Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines

Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying i...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 296; p. 126562
Main Authors Cardoso, João Sousa, Silva, Valter, Rocha, Rodolfo C., Hall, Matthew J., Costa, Mário, Eusébio, Daniela
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOx emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology.
AbstractList Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOₓ emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology.
Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating massive expectations as a carbon-free economy enabler, but issues related to storage, distribution, and infrastructure deployment are delaying its full implementation. Ammonia, on the other hand, stands as a highly efficient energy vector delivering high energy density and an established and flexible infrastructure capable of mitigating hydrogen’s key drawbacks. This mature infrastructure together with the possibility of producing ammonia through renewable energy sources triggered an exploring route to the transition of ammonia as the next sustainable fuel solution for power generation. In this regard, the transportation sector as one of the main culprits for carbon emissions can benefit from ammonia-powered internal combustion engines. However, the use of pure ammonia as fuel still presents important constraints leading researchers to develop strategies such as dual-fuel concepts or novel combustion approaches. Therefore, this review covers these issues by delving into the underpinning mechanisms required for developing pure ammonia combustion in internal combustion engines. To do so, fundamentals, technical, environmental, and economic aspects associated with the use of ammonia as a transportation fuel are broadly addressed. While the emphasis is given to pure ammonia and ammonia fuel blends operation, NOx emissions control, current challenges related to the detailed and accurate understanding of the ammonia chemistry, and the lack of high-fidelity numerical models are also deeply discussed on their role into aiding the commercial deployment of this technology.
ArticleNumber 126562
Author Cardoso, João Sousa
Costa, Mário
Eusébio, Daniela
Silva, Valter
Hall, Matthew J.
Rocha, Rodolfo C.
Author_xml – sequence: 1
  givenname: João Sousa
  surname: Cardoso
  fullname: Cardoso, João Sousa
  email: joaoscardoso@tecnico.ulisboa.pt, jps.cardoso@ipportalegre.pt
  organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
– sequence: 2
  givenname: Valter
  surname: Silva
  fullname: Silva, Valter
  email: valter.silva@ipportalegre.pt, valter.silva@forestwise.pt
  organization: Polytechnic Institute of Portalegre, Portalegre, Portugal
– sequence: 3
  givenname: Rodolfo C.
  orcidid: 0000-0003-1780-3347
  surname: Rocha
  fullname: Rocha, Rodolfo C.
  email: rodolfocrocha@tecnico.ulisboa.pt
  organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
– sequence: 4
  givenname: Matthew J.
  orcidid: 0000-0002-9816-5860
  surname: Hall
  fullname: Hall, Matthew J.
  email: mjhall@mail.utexas.edu
  organization: Department of Mechanical Engineering, University of Texas at Austin, TX, USA
– sequence: 5
  givenname: Mário
  surname: Costa
  fullname: Costa, Mário
  email: mcosta@tecnico.ulisboa.pt
  organization: IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
– sequence: 6
  givenname: Daniela
  surname: Eusébio
  fullname: Eusébio, Daniela
  email: danielafle@ipportalegre.pt
  organization: Polytechnic Institute of Portalegre, Portalegre, Portugal
BookMark eNqFkE1rGzEQhkVJoY6bn1DQsZd1JK2ktdpDCSZJA4ZcmrPQameNjFbaStoU__vKdU69BAYG5p13Pp5rdBViAIS-ULKhhMrb4-ZoPcwpbhhhdEOZFJJ9QCu67VRDu628QiuihGqkYPITus75SAjtSMdX6HQ3TTE4g03GJmAIkA4n_Aq2xPQN75aUIJSqDHhcypIA1zV5rnLGY0zYxz-NNamPoergsZln76wpLoaMXahRIAXjsY1Tv-Rzve44uAD5M_o4Gp_h5i2v0cvD_a_dz2b__Pi0u9s3tuWsNBzGnm87M6hBypaAIgTGrhcCBFVMtUPXmp7zvpeGUkUsDK3oGZHWjJSPnLdr9PUyt17-e4Fc9OSyBe9NgLhkzQTjLSOdIrVVXFptfTInGPWc3GTSSVOiz6j1Ub-h1mfU-oK6-r7_57Ou_INQknH-XfePixsqhVcHSWfrINRPXKqg9RDdOxP-AtrXooE
CitedBy_id crossref_primary_10_3390_en16062545
crossref_primary_10_1016_j_energy_2025_135226
crossref_primary_10_5916_jamet_2023_47_3_143
crossref_primary_10_1016_j_fuel_2021_122723
crossref_primary_10_1016_j_combustflame_2024_113488
crossref_primary_10_1016_j_energy_2024_131823
crossref_primary_10_2139_ssrn_3982131
crossref_primary_10_1016_j_fuel_2023_129244
crossref_primary_10_1021_acs_energyfuels_4c01654
crossref_primary_10_1016_S1872_2067_23_64465_1
crossref_primary_10_1177_14680874221105161
crossref_primary_10_1002_aenm_202203751
crossref_primary_10_1016_j_fuel_2023_129009
crossref_primary_10_1016_j_joei_2022_04_009
crossref_primary_10_1016_j_ijhydene_2023_04_073
crossref_primary_10_1016_j_fuproc_2023_107761
crossref_primary_10_1016_j_ijhydene_2021_09_208
crossref_primary_10_1016_j_joei_2025_102063
crossref_primary_10_1016_j_ijhydene_2022_01_027
crossref_primary_10_1016_j_combustflame_2022_112391
crossref_primary_10_1016_j_jaecs_2023_100149
crossref_primary_10_1016_j_fuel_2025_134948
crossref_primary_10_1016_j_ijhydene_2023_11_136
crossref_primary_10_1016_j_segan_2022_100736
crossref_primary_10_1016_j_checat_2024_101000
crossref_primary_10_1016_j_fuel_2022_127116
crossref_primary_10_1016_j_enconman_2024_118819
crossref_primary_10_3390_en18010177
crossref_primary_10_1016_j_combustflame_2024_113908
crossref_primary_10_1016_j_joei_2023_101406
crossref_primary_10_1016_j_applthermaleng_2024_123092
crossref_primary_10_1016_j_combustflame_2025_114061
crossref_primary_10_1016_j_energy_2024_130275
crossref_primary_10_1115_1_4066876
crossref_primary_10_1016_j_ijhydene_2024_07_461
crossref_primary_10_1016_j_energy_2023_129562
crossref_primary_10_1016_j_mattod_2021_05_004
crossref_primary_10_1016_j_fuel_2023_129384
crossref_primary_10_1115_1_4066879
crossref_primary_10_1016_j_fuel_2024_132831
crossref_primary_10_1016_j_combustflame_2024_113466
crossref_primary_10_1021_acsomega_4c04272
crossref_primary_10_1016_j_apsusc_2022_155040
crossref_primary_10_1016_j_ijhydene_2022_09_198
crossref_primary_10_1039_D4TA08427F
crossref_primary_10_1016_j_combustflame_2025_113989
crossref_primary_10_1016_j_fuel_2023_129389
crossref_primary_10_1016_j_fuproc_2023_107780
crossref_primary_10_1360_TB_2023_0531
crossref_primary_10_1016_j_jhazmat_2024_136744
crossref_primary_10_1016_j_ijhydene_2024_09_148
crossref_primary_10_1016_j_applthermaleng_2024_125183
crossref_primary_10_1016_j_jenvman_2024_123584
crossref_primary_10_1016_j_fuel_2023_129709
crossref_primary_10_1021_acs_energyfuels_3c01551
crossref_primary_10_1021_acs_jpcc_2c02586
crossref_primary_10_3390_world2040029
crossref_primary_10_1016_j_fuel_2023_129490
crossref_primary_10_1016_j_energy_2024_132686
crossref_primary_10_1021_acs_energyfuels_3c01897
crossref_primary_10_1016_j_energy_2024_133891
crossref_primary_10_1002_adfm_202422585
crossref_primary_10_1016_j_fuel_2024_132601
crossref_primary_10_1016_j_ijhydene_2025_02_450
crossref_primary_10_1016_j_aej_2024_05_030
crossref_primary_10_1016_j_fuel_2025_134806
crossref_primary_10_3390_su141911904
crossref_primary_10_1016_j_fuel_2024_132726
crossref_primary_10_1016_j_ccst_2022_100072
crossref_primary_10_1016_j_fuel_2025_134808
crossref_primary_10_1016_j_fuel_2023_127992
crossref_primary_10_1016_j_ijhydene_2024_06_407
crossref_primary_10_1016_j_rser_2024_114699
crossref_primary_10_1016_j_scitotenv_2023_166108
crossref_primary_10_1016_j_ijhydene_2024_12_482
crossref_primary_10_3390_en16176304
crossref_primary_10_1016_j_joei_2023_101425
crossref_primary_10_1016_j_fuel_2024_131635
crossref_primary_10_1016_j_fuel_2024_131513
crossref_primary_10_1016_j_jclepro_2023_136305
crossref_primary_10_1177_14680874241292891
crossref_primary_10_1016_j_fuel_2024_133253
crossref_primary_10_1016_j_combustflame_2022_112160
crossref_primary_10_1016_j_proci_2024_105194
crossref_primary_10_1016_j_energy_2025_134457
crossref_primary_10_1016_j_energy_2025_134699
crossref_primary_10_1021_acs_energyfuels_4c00409
crossref_primary_10_1016_j_enconman_2023_116670
crossref_primary_10_1016_j_energy_2023_130014
crossref_primary_10_1149_2754_2726_ad0736
crossref_primary_10_1016_S1872_5813_24_60473_1
crossref_primary_10_1016_j_enconman_2024_119306
crossref_primary_10_1016_j_jece_2023_110872
crossref_primary_10_1016_j_jece_2023_111723
crossref_primary_10_1177_09544070251321225
crossref_primary_10_1016_j_apsusc_2025_162635
crossref_primary_10_1016_j_jfueco_2022_100064
crossref_primary_10_1021_acs_energyfuels_4c02035
crossref_primary_10_3390_en14185604
crossref_primary_10_1016_j_fuel_2024_134075
crossref_primary_10_1021_acs_energyfuels_3c03158
crossref_primary_10_2139_ssrn_4200247
crossref_primary_10_1080_15567036_2024_2440057
crossref_primary_10_1016_j_energy_2025_134589
crossref_primary_10_1007_s13762_023_05450_2
crossref_primary_10_1016_j_seta_2024_103723
crossref_primary_10_1021_acs_energyfuels_4c02830
crossref_primary_10_1016_j_combustflame_2024_113954
crossref_primary_10_1016_j_rser_2024_114995
crossref_primary_10_1016_j_fuel_2024_131808
crossref_primary_10_1016_j_ijhydene_2024_06_155
crossref_primary_10_1016_j_jfueco_2022_100053
crossref_primary_10_1016_j_renene_2024_120602
crossref_primary_10_1016_j_fuel_2024_131019
crossref_primary_10_1016_j_jfueco_2022_100055
crossref_primary_10_1007_s10668_023_04081_4
crossref_primary_10_1016_j_fuel_2022_125936
crossref_primary_10_3390_en17092130
crossref_primary_10_1016_j_fuel_2023_128906
crossref_primary_10_1016_j_jclepro_2023_139478
crossref_primary_10_5604_01_3001_0016_3417
crossref_primary_10_1016_j_ijhydene_2025_02_481
crossref_primary_10_1016_j_ijhydene_2023_11_088
crossref_primary_10_3390_app13169468
crossref_primary_10_1016_j_proci_2022_07_032
crossref_primary_10_1016_j_cplett_2024_141658
crossref_primary_10_1016_j_jclepro_2023_140546
crossref_primary_10_1016_j_energy_2024_132770
crossref_primary_10_1016_j_ijhydene_2023_08_146
crossref_primary_10_1016_j_fuel_2025_134734
crossref_primary_10_1016_j_enconman_2024_118910
crossref_primary_10_1038_s43017_024_00586_2
crossref_primary_10_1016_j_ijhydene_2024_11_121
crossref_primary_10_1038_s43016_024_00979_y
crossref_primary_10_1016_j_jclepro_2024_143332
crossref_primary_10_1016_j_joei_2024_101778
crossref_primary_10_1016_j_psep_2024_06_061
crossref_primary_10_1039_D1SE00979F
crossref_primary_10_1016_j_jclepro_2024_141959
crossref_primary_10_1016_j_ijhydene_2024_05_128
crossref_primary_10_1016_j_energy_2023_126927
crossref_primary_10_1016_j_jclepro_2022_133960
crossref_primary_10_1016_j_fuel_2024_132230
crossref_primary_10_1016_j_fuel_2024_133440
crossref_primary_10_1039_D3RE00160A
crossref_primary_10_1016_j_apenergy_2022_120349
crossref_primary_10_1016_j_ijhydene_2024_05_022
crossref_primary_10_2298_TSCI221008029S
crossref_primary_10_2516_stet_2024015
crossref_primary_10_3390_en16196973
crossref_primary_10_1016_j_proci_2024_105642
crossref_primary_10_1016_j_ijhydene_2022_06_007
crossref_primary_10_1016_j_energy_2024_133977
crossref_primary_10_1016_j_jclepro_2024_143323
crossref_primary_10_1039_D2CC05132J
crossref_primary_10_1016_j_enconman_2022_115611
crossref_primary_10_1080_13647830_2025_2475169
crossref_primary_10_1016_j_combustflame_2024_113807
crossref_primary_10_1016_j_fuel_2023_128920
crossref_primary_10_1557_s43581_022_00042_y
crossref_primary_10_1016_j_psep_2025_106810
crossref_primary_10_1021_acssuschemeng_3c04694
crossref_primary_10_1016_j_fuel_2024_130986
crossref_primary_10_1016_j_joei_2024_101645
crossref_primary_10_1002_aesr_202400257
crossref_primary_10_1016_j_ijhydene_2024_07_404
crossref_primary_10_1016_j_cej_2023_143492
crossref_primary_10_1016_j_ecmx_2022_100269
crossref_primary_10_1016_j_fuel_2024_132483
crossref_primary_10_1016_j_fuel_2025_134678
crossref_primary_10_1016_j_fuel_2024_134038
crossref_primary_10_1021_acs_energyfuels_3c03104
crossref_primary_10_1016_j_marpol_2024_106444
crossref_primary_10_1016_j_applthermaleng_2024_122854
crossref_primary_10_1016_j_energy_2024_133848
crossref_primary_10_1016_j_combustflame_2024_113886
crossref_primary_10_1016_j_combustflame_2023_112707
crossref_primary_10_1016_j_fuel_2023_128797
crossref_primary_10_1016_j_combustflame_2023_112832
crossref_primary_10_1016_j_memsci_2022_121161
crossref_primary_10_1115_1_4062418
crossref_primary_10_1016_j_ijhydene_2022_04_190
crossref_primary_10_3390_su141911884
crossref_primary_10_1016_j_apcatb_2025_125020
crossref_primary_10_1016_j_energy_2025_135753
crossref_primary_10_1016_j_pecs_2025_101230
crossref_primary_10_1016_j_enconman_2023_116980
crossref_primary_10_1016_j_ijhydene_2024_07_279
crossref_primary_10_1016_j_enconman_2024_118425
crossref_primary_10_1016_j_combustflame_2024_113756
crossref_primary_10_1016_j_ijhydene_2021_09_162
crossref_primary_10_1016_j_psep_2024_01_020
crossref_primary_10_1051_e3sconf_202560601010
crossref_primary_10_1016_j_rser_2023_113367
crossref_primary_10_1021_acs_energyfuels_4c00974
crossref_primary_10_1016_j_combustflame_2023_112845
crossref_primary_10_1016_j_ijhydene_2023_09_158
crossref_primary_10_1016_j_fuel_2023_130508
crossref_primary_10_1016_j_fuel_2023_130626
crossref_primary_10_1061_JPSEA2_PSENG_1431
crossref_primary_10_1016_j_jclepro_2022_135014
crossref_primary_10_1021_acscatal_3c05376
crossref_primary_10_1016_j_fuel_2024_131457
crossref_primary_10_1080_14484846_2024_2408079
crossref_primary_10_1016_j_combustflame_2023_113131
crossref_primary_10_1016_j_energy_2024_133164
crossref_primary_10_3390_en16135196
crossref_primary_10_3390_en17133183
crossref_primary_10_1016_j_fuel_2023_129785
crossref_primary_10_1177_14680874221117686
crossref_primary_10_1016_j_ijhydene_2022_03_281
crossref_primary_10_1016_j_ijhydene_2024_11_047
crossref_primary_10_1016_j_scitotenv_2024_174096
crossref_primary_10_1016_j_fuel_2022_123363
crossref_primary_10_1016_j_applthermaleng_2024_124133
crossref_primary_10_3390_microorganisms13020268
crossref_primary_10_1016_j_fuel_2023_129427
crossref_primary_10_3390_en17122960
crossref_primary_10_7467_KSAE_2023_31_10_781
crossref_primary_10_1016_j_fuel_2023_130776
crossref_primary_10_1039_D4CC02372B
crossref_primary_10_1016_j_fuel_2024_131228
crossref_primary_10_1016_j_apenergy_2024_123859
crossref_primary_10_1016_j_ijhydene_2023_10_087
crossref_primary_10_3390_suschem3020011
crossref_primary_10_1016_j_ijhydene_2025_01_005
crossref_primary_10_1002_adfm_202204881
crossref_primary_10_1016_j_fuel_2024_133774
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1016_j_enbenv_2024_02_007
crossref_primary_10_1021_acssuschemeng_4c05181
crossref_primary_10_1016_j_dche_2022_100082
crossref_primary_10_1016_j_adapen_2024_100178
crossref_primary_10_1016_j_jclepro_2023_136150
crossref_primary_10_1016_j_combustflame_2024_113610
crossref_primary_10_1016_j_scitotenv_2024_178220
crossref_primary_10_3390_jmse11040689
crossref_primary_10_1016_j_apenergy_2022_119272
crossref_primary_10_1016_j_joei_2024_101606
crossref_primary_10_1016_j_jclepro_2022_134067
crossref_primary_10_1016_j_molliq_2023_123808
crossref_primary_10_1016_j_cej_2023_141391
crossref_primary_10_1016_j_jclepro_2023_139412
crossref_primary_10_1016_j_jaecs_2023_100119
crossref_primary_10_1016_j_ijhydene_2022_03_103
crossref_primary_10_1177_09544062231207566
crossref_primary_10_1016_j_applthermaleng_2025_125769
crossref_primary_10_1016_j_fuel_2023_127668
crossref_primary_10_1016_j_joei_2024_101718
crossref_primary_10_1080_00102202_2025_2461125
crossref_primary_10_1016_j_enconman_2022_115226
crossref_primary_10_1016_j_joei_2024_101715
crossref_primary_10_1080_00102202_2023_2204518
crossref_primary_10_1016_j_ijhydene_2023_10_308
crossref_primary_10_1016_j_ijhydene_2022_01_189
crossref_primary_10_1021_acs_energyfuels_2c01822
crossref_primary_10_1016_j_joei_2024_101951
crossref_primary_10_1016_j_ijhydene_2024_04_151
crossref_primary_10_1016_j_fuel_2024_134110
crossref_primary_10_1016_j_energy_2024_132387
crossref_primary_10_1016_j_ijhydene_2023_05_222
crossref_primary_10_1016_j_ijhydene_2023_05_343
crossref_primary_10_1016_j_fuel_2024_131090
crossref_primary_10_1016_j_combustflame_2024_113555
crossref_primary_10_1016_j_combustflame_2024_113678
crossref_primary_10_1016_j_conengprac_2023_105526
crossref_primary_10_1016_j_psep_2024_07_102
crossref_primary_10_1016_j_rser_2023_113204
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1021_acs_energyfuels_4c01590
crossref_primary_10_1016_j_fuel_2023_128507
crossref_primary_10_1016_j_joule_2023_12_002
crossref_primary_10_1016_j_seppur_2025_132609
crossref_primary_10_1016_j_jclepro_2023_138667
crossref_primary_10_3390_en16145451
crossref_primary_10_1016_j_est_2022_105714
crossref_primary_10_1016_j_ifacol_2024_11_121
crossref_primary_10_1002_ep_14465
crossref_primary_10_1016_j_psep_2023_06_016
crossref_primary_10_1016_j_energy_2024_133221
crossref_primary_10_1016_j_fuel_2023_129063
crossref_primary_10_1021_acs_energyfuels_2c03550
crossref_primary_10_1016_j_fuel_2022_125187
crossref_primary_10_1016_j_applthermaleng_2025_125544
crossref_primary_10_1016_j_joei_2024_101938
crossref_primary_10_1016_j_fuel_2023_128899
crossref_primary_10_1016_j_jcat_2024_115530
crossref_primary_10_1016_j_fuel_2022_126831
crossref_primary_10_1016_j_ijhydene_2023_10_207
crossref_primary_10_1016_j_enconman_2021_114990
crossref_primary_10_1016_j_ijhydene_2023_09_105
crossref_primary_10_1016_j_ijhydene_2024_04_172
crossref_primary_10_1016_j_est_2022_105804
crossref_primary_10_1016_j_enconman_2022_116090
crossref_primary_10_1016_j_fuel_2025_134333
crossref_primary_10_1016_j_enconman_2024_119160
crossref_primary_10_1016_j_ijhydene_2023_05_122
crossref_primary_10_1039_D1EE02118D
crossref_primary_10_1016_j_scitotenv_2024_173375
crossref_primary_10_1016_j_combustflame_2024_113530
crossref_primary_10_1016_j_ijhydene_2024_08_159
crossref_primary_10_1016_j_combustflame_2024_113896
crossref_primary_10_1016_j_energy_2023_127056
crossref_primary_10_1039_D4SC03609C
crossref_primary_10_1115_1_4065198
crossref_primary_10_3390_en15228583
crossref_primary_10_3390_en18010041
crossref_primary_10_1007_s11804_024_00600_5
crossref_primary_10_1016_j_energy_2022_125122
crossref_primary_10_1016_j_isci_2022_105120
crossref_primary_10_1021_acs_energyfuels_1c01928
Cites_doi 10.1016/j.combustflame.2017.09.002
10.1038/s41929-019-0414-4
10.1016/j.proci.2008.06.036
10.1016/j.enconman.2020.112709
10.1016/j.ijhydene.2017.07.203
10.1021/acs.iecr.5b04937
10.1016/j.egyr.2015.08.001
10.1039/C9EE02873K
10.1016/j.apenergy.2013.07.065
10.1021/acssuschemeng.9b01158
10.1016/j.ijhydene.2011.12.137
10.1016/j.combustflame.2009.03.016
10.1016/j.fuel.2019.116059
10.1016/j.egypro.2017.03.1002
10.1016/j.apenergy.2014.02.029
10.1016/j.fuel.2020.117742
10.1115/1.4042507
10.1007/s12583-017-0782-0
10.1016/j.ijhydene.2020.10.045
10.1155/2009/459813
10.1016/j.fuel.2010.07.055
10.1016/j.ijhydene.2019.12.209
10.1016/j.rser.2018.12.023
10.1016/j.pecs.2007.02.004
10.1016/j.pecs.2018.01.002
10.1016/j.fuel.2017.01.095
10.1016/j.jclepro.2013.09.011
10.1016/j.ijhydene.2017.08.090
10.1016/j.ijhydene.2017.12.066
10.1016/j.combustflame.2014.08.022
10.1016/j.combustflame.2010.12.013
10.1016/j.egypro.2017.12.504
10.1016/j.rser.2019.05.041
10.1016/j.combustflame.2003.12.008
10.1016/j.ijhydene.2019.10.174
10.1016/j.ijhydene.2016.11.208
10.4271/680401
10.1016/j.combustflame.2017.06.021
10.1021/acs.energyfuels.7b00709
10.1021/acssuschemeng.7b02219
10.1016/j.cpc.2016.02.013
10.1016/j.ijhydene.2019.10.105
10.1016/0360-1285(89)90017-8
10.1016/j.ijhydene.2017.04.261
10.4271/2014-01-1231
10.1016/j.proci.2018.09.029
10.1016/j.jhazmat.2007.11.089
10.1080/00102209508960400
10.1016/j.fuel.2019.115693
10.1016/j.fuel.2019.116768
10.1016/j.fuel.2020.117448
10.1016/j.fuel.2015.06.070
10.1039/C8EE01157E
10.1016/0360-3199(88)90037-7
10.1016/S0082-0784(67)80213-3
10.1016/j.fuproc.2012.09.045
10.1016/j.fuel.2015.06.075
10.1016/j.combustflame.2019.05.003
10.1016/j.fuel.2010.09.042
10.1007/s12206-018-0347-x
10.1016/j.ijhydene.2013.11.098
10.1016/j.fuel.2012.08.026
10.4271/2014-01-2759
10.1080/00102209408935436
10.1038/s41929-019-0280-0
10.1016/j.apenergy.2019.114135
10.1016/j.ijhydene.2019.11.028
10.3390/jmse8020109
10.1016/j.ijhydene.2012.10.114
10.4271/2017-24-0087
10.1016/j.joule.2019.07.005
10.1016/j.energy.2014.02.108
10.1016/j.apenergy.2020.115580
10.1021/acs.chemrev.9b00538
10.1115/1.4030443
10.1080/00102208308923691
10.1016/j.applthermaleng.2019.02.072
10.1016/j.pecs.2018.07.001
10.1016/j.energy.2017.03.085
10.1016/j.ijhydene.2017.09.089
10.1016/j.apenergy.2018.10.023
10.1002/kin.21154
10.1002/er.3141
10.1016/j.energy.2017.02.175
10.1016/j.fuel.2019.02.102
10.1038/s41560-018-0293-y
10.1016/j.rser.2019.109292
10.1016/j.fuel.2016.04.100
10.1016/j.combustflame.2019.03.008
10.1115/1.4035911
10.1016/j.combustflame.2012.06.003
10.1016/j.apenergy.2018.09.106
10.1016/j.jpowsour.2005.11.086
10.1115/1.2898837
10.1016/B978-0-444-64087-1.00005-X
10.1016/j.fuel.2010.06.008
10.4271/2014-32-0082
10.1016/j.ijhydene.2012.01.091
10.1039/tf9514700743
10.1016/j.protcy.2014.08.016
10.1016/j.fuel.2020.117166
10.1002/cjce.22126
10.1109/JPROC.2012.2192469
10.1016/j.combustflame.2015.10.012
10.1016/j.joule.2018.04.017
10.1016/j.rser.2016.01.120
10.1016/j.combustflame.2009.03.005
10.1016/j.energy.2011.07.024
10.1016/S0010-2180(00)00152-8
10.1016/j.rser.2019.109262
10.1002/ep.11886
10.1016/j.ijhydene.2015.06.080
10.1021/j100820a027
10.1021/acs.iecr.8b02447
10.1016/j.renene.2014.06.034
10.1016/j.apenergy.2017.03.100
10.1016/j.rser.2019.109620
10.1016/j.combustflame.2009.07.006
10.1016/j.fuel.2013.03.055
10.1021/acs.energyfuels.9b02948
10.1016/j.biortech.2008.03.041
10.1016/j.rser.2019.109339
10.1016/j.combustflame.2019.04.050
10.1016/j.combustflame.2018.05.008
10.1016/j.rser.2019.109616
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2021.126562
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2021_126562
S0959652621007824
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c342t-4efb487ad9d6630e900ef7b55e519293d73ab44bb6a1190ced35b206caf14f443
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Wed Jul 02 03:22:42 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 03:23:23 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ammonia
Green ammonia transition
Pure ammonia-fuelled vehicles
Internal combustion engines
Carbon-free fuel
Dual-fuel concept
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-4efb487ad9d6630e900ef7b55e519293d73ab44bb6a1190ced35b206caf14f443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1780-3347
0000-0002-9816-5860
PQID 2524320790
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524320790
crossref_primary_10_1016_j_jclepro_2021_126562
crossref_citationtrail_10_1016_j_jclepro_2021_126562
elsevier_sciencedirect_doi_10_1016_j_jclepro_2021_126562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Arora, Hoadley, Mahajani, Ganesh (bib10) 2016; 55
Duynslaegher, Contino, Vandooren, Jeanmart (bib40) 2012; 159
Ishihara, Zhang, Ito (bib74) 2020; 274
Lasocki, Bednarski, Sikora (bib90) 2019
Lindstedt, Lockwood, Selim (bib100) 1995; 108
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib124) 2019; 204
Lee, Park, Lee, Byun, Yoon, Lim (bib94) 2019; 113
Frankl, Gleis, Karmann, Prager, Wachtmeister (bib48) 2020
Silva, Couto, Eusébio, Rouboa, Brito, Cardoso, Trninic (bib150) 2017; 42
Granovskii, Dincer, Rosen (bib62) 2006; 159
Kumar, Sreekumar, Mohanan (bib87) 2014; 14
Larbi, Bessrour (bib89) 2009
Silva, Rouboa (bib149) 2013; 109
Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bib161) 2008; 155
Abdin, Zafaranloo, Rafiee, Mérida, Lipiński, Khalilpour (bib1) 2020; 120
Ryu, Zacharakis-Jutz, Kong (bib140) 2014; 113
IEA (bib71) 2017
Mørch, Bjerre, Gøttrup, Sorenson, Schramm (bib110) 2011; 90
Bartels (bib13) 2008
Runge, Sölch, Albert, Wasserscheid, Zöttl, Grimm (bib139) 2019; 233–234
SIP (bib151) 2016
Elishav, Lis, Miller, Arent, Valera-Medina, Dana, Shter, Grader (bib43) 2020; 120
Kobayashi, Hayakawa, Somarathne, Okafor (bib81) 2019; 37
Li, Huang, Kobayashi, Wang, Yuan (bib97) 2017; 126
Kang (bib78) 2014
Mendiara, Glarborg (bib105) 2009; 156
Skreiberg, Kilpinen, Glarborg (bib152) 2004; 136
Brackmann, Nilsson, Nauclér, Aldén, Konnov (bib20) 2018; 194
Yapicioglu, Dincer (bib182) 2019; 154
Tamura, Gotou, Ishii, Riechelmann (bib162) 2020; 277
Pollet, Staffell, Shang, Molkov (bib129) 2014
EEA (bib42) 2019
Niki, Yoo, Hirata, Sekiguchi (bib119) 2016
Tunå, Hulteberg, Ahlgren (bib170) 2014; 33
Li, Huang, Kobayashi, He, Nagai (bib96) 2014; 38
Ryu, Zacharakis-Jutz, Kong (bib141) 2014; 39
Siemens (bib147) 2016
Gray, Dimitroff, Meckel, Quillian (bib11) 1967; 75
Xiao, Valera-Medina, Bowen, Dooley (bib179) 2017; 142
Lauer (bib92) 2017
Silva, Cardoso (bib148) 2020
.
Niki, Nitta, Sekiguchi, Hirata (bib121) 2019; 141
Sarkar, Kumar, Sultana (bib143) 2011; 36
Brohi (bib22) 2014
Yapicioglu, Dincer (bib183) 2019; 103
Latarche (bib91) 2019
Cardiff University (bib25) 2019
Cornelius, Huellmantel, Mitchell (bib28) 1965; 74
Lindstedt, Lockwood, Selim (bib99) 1993; 99
Veser (bib172) 2018; 3
Armijo, Philibert (bib9) 2020; 13
Tay, Yang, Li, Zhou, Yu, Zhao, Chou, Mohan (bib164) 2017; 204
Gong, Willi (bib59) 2008
Sánchez, Martín, Vega (bib145) 2019; 7
Haputhanthri, Maxwell, Fleming, Austin (bib67) 2015; 137
Rouwenhorst, Krzywda, Benes, Mul, Lefferts (bib138) 2020
Zhang, Wang, herle, Maréchal, Desideri (bib184) 2020; 259
Coelho, Costa (bib26) 2012
Crolius (bib29) 2016
He, Shu, Nascimento, Moshammer, Costa, Fernandes (bib69) 2019; 206
Ramos, Rocha, Oliveira, Costa, Bai (bib130) 2019; 254
Rocha, Ramos, Costa, Bai (bib134) 2019; 33
World Energy Council (bib177) 2019
Zhang, Ito, Ishii, Ishihara, Fujimori (bib185) 2020; 267
Lhuillier, Brequigny, Contino, Mounaïm-Rousselle (bib95) 2020; 269
Grannell, Assanis, Bohac, Gillespie (bib61) 2008; 130
Fenimore, Jones (bib47) 1961; 65
Koike, Miyagawa, Suzuoki, Ogasawara (bib83) 2012
Reiter, Kong (bib131) 2010
Lee, Song (bib93) 2018; 32
Gilbert, Alexander, Thornley, Brammer (bib55) 2014; 64
Blarigan (bib15) 2000
Li, Konnov, He, Qin, Zhang (bib98) 2019; 257
Smith, Hill, Torrente-Murciano (bib154) 2020; 13
Sawyer, Starkman, Muzio, Schmidt (bib144) 1968
Tock, Maréchal, Perrenoud (bib168) 2015; 93
Ecuity (bib41) 2020
MRFR (bib112) 2019
Murray, Hall (bib113) 1951; 47
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib123) 2018; 187
Eurostat (bib45) 2019
The Royal Society (bib166) 2020
Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bib127) 2000; 123
Rocha, Costa, Bai (bib133) 2019; 246
Rouwenhorst, Ham, Mul, Kersten (bib137) 2019; 114
ICCT (bib36) 2017
Koike, Suzuoki (bib82) 2019; 44
Tay, Wenming, Chou, Zhou, Li, Yu, Zhao, Mohan (bib163) 2017; 105
Mathieu, Petersen (bib104) 2015; 162
Zumdahl (bib187) 2013
Ahlgren, Baky, Bernesson, Nordberg, Norén, Hansson (bib4) 2008; 99
Niki, Nitta, Sekiguchi, Hirata (bib120) 2018
Will (bib176) 2018
Armijo, Philibert (bib8) 2020; 45
Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bib125) 2018; 43
Duynslaegher (bib37) 2011
Service (bib146) 2018
Navas-Anguita, García-Gusano, Iribarren (bib116) 2019; 112
Boretti (bib18) 2017; 42
Duynslaegher, Jeanmart, Vandooren (bib39) 2010; 89
Manna, Sabia, Ragucci, Joannon (bib103) 2020; 264
(bib73) 2019
Lamas, Rodriguez (bib88) 2017; 42
Benjamin, Gall, Sturgess, Roberts (bib14) 2012
Dana, Ranasinghe, Wu, Grambow, Dong, Johnson, Goldman, Liu, Green (bib33) 2019
Konnov (bib86) 2009; 156
Westlye, Ivarsson, Schramm (bib175) 2013; 111
Frigo, Gentili, Doveri (bib51) 2012
Kojima (bib84) 2013
Han, Wang, Costa, Sun, He, Cen (bib65) 2019; 206
Reiter, Kong (bib132) 2011; 90
Deloitte (bib34) 2018
Glarborg, Miller, Ruscic, Klippenstein (bib57) 2018; 67
Kane, Zarling, Northrop (bib77) 2019
Sarafraz, Tran, Pourali, Rebrov, Hessel (bib142) 2020; 210
Miller, Smooke, Green, Kee (bib108) 1983; 34
Morgan, Manwell, McGowan (bib111) 2014; 72
Nayak-Luke, Bañares-Alcántara, Wilkinson (bib117) 2018; 57
Brackmann, Alekseev, Zhou, Nordström, Bengtsson, Li, Aldén, Konnov (bib19) 2016; 163
NH3 Fuel Association (bib118) 2017
Frigo, Gentili (bib49) 2013; 38
Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bib68) 2015; 159
Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts, Farooq (bib75) 2020
Nakamura, Hasegawa, Tezuka (bib114) 2017; 185
The Royal Society (bib165) 2018
IEA (bib72) 2020
Andersson, Lundgren (bib5) 2014; 130
Kang, Holbrook (bib79) 2015; 1
Xiao, Valera-Medina (bib178) 2017; 139
Brasington (bib21) 2019
Gross, Kong (bib64) 2013; 103
Nozari, Karabeyoglu (bib122) 2015; 159
Splitter, Szybist (bib158) 2014; 7
Maclean, Wagner (bib101) 1967; 11
Arena (bib7) 2019
Zhao, Setzler, Wang, Nash, Wang, Xu, Yan (bib186) 2019; 3
Capdevila-Cortada (bib24) 2019; 2
Comotti, Frigo (bib27) 2015; 40
Dagaut, Glarborg, Alzueta (bib31) 2008; 34
Kojima, Nakamura, Shimizu, Sugimoto, Kim (bib85) 2009
Avery (bib12) 1988; 13
Duynslaegher, Jeanmart, Vandooren (bib38) 2009; 32
European Commission (bib44)
Frigo, Gentili (bib50) 2014
Song, Hashemi, Christensen, Zou, Marshall, Glarborg (bib157) 2016; 181
Valera-Medina, Xiao, Owen-Jones, David, Bowen (bib171) 2018; 69
Apostolou, Xydis (bib6) 2019; 113
Penkuhn, Tsatsaronis (bib126) 2017; 137
Starkman, Newhall, Sutton, Maguire, Farbar (bib160) 1967; 75
Meyer, Kumar, Li, Redfern, Diaz (bib106) 2018
Tian, Li, Zhang, Glarborg, Qi (bib167) 2009; 156
Ezzat, Dincer (bib46) 2018; 43
Afif, Radenahmad, Cheok, Shams, Kim, Azad (bib2) 2016; 60
Gao, Allen, Green, West (bib53) 2016; 203
Rocha, Costa, Bai (bib135) 2020
Crolius (bib30) 2020
Haputhanthri (bib66) 2014
Hoxha, Dervishi, Sweeney (bib70) 2019; 30
Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (bib173) 2018; 2
Staffell, Scamman, Abad, Balcombe, Dodds, Ekins, Shahd, Ward (bib159) 2019; 12
Bongartz, Doré, Eichler, Grube, Heuser, Hombach, Robinius, Pischinger, Stolten, Walther, Mitsos (bib16) 2018; 231
Green (bib63) 2019
Dimitriou, Javaid (bib35) 2020; 45
Soloveichik (bib155) 2019; 2
Xiao, Valera-Medina, Marsh, Bowen (bib181) 2017; 196
Bannon (bib169) 2018
Wang, Ji, Wang, Yang, Wang (bib174) 2021; 46
Brown (bib23) 2013
Miller, Bowman (bib107) 1989; 15
Pochet, Truedsson, Foucher, Jeanmart, Contino (bib128) 2017
Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., William C. Gardiner, J., Lissianski, V.V., Qin, Z., 2000. GRI-mech 3.0.
Ahlgren (bib3) 2012; 100
Boretti (bib17) 2012; 37
Dana, Buesser, Merchant, Green (bib32) 2018; 50
Grannell, Assanis, Bohac, Gillespie (bib60) 2006
Somarathne, Hatakeyama, Hayakawa, Kobayashi (bib156) 2017; 42
Jolaoso, Zaman (bib76) 2020
Nash, Aklil, Johnson, Gazey, Ortisi (bib115) 2012
Galdo, Castro-Santos, Vidal (bib52) 2020; 8
Miura, Tezuka (bib109) 2014; 68
Klippenstein, Harding, Glarborg, Miller (bib80) 2011; 158
Gill, Chatha, Tsolakis, Golunski, York (bib56) 2012; 37
Xiao, Valera-Medina, Bowen (bib180) 2017; 31
Rogóż, Kapusta, Bachanek, Vankan, Andrzej (bib136) 2020; 120
Giddey, Badwal, Munnings, Dolan (bib54) 2017; 5
MAN Energy Solutions (bib102) 2019
Gomez, Baca, Garzon (bib58) 2020; 45
Runge (10.1016/j.jclepro.2021.126562_bib139) 2019; 233–234
Li (10.1016/j.jclepro.2021.126562_bib98) 2019; 257
Brackmann (10.1016/j.jclepro.2021.126562_bib19) 2016; 163
Coelho (10.1016/j.jclepro.2021.126562_bib26) 2012
Ishihara (10.1016/j.jclepro.2021.126562_bib74) 2020; 274
Nakamura (10.1016/j.jclepro.2021.126562_bib114) 2017; 185
The Royal Society (10.1016/j.jclepro.2021.126562_bib166) 2020
Xiao (10.1016/j.jclepro.2021.126562_bib178) 2017; 139
Dagaut (10.1016/j.jclepro.2021.126562_bib31) 2008; 34
Koike (10.1016/j.jclepro.2021.126562_bib82) 2019; 44
Tay (10.1016/j.jclepro.2021.126562_bib164) 2017; 204
IEA (10.1016/j.jclepro.2021.126562_bib71) 2017
Duynslaegher (10.1016/j.jclepro.2021.126562_bib39) 2010; 89
Hoxha (10.1016/j.jclepro.2021.126562_bib70) 2019; 30
Siemens (10.1016/j.jclepro.2021.126562_bib147) 2016
Pochet (10.1016/j.jclepro.2021.126562_bib128) 2017
Blarigan (10.1016/j.jclepro.2021.126562_bib15) 2000
Frankl (10.1016/j.jclepro.2021.126562_bib48) 2020
Maclean (10.1016/j.jclepro.2021.126562_bib101) 1967; 11
Eurostat (10.1016/j.jclepro.2021.126562_bib45) 2019
Haputhanthri (10.1016/j.jclepro.2021.126562_bib67) 2015; 137
Dimitriou (10.1016/j.jclepro.2021.126562_bib35) 2020; 45
Gilbert (10.1016/j.jclepro.2021.126562_bib55) 2014; 64
Staffell (10.1016/j.jclepro.2021.126562_bib159) 2019; 12
Cardiff University (10.1016/j.jclepro.2021.126562_bib25) 2019
World Energy Council (10.1016/j.jclepro.2021.126562_bib177) 2019
MRFR (10.1016/j.jclepro.2021.126562_bib112) 2019
Tunå (10.1016/j.jclepro.2021.126562_bib170) 2014; 33
Galdo (10.1016/j.jclepro.2021.126562_bib52) 2020; 8
Smith (10.1016/j.jclepro.2021.126562_bib154) 2020; 13
Soloveichik (10.1016/j.jclepro.2021.126562_bib155) 2019; 2
Nash (10.1016/j.jclepro.2021.126562_bib115) 2012
SIP (10.1016/j.jclepro.2021.126562_bib151) 2016
Nayak-Luke (10.1016/j.jclepro.2021.126562_bib117) 2018; 57
Kang (10.1016/j.jclepro.2021.126562_bib79) 2015; 1
Xiao (10.1016/j.jclepro.2021.126562_bib181) 2017; 196
Miura (10.1016/j.jclepro.2021.126562_bib109) 2014; 68
Grannell (10.1016/j.jclepro.2021.126562_bib60) 2006
Silva (10.1016/j.jclepro.2021.126562_bib148) 2020
Abdin (10.1016/j.jclepro.2021.126562_bib1) 2020; 120
Boretti (10.1016/j.jclepro.2021.126562_bib18) 2017; 42
Navas-Anguita (10.1016/j.jclepro.2021.126562_bib116) 2019; 112
EEA (10.1016/j.jclepro.2021.126562_bib42) 2019
Brown (10.1016/j.jclepro.2021.126562_bib23)
Koike (10.1016/j.jclepro.2021.126562_bib83) 2012
Apostolou (10.1016/j.jclepro.2021.126562_bib6) 2019; 113
Murray (10.1016/j.jclepro.2021.126562_bib113) 1951; 47
Comotti (10.1016/j.jclepro.2021.126562_bib27) 2015; 40
Morgan (10.1016/j.jclepro.2021.126562_bib111) 2014; 72
Larbi (10.1016/j.jclepro.2021.126562_bib89) 2009
Jolaoso (10.1016/j.jclepro.2021.126562_bib76) 2020
Latarche (10.1016/j.jclepro.2021.126562_bib91)
Glarborg (10.1016/j.jclepro.2021.126562_bib57) 2018; 67
Cornelius (10.1016/j.jclepro.2021.126562_bib28) 1965; 74
Granovskii (10.1016/j.jclepro.2021.126562_bib62) 2006; 159
Wang (10.1016/j.jclepro.2021.126562_bib173) 2018; 2
Avery (10.1016/j.jclepro.2021.126562_bib12) 1988; 13
Ryu (10.1016/j.jclepro.2021.126562_bib141) 2014; 39
Brohi (10.1016/j.jclepro.2021.126562_bib22) 2014
Wang (10.1016/j.jclepro.2021.126562_bib174) 2021; 46
Gong (10.1016/j.jclepro.2021.126562_bib59) 2008
Niki (10.1016/j.jclepro.2021.126562_bib121) 2019; 141
Kojima (10.1016/j.jclepro.2021.126562_bib85) 2009
Li (10.1016/j.jclepro.2021.126562_bib96) 2014; 38
Manna (10.1016/j.jclepro.2021.126562_bib103) 2020; 264
Miller (10.1016/j.jclepro.2021.126562_bib107) 1989; 15
Xiao (10.1016/j.jclepro.2021.126562_bib179) 2017; 142
Rocha (10.1016/j.jclepro.2021.126562_bib134) 2019; 33
Crolius (10.1016/j.jclepro.2021.126562_bib29)
Okafor (10.1016/j.jclepro.2021.126562_bib124) 2019; 204
Rogóż (10.1016/j.jclepro.2021.126562_bib136) 2020; 120
Duynslaegher (10.1016/j.jclepro.2021.126562_bib37) 2011
Gao (10.1016/j.jclepro.2021.126562_bib53) 2016; 203
Niki (10.1016/j.jclepro.2021.126562_bib119) 2016
Somarathne (10.1016/j.jclepro.2021.126562_bib156) 2017; 42
Klippenstein (10.1016/j.jclepro.2021.126562_bib80) 2011; 158
Sarkar (10.1016/j.jclepro.2021.126562_bib143) 2011; 36
Reiter (10.1016/j.jclepro.2021.126562_bib131) 2010
Reiter (10.1016/j.jclepro.2021.126562_bib132) 2011; 90
Okafor (10.1016/j.jclepro.2021.126562_bib123) 2018; 187
Arora (10.1016/j.jclepro.2021.126562_bib10) 2016; 55
Zhao (10.1016/j.jclepro.2021.126562_bib186) 2019; 3
Gray (10.1016/j.jclepro.2021.126562_bib11) 1967; 75
Yapicioglu (10.1016/j.jclepro.2021.126562_bib182) 2019; 154
Issayev (10.1016/j.jclepro.2021.126562_bib75) 2020
Kumar (10.1016/j.jclepro.2021.126562_bib87) 2014; 14
Nozari (10.1016/j.jclepro.2021.126562_bib122) 2015; 159
Armijo (10.1016/j.jclepro.2021.126562_bib9) 2020; 13
European Commission (10.1016/j.jclepro.2021.126562_bib44)
Otomo (10.1016/j.jclepro.2021.126562_bib125) 2018; 43
Rouwenhorst (10.1016/j.jclepro.2021.126562_bib138) 2020
Tay (10.1016/j.jclepro.2021.126562_bib163) 2017; 105
(10.1016/j.jclepro.2021.126562_bib73) 2019
Bannon (10.1016/j.jclepro.2021.126562_bib169) 2018
Valera-Medina (10.1016/j.jclepro.2021.126562_bib171) 2018; 69
Brackmann (10.1016/j.jclepro.2021.126562_bib20) 2018; 194
Duynslaegher (10.1016/j.jclepro.2021.126562_bib40) 2012; 159
Han (10.1016/j.jclepro.2021.126562_bib65) 2019; 206
IEA (10.1016/j.jclepro.2021.126562_bib72) 2020
Westlye (10.1016/j.jclepro.2021.126562_bib175) 2013; 111
Ahlgren (10.1016/j.jclepro.2021.126562_bib4) 2008; 99
Silva (10.1016/j.jclepro.2021.126562_bib149) 2013; 109
Kojima (10.1016/j.jclepro.2021.126562_bib84) 2013
The Royal Society (10.1016/j.jclepro.2021.126562_bib165) 2018
Green (10.1016/j.jclepro.2021.126562_bib63) 2019
Konnov (10.1016/j.jclepro.2021.126562_bib86) 2009; 156
Giddey (10.1016/j.jclepro.2021.126562_bib54) 2017; 5
Meyer (10.1016/j.jclepro.2021.126562_bib106) 2018
Deloitte (10.1016/j.jclepro.2021.126562_bib34) 2018
Tian (10.1016/j.jclepro.2021.126562_bib167) 2009; 156
Lindstedt (10.1016/j.jclepro.2021.126562_bib99) 1993; 99
Bongartz (10.1016/j.jclepro.2021.126562_bib16) 2018; 231
Frigo (10.1016/j.jclepro.2021.126562_bib49) 2013; 38
Lauer (10.1016/j.jclepro.2021.126562_bib92) 2017
Yapicioglu (10.1016/j.jclepro.2021.126562_bib183) 2019; 103
Zhang (10.1016/j.jclepro.2021.126562_bib185) 2020; 267
ICCT (10.1016/j.jclepro.2021.126562_bib36) 2017
Veser (10.1016/j.jclepro.2021.126562_bib172) 2018; 3
Lee (10.1016/j.jclepro.2021.126562_bib94) 2019; 113
Benjamin (10.1016/j.jclepro.2021.126562_bib14) 2012
Gill (10.1016/j.jclepro.2021.126562_bib56) 2012; 37
Kang (10.1016/j.jclepro.2021.126562_bib78) 2014
Dana (10.1016/j.jclepro.2021.126562_bib33)
Mørch (10.1016/j.jclepro.2021.126562_bib110) 2011; 90
Boretti (10.1016/j.jclepro.2021.126562_bib17) 2012; 37
Zhang (10.1016/j.jclepro.2021.126562_bib184) 2020; 259
Service (10.1016/j.jclepro.2021.126562_bib146) 2018
Sawyer (10.1016/j.jclepro.2021.126562_bib144) 1968
Frigo (10.1016/j.jclepro.2021.126562_bib51) 2012
Tock (10.1016/j.jclepro.2021.126562_bib168) 2015; 93
Sarafraz (10.1016/j.jclepro.2021.126562_bib142) 2020; 210
Xiao (10.1016/j.jclepro.2021.126562_bib180) 2017; 31
Gomez (10.1016/j.jclepro.2021.126562_bib58) 2020; 45
Pfahl (10.1016/j.jclepro.2021.126562_bib127) 2000; 123
Skreiberg (10.1016/j.jclepro.2021.126562_bib152) 2004; 136
Elishav (10.1016/j.jclepro.2021.126562_bib43) 2020; 120
Miller (10.1016/j.jclepro.2021.126562_bib108) 1983; 34
Kobayashi (10.1016/j.jclepro.2021.126562_bib81) 2019; 37
Pollet (10.1016/j.jclepro.2021.126562_bib129) 2014
Penkuhn (10.1016/j.jclepro.2021.126562_bib126) 2017; 137
Ecuity (10.1016/j.jclepro.2021.126562_bib41) 2020
Brasington (10.1016/j.jclepro.2021.126562_bib21)
Dana (10.1016/j.jclepro.2021.126562_bib32) 2018; 50
Bartels (10.1016/j.jclepro.2021.126562_bib13) 2008
Mendiara (10.1016/j.jclepro.2021.126562_bib105) 2009; 156
Afif (10.1016/j.jclepro.2021.126562_bib2) 2016; 60
Armijo (10.1016/j.jclepro.2021.126562_bib8) 2020; 45
Gross (10.1016/j.jclepro.2021.126562_bib64) 2013; 103
Fenimore (10.1016/j.jclepro.2021.126562_bib47) 1961; 65
Song (10.1016/j.jclepro.2021.126562_bib157) 2016; 181
Ahlgren (10.1016/j.jclepro.2021.126562_bib3) 2012; 100
Rouwenhorst (10.1016/j.jclepro.2021.126562_bib137) 2019; 114
Lhuillier (10.1016/j.jclepro.2021.126562_bib95) 2020; 269
Duynslaegher (10.1016/j.jclepro.2021.126562_bib38) 2009; 32
Ezzat (10.1016/j.jclepro.2021.126562_bib46) 2018; 43
Rocha (10.1016/j.jclepro.2021.126562_bib135) 2020
Splitter (10.1016/j.jclepro.2021.126562_bib158) 2014; 7
Will (10.1016/j.jclepro.2021.126562_bib176) 2018
Mathieu (10.1016/j.jclepro.2021.126562_bib104) 2015; 162
Grannell (10.1016/j.jclepro.2021.126562_bib61) 2008; 130
Lamas (10.1016/j.jclepro.2021.126562_bib88) 2017; 42
Tamura (10.1016/j.jclepro.2021.126562_bib162) 2020; 277
Zumdahl (10.1016/j.jclepro.2021.126562_bib187)
Frigo (10.1016/j.jclepro.2021.126562_bib50) 2014
He (10.1016/j.jclepro.2021.126562_bib69) 2019; 206
Ryu (10.1016/j.jclepro.2021.126562_bib140) 2014; 113
Sánchez (10.1016/j.jclepro.2021.126562_bib145) 2019; 7
NH3 Fuel Association (10.1016/j.jclepro.2021.126562_bib118)
Takizawa (10.1016/j.jclepro.2021.126562_bib161) 2008; 155
Crolius (10.1016/j.jclepro.2021.126562_bib30)
Lee (10.1016/j.jclepro.2021.126562_bib93) 2018; 32
Capdevila-Cortada (10.1016/j.jclepro.2021.126562_bib24) 2019; 2
Kane (10.1016/j.jclepro.2021.126562_bib77) 2019
Li (10.1016/j.jclepro.2021.126562_bib97) 2017; 126
Lasocki (10.1016/j.jclepro.2021.126562_bib90) 2019
MAN Energy Solutions (10.1016/j.jclepro.2021.126562_bib102) 2019
Andersson (10.1016/j.jclepro.2021.126562_bib5) 2014; 130
Haputhanthri (10.1016/j.jclepro.2021.126562_bib66) 2014
10.1016/j.jclepro.2021.126562_bib153
Niki (10.1016/j.jclepro.2021.126562_bib120) 2018
Lindstedt (10.1016/j.jclepro.2021.126562_bib100) 1995; 108
Starkman (10.1016/j.jclepro.2021.126562_bib160) 1967; 75
Arena (10.1016/j.jclepro.2021.126562_bib7)
Hayakawa (10.1016/j.jclepro.2021.126562_bib68) 2015; 159
Rocha (10.1016/j.jclepro.2021.126562_bib133) 2019; 246
Silva (10.1016/j.jclepro.2021.126562_bib150) 2017; 42
Ramos (10.1016/j.jclepro.2021.126562_bib130) 2019; 254
References_xml – volume: 37
  start-page: 6074
  year: 2012
  end-page: 6083
  ident: bib56
  article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia
  publication-title: Int. J. Hydrogen Energy
– volume: 185
  start-page: 16
  year: 2017
  end-page: 27
  ident: bib114
  article-title: Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile
  publication-title: Combust. Flame
– year: 2016
  ident: bib29
  article-title: Ammonia-powered internal combustion engines
– year: 2018
  ident: bib120
  article-title: Emission and Combustion Characteristics of Diesel Engine Fumigated with Ammonia, ASME 2018 Internal Combustion Engine Division Fall Technical Conference
– volume: 233–234
  start-page: 1078
  year: 2019
  end-page: 1093
  ident: bib139
  article-title: Economic comparison of different electric fuels for energy scenarios in 2035
  publication-title: Appl. Energy
– year: 2020
  ident: bib148
  article-title: Computational Fluid Dynamics Applied to Waste-To-Energy Processes: A Hands-On Approach
– year: 2016
  ident: bib147
  article-title: ’Green’ ammonia
– volume: 13
  start-page: 761
  year: 1988
  end-page: 773
  ident: bib12
  article-title: A role for ammonia in the hydrogen economy
  publication-title: Int. J. Hydrogen Energy
– year: 2019
  ident: bib91
  article-title: Ammonia – another new fuel for the future?
– year: 2014
  ident: bib66
  article-title: Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance
  publication-title: SAE Technical Paper Series
– year: 2008
  ident: bib59
  article-title: Power System Having an Ammonia Fueled Engine (US20100019506A1)
– year: 2020
  ident: bib138
  article-title: Ammonia, 4. Green Ammonia Production, Ullmann’s Encyclopedia of Industrial Chemistry
– volume: 204
  start-page: 1476
  year: 2017
  end-page: 1488
  ident: bib164
  article-title: Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation
  publication-title: Appl. Energy
– volume: 100
  start-page: 3001
  year: 2012
  end-page: 3052
  ident: bib3
  article-title: The dual-fuel strategy: an energy transition plan
  publication-title: Proc. IEEE
– volume: 103
  start-page: 1069
  year: 2013
  end-page: 1079
  ident: bib64
  article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures
  publication-title: Fuel
– year: 2014
  ident: bib78
  article-title: Combating climate change with ammonia-fueled vehicles, Bulletin of the Atomic Scientists
– year: 2019
  ident: bib112
  article-title: Ammonia market research report - global forecast till 2025. Market research future, India
– year: 2020
  ident: bib166
  article-title: Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store
– volume: 269
  start-page: 117448
  year: 2020
  ident: bib95
  article-title: Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions
  publication-title: Fuel
– volume: 74
  start-page: 300
  year: 1965
  end-page: 326
  ident: bib28
  article-title: Ammonia as an engine fuel
  publication-title: SAE Trans.
– year: 2017
  ident: bib92
  article-title: White Paper | Improving the Air Quality in Our Cities. Reducing Airborne Pollution with Simcenter STAR-CCM+. Siemens Digital Industries Software
– volume: 158
  start-page: 774
  year: 2011
  end-page: 789
  ident: bib80
  article-title: The role of NNH in NO formation and control
  publication-title: Combust. Flame
– start-page: 639
  year: 2000
  end-page: 656
  ident: bib15
  article-title: Advanced internal combustion engine research, 2000 U.S DOE hydrogen program review. San ramon
  publication-title: California
– volume: 159
  start-page: 98
  year: 2015
  end-page: 106
  ident: bib68
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
– year: 2019
  ident: bib90
  article-title: Simulation of ammonia combustion in dual-fuel compression ignition engine IOP Conference Series: earth and Environmental Science
– year: 2019
  ident: bib45
  article-title: Energy, Transport and Environment Statistics
– year: 2018
  ident: bib169
  publication-title: CO
– volume: 64
  start-page: 581
  year: 2014
  end-page: 589
  ident: bib55
  article-title: Assessing economically viable carbon reductions for the production of ammonia from biomass gasification
  publication-title: J. Clean. Prod.
– volume: 156
  start-page: 2093
  year: 2009
  end-page: 2105
  ident: bib86
  article-title: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism
  publication-title: Combust. Flame
– volume: 139
  start-page: 81504
  year: 2017
  ident: bib178
  article-title: Chemical kinetic mechanism study on premixed combustion of ammonia/hydrogen fuels for gas turbine use
  publication-title: J. Eng. Gas Turbines Power
– year: 2020
  ident: bib72
  article-title: ETP clean energy technology guide. International energy agency
– volume: 259
  start-page: 114135
  year: 2020
  ident: bib184
  article-title: Techno-economic comparison of green ammonia production processes
  publication-title: Appl. Energy
– volume: 7
  year: 2014
  ident: bib158
  article-title: Intermediate alcohol-gasoline blends, fuels for enabling increased engine efficiency and powertrain possibilities
  publication-title: SAE international journal of fuels and lubricants
– volume: 155
  start-page: 144
  year: 2008
  end-page: 152
  ident: bib161
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J. Hazard Mater.
– volume: 210
  start-page: 112709
  year: 2020
  ident: bib142
  article-title: Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals
  publication-title: Energy Convers. Manag.
– volume: 44
  start-page: 32271
  year: 2019
  end-page: 32279
  ident: bib82
  article-title: In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 123
  start-page: 140
  year: 2000
  end-page: 158
  ident: bib127
  article-title: Flammability limits, ignition energy, and flame speeds in H
  publication-title: Combust. Flame
– volume: 111
  start-page: 239
  year: 2013
  end-page: 247
  ident: bib175
  article-title: Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine
  publication-title: Fuel
– volume: 274
  start-page: 117742
  year: 2020
  ident: bib74
  article-title: Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions
  publication-title: Fuel
– year: 2020
  ident: bib30
  article-title: Literature review: ammonia as a fuel for compression ignition engines
– volume: 162
  start-page: 554
  year: 2015
  end-page: 570
  ident: bib104
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NO
  publication-title: Combust. Flame
– volume: 39
  start-page: 2390
  year: 2014
  end-page: 2398
  ident: bib141
  article-title: Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation
  publication-title: Int. J. Hydrogen Energy
– start-page: 680401
  year: 1968
  ident: bib144
  article-title: Oxides of nitrogen in the combustion products of an ammonia fueled reciprocating engine
  publication-title: Soc. Automotive Eng.
– volume: 2
  start-page: 1055
  year: 2019
  ident: bib24
  article-title: Electrifying the haber–bosch
  publication-title: Nature Catalysis
– year: 2019
  ident: bib73
  article-title: Ammonia market - growth, trends, and forecasts
– volume: 68
  start-page: 428
  year: 2014
  end-page: 436
  ident: bib109
  article-title: A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan
  publication-title: Energy
– volume: 254
  start-page: 115693
  year: 2019
  ident: bib130
  article-title: Experimental and kinetic modelling investigation on NO, CO and NH
  publication-title: Fuel
– volume: 114
  start-page: 109339
  year: 2019
  ident: bib137
  article-title: Islanded ammonia power systems: technology review & conceptual process design
  publication-title: Renew. Sustain. Energy Rev.
– year: 2019
  ident: bib21
  article-title: Green ammonia – potential as an energy carrier and beyond
– volume: 12
  start-page: 463
  year: 2019
  end-page: 491
  ident: bib159
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
– volume: 159
  start-page: 2799
  year: 2012
  end-page: 2805
  ident: bib40
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust. Flame
– volume: 43
  start-page: 3004
  year: 2018
  end-page: 3014
  ident: bib125
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int. J. Hydrogen Energy
– ident: bib44
  article-title: DG ENER working paper - the future role and challenges of energy storage
– year: 2018
  ident: bib176
  article-title: Realization of large-scale green ammonia plants, solutions for sustainable NH
– volume: 33
  start-page: 12767
  year: 2019
  end-page: 12780
  ident: bib134
  article-title: Combustion of NH
  publication-title: Energy Fuels
– volume: 108
  start-page: 231
  year: 1995
  end-page: 254
  ident: bib100
  article-title: A detailed kinetic study of ammonia oxidation
  publication-title: Combust. Sci. Technol.
– year: 2020
  ident: bib75
  article-title: Combustion behavior of ammonia blended with diethyl ether
  publication-title: Proc. Combust. Inst.
– volume: 113
  start-page: 488
  year: 2014
  end-page: 499
  ident: bib140
  article-title: Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether
  publication-title: Appl. Energy
– volume: 105
  start-page: 4621
  year: 2017
  end-page: 4626
  ident: bib163
  article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study
  publication-title: Energy Procedia
– volume: 203
  start-page: 212
  year: 2016
  end-page: 225
  ident: bib53
  article-title: Reaction Mechanism Generator: automatic construction of chemical kinetic mechanisms
  publication-title: Comput. Phys. Commun.
– volume: 13
  start-page: 331
  year: 2020
  end-page: 344
  ident: bib154
  article-title: Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 377
  year: 2019
  end-page: 380
  ident: bib155
  article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process
  publication-title: Nature Catalysis
– volume: 3
  start-page: 2472
  year: 2019
  end-page: 2484
  ident: bib186
  article-title: An efficient direct ammonia fuel cell for affordable carbon-neutral transportation
  publication-title: Joule
– volume: 42
  start-page: 27388
  year: 2017
  end-page: 27399
  ident: bib156
  article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure
  publication-title: Int. J. Hydrogen Energy
– volume: 75
  start-page: 765
  year: 1967
  end-page: 784
  ident: bib160
  article-title: Ammonia as a spark ignition engine fuel: theory and application
  publication-title: SAE Trans.
– volume: 257
  start-page: 116059
  year: 2019
  ident: bib98
  article-title: Chemical mechanism development and reduction for combustion of NH
  publication-title: Fuel
– volume: 38
  start-page: 1607
  year: 2013
  end-page: 1615
  ident: bib49
  article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen
  publication-title: Int. J. Hydrogen Energy
– year: 2016
  ident: bib151
  article-title: Cross-ministerial strategic innovation promotion program (SIP) energy carriers
  publication-title: Japan Sci. Technol. Agency
– volume: 264
  start-page: 116768
  year: 2020
  ident: bib103
  article-title: Oxidation and pyrolysis of ammonia mixtures in model reactors
  publication-title: Fuel
– volume: 120
  start-page: 5352
  year: 2020
  end-page: 5436
  ident: bib43
  article-title: Progress and prospective of nitrogen-based alternative fuels
  publication-title: Chem. Rev.
– year: 2018
  ident: bib165
  article-title: Options for Producing Low-Carbon Hydrogen at Scale
– year: 2013
  ident: bib23
  article-title: The AmVeh – an ammonia fueled car from South Korea
– volume: 55
  start-page: 6422
  year: 2016
  end-page: 6434
  ident: bib10
  article-title: Small-scale Ammonia production from biomass: a techno-enviro-economic perspective
  publication-title: Ind. Eng. Chem. Res.
– volume: 38
  start-page: 1214
  year: 2014
  end-page: 1223
  ident: bib96
  article-title: Study on using hydrogen and ammonia as fuels: combustion characteristics and NO
  publication-title: Int. J. Energy Res.
– volume: 31
  start-page: 8631
  year: 2017
  end-page: 8642
  ident: bib180
  article-title: Modelling combustion of ammonia/hydrogen fuel blends under gas turbine conditions
  publication-title: Energy Fuels
– volume: 130
  start-page: 42802
  year: 2008
  ident: bib61
  article-title: The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine
  publication-title: J. Eng. Gas Turbines Power
– start-page: 131
  year: 2012
  end-page: 155
  ident: bib115
  article-title: Hydrogen storage: compressed gas
  publication-title: Comprehensive Renewable Energy
– volume: 60
  start-page: 822
  year: 2016
  end-page: 835
  ident: bib2
  article-title: Ammonia-fed fuel cells: a comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
– year: 2014
  ident: bib50
  article-title: Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen
  publication-title: SAE Technical Paper Series
– year: 2018
  ident: bib146
  article-title: Ammonia - a renewable fuel made from sun, air, and water - could power the globe without carbon
  publication-title: Science. AAAS
– volume: 136
  start-page: 501
  year: 2004
  end-page: 518
  ident: bib152
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust. Flame
– volume: 5
  start-page: 10231
  year: 2017
  end-page: 10239
  ident: bib54
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustain. Chem. Eng.
– volume: 90
  start-page: 854
  year: 2011
  end-page: 864
  ident: bib110
  article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system
  publication-title: Fuel
– volume: 30
  start-page: 1311
  year: 2019
  end-page: 1325
  ident: bib70
  article-title: Waste-to-Fuel technology in Albania—how to implement a renewable energy system in europe’s largest onshore oilfield
  publication-title: J. Earth Sci.
– volume: 11
  start-page: 871
  year: 1967
  end-page: 878
  ident: bib101
  article-title: The structure of the reaction zones of ammonia-oxygen and hydrazine-decomposition flames
  publication-title: Symp Combust
– year: 2018
  ident: bib34
  article-title: Supercharged: Challenges and Opportunities in Global Battery Storage Markets
– year: 2017
  ident: bib71
  article-title: Energy technology perspectives. International energy agency
– volume: 113
  start-page: 109262
  year: 2019
  ident: bib94
  article-title: Assessment of the economic potential: CO
  publication-title: Renew. Sustain. Energy Rev.
– year: 2008
  ident: bib13
  article-title: A feasibility study of implementing an Ammonia Economy
  publication-title: Mechanical Engineering
– volume: 34
  start-page: 1
  year: 2008
  end-page: 46
  ident: bib31
  article-title: The oxidation of hydrogen cyanide and related chemistry
  publication-title: Prog. Energy Combust. Sci.
– volume: 267
  start-page: 117166
  year: 2020
  ident: bib185
  article-title: Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio
  publication-title: Fuel
– year: 2014
  ident: bib22
  article-title: Ammonia as fuel for internal combustion engines? An evaluation of the feasibility of using nitrogen-based fuels in ICE
  publication-title: Department of Applied Mechanics
– year: 2017
  ident: bib118
  article-title: Comparisons, the logical path forward
– volume: 103
  start-page: 96
  year: 2019
  end-page: 108
  ident: bib183
  article-title: A review on clean ammonia as a potential fuel for power generators
  publication-title: Renew. Sustain. Energy Rev.
– volume: 45
  start-page: 1541
  year: 2020
  end-page: 1558
  ident: bib8
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 1025
  year: 2018
  end-page: 1026
  ident: bib172
  article-title: Ammonia synthesis, taking the pressure off
  publication-title: Nature Energy
– volume: 50
  start-page: 243
  year: 2018
  end-page: 258
  ident: bib32
  article-title: Automated reaction mechanism generation including nitrogen as a heteroatom
  publication-title: Int. J. Chem. Kinet.
– year: 2019
  ident: bib42
  article-title: Air quality in Europe — 2019 report
  publication-title: European Environment Agency
– volume: 206
  start-page: 189
  year: 2019
  end-page: 200
  ident: bib69
  article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures
  publication-title: Combust. Flame
– volume: 120
  start-page: 109620
  year: 2020
  ident: bib1
  article-title: Hydrogen as an energy vector
  publication-title: Renew. Sustain. Energy Rev.
– year: 2018
  ident: bib106
  article-title: Ammonia Combustion with Near-Zero Pollutant Emissions
– volume: 163
  start-page: 370
  year: 2016
  end-page: 381
  ident: bib19
  article-title: Structure of premixed ammonia + air flames at atmospheric pressure: laser diagnostics and kinetic modeling
  publication-title: Combust. Flame
– year: 2013
  ident: bib84
  article-title: A green ammonia economy
  publication-title: 10
– volume: 42
  start-page: 23878
  year: 2017
  end-page: 23890
  ident: bib150
  article-title: Multi-stage optimization in a pilot scale gasification plant
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 26132
  year: 2017
  end-page: 26141
  ident: bib88
  article-title: Numerical model to analyze NO
  publication-title: Int. J. Hydrogen Energy
– volume: 90
  start-page: 87
  year: 2011
  end-page: 97
  ident: bib132
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
– volume: 32
  start-page: 1905
  year: 2018
  end-page: 1925
  ident: bib93
  article-title: Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics
  publication-title: J. Mech. Sci. Technol.
– volume: 89
  start-page: 3540
  year: 2010
  end-page: 3545
  ident: bib39
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
– year: 2019
  ident: bib7
  article-title: Renewable future beckons for Queensland ammonia plants
– year: 2012
  ident: bib51
  article-title: Ammonia Plus Hydrogen as Fuel in a S.I. Engine: Experimental Results
– volume: 142
  start-page: 1294
  year: 2017
  end-page: 1299
  ident: bib179
  article-title: 3D simulation of ammonia combustion in a lean premixed swirl burner
  publication-title: Energy Procedia
– volume: 231
  start-page: 757
  year: 2018
  end-page: 767
  ident: bib16
  article-title: Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide
  publication-title: Appl. Energy
– year: 2020
  ident: bib41
  article-title: Ammonia to green hydrogen project, feasibility study
– volume: 126
  start-page: 796
  year: 2017
  end-page: 809
  ident: bib97
  article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
  publication-title: Energy
– volume: 36
  start-page: 6251
  year: 2011
  end-page: 6262
  ident: bib143
  article-title: Biofuels and biochemicals production from forest biomass in Western Canada
  publication-title: Energy
– year: 2019
  ident: bib25
  article-title: World First Green Ammonia Power Demonstrator Developed by Siemens
– volume: 7
  start-page: 9995
  year: 2019
  end-page: 10007
  ident: bib145
  article-title: Biomass based sustainable ammonia production: digestion vs gasification
  publication-title: ACS Sustain. Chem. Eng.
– volume: 156
  start-page: 1937
  year: 2009
  end-page: 1949
  ident: bib105
  article-title: Ammonia chemistry in oxy-fuel combustion of methane
  publication-title: Combust. Flame
– volume: 159
  start-page: 1186
  year: 2006
  end-page: 1193
  ident: bib62
  article-title: Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles
  publication-title: J. Power Sources
– volume: 246
  start-page: 24
  year: 2019
  end-page: 33
  ident: bib133
  article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission
  publication-title: Fuel
– start-page: 219
  year: 2012
  end-page: 234
  ident: bib14
  article-title: Experiments on a light duty SCR test exhaust system using ammonia gas to provide data for validation of a CFD model
  publication-title: Internal Combustion Engines: Improving Performance, Fuel Economy and Emissions
– start-page: 459813
  year: 2009
  ident: bib89
  article-title: Measurement and simulation of pollutant emissions from marine diesel combustion engine and their reduction by ammonia injection
  publication-title: Adv. Mech. Eng.
– year: 2016
  ident: bib119
  article-title: Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine, ASME 2016 internal combustion engine fall technical conference
  publication-title: Am. Soc. Mech. Eng.
– volume: 14
  start-page: 116
  year: 2014
  end-page: 124
  ident: bib87
  article-title: Experimental and CFD analysis of selective catalytic reduction system on DeNOx efficiency of single cylinder diesel engine using NH
  publication-title: Procedia Technology
– volume: 15
  start-page: 287
  year: 1989
  end-page: 338
  ident: bib107
  article-title: Mechanism and modeling of nitrogen chemistry in combustion
  publication-title: Prog. Energy Combust. Sci.
– year: 2017
  ident: bib128
  article-title: Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine
  publication-title: SAE technical paper series
– year: 2010
  ident: bib131
  article-title: Diesel Engine Operation Using Ammonia as a Carbon-free Fuel, ICEF 2010, International Combustion Engine Division Fall Technical Conference. ASME, the American Society of Mechanical Engineers
– volume: 120
  start-page: 109616
  year: 2020
  ident: bib136
  article-title: Improved urea-water solution spray model for simulations of selective catalytic reduction systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 45
  start-page: 721
  year: 2020
  end-page: 737
  ident: bib58
  article-title: Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane
  publication-title: Int. J. Hydrogen Energy
– volume: 159
  start-page: 223
  year: 2015
  end-page: 233
  ident: bib122
  article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms
  publication-title: Fuel
– volume: 93
  start-page: 356
  year: 2015
  end-page: 362
  ident: bib168
  article-title: Thermo-environomic evaluation of the ammonia production
  publication-title: Can. J. Chem. Eng.
– volume: 33
  start-page: 1290
  year: 2014
  end-page: 1297
  ident: bib170
  article-title: Techno-economic assessment of nonfossil ammonia production
  publication-title: AIChE Environmental Progress & Sustainable Energy
– volume: 130
  start-page: 484
  year: 2014
  end-page: 490
  ident: bib5
  article-title: Techno-economic analysis of ammonia production via integrated biomass gasification
  publication-title: Appl. Energy
– start-page: 61
  year: 2012
  end-page: 70
  ident: bib83
  article-title: Ammonia as a hydrogen energy carrier and its application to internal combustion engines, Sustainable Vehicle Technologies, Driving the Green Agenda
  publication-title: Woodhead Publishing Limited, Gaydon, Warwichshire, UK
– volume: 137
  start-page: 854
  year: 2017
  end-page: 864
  ident: bib126
  article-title: Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis
  publication-title: Energy
– volume: 40
  start-page: 10673
  year: 2015
  end-page: 10686
  ident: bib27
  article-title: Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines
  publication-title: Int. J. Hydrogen Energy
– volume: 67
  start-page: 31
  year: 2018
  end-page: 68
  ident: bib57
  article-title: Modeling nitrogen chemistry in combustion
  publication-title: Prog. Energy Combust. Sci.
– volume: 187
  start-page: 185
  year: 2018
  end-page: 198
  ident: bib123
  article-title: Experimental and numerical study of the laminar burning velocity of CH
  publication-title: Combust. Flame
– volume: 156
  start-page: 1413
  year: 2009
  end-page: 1426
  ident: bib167
  article-title: An experimental and kinetic modeling study of premixed NH
  publication-title: Combust. Flame
– volume: 42
  start-page: 7071
  year: 2017
  end-page: 7076
  ident: bib18
  article-title: Novel dual fuel diesel-ammonia combustion system in advanced TDI engines
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2017
  end-page: 13
  ident: bib36
  article-title: China’s stage 6 emission standard for new light-duty vehicles (final rule)
  publication-title: ICCT, Int. Council Clean Transport.
– volume: 2
  start-page: 1055
  year: 2018
  end-page: 1074
  ident: bib173
  article-title: Greening ammonia toward the solar ammonia refinery
  publication-title: Joule
– volume: 99
  start-page: 253
  year: 1993
  end-page: 276
  ident: bib99
  article-title: Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation
  publication-title: Combust. Sci. Technol.
– volume: 277
  start-page: 115580
  year: 2020
  ident: bib162
  article-title: Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace
  publication-title: Appl. Energy
– volume: 137
  year: 2015
  ident: bib67
  article-title: Ammonia and gasoline fuel blends for spark ignited internal combustion engines
  publication-title: ASME journal of energy resources technology
– volume: 37
  start-page: 109
  year: 2019
  end-page: 133
  ident: bib81
  article-title: Science and technology of ammonia combustion
  publication-title: Proc. Combust. Inst.
– start-page: 685
  year: 2014
  end-page: 735
  ident: bib129
  article-title: Fuel-cell (Hydrogen) Electric Hybrid Vehicles, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance
– start-page: 15
  year: 2006
  end-page: 27
  ident: bib60
  article-title: The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. Energy conversion and resources, ASME 2006 international mechanical engineering congress and exposition
  publication-title: American society of mechanical engineers
– year: 2019
  ident: bib77
  article-title: Thermochemical and Sensible Energy Recuperation Using Thermally-Integrated Reactor and Diesel-Ammonia Dual Fueling Strategy, ASME 2019 Internal Combustion Engine Division Fall Technical Conference
– volume: 34
  start-page: 149
  year: 1983
  end-page: 176
  ident: bib108
  article-title: Kinetic modeling of the oxidation of ammonia in flames
  publication-title: Combust. Sci. Technol.
– start-page: 259
  year: 2019
  end-page: 294
  ident: bib63
  article-title: Automatic generation of reaction mechanisms, computer aided chemical engineering
– volume: 69
  start-page: 63
  year: 2018
  end-page: 102
  ident: bib171
  article-title: Ammonia for power
  publication-title: Prog. Energy Combust. Sci.
– volume: 32
  start-page: 1277
  year: 2009
  end-page: 1284
  ident: bib38
  article-title: Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation
  publication-title: Proc. Combust. Inst.
– volume: 46
  start-page: 2667
  year: 2021
  end-page: 2683
  ident: bib174
  article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions
  publication-title: Int. J. Hydrogen Energy
– volume: 99
  start-page: 8034
  year: 2008
  end-page: 8041
  ident: bib4
  article-title: Ammonium nitrate fertiliser production based on biomass - environmental effects from a life cycle perspective
  publication-title: Bioresour. Technol.
– start-page: 1
  year: 2009
  end-page: 10
  ident: bib85
  article-title: Ammonia burning internal combustion engine
  publication-title: International Patent No WO 2010/079846 A1
– volume: 65
  start-page: 298
  year: 1961
  end-page: 303
  ident: bib47
  article-title: Oxidation of ammonia in flames
  publication-title: J. Phys. Chem.
– volume: 181
  start-page: 358
  year: 2016
  end-page: 365
  ident: bib157
  article-title: Ammonia oxidation at high pressure and intermediate temperatures
  publication-title: Fuel
– volume: 47
  start-page: 743
  year: 1951
  ident: bib113
  article-title: Flame speeds in hydrazine vapour and in mixtures of hydrazine and ammonia with oxygen
  publication-title: Trans. Faraday Soc.
– volume: 57
  start-page: 14607
  year: 2018
  end-page: 14616
  ident: bib117
  article-title: “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia
  publication-title: Ind. Eng. Chem. Res.
– volume: 109
  start-page: 111
  year: 2013
  end-page: 117
  ident: bib149
  article-title: Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues
  publication-title: Fuel Process. Technol.
– year: 2011
  ident: bib37
  article-title: Experimental and numerical study of ammonia combustion
  publication-title: Université Catholique de Louvain
– volume: 204
  start-page: 162
  year: 2019
  end-page: 175
  ident: bib124
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust. Flame
– volume: 72
  start-page: 51
  year: 2014
  end-page: 61
  ident: bib111
  article-title: Wind-powered ammonia fuel production for remote islands: a case study
  publication-title: Renew. Energy
– volume: 75
  start-page: 785
  year: 1967
  end-page: 807
  ident: bib11
  article-title: Ammonia fuel - engine compatibility and combustion
  publication-title: SAE Trans.
– year: 2019
  ident: bib102
  article-title: Engineering the future two-stroke green-ammonia engine. Denmark
– volume: 196
  start-page: 344
  year: 2017
  end-page: 351
  ident: bib181
  article-title: Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions
  publication-title: Fuel
– year: 2020
  ident: bib76
  article-title: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell
  publication-title: Sustainable Ammonia Production
– volume: 194
  start-page: 278
  year: 2018
  end-page: 284
  ident: bib20
  article-title: Formation of NO and NH in NH
  publication-title: Combust. Flame
– volume: 112
  start-page: 11
  year: 2019
  end-page: 26
  ident: bib116
  article-title: A review of techno-economic data for road transportation fuels
  publication-title: Renew. Sustain. Energy Rev.
– volume: 43
  start-page: 4597
  year: 2018
  end-page: 4608
  ident: bib46
  article-title: Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications
  publication-title: Int. J. Hydrogen Energy
– year: 2012
  ident: bib26
  article-title: Combustão
– volume: 13
  start-page: 1541
  year: 2020
  end-page: 1558
  ident: bib9
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina
  publication-title: Int. J. Hydrogen Energy
– year: 2020
  ident: bib48
  article-title: Investigation of ammonia and hydrogen as CO
  publication-title: Int. J. Engine Res.
– volume: 45
  start-page: 7098
  year: 2020
  end-page: 7118
  ident: bib35
  article-title: A review of ammonia as a compression ignition engine fuel
  publication-title: Int. J. Hydrogen Energy
– volume: 206
  start-page: 214
  year: 2019
  end-page: 226
  ident: bib65
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH
  publication-title: Combust. Flame
– reference: Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., William C. Gardiner, J., Lissianski, V.V., Qin, Z., 2000. GRI-mech 3.0.
– reference: .
– volume: 154
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib182
  article-title: Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators
  publication-title: Appl. Therm. Eng.
– volume: 8
  start-page: 109
  year: 2020
  ident: bib52
  article-title: Numerical analysis of NO
  publication-title: J. Mar. Sci. Eng.
– year: 2019
  ident: bib177
  article-title: Innovation Insights Brief 2019-Energy Infrastructure Affordability Enabler or Decarbonisation Constraint?
– volume: 1
  start-page: 164
  year: 2015
  end-page: 168
  ident: bib79
  article-title: Use of NH
  publication-title: Energy Rep.
– volume: 113
  start-page: 109292
  year: 2019
  ident: bib6
  article-title: A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects
  publication-title: Renew. Sustain. Energy Rev.
– volume: 37
  start-page: 7869
  year: 2012
  end-page: 7876
  ident: bib17
  article-title: Novel heavy duty engine concept for operation dual fuel H
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2020
  end-page: 20
  ident: bib135
  article-title: Combustion and emission characteristics of ammonia under conditions relevant to modern gas turbines
  publication-title: Combust. Sci. Technol.
– year: 2019
  ident: bib33
  article-title: Reaction mechanism generator/ARC: ARC 1.1.0
– volume: 141
  start-page: 61020
  year: 2019
  ident: bib121
  article-title: Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air
  publication-title: J. Eng. Gas Turbines Power
– year: 2013
  ident: bib187
  article-title: Ammonia - chemical compound
– volume: 187
  start-page: 185
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib123
  article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.09.002
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib177
– volume: 2
  start-page: 1055
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib24
  article-title: Electrifying the haber–bosch
  publication-title: Nature Catalysis
  doi: 10.1038/s41929-019-0414-4
– ident: 10.1016/j.jclepro.2021.126562_bib44
– volume: 32
  start-page: 1277
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib38
  article-title: Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.036
– volume: 210
  start-page: 112709
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib142
  article-title: Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112709
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib45
– volume: 43
  start-page: 4597
  issue: 9
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib46
  article-title: Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.203
– start-page: 1
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib85
  article-title: Ammonia burning internal combustion engine
  publication-title: International Patent No WO 2010/079846 A1
– volume: 55
  start-page: 6422
  issue: 22
  year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib10
  article-title: Small-scale Ammonia production from biomass: a techno-enviro-economic perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04937
– volume: 1
  start-page: 164
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib79
  article-title: Use of NH3 fuel to achieve deep greenhouse gas reductions from US transportation
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2015.08.001
– volume: 13
  start-page: 331
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib154
  article-title: Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02873K
– volume: 113
  start-page: 488
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib140
  article-title: Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.065
– volume: 7
  start-page: 9995
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib145
  article-title: Biomass based sustainable ammonia production: digestion vs gasification
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01158
– ident: 10.1016/j.jclepro.2021.126562_bib30
– start-page: 131
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib115
  article-title: Hydrogen storage: compressed gas
– year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib119
  article-title: Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine, ASME 2016 internal combustion engine fall technical conference
  publication-title: Am. Soc. Mech. Eng.
– volume: 37
  start-page: 6074
  issue: 7
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib56
  article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.12.137
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib112
– volume: 156
  start-page: 2093
  issue: 11
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib86
  article-title: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.03.016
– volume: 257
  start-page: 116059
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib98
  article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116059
– volume: 105
  start-page: 4621
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib163
  article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1002
– volume: 130
  start-page: 484
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib5
  article-title: Techno-economic analysis of ammonia production via integrated biomass gasification
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.029
– volume: 274
  start-page: 117742
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib74
  article-title: Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117742
– volume: 141
  start-page: 61020
  issue: 6
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib121
  article-title: Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4042507
– volume: 30
  start-page: 1311
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib70
  article-title: Waste-to-Fuel technology in Albania—how to implement a renewable energy system in europe’s largest onshore oilfield
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-017-0782-0
– volume: 46
  start-page: 2667
  issue: 2
  year: 2021
  ident: 10.1016/j.jclepro.2021.126562_bib174
  article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.045
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib34
– start-page: 459813
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib89
  article-title: Measurement and simulation of pollutant emissions from marine diesel combustion engine and their reduction by ammonia injection
  publication-title: Adv. Mech. Eng.
  doi: 10.1155/2009/459813
– volume: 90
  start-page: 87
  year: 2011
  ident: 10.1016/j.jclepro.2021.126562_bib132
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.07.055
– volume: 45
  start-page: 7098
  issue: 11
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib35
  article-title: A review of ammonia as a compression ignition engine fuel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.209
– volume: 103
  start-page: 96
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib183
  article-title: A review on clean ammonia as a potential fuel for power generators
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.12.023
– volume: 34
  start-page: 1
  year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib31
  article-title: The oxidation of hydrogen cyanide and related chemistry
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2007.02.004
– volume: 67
  start-page: 31
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib57
  article-title: Modeling nitrogen chemistry in combustion
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.01.002
– year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib26
– volume: 196
  start-page: 344
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib181
  article-title: Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.01.095
– volume: 64
  start-page: 581
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib55
  article-title: Assessing economically viable carbon reductions for the production of ammonia from biomass gasification
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.09.011
– volume: 42
  start-page: 26132
  issue: 41
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib88
  article-title: Numerical model to analyze NOx reduction by ammonia injection in diesel-hydrogen engines
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.08.090
– ident: 10.1016/j.jclepro.2021.126562_bib187
– ident: 10.1016/j.jclepro.2021.126562_bib7
– volume: 43
  start-page: 3004
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib125
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.066
– volume: 162
  start-page: 554
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib104
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.08.022
– ident: 10.1016/j.jclepro.2021.126562_bib29
– volume: 158
  start-page: 774
  year: 2011
  ident: 10.1016/j.jclepro.2021.126562_bib80
  article-title: The role of NNH in NO formation and control
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.12.013
– volume: 142
  start-page: 1294
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib179
  article-title: 3D simulation of ammonia combustion in a lean premixed swirl burner
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.504
– start-page: 639
  year: 2000
  ident: 10.1016/j.jclepro.2021.126562_bib15
  article-title: Advanced internal combustion engine research, 2000 U.S DOE hydrogen program review. San ramon
  publication-title: California
– start-page: 1
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib135
  article-title: Combustion and emission characteristics of ammonia under conditions relevant to modern gas turbines
  publication-title: Combust. Sci. Technol.
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib48
  article-title: Investigation of ammonia and hydrogen as CO2-free fuels for heavy duty engines using a high pressure dual fuel combustion process
  publication-title: Int. J. Engine Res.
– volume: 112
  start-page: 11
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib116
  article-title: A review of techno-economic data for road transportation fuels
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.05.041
– volume: 136
  start-page: 501
  issue: 4
  year: 2004
  ident: 10.1016/j.jclepro.2021.126562_bib152
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2003.12.008
– volume: 45
  start-page: 721
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib58
  article-title: Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.174
– volume: 42
  start-page: 7071
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib18
  article-title: Novel dual fuel diesel-ammonia combustion system in advanced TDI engines
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.208
– start-page: 680401
  year: 1968
  ident: 10.1016/j.jclepro.2021.126562_bib144
  article-title: Oxides of nitrogen in the combustion products of an ammonia fueled reciprocating engine
  publication-title: Soc. Automotive Eng.
  doi: 10.4271/680401
– year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib92
– volume: 185
  start-page: 16
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib114
  article-title: Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.06.021
– volume: 31
  start-page: 8631
  issue: 8
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib180
  article-title: Modelling combustion of ammonia/hydrogen fuel blends under gas turbine conditions
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00709
– volume: 5
  start-page: 10231
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib54
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02219
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib73
– year: 2013
  ident: 10.1016/j.jclepro.2021.126562_bib84
  article-title: A green ammonia economy
– volume: 203
  start-page: 212
  year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib53
  article-title: Reaction Mechanism Generator: automatic construction of chemical kinetic mechanisms
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.02.013
– volume: 44
  start-page: 32271
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib82
  article-title: In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.105
– volume: 15
  start-page: 287
  issue: 4
  year: 1989
  ident: 10.1016/j.jclepro.2021.126562_bib107
  article-title: Mechanism and modeling of nitrogen chemistry in combustion
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(89)90017-8
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib41
– volume: 42
  start-page: 23878
  issue: 37
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib150
  article-title: Multi-stage optimization in a pilot scale gasification plant
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.261
– volume: 7
  issue: 1
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib158
  article-title: Intermediate alcohol-gasoline blends, fuels for enabling increased engine efficiency and powertrain possibilities
  publication-title: SAE international journal of fuels and lubricants
  doi: 10.4271/2014-01-1231
– year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib13
  article-title: A feasibility study of implementing an Ammonia Economy
– volume: 37
  start-page: 109
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib81
  article-title: Science and technology of ammonia combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.09.029
– volume: 155
  start-page: 144
  year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib161
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.11.089
– volume: 108
  start-page: 231
  year: 1995
  ident: 10.1016/j.jclepro.2021.126562_bib100
  article-title: A detailed kinetic study of ammonia oxidation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209508960400
– volume: 254
  start-page: 115693
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib130
  article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115693
– volume: 264
  start-page: 116768
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib103
  article-title: Oxidation and pyrolysis of ammonia mixtures in model reactors
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116768
– volume: 269
  start-page: 117448
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib95
  article-title: Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117448
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib146
  article-title: Ammonia - a renewable fuel made from sun, air, and water - could power the globe without carbon
  publication-title: Science. AAAS
– volume: 159
  start-page: 98
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib68
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 12
  start-page: 463
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib159
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01157E
– volume: 13
  start-page: 761
  issue: 12
  year: 1988
  ident: 10.1016/j.jclepro.2021.126562_bib12
  article-title: A role for ammonia in the hydrogen economy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(88)90037-7
– volume: 11
  start-page: 871
  year: 1967
  ident: 10.1016/j.jclepro.2021.126562_bib101
  article-title: The structure of the reaction zones of ammonia-oxygen and hydrazine-decomposition flames
  publication-title: Symp Combust
  doi: 10.1016/S0082-0784(67)80213-3
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib75
  article-title: Combustion behavior of ammonia blended with diethyl ether
  publication-title: Proc. Combust. Inst.
– volume: 109
  start-page: 111
  year: 2013
  ident: 10.1016/j.jclepro.2021.126562_bib149
  article-title: Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2012.09.045
– volume: 159
  start-page: 223
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib122
  article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.075
– volume: 206
  start-page: 214
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib65
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.05.003
– volume: 90
  start-page: 854
  year: 2011
  ident: 10.1016/j.jclepro.2021.126562_bib110
  article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.09.042
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib138
– volume: 32
  start-page: 1905
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib93
  article-title: Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0347-x
– volume: 39
  start-page: 2390
  issue: 5
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib141
  article-title: Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.11.098
– volume: 103
  start-page: 1069
  year: 2013
  ident: 10.1016/j.jclepro.2021.126562_bib64
  article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.08.026
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib90
– ident: 10.1016/j.jclepro.2021.126562_bib118
– year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib66
  article-title: Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance
  publication-title: SAE Technical Paper Series
  doi: 10.4271/2014-01-2759
– ident: 10.1016/j.jclepro.2021.126562_bib153
– volume: 99
  start-page: 253
  year: 1993
  ident: 10.1016/j.jclepro.2021.126562_bib99
  article-title: Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209408935436
– volume: 2
  start-page: 377
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib155
  article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process
  publication-title: Nature Catalysis
  doi: 10.1038/s41929-019-0280-0
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib165
– volume: 259
  start-page: 114135
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib184
  article-title: Techno-economic comparison of green ammonia production processes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114135
– volume: 13
  start-page: 1541
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib9
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.028
– volume: 8
  start-page: 109
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib52
  article-title: Numerical analysis of NOx reduction using ammonia injection and comparison with water injection
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8020109
– volume: 75
  start-page: 785
  year: 1967
  ident: 10.1016/j.jclepro.2021.126562_bib11
  article-title: Ammonia fuel - engine compatibility and combustion
  publication-title: SAE Trans.
– year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib71
– volume: 38
  start-page: 1607
  year: 2013
  ident: 10.1016/j.jclepro.2021.126562_bib49
  article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.114
– year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib128
  article-title: Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine
  publication-title: SAE technical paper series
  doi: 10.4271/2017-24-0087
– year: 2011
  ident: 10.1016/j.jclepro.2021.126562_bib37
  article-title: Experimental and numerical study of ammonia combustion
  publication-title: Université Catholique de Louvain
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib176
– volume: 3
  start-page: 2472
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib186
  article-title: An efficient direct ammonia fuel cell for affordable carbon-neutral transportation
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.005
– volume: 45
  start-page: 1541
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib8
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.028
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib72
– start-page: 15
  year: 2006
  ident: 10.1016/j.jclepro.2021.126562_bib60
  article-title: The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. Energy conversion and resources, ASME 2006 international mechanical engineering congress and exposition
  publication-title: American society of mechanical engineers
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib25
– volume: 68
  start-page: 428
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib109
  article-title: A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.108
– start-page: 685
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib129
– volume: 277
  start-page: 115580
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib162
  article-title: Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115580
– volume: 120
  start-page: 5352
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib43
  article-title: Progress and prospective of nitrogen-based alternative fuels
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00538
– volume: 137
  issue: 6
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib67
  article-title: Ammonia and gasoline fuel blends for spark ignited internal combustion engines
  publication-title: ASME journal of energy resources technology
  doi: 10.1115/1.4030443
– volume: 34
  start-page: 149
  year: 1983
  ident: 10.1016/j.jclepro.2021.126562_bib108
  article-title: Kinetic modeling of the oxidation of ammonia in flames
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208308923691
– volume: 154
  start-page: 1
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib182
  article-title: Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.072
– year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib59
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib166
– volume: 69
  start-page: 63
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib171
  article-title: Ammonia for power
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.07.001
– volume: 126
  start-page: 796
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib97
  article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.085
– volume: 42
  start-page: 27388
  issue: 44
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib156
  article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.089
– volume: 233–234
  start-page: 1078
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib139
  article-title: Economic comparison of different electric fuels for energy scenarios in 2035
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.023
– volume: 50
  start-page: 243
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib32
  article-title: Automated reaction mechanism generation including nitrogen as a heteroatom
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.21154
– volume: 38
  start-page: 1214
  issue: 9
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib96
  article-title: Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3141
– volume: 137
  start-page: 854
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib126
  article-title: Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.175
– volume: 246
  start-page: 24
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib133
  article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.102
– volume: 3
  start-page: 1025
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib172
  article-title: Ammonia synthesis, taking the pressure off
  publication-title: Nature Energy
  doi: 10.1038/s41560-018-0293-y
– volume: 113
  start-page: 109292
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib6
  article-title: A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109292
– volume: 181
  start-page: 358
  year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib157
  article-title: Ammonia oxidation at high pressure and intermediate temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.04.100
– volume: 204
  start-page: 162
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib124
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.03.008
– volume: 139
  start-page: 81504
  issue: 8
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib178
  article-title: Chemical kinetic mechanism study on premixed combustion of ammonia/hydrogen fuels for gas turbine use
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4035911
– volume: 159
  start-page: 2799
  issue: 9
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib40
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.06.003
– volume: 231
  start-page: 757
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib16
  article-title: Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.106
– ident: 10.1016/j.jclepro.2021.126562_bib21
– volume: 159
  start-page: 1186
  issue: 2
  year: 2006
  ident: 10.1016/j.jclepro.2021.126562_bib62
  article-title: Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.086
– volume: 130
  start-page: 42802
  year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib61
  article-title: The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.2898837
– start-page: 259
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib63
  doi: 10.1016/B978-0-444-64087-1.00005-X
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib76
  article-title: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell
– year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib151
  article-title: Cross-ministerial strategic innovation promotion program (SIP) energy carriers
  publication-title: Japan Sci. Technol. Agency
– year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib78
– volume: 89
  start-page: 3540
  issue: 11
  year: 2010
  ident: 10.1016/j.jclepro.2021.126562_bib39
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.008
– year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib50
  article-title: Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen
  doi: 10.4271/2014-32-0082
– year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib147
– volume: 37
  start-page: 7869
  issue: 9
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib17
  article-title: Novel heavy duty engine concept for operation dual fuel H2–NH3
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.01.091
– volume: 47
  start-page: 743
  year: 1951
  ident: 10.1016/j.jclepro.2021.126562_bib113
  article-title: Flame speeds in hydrazine vapour and in mixtures of hydrazine and ammonia with oxygen
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9514700743
– volume: 14
  start-page: 116
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib87
  article-title: Experimental and CFD analysis of selective catalytic reduction system on DeNOx efficiency of single cylinder diesel engine using NH3 as a reducing agent
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2014.08.016
– volume: 267
  start-page: 117166
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib185
  article-title: Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117166
– volume: 93
  start-page: 356
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib168
  article-title: Thermo-environomic evaluation of the ammonia production
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22126
– volume: 100
  start-page: 3001
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib3
  article-title: The dual-fuel strategy: an energy transition plan
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2192469
– year: 2010
  ident: 10.1016/j.jclepro.2021.126562_bib131
– volume: 163
  start-page: 370
  year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib19
  article-title: Structure of premixed ammonia + air flames at atmospheric pressure: laser diagnostics and kinetic modeling
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2015.10.012
– volume: 2
  start-page: 1055
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib173
  article-title: Greening ammonia toward the solar ammonia refinery
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib106
– volume: 60
  start-page: 822
  year: 2016
  ident: 10.1016/j.jclepro.2021.126562_bib2
  article-title: Ammonia-fed fuel cells: a comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.120
– volume: 156
  start-page: 1413
  issue: 7
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib167
  article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.03.005
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib102
– volume: 36
  start-page: 6251
  year: 2011
  ident: 10.1016/j.jclepro.2021.126562_bib143
  article-title: Biofuels and biochemicals production from forest biomass in Western Canada
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.024
– year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib148
– volume: 123
  start-page: 140
  year: 2000
  ident: 10.1016/j.jclepro.2021.126562_bib127
  article-title: Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3- N2O-O2-N2 mixtures
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(00)00152-8
– year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib51
– start-page: 61
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib83
  article-title: Ammonia as a hydrogen energy carrier and its application to internal combustion engines, Sustainable Vehicle Technologies, Driving the Green Agenda
  publication-title: Woodhead Publishing Limited, Gaydon, Warwichshire, UK
– volume: 113
  start-page: 109262
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib94
  article-title: Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109262
– volume: 33
  start-page: 1290
  issue: 4
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib170
  article-title: Techno-economic assessment of nonfossil ammonia production
  publication-title: AIChE Environmental Progress & Sustainable Energy
  doi: 10.1002/ep.11886
– volume: 40
  start-page: 10673
  issue: 33
  year: 2015
  ident: 10.1016/j.jclepro.2021.126562_bib27
  article-title: Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.080
– volume: 65
  start-page: 298
  year: 1961
  ident: 10.1016/j.jclepro.2021.126562_bib47
  article-title: Oxidation of ammonia in flames
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100820a027
– volume: 74
  start-page: 300
  year: 1965
  ident: 10.1016/j.jclepro.2021.126562_bib28
  article-title: Ammonia as an engine fuel
  publication-title: SAE Trans.
– volume: 57
  start-page: 14607
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib117
  article-title: “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b02447
– start-page: 1
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib36
  article-title: China’s stage 6 emission standard for new light-duty vehicles (final rule)
  publication-title: ICCT, Int. Council Clean Transport.
– volume: 72
  start-page: 51
  year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib111
  article-title: Wind-powered ammonia fuel production for remote islands: a case study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.06.034
– volume: 204
  start-page: 1476
  year: 2017
  ident: 10.1016/j.jclepro.2021.126562_bib164
  article-title: Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.100
– volume: 120
  start-page: 109620
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib1
  article-title: Hydrogen as an energy vector
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109620
– volume: 156
  start-page: 1937
  year: 2009
  ident: 10.1016/j.jclepro.2021.126562_bib105
  article-title: Ammonia chemistry in oxy-fuel combustion of methane
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.07.006
– volume: 111
  start-page: 239
  year: 2013
  ident: 10.1016/j.jclepro.2021.126562_bib175
  article-title: Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.03.055
– ident: 10.1016/j.jclepro.2021.126562_bib23
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib120
– volume: 33
  start-page: 12767
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib134
  article-title: Combustion of NH3/CH4/air and NH3/H2/air mixtures in a porous burner: experiments and kinetic modeling
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b02948
– ident: 10.1016/j.jclepro.2021.126562_bib91
– year: 2014
  ident: 10.1016/j.jclepro.2021.126562_bib22
  article-title: Ammonia as fuel for internal combustion engines? An evaluation of the feasibility of using nitrogen-based fuels in ICE
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib77
– volume: 99
  start-page: 8034
  year: 2008
  ident: 10.1016/j.jclepro.2021.126562_bib4
  article-title: Ammonium nitrate fertiliser production based on biomass - environmental effects from a life cycle perspective
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.03.041
– ident: 10.1016/j.jclepro.2021.126562_bib33
– volume: 114
  start-page: 109339
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib137
  article-title: Islanded ammonia power systems: technology review & conceptual process design
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109339
– volume: 206
  start-page: 189
  year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib69
  article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.04.050
– volume: 194
  start-page: 278
  year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib20
  article-title: Formation of NO and NH in NH3-doped CH4 + N2 + O2 flame: experiments and modelling
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.05.008
– year: 2019
  ident: 10.1016/j.jclepro.2021.126562_bib42
  article-title: Air quality in Europe — 2019 report
– volume: 120
  start-page: 109616
  year: 2020
  ident: 10.1016/j.jclepro.2021.126562_bib136
  article-title: Improved urea-water solution spray model for simulations of selective catalytic reduction systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109616
– volume: 75
  start-page: 765
  year: 1967
  ident: 10.1016/j.jclepro.2021.126562_bib160
  article-title: Ammonia as a spark ignition engine fuel: theory and application
  publication-title: SAE Trans.
– year: 2018
  ident: 10.1016/j.jclepro.2021.126562_bib169
– start-page: 219
  year: 2012
  ident: 10.1016/j.jclepro.2021.126562_bib14
  article-title: Experiments on a light duty SCR test exhaust system using ammonia gas to provide data for validation of a CFD model
SSID ssj0017074
Score 2.7027586
SecondaryResourceType review_article
Snippet Ammonia and hydrogen carry great potential as carbon-free fuels with promising applications in energy systems. Hydrogen, in particular, has been generating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126562
SubjectTerms Ammonia
carbon
Carbon-free fuel
combustion
Dual-fuel concept
energy
energy density
Green ammonia transition
hydrogen
infrastructure
Internal combustion engines
power generation
Pure ammonia-fuelled vehicles
transportation industry
Title Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines
URI https://dx.doi.org/10.1016/j.jclepro.2021.126562
https://www.proquest.com/docview/2524320790
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuEbxmN02TPrwti7IqelHBW0jSBLos7bIPxYu_3Ukf6wNE8NjHJCUznfkyyXxB6DwEkO9SYYjLjCMcYhBJHcuISeNQJdaa0PlC4bv7aPjEb57F8woatLUwfltl4_trn1556-ZOrxnN3iTPew8-gxUJFrGginOeE5Tz2Ft59325zSOIac3E7NNd_u3PKp7eqDuCxsBRwTSRBd2AAbZhv8WnH566Cj9XW2izwY24X3_aNlqxxQ7a-MImuIve-t6mcoXVDKsC26qqD79UafkL3BAxwZMM10QiGPqqCi1nGJArHpevxKipLgt4bsf469I2zguc17nDMYah0v4MsNL34fuf7aGnq8vHwZA0JysQE3I2J9w6DTMVlaUZIA5qU0qti7UQFgAdAIAMFKU51zpSASAG0EUoNKORUS7gjvNwH60WZWEPEDYQ3-OAZUyEMDPhInHcUkNBPjI8CdQh4u14StPQjvvTL8ay3V82ko0apFeDrNVwiLpLsUnNu_GXQNIqS34zIAmx4S_Rs1a5En4uv2KiClsuZpIJxkNG45Qe_b_5Y7Tur0hF-XqCVufThT0FJDPXncpUO2itf307vP8AKuD1qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcqra0AvpyJTh613HsZFOpB9QWLeVxKUjcXNuxpaxWCSJLEZf-qf7BjhOHQqUKCYlrrLFHM858Y3seAFspOvm-kJb60noqEINo4XlJbZGneuKcTX1IFD48yqYn4tupPF2C30MuTAirjLa_t-mdtY5fxlGa47OqGn8PN1iZ5BlPOpwTMbJy311d4rmt_bT3BZW8zfnu1-PPUxpbC1CbCr6gwnmDrrouixIhl7mCMedzI6VDjwYRsEROjRDGZDpByERmUmk4y6z2ifBCpDjvI1gRaC5C24TRr-u4kiRnfenncL8W2PubNjSejWbIPVpGPJfyZJRwdKb4_wDxH2jo8G73GTyNjirZ6WXxHJZc_QJWb5QvXIOrnbCJK010S3RNXJdGSH527wAfSaz8hCMl6SuXEFyry-xsCbrKZN5cUqvPTVPjuJuTm2_ppKpJ1V9WzgnqxoSmY01YI6zfvoSTB5H3K1ium9qtA7HoUOQJL7lM8Sgk5MQLxyxD-syKSaI3QAzyVDbWOQ_tNuZqCGibqagGFdSgejVswOia7Kwv9HEXwWRQlrq1YxWC0V2kHwblKvybwxONrl1z0SouuUg5ywu2ef_p38Pj6fHhgTrYO9p_DU_CCO3qzb6B5cX5hXuLbtTCvOu2LYEfD_2f_AFSozFq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia+as+an+energy+vector%3A+Current+and+future+prospects+for+low-carbon+fuel+applications+in+internal+combustion+engines&rft.jtitle=Journal+of+cleaner+production&rft.au=Cardoso%2C+Jo%C3%A3o+Sousa&rft.au=Silva%2C+Valter&rft.au=Rocha%2C+Rodolfo+C.&rft.au=Hall%2C+Matthew+J.&rft.date=2021-05-10&rft.issn=0959-6526&rft.volume=296+p.126562-&rft_id=info:doi/10.1016%2Fj.jclepro.2021.126562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon