The development of natural and designed protein nanocages for encapsulation and delivery of active compounds
Protein nanocages, usually assembled from multiple subunits in a high symmetry, are three-dimensional shell-like containers, which possess an intrinsic homogeneous chamber that is segregated from the bulk environment by protein walls. Recently, due to the superiority of protein nanocage in physicoch...
Saved in:
Published in | Food hydrocolloids Vol. 121; p. 107004 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein nanocages, usually assembled from multiple subunits in a high symmetry, are three-dimensional shell-like containers, which possess an intrinsic homogeneous chamber that is segregated from the bulk environment by protein walls. Recently, due to the superiority of protein nanocage in physicochemical property and unique structure features, the exploitation of protein cage-like nanoparticles as nano-vehicles for active compounds or drug encapsulation to improve their physicochemical properties, thermal- and photo-stability, and bioavailability have become a subject of increasing interest in multiple fields. Herein, this review presents several types of natural protein nanocages from source, structure, function to their physicochemical properties, and gives a brief introduction to the novel protein nanocage design. Then, the main strategies and techniques for molecular encapsulation within protein interior cavity have been summarized, including co-assembly strategy, reversible disassembly/reassembly method, flexible pore mediated encapsulation, diffusion/binding encapsulation, and molecule-induced assembly strategy. Last, we reviewed the practical application of natural and designed protein nanocages, especially ferritin, for small molecular compound loading, and mainly focused on the encapsulation and delivery of food bioactive compounds. Notably, novel encapsulation strategies (such as Urea-, temperature-mediated approaches) and novel designed protein nanocages are proved to be more advantageous in bioactive compounds encapsulation. Despite the progress in molecule encapsulation and delivery has been achieved, practical applications of protein nanocages still remain challenges such as low yields and high costs. Thus, further research is necessary for the exploitation and development of protein nanocages as novel nano-vehicles for food active compounds.
[Display omitted]
•Protein nanocages possess intrinsic inner cavity for cargo encapsulation.•Redesign and bottom-up assembly are two basic strategies toward novel nanocage.•Five approaches can be applied for cargo encapsulation within protein inner cavity.•Applications of natural and designed nanocages in food science were summarized.•Future development and challenges of protein nanocages are put forward. |
---|---|
AbstractList | Protein nanocages, usually assembled from multiple subunits in a high symmetry, are three-dimensional shell-like containers, which possess an intrinsic homogeneous chamber that is segregated from the bulk environment by protein walls. Recently, due to the superiority of protein nanocage in physicochemical property and unique structure features, the exploitation of protein cage-like nanoparticles as nano-vehicles for active compounds or drug encapsulation to improve their physicochemical properties, thermal- and photo-stability, and bioavailability have become a subject of increasing interest in multiple fields. Herein, this review presents several types of natural protein nanocages from source, structure, function to their physicochemical properties, and gives a brief introduction to the novel protein nanocage design. Then, the main strategies and techniques for molecular encapsulation within protein interior cavity have been summarized, including co-assembly strategy, reversible disassembly/reassembly method, flexible pore mediated encapsulation, diffusion/binding encapsulation, and molecule-induced assembly strategy. Last, we reviewed the practical application of natural and designed protein nanocages, especially ferritin, for small molecular compound loading, and mainly focused on the encapsulation and delivery of food bioactive compounds. Notably, novel encapsulation strategies (such as Urea-, temperature-mediated approaches) and novel designed protein nanocages are proved to be more advantageous in bioactive compounds encapsulation. Despite the progress in molecule encapsulation and delivery has been achieved, practical applications of protein nanocages still remain challenges such as low yields and high costs. Thus, further research is necessary for the exploitation and development of protein nanocages as novel nano-vehicles for food active compounds. Protein nanocages, usually assembled from multiple subunits in a high symmetry, are three-dimensional shell-like containers, which possess an intrinsic homogeneous chamber that is segregated from the bulk environment by protein walls. Recently, due to the superiority of protein nanocage in physicochemical property and unique structure features, the exploitation of protein cage-like nanoparticles as nano-vehicles for active compounds or drug encapsulation to improve their physicochemical properties, thermal- and photo-stability, and bioavailability have become a subject of increasing interest in multiple fields. Herein, this review presents several types of natural protein nanocages from source, structure, function to their physicochemical properties, and gives a brief introduction to the novel protein nanocage design. Then, the main strategies and techniques for molecular encapsulation within protein interior cavity have been summarized, including co-assembly strategy, reversible disassembly/reassembly method, flexible pore mediated encapsulation, diffusion/binding encapsulation, and molecule-induced assembly strategy. Last, we reviewed the practical application of natural and designed protein nanocages, especially ferritin, for small molecular compound loading, and mainly focused on the encapsulation and delivery of food bioactive compounds. Notably, novel encapsulation strategies (such as Urea-, temperature-mediated approaches) and novel designed protein nanocages are proved to be more advantageous in bioactive compounds encapsulation. Despite the progress in molecule encapsulation and delivery has been achieved, practical applications of protein nanocages still remain challenges such as low yields and high costs. Thus, further research is necessary for the exploitation and development of protein nanocages as novel nano-vehicles for food active compounds. [Display omitted] •Protein nanocages possess intrinsic inner cavity for cargo encapsulation.•Redesign and bottom-up assembly are two basic strategies toward novel nanocage.•Five approaches can be applied for cargo encapsulation within protein inner cavity.•Applications of natural and designed nanocages in food science were summarized.•Future development and challenges of protein nanocages are put forward. |
ArticleNumber | 107004 |
Author | Zhang, Yuhao Wang, Hongxia Zhao, Guanghua Tan, Xiaoyi Chen, Hai Fu, Yu Dai, Hongjie |
Author_xml | – sequence: 1 givenname: Hai orcidid: 0000-0002-5944-8411 surname: Chen fullname: Chen, Hai organization: College of Food Science, Southwest University, Chongqing, 400715, China – sequence: 2 givenname: Xiaoyi surname: Tan fullname: Tan, Xiaoyi organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China – sequence: 3 givenname: Yu surname: Fu fullname: Fu, Yu organization: College of Food Science, Southwest University, Chongqing, 400715, China – sequence: 4 givenname: Hongjie surname: Dai fullname: Dai, Hongjie organization: College of Food Science, Southwest University, Chongqing, 400715, China – sequence: 5 givenname: Hongxia surname: Wang fullname: Wang, Hongxia organization: College of Food Science, Southwest University, Chongqing, 400715, China – sequence: 6 givenname: Guanghua surname: Zhao fullname: Zhao, Guanghua organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China – sequence: 7 givenname: Yuhao surname: Zhang fullname: Zhang, Yuhao email: zyh1203@163.com organization: College of Food Science, Southwest University, Chongqing, 400715, China |
BookMark | eNqFkE1LAzEQhoNUsFZ_grBHL1uT7GZ3iweR4hcUvFTwFrLJbJuSJmuSLfTfm9qevPQ0w8w8L8NzjUbWWUDojuApwaR62Ew759R6r6YUU5JmNcblBRqTpi7ymhT1CI0xrZocY_Z9ha5D2GBMakzIGJnlGjIFOzCu34KNmesyK-LghcmEVWkV9MqCynrvImibltZJsYKQdc5nYKXow2BE1M6eAKN34PeHICFj6jPptr0brAo36LITJsDtqU7Q1-vLcv6eLz7fPubPi1wWJY15KWlFST2T5QxojUXXNhWTjArSEGBAOtoUCrdQl0VLVdswWchq1gJhrRTtrCwm6P6Ym57-GSBEvtVBgjHCghsCp1VFcNEwVqVTdjyV3oXgoeO911vh95xgfrDLN_xklx_s8qPdxD3-46SOfxaiF9qcpZ-ONCQLOw2eB6mTS1Dag4xcOX0m4Rerb52i |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2023_135437 crossref_primary_10_1080_10408398_2022_2047881 crossref_primary_10_1016_j_foodhyd_2021_107443 crossref_primary_10_1039_D4FO02119C crossref_primary_10_1016_j_tifs_2021_12_025 crossref_primary_10_1016_j_fbio_2022_101794 crossref_primary_10_1002_aocs_12869 crossref_primary_10_1016_j_biotechadv_2021_107835 crossref_primary_10_1016_j_cocis_2023_101761 crossref_primary_10_1016_j_ijbiomac_2024_133579 crossref_primary_10_3389_fbioe_2023_1200729 crossref_primary_10_1016_j_compositesb_2023_111018 crossref_primary_10_1016_j_pep_2023_106232 crossref_primary_10_1021_acs_jafc_3c05510 crossref_primary_10_1016_j_nantod_2025_102648 crossref_primary_10_1016_j_tifs_2025_104927 crossref_primary_10_1016_j_ijpx_2024_100238 crossref_primary_10_1016_j_ijbiomac_2024_136886 crossref_primary_10_1016_j_foodchem_2022_132827 crossref_primary_10_1016_j_foodhyd_2024_109895 crossref_primary_10_1021_acsomega_4c05037 crossref_primary_10_3389_fonc_2023_1150492 crossref_primary_10_1016_j_lwt_2022_114352 crossref_primary_10_3389_fnut_2021_783831 crossref_primary_10_1016_j_ijbiomac_2025_141375 crossref_primary_10_1016_j_fbio_2024_104018 crossref_primary_10_1016_j_foodchem_2022_133680 crossref_primary_10_1080_00268976_2022_2129759 crossref_primary_10_3390_pharmaceutics14122609 crossref_primary_10_1016_j_jff_2021_104681 crossref_primary_10_1016_j_carbpol_2022_119484 crossref_primary_10_1007_s10068_025_01826_x crossref_primary_10_1080_10408398_2023_2257798 crossref_primary_10_1016_j_foodhyd_2024_110489 crossref_primary_10_1016_j_foodhyd_2022_108396 crossref_primary_10_1016_j_biotechadv_2022_108037 crossref_primary_10_1016_j_ijbiomac_2025_141845 crossref_primary_10_3390_foods11111542 crossref_primary_10_1016_j_foodhyd_2025_111080 crossref_primary_10_1021_acs_jafc_1c03016 |
Cites_doi | 10.1016/j.tifs.2015.04.005 10.1038/am.2016.128 10.1039/D0CS01349H 10.1371/journal.ppat.1008665 10.1002/adtp.201900183 10.1073/pnas.041614998 10.1016/j.jbiosc.2020.10.005 10.1002/anie.201609517 10.1111/1541-4337.12725 10.1016/j.foodres.2014.02.041 10.1021/acsnano.0c07167 10.1007/s11130-016-0557-2 10.1021/acsnano.0c06670 10.1038/s41598-020-68205-w 10.1038/nmicrobiol.2017.29 10.1038/s41467-019-09098-w 10.1021/jacs.8b13604 10.1021/acs.biomac.7b00974 10.1039/C9RA04785A 10.1016/j.ijbiomac.2017.07.040 10.1021/acs.jafc.6b04671 10.1039/C5RA03542B 10.1002/2211-5463.12837 10.1038/nature13404 10.1021/acs.jafc.7b03949 10.1016/j.bbagen.2020.129700 10.1126/science.1219364 10.1016/j.sbi.2020.05.014 10.1021/bm501066m 10.1002/wnan.1616 10.1016/j.foodres.2014.05.054 10.1021/cr400011b 10.1039/D0CP02069A 10.1038/nsmb.1473 10.1021/acs.jafc.7b05656 10.1073/pnas.1606013113 10.1111/jfbc.12498 10.1016/j.lwt.2020.109416 10.1038/349541a0 10.1039/C9CC05247J 10.1016/j.sbi.2020.10.015 10.1021/acsnano.6b06235 10.1016/j.colsurfb.2020.110982 10.1016/j.foodchem.2013.10.115 10.1021/acs.jafc.9b01739 10.1016/j.jmb.2007.02.075 10.1002/smll.201002242 10.1021/acs.jafc.8b06737 10.1002/bit.27564 10.1039/C9FO01634A 10.1021/acs.jafc.8b03021 10.3390/biom11030392 10.3390/cells10020328 10.1021/ja058363s 10.1016/j.nantod.2020.100948 10.1016/j.foodhyd.2018.09.008 10.1039/C6CC03108K 10.1021/acsomega.1c00527 10.1038/29106 10.15252/embj.201488566 10.2174/0929867322666150812145435 10.1074/jbc.M504363200 10.1126/science.1549782 10.1038/s41467-019-08788-9 10.1002/cbic.201700406 10.1016/j.foodchem.2017.07.088 10.1021/acssynbio.9b00392 10.1016/j.tifs.2018.05.018 10.1038/nchembio.1163 10.1080/87559129.2020.1858313 10.1021/acsanm.0c02972 10.1016/j.foodhyd.2019.03.049 10.1016/j.foodchem.2018.04.049 10.1038/nsmb993 10.1016/j.jff.2020.103861 10.1021/acs.jafc.0c01191 10.1021/acs.jafc.9b03903 10.1039/D0NR00547A 10.1021/acs.jafc.9b06904 10.1021/acs.analchem.0c01238 10.1038/nchem.2107 10.1016/j.cmet.2018.02.017 10.1002/adfm.201200052 10.1039/C6RA04058F 10.1039/b413435d 10.3136/fstr.23.329 10.1016/S0891-5849(02)00842-0 10.1038/nature18010 10.1016/j.foodhyd.2021.106710 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.foodhyd.2021.107004 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7137 |
ExternalDocumentID | 10_1016_j_foodhyd_2021_107004 S0268005X21004203 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-4c262179c49e270afb865c52a181e5e1f283d0be743b2db85c3c69be15bcab943 |
IEDL.DBID | .~1 |
ISSN | 0268-005X |
IngestDate | Fri Jul 11 16:33:23 EDT 2025 Tue Jul 01 00:41:51 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:41:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Design Encapsulation Protein nanocages Bioactive compounds Interior cavity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-4c262179c49e270afb865c52a181e5e1f283d0be743b2db85c3c69be15bcab943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5944-8411 |
PQID | 2661038556 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2661038556 crossref_primary_10_1016_j_foodhyd_2021_107004 crossref_citationtrail_10_1016_j_foodhyd_2021_107004 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2021_107004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Food hydrocolloids |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lai, Reading, Hura, Tsai, Laganowsky, Asturias (bib36) 2014; 6 Yang, Sun, Zhang, Zhou, Li, Strappe (bib84) 2016; 71 Mojica, Mateos-Díaz, Castillo (bib55) 2020; 66 Giessen, Silver (bib20) 2017; 2 Lv, Zhang, Liu, Zhang, Chen, Zang (bib43) 2021; 50 Pan, Lin, Hemler, Hu (bib62) 2018; 27 Badieyan, Sciore, Eschweiler, Koldewey, Cristie-David, Ruotolo (bib8) 2017; 18 Yang, Liu, Meng, Blanchard, Zhou (bib81) 2018; 66 Botelho, Tralhao, Teixo, Pires, Abrantes, Ribeiro (bib10) 2015; 22 Suzuki, Kobayashi, Miyahira, Sugiyama, Ishikawa (bib73) 2020; 131 Cannon, Nguyen, Morgan, Yeates (bib11) 2020; 9 Dubrez, Sébastien, Bonan, Baptiste, Garrido (bib16) 2019; 39 Chen, Zhang, Xu, Zhao (bib14) 2016; 52 Zhou, Sun, Liu, Gao, Xu, Meng (bib95) 2017; 23 Zhang, Zang, Chen, Zhou, Zhang, Lv (bib92) 2019; 9 Yang, Zhou, Sun, Gao, Xu (bib86) 2015; 44 Lavefve, Howard, Carbonero (bib38) 2020; 11 Kabir, Rahman, Akter, Behl, Kaushik, Mittal (bib30) 2021; 11 Lawson, Artymiuk, Yewdall, Smith, Livingstone, Treffry (bib39) 1991; 349 Meng, Zuo, Song, Yang (bib52) 2019; 67 Zhang, Dong, Li, Wang (bib90) 2019; 7 Shamsi, Shahwan, Khan, Husain, Alhumaydhi, Aljohani (bib68) 2021; 6 Chen, Bai, Yang, Zang, Zhou, Zhao (bib13) 2014; 149 Yang, Liu, Blanchard, Zhou (bib79) 2018; 240 Bhaskar, Lim (bib9) 2017; 9 Gu, Zhang, Lv, Liu, Zhao (bib22) 2020; 14 Yang, Liu, Meng, Chen, Blanchard, Zhou (bib82) 2017; 65 Huard, Kane, Tezcan (bib26) 2013; 9 Li, Jia, Yin (bib41) 2021; 37 Flenniken, Liepold, Crowley, Willits, Young, Douglas (bib18) 2005; 28 Meng, Wang, Zhen, Zhang, Yang (bib51) 2018; 66 Hsia, Bale, Gonen, Shi, Sheffler, Fong (bib24) 2016; 535 Mattevi, Obmolova, Schulze, Kalk, Westphal, de Kok (bib46) 1992; 255 Cristie-David, Chen, Nowak, Bondy, Sun, Park (bib15) 2019; 141 Minato, Teramoto, Kakuta, Ogo, Yoon (bib54) 2020; 10 Haslbeck, Franzmann, Weinfurtner, Buchner (bib23) 2005; 12 Zhang, Zang, Wang, Chen, Zhang, Wang (bib93) 2016; 55 Ren, Kratz, Wang (bib64) 2011; 7 King, Sheffler, Sawaya, Vollmar, Sumida, Andre (bib34) 2012; 336 Shishir, Xie, Sun, Zheng, Chen (bib69) 2018; 78 Zhang, Lv, Chen, Bai, Zhao, Xu (bib91) 2014; 62 Adolf-Bryfogle, Teets, Bahl (bib1) 2021; 66 Jones, Giessen (bib29) 2020; 118 Yang, Gao, Zhou, Strappe, Blanchard (bib78) 2016; 6 Moon, Lee, Min, Kang (bib57) 2014; 15 Yang, Liu, Gao, Wang, Blanchard, Zhou (bib80) 2017; 105 Meng, Chen, Liu, Wang, Wang, Liu (bib49) 2020; 68 Akita, Chong, Tanaka, Yamashita, Miyazaki, Nakaishi (bib3) 2007; 368 Chen, Bai, Yang, Yang, Zhao, Xu (bib12) 2014; 62 Melman, Bou-Abdallah (bib48) 2020; 1864 Pandolfi, Bellini, Vanna, Morasso, Zago, Carcano (bib61) 2019; 18 Stupka, Heddle (bib71) 2020; 64 Zhang, Zang, Zhang, Chen, Mikami, Zhao (bib94) 2016; 10 Sitia, Bonizzi, Mazzucchelli, Negri, Corsi (bib70) 2021; 10 Ilari, Savino, Stefanini, Chiancone, Tsernoglou (bib27) 1999; 55 Nasrollahi, Sana, Paramelle, Ahadian, Lim (bib58) 2020; 3 Zang, Chen, Zhang, Zhang, Guo, Du (bib89) 2019; 10 King, Bale, Sheffler, McNamara, Gonen, Gonen (bib33) 2014; 510 Ren, Mercè, Randall, Shindel, Baldi, Wang (bib65) 2012; 22 Nasu, Kawakami, Miyamoto (bib59) 2021; 4 Ruotolo, Bardwell, Skiniotis, Marsh (bib66) 2016; 113 Liang, Chen (bib40) 2020; 12 Sutter, Boehringer, Gutmann, Günther, Prangishvili, Loessner (bib72) 2008; 15 Huang, Sha, Veroniaina, Wu, Wu, Qi (bib25) 2020; 12 Krga, Milenkovic (bib35) 2019; 67 McHugh, Fontana, Nemecek, Cheng, Aksyuk, Heymann (bib47) 2014; 33 Yang, Zuo, Zhang, Meng, Wang, Zhen (bib88) 2019; 94 Antanasijevic, Ueda, Brouwer, Copps, Ward (bib6) 2020; 16 Du, Xue, Sun, Wu, Wei (bib17) 2020; 92 Unusan (bib75) 2020; 67 Montemiglio, Ceci, Falvo, Pitea, Savino, Arcovito (bib56) 2019; 10 Seebeck, Woycechowsky, Zhuang, Rabe, Hilvert (bib67) 2006; 128 Tang (bib74) 2021; 117 Ajeeshkumar, Aneesh, Raju, Suseela, Benjakul (bib2) 2021; 20 Laniado, Cannon, Miller, Sawaya, McNamara, Yeates (bib37) 2021; 15 Mansourizadeh, Alberti, Bitonto, Tripepi, Crich (bib45) 2020; 191 Jiang, Chen, Sun, Chen, Fan (bib28) 2020; 35 Maity, Li, Niwase, Ganser, Furuta, Uchihashi (bib44) 2020; 22 Padilla, Colovos, Yeates (bib60) 2001; 98 Wang, Wang, Li, Zhao, Zhao, Wang (bib77) 2019; 55 Arosio, Levi (bib7) 2002; 33 Kim, Kim, Kim (bib31) 1998; 394 Milne, Wu, Borgnia, Lengyel, Brooks, Shi (bib53) 2006; 281 Yang, Tian, Liu, Yang, Wu, Zhou (bib85) 2017; 65 Wang, Douglas (bib76) 2020; 51 Günther, Rijn, Miranda, BöKer (bib21) 2015; 115 Li, Zang, Tan, Xia, Du (bib42) 2020; 127 Andreata, Bonizzi, Sevieri, Truffi, Mazzucchelli (bib5) 2020; 10 Yang, Liu, Meng, Wang, Blanchard, Zhou (bib83) 2018; 264 Anal, Shrestha, Sadiq (bib4) 2019; 87 Meng, Shi, Zhu, Wang, Liu, Kong (bib50) 2020; 68 Gesinde, Udechukwu, Aluko (bib19) 2018; 42 Yang, Zhou, Sun, Gao, Xu, Strappe (bib87) 2015; 5 Seebeck (10.1016/j.foodhyd.2021.107004_bib67) 2006; 128 Liang (10.1016/j.foodhyd.2021.107004_bib40) 2020; 12 Andreata (10.1016/j.foodhyd.2021.107004_bib5) 2020; 10 Cristie-David (10.1016/j.foodhyd.2021.107004_bib15) 2019; 141 Du (10.1016/j.foodhyd.2021.107004_bib17) 2020; 92 Günther (10.1016/j.foodhyd.2021.107004_bib21) 2015; 115 Wang (10.1016/j.foodhyd.2021.107004_bib76) 2020; 51 Yang (10.1016/j.foodhyd.2021.107004_bib80) 2017; 105 Minato (10.1016/j.foodhyd.2021.107004_bib54) 2020; 10 Lai (10.1016/j.foodhyd.2021.107004_bib36) 2014; 6 Ajeeshkumar (10.1016/j.foodhyd.2021.107004_bib2) 2021; 20 Wang (10.1016/j.foodhyd.2021.107004_bib77) 2019; 55 Zang (10.1016/j.foodhyd.2021.107004_bib89) 2019; 10 Yang (10.1016/j.foodhyd.2021.107004_bib83) 2018; 264 Yang (10.1016/j.foodhyd.2021.107004_bib87) 2015; 5 Sutter (10.1016/j.foodhyd.2021.107004_bib72) 2008; 15 Gesinde (10.1016/j.foodhyd.2021.107004_bib19) 2018; 42 Milne (10.1016/j.foodhyd.2021.107004_bib53) 2006; 281 McHugh (10.1016/j.foodhyd.2021.107004_bib47) 2014; 33 Haslbeck (10.1016/j.foodhyd.2021.107004_bib23) 2005; 12 Li (10.1016/j.foodhyd.2021.107004_bib41) 2021; 37 Tang (10.1016/j.foodhyd.2021.107004_bib74) 2021; 117 Adolf-Bryfogle (10.1016/j.foodhyd.2021.107004_bib1) 2021; 66 Mansourizadeh (10.1016/j.foodhyd.2021.107004_bib45) 2020; 191 Yang (10.1016/j.foodhyd.2021.107004_bib88) 2019; 94 Hsia (10.1016/j.foodhyd.2021.107004_bib24) 2016; 535 Mojica (10.1016/j.foodhyd.2021.107004_bib55) 2020; 66 Lv (10.1016/j.foodhyd.2021.107004_bib43) 2021; 50 Meng (10.1016/j.foodhyd.2021.107004_bib51) 2018; 66 Zhang (10.1016/j.foodhyd.2021.107004_bib91) 2014; 62 Lawson (10.1016/j.foodhyd.2021.107004_bib39) 1991; 349 Anal (10.1016/j.foodhyd.2021.107004_bib4) 2019; 87 Montemiglio (10.1016/j.foodhyd.2021.107004_bib56) 2019; 10 Yang (10.1016/j.foodhyd.2021.107004_bib84) 2016; 71 Nasu (10.1016/j.foodhyd.2021.107004_bib59) 2021; 4 Chen (10.1016/j.foodhyd.2021.107004_bib13) 2014; 149 Huang (10.1016/j.foodhyd.2021.107004_bib25) 2020; 12 Cannon (10.1016/j.foodhyd.2021.107004_bib11) 2020; 9 Kabir (10.1016/j.foodhyd.2021.107004_bib30) 2021; 11 Laniado (10.1016/j.foodhyd.2021.107004_bib37) 2021; 15 Padilla (10.1016/j.foodhyd.2021.107004_bib60) 2001; 98 Stupka (10.1016/j.foodhyd.2021.107004_bib71) 2020; 64 Yang (10.1016/j.foodhyd.2021.107004_bib86) 2015; 44 Meng (10.1016/j.foodhyd.2021.107004_bib49) 2020; 68 Pan (10.1016/j.foodhyd.2021.107004_bib62) 2018; 27 King (10.1016/j.foodhyd.2021.107004_bib33) 2014; 510 Kim (10.1016/j.foodhyd.2021.107004_bib31) 1998; 394 Moon (10.1016/j.foodhyd.2021.107004_bib57) 2014; 15 Yang (10.1016/j.foodhyd.2021.107004_bib79) 2018; 240 Zhang (10.1016/j.foodhyd.2021.107004_bib90) 2019; 67 Zhang (10.1016/j.foodhyd.2021.107004_bib94) 2016; 10 Flenniken (10.1016/j.foodhyd.2021.107004_bib18) 2005; 28 Ren (10.1016/j.foodhyd.2021.107004_bib65) 2012; 22 Li (10.1016/j.foodhyd.2021.107004_bib42) 2020; 127 Pandolfi (10.1016/j.foodhyd.2021.107004_bib61) 2019; 18 Bhaskar (10.1016/j.foodhyd.2021.107004_bib9) 2017; 9 Gu (10.1016/j.foodhyd.2021.107004_bib22) 2020; 14 Shishir (10.1016/j.foodhyd.2021.107004_bib69) 2018; 78 Suzuki (10.1016/j.foodhyd.2021.107004_bib73) 2020; 131 Chen (10.1016/j.foodhyd.2021.107004_bib14) 2016; 52 Dubrez (10.1016/j.foodhyd.2021.107004_bib16) 2019; 39 Krga (10.1016/j.foodhyd.2021.107004_bib35) 2019; 67 Ren (10.1016/j.foodhyd.2021.107004_bib64) 2011; 7 Zhou (10.1016/j.foodhyd.2021.107004_bib95) 2017; 23 Huard (10.1016/j.foodhyd.2021.107004_bib26) 2013; 9 Jiang (10.1016/j.foodhyd.2021.107004_bib28) 2020; 35 Ruotolo (10.1016/j.foodhyd.2021.107004_bib66) 2016; 113 Zhang (10.1016/j.foodhyd.2021.107004_bib93) 2016; 55 Antanasijevic (10.1016/j.foodhyd.2021.107004_bib6) 2020; 16 Nasrollahi (10.1016/j.foodhyd.2021.107004_bib58) 2020; 3 Ilari (10.1016/j.foodhyd.2021.107004_bib27) 1999; 55 Yang (10.1016/j.foodhyd.2021.107004_bib78) 2016; 6 Chen (10.1016/j.foodhyd.2021.107004_bib12) 2014; 62 Yang (10.1016/j.foodhyd.2021.107004_bib81) 2018; 66 Botelho (10.1016/j.foodhyd.2021.107004_bib10) 2015; 22 Mattevi (10.1016/j.foodhyd.2021.107004_bib46) 1992; 255 King (10.1016/j.foodhyd.2021.107004_bib34) 2012; 336 Unusan (10.1016/j.foodhyd.2021.107004_bib75) 2020; 67 Melman (10.1016/j.foodhyd.2021.107004_bib48) 2020; 1864 Badieyan (10.1016/j.foodhyd.2021.107004_bib8) 2017; 18 Yang (10.1016/j.foodhyd.2021.107004_bib85) 2017; 65 Akita (10.1016/j.foodhyd.2021.107004_bib3) 2007; 368 Shamsi (10.1016/j.foodhyd.2021.107004_bib68) 2021; 6 Lavefve (10.1016/j.foodhyd.2021.107004_bib38) 2020; 11 Zhang (10.1016/j.foodhyd.2021.107004_bib92) 2019; 9 Meng (10.1016/j.foodhyd.2021.107004_bib50) 2020; 68 Sitia (10.1016/j.foodhyd.2021.107004_bib70) 2021; 10 Maity (10.1016/j.foodhyd.2021.107004_bib44) 2020; 22 Arosio (10.1016/j.foodhyd.2021.107004_bib7) 2002; 33 Jones (10.1016/j.foodhyd.2021.107004_bib29) 2020; 118 Giessen (10.1016/j.foodhyd.2021.107004_bib20) 2017; 2 Meng (10.1016/j.foodhyd.2021.107004_bib52) 2019; 67 Yang (10.1016/j.foodhyd.2021.107004_bib82) 2017; 65 |
References_xml | – volume: 52 start-page: 7402 year: 2016 end-page: 7405 ident: bib14 article-title: Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions publication-title: Chemical Communications – volume: 141 start-page: 9207 year: 2019 end-page: 9216 ident: bib15 article-title: Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability publication-title: Journal of the American Chemical Society – volume: 62 start-page: 183 year: 2014 end-page: 192 ident: bib91 article-title: Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency publication-title: Food Research International – volume: 67 start-page: 1771 year: 2019 end-page: 1783 ident: bib35 article-title: Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action publication-title: Journal of Agricultural and Food Chemistry – volume: 9 start-page: 517 year: 2020 end-page: 524 ident: bib11 article-title: Design and characterization of an icosahedral protein cage formed by a double-fusion protein containing three distinct symmetry elements publication-title: ACS Synthetic Biology – volume: 149 start-page: 307 year: 2014 end-page: 312 ident: bib13 article-title: Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability publication-title: Food Chemistry – volume: 128 start-page: 4516 year: 2006 end-page: 4517 ident: bib67 article-title: A simple tagging system for protein encapsulation publication-title: Journal of the American Chemical Society – volume: 55 start-page: 16064 year: 2016 end-page: 16070 ident: bib93 article-title: Conversion of the native 24-mer ferritin nanocage into its non-native 16-mer analogue by insertion of extra amino acid residues publication-title: Angewandte Chemie International Edition – volume: 44 start-page: 189 year: 2015 end-page: 200 ident: bib86 article-title: Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation publication-title: Trends in Food Science & Technology – volume: 87 start-page: 697 year: 2019 end-page: 702 ident: bib4 article-title: Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems publication-title: Food Hydrocolloids – volume: 105 start-page: 252 year: 2017 end-page: 261 ident: bib80 article-title: Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis publication-title: International Journal of Biological Macromolecules – volume: 39 start-page: 1 year: 2019 end-page: 14 ident: bib16 article-title: Heat-shock proteins: Chaperoning DNA repair publication-title: Oncogene – volume: 127 year: 2020 ident: bib42 article-title: Purification and characterizations of a nanocage ferritin GF1 from oyster (crassostrea gigas) publication-title: LWT- Food Science and Technology – volume: 15 start-page: 3794 year: 2014 end-page: 3801 ident: bib57 article-title: Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform publication-title: Biomacromolecules – volume: 12 start-page: 7347 year: 2020 end-page: 7357 ident: bib25 article-title: Ca publication-title: Nanoscale – volume: 15 start-page: 4277 year: 2021 end-page: 4286 ident: bib37 article-title: Geometric lessons and design strategies for nanoscale protein cages publication-title: ACS Nano – volume: 66 start-page: 12404 year: 2018 end-page: 12411 ident: bib51 article-title: Pulsed electric fields-modified ferritin realizes loading of rutin by a moderate pH transition publication-title: Journal of Agricultural and Food Chemistry – volume: 51 year: 2020 ident: bib76 article-title: Protein nanocage architectures for the delivery of therapeutic proteins publication-title: Current Opinion in Colloid & Interface Science – volume: 9 year: 2017 ident: bib9 article-title: Engineering protein nanocages as carriers for biomedical applications publication-title: NPG Asia Materials – volume: 255 start-page: 1544 year: 1992 end-page: 1550 ident: bib46 article-title: Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex publication-title: Science – volume: 10 year: 2019 ident: bib89 article-title: Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages publication-title: Nature Communications – volume: 18 start-page: 3318 year: 2019 end-page: 3330 ident: bib61 article-title: H-Ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells publication-title: Biomacromolecules – volume: 6 start-page: 7922 year: 2021 end-page: 7930 ident: bib68 article-title: Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight publication-title: ACS Omega – volume: 68 start-page: 3238 year: 2020 end-page: 3249 ident: bib50 article-title: Coencapsulation and stability evaluation of hydrophilic and hydrophobic bioactive compounds in a cagelike phytoferritin publication-title: Journal of Agricultural and Food Chemistry – volume: 55 start-page: 552 year: 1999 end-page: 553 ident: bib27 article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from publication-title: Acta Crystallographica – volume: 1864 year: 2020 ident: bib48 article-title: Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives publication-title: Biochimica et Biophysica Acta (BBA) - General Subjects – volume: 10 start-page: 1219 year: 2020 end-page: 1229 ident: bib54 article-title: Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites publication-title: FEBS Open Bio – volume: 66 start-page: 1999 year: 2018 end-page: 2007 ident: bib81 article-title: Alcalase enzymolysis of red bean (adzuki) ferritin achieves nanoencapsulation of food nutrients in a mild condition publication-title: Journal of Agricultural and Food Chemistry – volume: 68 start-page: 7779 year: 2020 end-page: 7788 ident: bib49 article-title: Double interfaces binding of two bioactive compounds with a cage-like ferritin publication-title: Journal of Agricultural and Food Chemistry – volume: 7 start-page: 1051 year: 2011 end-page: 1060 ident: bib64 article-title: Protein nanocapsules containing doxorubicin as a pH-responsive delivery system publication-title: Small – volume: 118 start-page: 491 year: 2020 end-page: 505 ident: bib29 article-title: Advances in encapsulin nanocompartment biology and engineering publication-title: Biotechnology and Bioengineering – volume: 10 year: 2021 ident: bib70 article-title: Selective targeting of cancer-associated fibroblasts by engineered h-ferritin nanocages loaded with navitoclax publication-title: Cells – volume: 78 start-page: 34 year: 2018 end-page: 60 ident: bib69 article-title: Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters publication-title: Trends in Food Science & Technology – volume: 67 year: 2020 ident: bib75 article-title: Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry publication-title: Journal of Functional Foods – volume: 2 year: 2017 ident: bib20 article-title: Widespread distribution of encapsulin nanocompartments reveals functional diversity publication-title: Nature microbiology – volume: 65 start-page: 9950 year: 2017 end-page: 9955 ident: bib85 article-title: Thermally induced encapsulation of food nutrients into phytoferritin through the flexible channels without additives publication-title: Journal of Agricultural and Food Chemistry – volume: 349 start-page: 541 year: 1991 end-page: 544 ident: bib39 article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts publication-title: Nature – volume: 15 start-page: 939 year: 2008 end-page: 947 ident: bib72 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nature Structural & Molecular Biology – volume: 14 start-page: 17080 year: 2020 end-page: 17090 ident: bib22 article-title: His-mediated reversible self-assembly of ferritin nanocages through two different switches for encapsulation of cargo molecules publication-title: ACS Nano – volume: 535 start-page: 136 year: 2016 end-page: 139 ident: bib24 article-title: Design of a hyperstable 60-subunit protein icosahedron publication-title: Nature – volume: 94 start-page: 500 year: 2019 end-page: 509 ident: bib88 article-title: Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules publication-title: Food Hydrocolloids – volume: 64 start-page: 66 year: 2020 end-page: 73 ident: bib71 article-title: Artificial protein cages – inspiration, construction, and observation publication-title: Current Opinion in Structural Biology – volume: 33 start-page: 457 year: 2002 end-page: 463 ident: bib7 article-title: Ferritin, iron homeostasis, and oxidative damage publication-title: Free Radical Biology and Medicine – volume: 50 start-page: 3957 year: 2021 end-page: 3989 ident: bib43 article-title: Redesign of protein nanocages: The way from 0D, 1D, 2D to 3D assembly publication-title: Chemical Society Reviews – volume: 10 year: 2019 ident: bib56 article-title: Cryo-EM structure of the human ferritin-transferrin receptor 1 complex publication-title: Nature Communications – volume: 113 start-page: 8681 year: 2016 end-page: 8686 ident: bib66 article-title: Flexible, symmetry-directed approach to assembling protein cages publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 42 year: 2018 ident: bib19 article-title: Structural and functional characterization of legume seed ferritin concentrates publication-title: Journal of Food Biochemistry – volume: 281 start-page: 4364 year: 2006 end-page: 4370 ident: bib53 article-title: Molecular structure of a 9-MDa icosahedral pyruvate dehydrogenase subcomplex containing the E2 and E3 enzymes using cryoelectron microscopy publication-title: Journal of Biological Chemistry – volume: 9 start-page: 169 year: 2013 end-page: 176 ident: bib26 article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly publication-title: Nature Chemical Biology – volume: 37 start-page: 313 year: 2021 end-page: 372 ident: bib41 article-title: Hydrogel: Diversity of structures and applications in food science publication-title: Food Reviews International – volume: 10 start-page: 10382 year: 2016 end-page: 10388 ident: bib94 article-title: Silent" amino acid residues at key subunit interfaces regulate the geometry of protein nanocages publication-title: ACS Nano – volume: 10 year: 2020 ident: bib5 article-title: Co-administration of H-ferritin-doxorubicin and trastuzumab in neoadjuvant setting improves efficacy and prevents cardiotoxicity in HER2 + murine breast cancer model publication-title: Scientific Reports – volume: 66 year: 2020 ident: bib55 article-title: Lutein as a functional food ingredient: Stability and bioavailability publication-title: Journal of Functional Foods – volume: 27 start-page: 489 year: 2018 end-page: 496 ident: bib62 article-title: Diet and cardiovascular disease: Advances and challenges in population-based studies publication-title: Cell Metabolism – volume: 22 start-page: 18562 year: 2020 end-page: 18572 ident: bib44 article-title: Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution publication-title: Physical Chemistry Chemical Physics – volume: 33 start-page: 1896 year: 2014 end-page: 1911 ident: bib47 article-title: A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress publication-title: The EMBO Journal – volume: 191 year: 2020 ident: bib45 article-title: Efficient synergistic combination effect of quercetin with curcumin on breast cancer cell apoptosis through their loading into apo ferritin cavity publication-title: Colloids and Surfaces B: Biointerfaces – volume: 23 start-page: 329 year: 2017 end-page: 337 ident: bib95 article-title: A novel approach to prepare protein-proanthocyanidins nano-complexes by the reversible assembly of ferritin cage publication-title: Food Science and Technology Research – volume: 22 start-page: 3170 year: 2012 end-page: 3180 ident: bib65 article-title: Biomimetic design of protein nanomaterials for hydrophobic molecular transport publication-title: Advanced Functional Materials – volume: 98 start-page: 2217 year: 2001 end-page: 2221 ident: bib60 article-title: Nanohedra: Using symmetry to design self assembling protein cages, layers, crystals, and filaments publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 year: 2020 ident: bib58 article-title: Incorporation of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imaging and drug delivery publication-title: Advanced Therapeutics – volume: 22 start-page: 3025 year: 2015 end-page: 3039 ident: bib10 article-title: Quercetin in cancer treatment, alone or in combination with conventional therapeutics? publication-title: Current Medicinal Chemistry – volume: 9 start-page: 24777 year: 2019 end-page: 24782 ident: bib92 article-title: Thermostability of protein nanocages: The effect of natural extra peptide on the exterior surface publication-title: RSC Advances – volume: 12 start-page: e1616 year: 2020 ident: bib40 article-title: Protein-based nanoplatforms for tumor imaging and therapy publication-title: Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology – volume: 18 start-page: 1888 year: 2017 end-page: 1892 ident: bib8 article-title: Symmetry-directed self-assembly of a tetrahedral protein cage mediated by publication-title: ChemBioChem – volume: 5 start-page: 31533 year: 2015 end-page: 31540 ident: bib87 article-title: Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean ( publication-title: RSC Advances – volume: 66 start-page: 170 year: 2021 end-page: 177 ident: bib1 article-title: Toward complete rational control over protein structure and function through computational design publication-title: Current Opinion in Structural Biology – volume: 368 start-page: 1469 year: 2007 end-page: 1483 ident: bib3 article-title: The crystal structure of a virus-like particle from the hyperthermophilic archaeon publication-title: Journal of Molecular Biology – volume: 6 start-page: 1065 year: 2014 end-page: 1071 ident: bib36 article-title: Structure of a designed protein cage that self-assembles into a highly porous cube publication-title: Nature Chemistry – volume: 92 start-page: 8472 year: 2020 end-page: 8479 ident: bib17 article-title: Oxygen vacancy-enhanced electrochemiluminescence sensing strategy using luminol thermally encapsulated in apoferritin as a transducer for biomarker immunoassay publication-title: Analytical Chemistry – volume: 35 year: 2020 ident: bib28 article-title: A natural drug entry channel in the ferritin nanocage publication-title: Nano Today – volume: 117 year: 2021 ident: bib74 article-title: Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review) publication-title: Food Hydrocolloids – volume: 394 year: 1998 ident: bib31 article-title: Crystal structure of a small heat-shock protein publication-title: Nature – volume: 131 start-page: 256 year: 2020 end-page: 263 ident: bib73 article-title: DNA-binding protein from starvation cells traps intracellular free-divalent iron and plays an important role in oxidative stress resistance in acetobacter pasteurianus NBRC 3283 publication-title: Journal of Bioscience and Bioengineering – volume: 7 start-page: 11498 year: 2019 end-page: 11507 ident: bib90 article-title: Proanthocyanidin encapsulated in ferritin enhances its cellular absorption and antioxidant activity publication-title: Journal of Agricultural and Food Chemistry – volume: 20 start-page: 1280 year: 2021 end-page: 1306 ident: bib2 article-title: Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 11 start-page: 45 year: 2020 end-page: 65 ident: bib38 article-title: Berry polyphenols metabolism and impact on human gut microbiota and health publication-title: Food & Function – volume: 55 start-page: 12344 year: 2019 end-page: 12347 ident: bib77 article-title: AB loop engineered ferritin nanocages for drug loading under benign experimental conditions publication-title: Chemical Communications – volume: 264 start-page: 41 year: 2018 end-page: 48 ident: bib83 article-title: Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin publication-title: Food Chemistry – volume: 16 year: 2020 ident: bib6 article-title: Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for hiv env trimer immunogens publication-title: PLoS Pathogens – volume: 6 start-page: 35267 year: 2016 end-page: 35279 ident: bib78 article-title: Fabrication and characterization of ferritin-chitosan-lutein shell-core nanocomposites and lutein stability and release evaluation publication-title: RSC Advances – volume: 65 start-page: 1410 year: 2017 end-page: 1419 ident: bib82 article-title: Urea-Driven epigallocatechin gallate (EGCG) permeation into the ferritin cage, an innovative method for fabrication of protein-polyphenol co-assemblies publication-title: Journal of Agricultural and Food Chemistry – volume: 11 year: 2021 ident: bib30 article-title: Potential role of curcumin and its nanoformulations to treat various types of cancers publication-title: Biomolecules – volume: 67 start-page: 6633 year: 2019 end-page: 6641 ident: bib52 article-title: Influence of manothermosonication on the physicochemical and functional properties of ferritin as a nanocarrier of iron or bioactive compounds publication-title: Journal of Agricultural and Food Chemistry – volume: 71 start-page: 277 year: 2016 end-page: 285 ident: bib84 article-title: Epigallocatechin Gallate (EGCG) decorating soybean seed ferritin as a rutin nanocarrier with prolonged release property in the gastrointestinal tract publication-title: Plant Foods for Human Nutrition – volume: 28 start-page: 447 year: 2005 end-page: 449 ident: bib18 article-title: Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture publication-title: Chemical Communications – volume: 115 start-page: 1653 year: 2015 end-page: 1701 ident: bib21 article-title: Ferritin: A versatile building block for bionanotechnology publication-title: Chemical Reviews – volume: 336 start-page: 1171 year: 2012 end-page: 1174 ident: bib34 article-title: Computational design of self-assembling protein nanomaterials with atomic level accuracy publication-title: Science – volume: 4 start-page: 2434 year: 2021 end-page: 2439 ident: bib59 article-title: Nanopore-controlled dual-surface modifications on artificial protein nanocages as nanocarriers publication-title: ACS Applied Nano Materials – volume: 240 start-page: 935 year: 2018 end-page: 939 ident: bib79 article-title: Channel directed rutin nano-encapsulation in phytoferritin induced by guanidine hydrochloride publication-title: Food Chemistry – volume: 62 start-page: 1147 year: 2014 end-page: 1153 ident: bib12 article-title: Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability publication-title: Food Research International – volume: 12 start-page: 842 year: 2005 end-page: 846 ident: bib23 article-title: Some like it hot: The structure and function of small heat-shock proteins publication-title: Nature Structural & Molecular Biology – volume: 510 start-page: 103 year: 2014 end-page: 107 ident: bib33 article-title: Accurate design of co-assembling multi-component protein nanomaterials publication-title: Nature – volume: 44 start-page: 189 year: 2015 ident: 10.1016/j.foodhyd.2021.107004_bib86 article-title: Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2015.04.005 – volume: 9 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib9 article-title: Engineering protein nanocages as carriers for biomedical applications publication-title: NPG Asia Materials doi: 10.1038/am.2016.128 – volume: 50 start-page: 3957 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib43 article-title: Redesign of protein nanocages: The way from 0D, 1D, 2D to 3D assembly publication-title: Chemical Society Reviews doi: 10.1039/D0CS01349H – volume: 16 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib6 article-title: Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for hiv env trimer immunogens publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1008665 – volume: 39 start-page: 1 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib16 article-title: Heat-shock proteins: Chaperoning DNA repair publication-title: Oncogene – volume: 3 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib58 article-title: Incorporation of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imaging and drug delivery publication-title: Advanced Therapeutics doi: 10.1002/adtp.201900183 – volume: 98 start-page: 2217 year: 2001 ident: 10.1016/j.foodhyd.2021.107004_bib60 article-title: Nanohedra: Using symmetry to design self assembling protein cages, layers, crystals, and filaments publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.041614998 – volume: 131 start-page: 256 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib73 article-title: DNA-binding protein from starvation cells traps intracellular free-divalent iron and plays an important role in oxidative stress resistance in acetobacter pasteurianus NBRC 3283 publication-title: Journal of Bioscience and Bioengineering doi: 10.1016/j.jbiosc.2020.10.005 – volume: 55 start-page: 16064 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib93 article-title: Conversion of the native 24-mer ferritin nanocage into its non-native 16-mer analogue by insertion of extra amino acid residues publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201609517 – volume: 20 start-page: 1280 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib2 article-title: Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12725 – volume: 62 start-page: 183 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib91 article-title: Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency publication-title: Food Research International doi: 10.1016/j.foodres.2014.02.041 – volume: 15 start-page: 4277 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib37 article-title: Geometric lessons and design strategies for nanoscale protein cages publication-title: ACS Nano doi: 10.1021/acsnano.0c07167 – volume: 71 start-page: 277 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib84 article-title: Epigallocatechin Gallate (EGCG) decorating soybean seed ferritin as a rutin nanocarrier with prolonged release property in the gastrointestinal tract publication-title: Plant Foods for Human Nutrition doi: 10.1007/s11130-016-0557-2 – volume: 14 start-page: 17080 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib22 article-title: His-mediated reversible self-assembly of ferritin nanocages through two different switches for encapsulation of cargo molecules publication-title: ACS Nano doi: 10.1021/acsnano.0c06670 – volume: 10 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib5 article-title: Co-administration of H-ferritin-doxorubicin and trastuzumab in neoadjuvant setting improves efficacy and prevents cardiotoxicity in HER2 + murine breast cancer model publication-title: Scientific Reports doi: 10.1038/s41598-020-68205-w – volume: 2 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib20 article-title: Widespread distribution of encapsulin nanocompartments reveals functional diversity publication-title: Nature microbiology doi: 10.1038/nmicrobiol.2017.29 – volume: 10 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib56 article-title: Cryo-EM structure of the human ferritin-transferrin receptor 1 complex publication-title: Nature Communications doi: 10.1038/s41467-019-09098-w – volume: 141 start-page: 9207 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib15 article-title: Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.8b13604 – volume: 18 start-page: 3318 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib61 article-title: H-Ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00974 – volume: 9 start-page: 24777 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib92 article-title: Thermostability of protein nanocages: The effect of natural extra peptide on the exterior surface publication-title: RSC Advances doi: 10.1039/C9RA04785A – volume: 105 start-page: 252 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib80 article-title: Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.07.040 – volume: 65 start-page: 1410 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib82 article-title: Urea-Driven epigallocatechin gallate (EGCG) permeation into the ferritin cage, an innovative method for fabrication of protein-polyphenol co-assemblies publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.6b04671 – volume: 5 start-page: 31533 year: 2015 ident: 10.1016/j.foodhyd.2021.107004_bib87 article-title: Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin publication-title: RSC Advances doi: 10.1039/C5RA03542B – volume: 10 start-page: 1219 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib54 article-title: Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12837 – volume: 510 start-page: 103 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib33 article-title: Accurate design of co-assembling multi-component protein nanomaterials publication-title: Nature doi: 10.1038/nature13404 – volume: 65 start-page: 9950 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib85 article-title: Thermally induced encapsulation of food nutrients into phytoferritin through the flexible channels without additives publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.7b03949 – volume: 1864 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib48 article-title: Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives publication-title: Biochimica et Biophysica Acta (BBA) - General Subjects doi: 10.1016/j.bbagen.2020.129700 – volume: 336 start-page: 1171 year: 2012 ident: 10.1016/j.foodhyd.2021.107004_bib34 article-title: Computational design of self-assembling protein nanomaterials with atomic level accuracy publication-title: Science doi: 10.1126/science.1219364 – volume: 64 start-page: 66 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib71 article-title: Artificial protein cages – inspiration, construction, and observation publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2020.05.014 – volume: 66 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib55 article-title: Lutein as a functional food ingredient: Stability and bioavailability publication-title: Journal of Functional Foods – volume: 15 start-page: 3794 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib57 article-title: Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform publication-title: Biomacromolecules doi: 10.1021/bm501066m – volume: 12 start-page: e1616 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib40 article-title: Protein-based nanoplatforms for tumor imaging and therapy publication-title: Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology doi: 10.1002/wnan.1616 – volume: 62 start-page: 1147 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib12 article-title: Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability publication-title: Food Research International doi: 10.1016/j.foodres.2014.05.054 – volume: 115 start-page: 1653 year: 2015 ident: 10.1016/j.foodhyd.2021.107004_bib21 article-title: Ferritin: A versatile building block for bionanotechnology publication-title: Chemical Reviews doi: 10.1021/cr400011b – volume: 22 start-page: 18562 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib44 article-title: Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution publication-title: Physical Chemistry Chemical Physics doi: 10.1039/D0CP02069A – volume: 15 start-page: 939 year: 2008 ident: 10.1016/j.foodhyd.2021.107004_bib72 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.1473 – volume: 66 start-page: 1999 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib81 article-title: Alcalase enzymolysis of red bean (adzuki) ferritin achieves nanoencapsulation of food nutrients in a mild condition publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.7b05656 – volume: 113 start-page: 8681 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib66 article-title: Flexible, symmetry-directed approach to assembling protein cages publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1606013113 – volume: 42 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib19 article-title: Structural and functional characterization of legume seed ferritin concentrates publication-title: Journal of Food Biochemistry doi: 10.1111/jfbc.12498 – volume: 127 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib42 article-title: Purification and characterizations of a nanocage ferritin GF1 from oyster (crassostrea gigas) publication-title: LWT- Food Science and Technology doi: 10.1016/j.lwt.2020.109416 – volume: 349 start-page: 541 year: 1991 ident: 10.1016/j.foodhyd.2021.107004_bib39 article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts publication-title: Nature doi: 10.1038/349541a0 – volume: 55 start-page: 12344 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib77 article-title: AB loop engineered ferritin nanocages for drug loading under benign experimental conditions publication-title: Chemical Communications doi: 10.1039/C9CC05247J – volume: 66 start-page: 170 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib1 article-title: Toward complete rational control over protein structure and function through computational design publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2020.10.015 – volume: 10 start-page: 10382 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib94 article-title: Silent" amino acid residues at key subunit interfaces regulate the geometry of protein nanocages publication-title: ACS Nano doi: 10.1021/acsnano.6b06235 – volume: 191 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib45 article-title: Efficient synergistic combination effect of quercetin with curcumin on breast cancer cell apoptosis through their loading into apo ferritin cavity publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2020.110982 – volume: 149 start-page: 307 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib13 article-title: Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.10.115 – volume: 67 start-page: 6633 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib52 article-title: Influence of manothermosonication on the physicochemical and functional properties of ferritin as a nanocarrier of iron or bioactive compounds publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.9b01739 – volume: 368 start-page: 1469 year: 2007 ident: 10.1016/j.foodhyd.2021.107004_bib3 article-title: The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2007.02.075 – volume: 7 start-page: 1051 year: 2011 ident: 10.1016/j.foodhyd.2021.107004_bib64 article-title: Protein nanocapsules containing doxorubicin as a pH-responsive delivery system publication-title: Small doi: 10.1002/smll.201002242 – volume: 67 start-page: 1771 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib35 article-title: Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b06737 – volume: 118 start-page: 491 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib29 article-title: Advances in encapsulin nanocompartment biology and engineering publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.27564 – volume: 11 start-page: 45 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib38 article-title: Berry polyphenols metabolism and impact on human gut microbiota and health publication-title: Food & Function doi: 10.1039/C9FO01634A – volume: 66 start-page: 12404 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib51 article-title: Pulsed electric fields-modified ferritin realizes loading of rutin by a moderate pH transition publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b03021 – volume: 11 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib30 article-title: Potential role of curcumin and its nanoformulations to treat various types of cancers publication-title: Biomolecules doi: 10.3390/biom11030392 – volume: 10 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib70 article-title: Selective targeting of cancer-associated fibroblasts by engineered h-ferritin nanocages loaded with navitoclax publication-title: Cells doi: 10.3390/cells10020328 – volume: 128 start-page: 4516 year: 2006 ident: 10.1016/j.foodhyd.2021.107004_bib67 article-title: A simple tagging system for protein encapsulation publication-title: Journal of the American Chemical Society doi: 10.1021/ja058363s – volume: 35 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib28 article-title: A natural drug entry channel in the ferritin nanocage publication-title: Nano Today doi: 10.1016/j.nantod.2020.100948 – volume: 87 start-page: 697 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib4 article-title: Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.09.008 – volume: 52 start-page: 7402 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib14 article-title: Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions publication-title: Chemical Communications doi: 10.1039/C6CC03108K – volume: 6 start-page: 7922 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib68 article-title: Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight publication-title: ACS Omega doi: 10.1021/acsomega.1c00527 – volume: 394 year: 1998 ident: 10.1016/j.foodhyd.2021.107004_bib31 article-title: Crystal structure of a small heat-shock protein publication-title: Nature doi: 10.1038/29106 – volume: 33 start-page: 1896 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib47 article-title: A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress publication-title: The EMBO Journal doi: 10.15252/embj.201488566 – volume: 22 start-page: 3025 year: 2015 ident: 10.1016/j.foodhyd.2021.107004_bib10 article-title: Quercetin in cancer treatment, alone or in combination with conventional therapeutics? publication-title: Current Medicinal Chemistry doi: 10.2174/0929867322666150812145435 – volume: 281 start-page: 4364 year: 2006 ident: 10.1016/j.foodhyd.2021.107004_bib53 article-title: Molecular structure of a 9-MDa icosahedral pyruvate dehydrogenase subcomplex containing the E2 and E3 enzymes using cryoelectron microscopy publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M504363200 – volume: 255 start-page: 1544 year: 1992 ident: 10.1016/j.foodhyd.2021.107004_bib46 article-title: Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex publication-title: Science doi: 10.1126/science.1549782 – volume: 10 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib89 article-title: Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages publication-title: Nature Communications doi: 10.1038/s41467-019-08788-9 – volume: 18 start-page: 1888 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib8 article-title: Symmetry-directed self-assembly of a tetrahedral protein cage mediated by de novo designed coiled coils publication-title: ChemBioChem doi: 10.1002/cbic.201700406 – volume: 240 start-page: 935 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib79 article-title: Channel directed rutin nano-encapsulation in phytoferritin induced by guanidine hydrochloride publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.07.088 – volume: 9 start-page: 517 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib11 article-title: Design and characterization of an icosahedral protein cage formed by a double-fusion protein containing three distinct symmetry elements publication-title: ACS Synthetic Biology doi: 10.1021/acssynbio.9b00392 – volume: 78 start-page: 34 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib69 article-title: Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.05.018 – volume: 9 start-page: 169 year: 2013 ident: 10.1016/j.foodhyd.2021.107004_bib26 article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly publication-title: Nature Chemical Biology doi: 10.1038/nchembio.1163 – volume: 37 start-page: 313 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib41 article-title: Hydrogel: Diversity of structures and applications in food science publication-title: Food Reviews International doi: 10.1080/87559129.2020.1858313 – volume: 4 start-page: 2434 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib59 article-title: Nanopore-controlled dual-surface modifications on artificial protein nanocages as nanocarriers publication-title: ACS Applied Nano Materials doi: 10.1021/acsanm.0c02972 – volume: 51 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib76 article-title: Protein nanocage architectures for the delivery of therapeutic proteins publication-title: Current Opinion in Colloid & Interface Science – volume: 94 start-page: 500 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib88 article-title: Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.03.049 – volume: 55 start-page: 552 year: 1999 ident: 10.1016/j.foodhyd.2021.107004_bib27 article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from listeria innocua publication-title: Acta Crystallographica – volume: 264 start-page: 41 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib83 article-title: Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.04.049 – volume: 12 start-page: 842 year: 2005 ident: 10.1016/j.foodhyd.2021.107004_bib23 article-title: Some like it hot: The structure and function of small heat-shock proteins publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb993 – volume: 67 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib75 article-title: Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2020.103861 – volume: 68 start-page: 7779 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib49 article-title: Double interfaces binding of two bioactive compounds with a cage-like ferritin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.0c01191 – volume: 67 start-page: 11498 year: 2019 ident: 10.1016/j.foodhyd.2021.107004_bib90 article-title: Proanthocyanidin encapsulated in ferritin enhances its cellular absorption and antioxidant activity publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.9b03903 – volume: 12 start-page: 7347 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib25 article-title: Ca2+ participating self-assembly of an apoferritin nanostructure for nucleic acid drug delivery publication-title: Nanoscale doi: 10.1039/D0NR00547A – volume: 68 start-page: 3238 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib50 article-title: Coencapsulation and stability evaluation of hydrophilic and hydrophobic bioactive compounds in a cagelike phytoferritin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.9b06904 – volume: 92 start-page: 8472 year: 2020 ident: 10.1016/j.foodhyd.2021.107004_bib17 article-title: Oxygen vacancy-enhanced electrochemiluminescence sensing strategy using luminol thermally encapsulated in apoferritin as a transducer for biomarker immunoassay publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.0c01238 – volume: 6 start-page: 1065 year: 2014 ident: 10.1016/j.foodhyd.2021.107004_bib36 article-title: Structure of a designed protein cage that self-assembles into a highly porous cube publication-title: Nature Chemistry doi: 10.1038/nchem.2107 – volume: 27 start-page: 489 year: 2018 ident: 10.1016/j.foodhyd.2021.107004_bib62 article-title: Diet and cardiovascular disease: Advances and challenges in population-based studies publication-title: Cell Metabolism doi: 10.1016/j.cmet.2018.02.017 – volume: 22 start-page: 3170 year: 2012 ident: 10.1016/j.foodhyd.2021.107004_bib65 article-title: Biomimetic design of protein nanomaterials for hydrophobic molecular transport publication-title: Advanced Functional Materials doi: 10.1002/adfm.201200052 – volume: 6 start-page: 35267 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib78 article-title: Fabrication and characterization of ferritin-chitosan-lutein shell-core nanocomposites and lutein stability and release evaluation in vitro publication-title: RSC Advances doi: 10.1039/C6RA04058F – volume: 28 start-page: 447 year: 2005 ident: 10.1016/j.foodhyd.2021.107004_bib18 article-title: Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture publication-title: Chemical Communications doi: 10.1039/b413435d – volume: 23 start-page: 329 year: 2017 ident: 10.1016/j.foodhyd.2021.107004_bib95 article-title: A novel approach to prepare protein-proanthocyanidins nano-complexes by the reversible assembly of ferritin cage publication-title: Food Science and Technology Research doi: 10.3136/fstr.23.329 – volume: 33 start-page: 457 year: 2002 ident: 10.1016/j.foodhyd.2021.107004_bib7 article-title: Ferritin, iron homeostasis, and oxidative damage publication-title: Free Radical Biology and Medicine doi: 10.1016/S0891-5849(02)00842-0 – volume: 535 start-page: 136 year: 2016 ident: 10.1016/j.foodhyd.2021.107004_bib24 article-title: Design of a hyperstable 60-subunit protein icosahedron publication-title: Nature doi: 10.1038/nature18010 – volume: 117 year: 2021 ident: 10.1016/j.foodhyd.2021.107004_bib74 article-title: Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review) publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106710 |
SSID | ssj0017011 |
Score | 2.523544 |
SecondaryResourceType | review_article |
Snippet | Protein nanocages, usually assembled from multiple subunits in a high symmetry, are three-dimensional shell-like containers, which possess an intrinsic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107004 |
SubjectTerms | Bioactive compounds bioavailability Design drugs Encapsulation ferritin hydrocolloids Interior cavity photostability Protein nanocages |
Title | The development of natural and designed protein nanocages for encapsulation and delivery of active compounds |
URI | https://dx.doi.org/10.1016/j.foodhyd.2021.107004 https://www.proquest.com/docview/2661038556 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyyUhc09aOnSbHqqIqW4VYJG6W7TjQqkoq2h564duZydICEkLiFGWZKBk7M2_sl2dCLkLnB84y7UHxoz0ho5ZnWtZ4jFkZcmMB4-N4x90g6D-L6xf5ska61b8wSKssY38R0_NoXR5plt5sTobD5iNUD4B2oNhC0TOeK34K0cZe3vhY0jxQbpwV4yyhh1ev_uJpjhpJlsVvCxQM5QyOodT7b_npR6TO009vm2yVuJF2ikfbIWsu3SWbX9QE98gYmpzGKxIQzRKa63aCnU5jOIVkDRfTXJthmMLJFDLZq5tSQK4UXl1DyVxw40qDMbI2FngjncdFigx0XIhpuk-ee5dP3b5XLqbgWV_wmScsD6D8iKyIHG-3dGLCQFrJNaR4Jx1LAGfELeMAURgem1Ba3waRcUwaq00k_ANSS7PUHRKKk3eWhQAsEwY50Nc8YRbqQBYzXB4wrhNRuVDZUmkcF7wYq4pSNlKl5xV6XhWer5PG0mxSSG38ZRBW7aO-9RkF6eAv0_OqPRV8TzhJolOXzacKAQvOlsrg6P-3PyYbuFfQXk5IbfY-d6cAXmbmLO-dZ2S90324vcft1U1_8AnnTPE0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAcEE_xJkhcy5q06drjNIEGG7sAErcoSVPYNLWIjcP-PXabboCEkLg2ddQ6qf25dj4TchnbILKGKQ-CH-WFIvE97RvtMWZEzLUBjI__O-5HUf8pvHsWzw3Sq8_CYFmls_2VTS-ttbvSdtpsv43H7QeIHgDtQLCFpGccGT9byE4lmqTVvR30R8tkQscv2_Di_R4KrA7ytCdXWVGkrwvkDOUMriHb-28u6oexLj3QzRbZdNCRdqun2yYNm--QjS-EgrtkCqtO01UdEC0yWlJ3gpzKUxjCeg2b0pKeYZzDYA7O7MXOKIBXCm-vIGquyuOcwBQLNxY4kSpNI8UidOzFNNsjTzfXj72-5_opeCYI-dwLDY8gAklMmFje8VWm40gYwRV4eSssywBqpL62ACo0T3UsTGCiRFsmtFE6CYN90syL3B4Qivk7w2LAlhkDNxgonjEDoSBLGXYITA9JWKtQGkc2jj0vprKuKptIp3mJmpeV5g_J1VLsrWLb-EsgrtdHfts2EjzCX6IX9XpK-KQwT6JyW3zMJGIWTJiK6Oj_05-Ttf7j_VAOb0eDY7KOI1UVzAlpzt8_7Clgmbk-c3v1E5ot8lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+development+of+natural+and+designed+protein+nanocages+for+encapsulation+and+delivery+of+active+compounds&rft.jtitle=Food+hydrocolloids&rft.au=Chen%2C+Hai&rft.au=Tan%2C+Xiaoyi&rft.au=Fu%2C+Yu&rft.au=Dai%2C+Hongjie&rft.date=2021-12-01&rft.issn=0268-005X&rft.volume=121+p.107004-&rft_id=info:doi/10.1016%2Fj.foodhyd.2021.107004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |