issue: 41 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib88 article-title: Numerical model to analyze NOx reduction by ammonia injection in diesel-hydrogen engines publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.08.090 – ident: 10.1016/j.jclepro.2021.126562_bib187 – ident: 10.1016/j.jclepro.2021.126562_bib7 – volume: 43 start-page: 3004 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib125 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.066 – volume: 162 start-page: 554 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib104 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.08.022 – ident: 10.1016/j.jclepro.2021.126562_bib29 – volume: 158 start-page: 774 year: 2011 ident: 10.1016/j.jclepro.2021.126562_bib80 article-title: The role of NNH in NO formation and control publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.12.013 – volume: 142 start-page: 1294 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib179 article-title: 3D simulation of ammonia combustion in a lean premixed swirl burner publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.504 – start-page: 639 year: 2000 ident: 10.1016/j.jclepro.2021.126562_bib15 article-title: Advanced internal combustion engine research, 2000 U.S DOE hydrogen program review. San ramon publication-title: California – start-page: 1 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib135 article-title: Combustion and emission characteristics of ammonia under conditions relevant to modern gas turbines publication-title: Combust. Sci. Technol. – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib48 article-title: Investigation of ammonia and hydrogen as CO2-free fuels for heavy duty engines using a high pressure dual fuel combustion process publication-title: Int. J. Engine Res. – volume: 112 start-page: 11 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib116 article-title: A review of techno-economic data for road transportation fuels publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.05.041 – volume: 136 start-page: 501 issue: 4 year: 2004 ident: 10.1016/j.jclepro.2021.126562_bib152 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2003.12.008 – volume: 45 start-page: 721 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib58 article-title: Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.174 – volume: 42 start-page: 7071 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib18 article-title: Novel dual fuel diesel-ammonia combustion system in advanced TDI engines publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.208 – start-page: 680401 year: 1968 ident: 10.1016/j.jclepro.2021.126562_bib144 article-title: Oxides of nitrogen in the combustion products of an ammonia fueled reciprocating engine publication-title: Soc. Automotive Eng. doi: 10.4271/680401 – year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib92 – volume: 185 start-page: 16 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib114 article-title: Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.06.021 – volume: 31 start-page: 8631 issue: 8 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib180 article-title: Modelling combustion of ammonia/hydrogen fuel blends under gas turbine conditions publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00709 – volume: 5 start-page: 10231 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib54 article-title: Ammonia as a renewable energy transportation media publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02219 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib73 – year: 2013 ident: 10.1016/j.jclepro.2021.126562_bib84 article-title: A green ammonia economy – volume: 203 start-page: 212 year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib53 article-title: Reaction Mechanism Generator: automatic construction of chemical kinetic mechanisms publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.02.013 – volume: 44 start-page: 32271 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib82 article-title: In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.105 – volume: 15 start-page: 287 issue: 4 year: 1989 ident: 10.1016/j.jclepro.2021.126562_bib107 article-title: Mechanism and modeling of nitrogen chemistry in combustion publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(89)90017-8 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib41 – volume: 42 start-page: 23878 issue: 37 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib150 article-title: Multi-stage optimization in a pilot scale gasification plant publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.261 – volume: 7 issue: 1 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib158 article-title: Intermediate alcohol-gasoline blends, fuels for enabling increased engine efficiency and powertrain possibilities publication-title: SAE international journal of fuels and lubricants doi: 10.4271/2014-01-1231 – year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib13 article-title: A feasibility study of implementing an Ammonia Economy – volume: 37 start-page: 109 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib81 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.029 – volume: 155 start-page: 144 year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib161 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.11.089 – volume: 108 start-page: 231 year: 1995 ident: 10.1016/j.jclepro.2021.126562_bib100 article-title: A detailed kinetic study of ammonia oxidation publication-title: Combust. Sci. Technol. doi: 10.1080/00102209508960400 – volume: 254 start-page: 115693 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib130 article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames publication-title: Fuel doi: 10.1016/j.fuel.2019.115693 – volume: 264 start-page: 116768 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib103 article-title: Oxidation and pyrolysis of ammonia mixtures in model reactors publication-title: Fuel doi: 10.1016/j.fuel.2019.116768 – volume: 269 start-page: 117448 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib95 article-title: Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions publication-title: Fuel doi: 10.1016/j.fuel.2020.117448 – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib146 article-title: Ammonia - a renewable fuel made from sun, air, and water - could power the globe without carbon publication-title: Science. AAAS – volume: 159 start-page: 98 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib68 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.06.070 – volume: 12 start-page: 463 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib159 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01157E – volume: 13 start-page: 761 issue: 12 year: 1988 ident: 10.1016/j.jclepro.2021.126562_bib12 article-title: A role for ammonia in the hydrogen economy publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(88)90037-7 – volume: 11 start-page: 871 year: 1967 ident: 10.1016/j.jclepro.2021.126562_bib101 article-title: The structure of the reaction zones of ammonia-oxygen and hydrazine-decomposition flames publication-title: Symp Combust doi: 10.1016/S0082-0784(67)80213-3 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib75 article-title: Combustion behavior of ammonia blended with diethyl ether publication-title: Proc. Combust. Inst. – volume: 109 start-page: 111 year: 2013 ident: 10.1016/j.jclepro.2021.126562_bib149 article-title: Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2012.09.045 – volume: 159 start-page: 223 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib122 article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms publication-title: Fuel doi: 10.1016/j.fuel.2015.06.075 – volume: 206 start-page: 214 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib65 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.05.003 – volume: 90 start-page: 854 year: 2011 ident: 10.1016/j.jclepro.2021.126562_bib110 article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system publication-title: Fuel doi: 10.1016/j.fuel.2010.09.042 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib138 – volume: 32 start-page: 1905 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib93 article-title: Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0347-x – volume: 39 start-page: 2390 issue: 5 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib141 article-title: Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.098 – volume: 103 start-page: 1069 year: 2013 ident: 10.1016/j.jclepro.2021.126562_bib64 article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures publication-title: Fuel doi: 10.1016/j.fuel.2012.08.026 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib90 – ident: 10.1016/j.jclepro.2021.126562_bib118 – year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib66 article-title: Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance publication-title: SAE Technical Paper Series doi: 10.4271/2014-01-2759 – ident: 10.1016/j.jclepro.2021.126562_bib153 – volume: 99 start-page: 253 year: 1993 ident: 10.1016/j.jclepro.2021.126562_bib99 article-title: Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation publication-title: Combust. Sci. Technol. doi: 10.1080/00102209408935436 – volume: 2 start-page: 377 issue: 5 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib155 article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process publication-title: Nature Catalysis doi: 10.1038/s41929-019-0280-0 – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib165 – volume: 259 start-page: 114135 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib184 article-title: Techno-economic comparison of green ammonia production processes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114135 – volume: 13 start-page: 1541 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib9 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.028 – volume: 8 start-page: 109 issue: 2 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib52 article-title: Numerical analysis of NOx reduction using ammonia injection and comparison with water injection publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8020109 – volume: 75 start-page: 785 year: 1967 ident: 10.1016/j.jclepro.2021.126562_bib11 article-title: Ammonia fuel - engine compatibility and combustion publication-title: SAE Trans. – year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib71 – volume: 38 start-page: 1607 year: 2013 ident: 10.1016/j.jclepro.2021.126562_bib49 article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.114 – year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib128 article-title: Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine publication-title: SAE technical paper series doi: 10.4271/2017-24-0087 – year: 2011 ident: 10.1016/j.jclepro.2021.126562_bib37 article-title: Experimental and numerical study of ammonia combustion publication-title: Université Catholique de Louvain – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib176 – volume: 3 start-page: 2472 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib186 article-title: An efficient direct ammonia fuel cell for affordable carbon-neutral transportation publication-title: Joule doi: 10.1016/j.joule.2019.07.005 – volume: 45 start-page: 1541 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib8 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.028 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib72 – start-page: 15 year: 2006 ident: 10.1016/j.jclepro.2021.126562_bib60 article-title: The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. Energy conversion and resources, ASME 2006 international mechanical engineering congress and exposition publication-title: American society of mechanical engineers – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib25 – volume: 68 start-page: 428 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib109 article-title: A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan publication-title: Energy doi: 10.1016/j.energy.2014.02.108 – start-page: 685 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib129 – volume: 277 start-page: 115580 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib162 article-title: Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115580 – volume: 120 start-page: 5352 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib43 article-title: Progress and prospective of nitrogen-based alternative fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00538 – volume: 137 issue: 6 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib67 article-title: Ammonia and gasoline fuel blends for spark ignited internal combustion engines publication-title: ASME journal of energy resources technology doi: 10.1115/1.4030443 – volume: 34 start-page: 149 year: 1983 ident: 10.1016/j.jclepro.2021.126562_bib108 article-title: Kinetic modeling of the oxidation of ammonia in flames publication-title: Combust. Sci. Technol. doi: 10.1080/00102208308923691 – volume: 154 start-page: 1 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib182 article-title: Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.072 – year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib59 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib166 – volume: 69 start-page: 63 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib171 article-title: Ammonia for power publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.07.001 – volume: 126 start-page: 796 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib97 article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition publication-title: Energy doi: 10.1016/j.energy.2017.03.085 – volume: 42 start-page: 27388 issue: 44 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib156 article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.089 – volume: 233–234 start-page: 1078 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib139 article-title: Economic comparison of different electric fuels for energy scenarios in 2035 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.023 – volume: 50 start-page: 243 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib32 article-title: Automated reaction mechanism generation including nitrogen as a heteroatom publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.21154 – volume: 38 start-page: 1214 issue: 9 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib96 article-title: Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation publication-title: Int. J. Energy Res. doi: 10.1002/er.3141 – volume: 137 start-page: 854 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib126 article-title: Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis publication-title: Energy doi: 10.1016/j.energy.2017.02.175 – volume: 246 start-page: 24 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib133 article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission publication-title: Fuel doi: 10.1016/j.fuel.2019.02.102 – volume: 3 start-page: 1025 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib172 article-title: Ammonia synthesis, taking the pressure off publication-title: Nature Energy doi: 10.1038/s41560-018-0293-y – volume: 113 start-page: 109292 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib6 article-title: A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109292 – volume: 181 start-page: 358 year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib157 article-title: Ammonia oxidation at high pressure and intermediate temperatures publication-title: Fuel doi: 10.1016/j.fuel.2016.04.100 – volume: 204 start-page: 162 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib124 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.03.008 – volume: 139 start-page: 81504 issue: 8 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib178 article-title: Chemical kinetic mechanism study on premixed combustion of ammonia/hydrogen fuels for gas turbine use publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4035911 – volume: 159 start-page: 2799 issue: 9 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib40 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2012.06.003 – volume: 231 start-page: 757 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib16 article-title: Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.106 – ident: 10.1016/j.jclepro.2021.126562_bib21 – volume: 159 start-page: 1186 issue: 2 year: 2006 ident: 10.1016/j.jclepro.2021.126562_bib62 article-title: Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.11.086 – volume: 130 start-page: 42802 year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib61 article-title: The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.2898837 – start-page: 259 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib63 doi: 10.1016/B978-0-444-64087-1.00005-X – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib76 article-title: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell – year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib151 article-title: Cross-ministerial strategic innovation promotion program (SIP) energy carriers publication-title: Japan Sci. Technol. Agency – year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib78 – volume: 89 start-page: 3540 issue: 11 year: 2010 ident: 10.1016/j.jclepro.2021.126562_bib39 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel doi: 10.1016/j.fuel.2010.06.008 – year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib50 article-title: Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen doi: 10.4271/2014-32-0082 – year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib147 – volume: 37 start-page: 7869 issue: 9 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib17 article-title: Novel heavy duty engine concept for operation dual fuel H2–NH3 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.01.091 – volume: 47 start-page: 743 year: 1951 ident: 10.1016/j.jclepro.2021.126562_bib113 article-title: Flame speeds in hydrazine vapour and in mixtures of hydrazine and ammonia with oxygen publication-title: Trans. Faraday Soc. doi: 10.1039/tf9514700743 – volume: 14 start-page: 116 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib87 article-title: Experimental and CFD analysis of selective catalytic reduction system on DeNOx efficiency of single cylinder diesel engine using NH3 as a reducing agent publication-title: Procedia Technology doi: 10.1016/j.protcy.2014.08.016 – volume: 267 start-page: 117166 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib185 article-title: Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio publication-title: Fuel doi: 10.1016/j.fuel.2020.117166 – volume: 93 start-page: 356 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib168 article-title: Thermo-environomic evaluation of the ammonia production publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22126 – volume: 100 start-page: 3001 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib3 article-title: The dual-fuel strategy: an energy transition plan publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2192469 – year: 2010 ident: 10.1016/j.jclepro.2021.126562_bib131 – volume: 163 start-page: 370 year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib19 article-title: Structure of premixed ammonia + air flames at atmospheric pressure: laser diagnostics and kinetic modeling publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.10.012 – volume: 2 start-page: 1055 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib173 article-title: Greening ammonia toward the solar ammonia refinery publication-title: Joule doi: 10.1016/j.joule.2018.04.017 – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib106 – volume: 60 start-page: 822 year: 2016 ident: 10.1016/j.jclepro.2021.126562_bib2 article-title: Ammonia-fed fuel cells: a comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.01.120 – volume: 156 start-page: 1413 issue: 7 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib167 article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.03.005 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib102 – volume: 36 start-page: 6251 year: 2011 ident: 10.1016/j.jclepro.2021.126562_bib143 article-title: Biofuels and biochemicals production from forest biomass in Western Canada publication-title: Energy doi: 10.1016/j.energy.2011.07.024 – year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib148 – volume: 123 start-page: 140 year: 2000 ident: 10.1016/j.jclepro.2021.126562_bib127 article-title: Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3- N2O-O2-N2 mixtures publication-title: Combust. Flame doi: 10.1016/S0010-2180(00)00152-8 – year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib51 – start-page: 61 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib83 article-title: Ammonia as a hydrogen energy carrier and its application to internal combustion engines, Sustainable Vehicle Technologies, Driving the Green Agenda publication-title: Woodhead Publishing Limited, Gaydon, Warwichshire, UK – volume: 113 start-page: 109262 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib94 article-title: Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109262 – volume: 33 start-page: 1290 issue: 4 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib170 article-title: Techno-economic assessment of nonfossil ammonia production publication-title: AIChE Environmental Progress & Sustainable Energy doi: 10.1002/ep.11886 – volume: 40 start-page: 10673 issue: 33 year: 2015 ident: 10.1016/j.jclepro.2021.126562_bib27 article-title: Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.080 – volume: 65 start-page: 298 year: 1961 ident: 10.1016/j.jclepro.2021.126562_bib47 article-title: Oxidation of ammonia in flames publication-title: J. Phys. Chem. doi: 10.1021/j100820a027 – volume: 74 start-page: 300 year: 1965 ident: 10.1016/j.jclepro.2021.126562_bib28 article-title: Ammonia as an engine fuel publication-title: SAE Trans. – volume: 57 start-page: 14607 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib117 article-title: “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b02447 – start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib36 article-title: China’s stage 6 emission standard for new light-duty vehicles (final rule) publication-title: ICCT, Int. Council Clean Transport. – volume: 72 start-page: 51 year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib111 article-title: Wind-powered ammonia fuel production for remote islands: a case study publication-title: Renew. Energy doi: 10.1016/j.renene.2014.06.034 – volume: 204 start-page: 1476 year: 2017 ident: 10.1016/j.jclepro.2021.126562_bib164 article-title: Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.100 – volume: 120 start-page: 109620 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib1 article-title: Hydrogen as an energy vector publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109620 – volume: 156 start-page: 1937 year: 2009 ident: 10.1016/j.jclepro.2021.126562_bib105 article-title: Ammonia chemistry in oxy-fuel combustion of methane publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.07.006 – volume: 111 start-page: 239 year: 2013 ident: 10.1016/j.jclepro.2021.126562_bib175 article-title: Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine publication-title: Fuel doi: 10.1016/j.fuel.2013.03.055 – ident: 10.1016/j.jclepro.2021.126562_bib23 – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib120 – volume: 33 start-page: 12767 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib134 article-title: Combustion of NH3/CH4/air and NH3/H2/air mixtures in a porous burner: experiments and kinetic modeling publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b02948 – ident: 10.1016/j.jclepro.2021.126562_bib91 – year: 2014 ident: 10.1016/j.jclepro.2021.126562_bib22 article-title: Ammonia as fuel for internal combustion engines? An evaluation of the feasibility of using nitrogen-based fuels in ICE – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib77 – volume: 99 start-page: 8034 year: 2008 ident: 10.1016/j.jclepro.2021.126562_bib4 article-title: Ammonium nitrate fertiliser production based on biomass - environmental effects from a life cycle perspective publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.03.041 – ident: 10.1016/j.jclepro.2021.126562_bib33 – volume: 114 start-page: 109339 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib137 article-title: Islanded ammonia power systems: technology review & conceptual process design publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109339 – volume: 206 start-page: 189 year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib69 article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.04.050 – volume: 194 start-page: 278 year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib20 article-title: Formation of NO and NH in NH3-doped CH4 + N2 + O2 flame: experiments and modelling publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.05.008 – year: 2019 ident: 10.1016/j.jclepro.2021.126562_bib42 article-title: Air quality in Europe — 2019 report – volume: 120 start-page: 109616 year: 2020 ident: 10.1016/j.jclepro.2021.126562_bib136 article-title: Improved urea-water solution spray model for simulations of selective catalytic reduction systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109616 – volume: 75 start-page: 765 year: 1967 ident: 10.1016/j.jclepro.2021.126562_bib160 article-title: Ammonia as a spark ignition engine fuel: theory and application publication-title: SAE Trans. – year: 2018 ident: 10.1016/j.jclepro.2021.126562_bib169 – start-page: 219 year: 2012 ident: 10.1016/j.jclepro.2021.126562_bib14 article-title: Experiments on a light duty SCR test exhaust system using ammonia gas to provide data for validation of a CFD model |
SSID | ssj0017074 |
Score | 2.7027586 |
SecondaryResourceType | review_article |
Snippet | Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126562 |
SubjectTerms | Ammonia carbon Carbon-free fuel combustion Dual-fuel concept energy energy density Green ammonia transition hydrogen infrastructure Internal combustion engines power generation Pure ammonia-fuelled vehicles transportation industry |
Title | Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines |
URI | https://dx.doi.org/10.1016/j.jclepro.2021.126562 https://www.proquest.com/docview/2524320790 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuEbxmN02TPrwti7IqelHBW0jSBLos7bIPxYu_3Ukf6wNE8NjHJCUznfkyyXxB6DwEkO9SYYjLjCMcYhBJHcuISeNQJdaa0PlC4bv7aPjEb57F8woatLUwfltl4_trn1556-ZOrxnN3iTPew8-gxUJFrGginOeE5Tz2Ft59325zSOIac3E7NNd_u3PKp7eqDuCxsBRwTSRBd2AAbZhv8WnH566Cj9XW2izwY24X3_aNlqxxQ7a-MImuIve-t6mcoXVDKsC26qqD79UafkL3BAxwZMM10QiGPqqCi1nGJArHpevxKipLgt4bsf469I2zguc17nDMYah0v4MsNL34fuf7aGnq8vHwZA0JysQE3I2J9w6DTMVlaUZIA5qU0qti7UQFgAdAIAMFKU51zpSASAG0EUoNKORUS7gjvNwH60WZWEPEDYQ3-OAZUyEMDPhInHcUkNBPjI8CdQh4u14StPQjvvTL8ay3V82ko0apFeDrNVwiLpLsUnNu_GXQNIqS34zIAmx4S_Rs1a5En4uv2KiClsuZpIJxkNG45Qe_b_5Y7Tur0hF-XqCVufThT0FJDPXncpUO2itf307vP8AKuD1qw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcqra0AvpyJTh613HsZFOpB9QWLeVxKUjcXNuxpaxWCSJLEZf-qf7BjhOHQqUKCYlrrLFHM858Y3seAFspOvm-kJb60noqEINo4XlJbZGneuKcTX1IFD48yqYn4tupPF2C30MuTAirjLa_t-mdtY5fxlGa47OqGn8PN1iZ5BlPOpwTMbJy311d4rmt_bT3BZW8zfnu1-PPUxpbC1CbCr6gwnmDrrouixIhl7mCMedzI6VDjwYRsEROjRDGZDpByERmUmk4y6z2ifBCpDjvI1gRaC5C24TRr-u4kiRnfenncL8W2PubNjSejWbIPVpGPJfyZJRwdKb4_wDxH2jo8G73GTyNjirZ6WXxHJZc_QJWb5QvXIOrnbCJK010S3RNXJdGSH527wAfSaz8hCMl6SuXEFyry-xsCbrKZN5cUqvPTVPjuJuTm2_ppKpJ1V9WzgnqxoSmY01YI6zfvoSTB5H3K1ium9qtA7HoUOQJL7lM8Sgk5MQLxyxD-syKSaI3QAzyVDbWOQ_tNuZqCGibqagGFdSgejVswOia7Kwv9HEXwWRQlrq1YxWC0V2kHwblKvybwxONrl1z0SouuUg5ywu2ef_p38Pj6fHhgTrYO9p_DU_CCO3qzb6B5cX5hXuLbtTCvOu2LYEfD_2f_AFSozFq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia+as+an+energy+vector%3A+Current+and+future+prospects+for+low-carbon+fuel+applications+in+internal+combustion+engines&rft.jtitle=Journal+of+cleaner+production&rft.au=Cardoso%2C+Jo%C3%A3o+Sousa&rft.au=Silva%2C+Valter&rft.au=Rocha%2C+Rodolfo+C.&rft.au=Hall%2C+Matthew+J.&rft.date=2021-05-10&rft.issn=0959-6526&rft.volume=296+p.126562-&rft_id=info:doi/10.1016%2Fj.jclepro.2021.126562&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |