Interaction between root hairs and soil phosphorus on rhizosphere priming of soil organic matter

We hypothesized that the rhizosphere priming effect (RPE) of soil organic matter by mutant barley lacking root hairs is dependant on a large network of symbiotic arbuscular mycorrhizal fungi (AMF). We thus predicted that fertilizing with phosphate-P would reduce AMF abundance and, in turn, reduce RP...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 135; pp. 264 - 266
Main Authors Boilard, Gabriel, Bradley, Robert L., Paterson, Eric, Sim, Allan, Brown, Lawrie K., George, Timothy S., Bainard, Luke, Carubba, Aaron
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We hypothesized that the rhizosphere priming effect (RPE) of soil organic matter by mutant barley lacking root hairs is dependant on a large network of symbiotic arbuscular mycorrhizal fungi (AMF). We thus predicted that fertilizing with phosphate-P would reduce AMF abundance and, in turn, reduce RPE of mutant barley. We packed microcosms with a P-responsive soil in which we grew mutant barley lacking root hairs as well as wild type barley and narrowleaf plantain, each possessing root hairs. One set of microcosms was fertilized with phosphate-P while another set was not fertilized. The plants were grown in a labelling chamber with 13C-depleted CO2. Soil respiration and δ13C of headspace CO2 were measured after 3, 4 and 5 weeks and RPE was calculated using an isotope mass balance approach. Root hair length was measured and soils were analyzed for the 16:1ω5 neutral lipid fatty acid (i.e. AMF biomarker). AMF abundance was greater, whereas RPE was lower, in mutant barley soil under low-P than under high-P conditions. In the other two plant-types, P had no effect on AMF or on RPE. As our results contradict our prediction, we propose an alternative explanation based on plant N demand under high-P. •Mutant plants lacking root hairs may depend on AMF to prime SOM decomposition.•Added P reduced AMF colonization and increased rhizosphere priming by mutant plants.•P had no such effects on wild-type plants with root hairs.•An increase of priming by mutant plants under high-P may be due to higher N demand.
AbstractList We hypothesized that the rhizosphere priming effect (RPE) of soil organic matter by mutant barley lacking root hairs is dependant on a large network of symbiotic arbuscular mycorrhizal fungi (AMF). We thus predicted that fertilizing with phosphate-P would reduce AMF abundance and, in turn, reduce RPE of mutant barley. We packed microcosms with a P-responsive soil in which we grew mutant barley lacking root hairs as well as wild type barley and narrowleaf plantain, each possessing root hairs. One set of microcosms was fertilized with phosphate-P while another set was not fertilized. The plants were grown in a labelling chamber with 13C-depleted CO2. Soil respiration and δ13C of headspace CO2 were measured after 3, 4 and 5 weeks and RPE was calculated using an isotope mass balance approach. Root hair length was measured and soils were analyzed for the 16:1ω5 neutral lipid fatty acid (i.e. AMF biomarker). AMF abundance was greater, whereas RPE was lower, in mutant barley soil under low-P than under high-P conditions. In the other two plant-types, P had no effect on AMF or on RPE. As our results contradict our prediction, we propose an alternative explanation based on plant N demand under high-P.
We hypothesized that the rhizosphere priming effect (RPE) of soil organic matter by mutant barley lacking root hairs is dependant on a large network of symbiotic arbuscular mycorrhizal fungi (AMF). We thus predicted that fertilizing with phosphate-P would reduce AMF abundance and, in turn, reduce RPE of mutant barley. We packed microcosms with a P-responsive soil in which we grew mutant barley lacking root hairs as well as wild type barley and narrowleaf plantain, each possessing root hairs. One set of microcosms was fertilized with phosphate-P while another set was not fertilized. The plants were grown in a labelling chamber with 13C-depleted CO2. Soil respiration and δ13C of headspace CO2 were measured after 3, 4 and 5 weeks and RPE was calculated using an isotope mass balance approach. Root hair length was measured and soils were analyzed for the 16:1ω5 neutral lipid fatty acid (i.e. AMF biomarker). AMF abundance was greater, whereas RPE was lower, in mutant barley soil under low-P than under high-P conditions. In the other two plant-types, P had no effect on AMF or on RPE. As our results contradict our prediction, we propose an alternative explanation based on plant N demand under high-P. •Mutant plants lacking root hairs may depend on AMF to prime SOM decomposition.•Added P reduced AMF colonization and increased rhizosphere priming by mutant plants.•P had no such effects on wild-type plants with root hairs.•An increase of priming by mutant plants under high-P may be due to higher N demand.
Author Paterson, Eric
Bainard, Luke
Sim, Allan
Brown, Lawrie K.
Bradley, Robert L.
Boilard, Gabriel
George, Timothy S.
Carubba, Aaron
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Boilard
  fullname: Boilard, Gabriel
  organization: Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1J 2R1, Canada
– sequence: 2
  givenname: Robert L.
  surname: Bradley
  fullname: Bradley, Robert L.
  email: robert.bradley@usherbrooke.ca
  organization: Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1J 2R1, Canada
– sequence: 3
  givenname: Eric
  surname: Paterson
  fullname: Paterson, Eric
  organization: The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, AB15 8QH, UK
– sequence: 4
  givenname: Allan
  surname: Sim
  fullname: Sim, Allan
  organization: The James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, AB15 8QH, UK
– sequence: 5
  givenname: Lawrie K.
  surname: Brown
  fullname: Brown, Lawrie K.
  organization: The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
– sequence: 6
  givenname: Timothy S.
  surname: George
  fullname: George, Timothy S.
  organization: The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
– sequence: 7
  givenname: Luke
  surname: Bainard
  fullname: Bainard, Luke
  organization: Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, Saskatchewan, S9H 3X2, Canada
– sequence: 8
  givenname: Aaron
  surname: Carubba
  fullname: Carubba, Aaron
  organization: Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1J 2R1, Canada
BookMark eNqFkE1LxDAQhoMouK7-BCFHL62TNmlTPIiIXyB40XNM0-lulm6yJllFf70tuycvHsIQeN6XmeeEHDrvkJBzBjkDVl2u8ujt0FqfF8CaHEQOrDwgMybrJit5IQ_JDKCUGdSsPiYnMa4AoBCsnJH3J5cwaJOsd7TF9IXoaPA-0aW2IVLtOjq1083Sx_GFbaQjGZb2Z_pjQLoJdm3dgvp-R_qw0M4autZprD4lR70eIp7t55y83d-93j5mzy8PT7c3z5kZN0wZb1vUIAWrTNl3VYNY9z0wU3SVMG0heVXVIOu2R85low3U3HSi5L0QDW-wK-fkYte7Cf5jizGptY0Gh0E79NuoiqJmEipZ8hEVO9QEH2PAXk0n6PCtGKjJqFqpvVE1GVUg1Gh0zF39yRmb9GQuBW2Hf9PXuzSOFj4tBhWNRWewswFNUp23_zT8AuGEmf0
CitedBy_id crossref_primary_10_3390_jof9060684
crossref_primary_10_1016_j_soilbio_2020_108005
crossref_primary_10_1002_ldr_4913
crossref_primary_10_1016_j_apsoil_2022_104457
crossref_primary_10_1111_nph_17082
crossref_primary_10_3390_microorganisms8050694
crossref_primary_10_1016_j_soilbio_2023_109265
crossref_primary_10_1002_jpln_201900322
crossref_primary_10_1071_SR19351
crossref_primary_10_2139_ssrn_4201057
crossref_primary_10_1002_jpln_202100193
crossref_primary_10_1016_j_heliyon_2024_e37659
crossref_primary_10_1016_j_compag_2022_107459
crossref_primary_10_1038_s41598_020_80074_x
crossref_primary_10_1016_j_jssas_2022_10_001
Cites_doi 10.1093/aob/mcs085
10.1016/0016-7061(81)90024-0
10.1016/j.soilbio.2006.01.011
10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6
10.1016/0038-0717(95)00089-W
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
10.1111/j.1469-8137.2006.01931.x
10.1111/j.1469-8137.2006.01935.x
10.1111/nph.13138
10.1007/s11104-017-3275-0
10.1016/j.soilbio.2016.05.009
10.1007/s11104-013-1718-9
10.1051/agro:2003013
10.3389/fmicb.2013.00216
10.1007/s11104-009-0209-5
10.1007/s11104-016-2928-8
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2019.05.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 266
ExternalDocumentID 10_1016_j_soilbio_2019_05_013
S0038071719301476
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-4bbea08516c3fd69ee7ff01c2d65cb284667087bfe4489ac074cd534f55949ed3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 07:20:53 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 03:20:01 EDT 2025
Fri Feb 23 02:23:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Arbuscular mycorrhizae
Barley
Root hairs
Rhizosphere priming effect
Soil phosphorus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-4bbea08516c3fd69ee7ff01c2d65cb284667087bfe4489ac074cd534f55949ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2271806834
PQPubID 24069
PageCount 3
ParticipantIDs proquest_miscellaneous_2271806834
crossref_primary_10_1016_j_soilbio_2019_05_013
crossref_citationtrail_10_1016_j_soilbio_2019_05_013
elsevier_sciencedirect_doi_10_1016_j_soilbio_2019_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationTitle Soil biology & biochemistry
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References George, Brown, Newton, Hallett, Sun, Thomas, White (bib7) 2011; 339
Kuzyakov (bib12) 2002; 165
Kaiser, Kilburn, Clode, Fuchslueger, Koranda, Cliff, Solaiman, Murphy (bib11) 2015; 205
McGill, Cole (bib13) 1981; 26
FAO (bib6) 1988
Ngosong, Gabriel, Ruess (bib15) 2012
Dijkstra, Carrillo, Pendall, Morgan (bib5) 2013; 4
Murphy, Baggs, Morley, Wall, Paterson (bib14) 2017; 417
Jansa, Mozafar, Frossard (bib9) 2003; 23
Hamel, Hanson, Selles, Cruz, Lemke, McConkey, Zentner (bib8) 2006; 38
Paterson, Gebbing, Abel, Sim, Telfer (bib16) 2007; 173
Bradley, Fyles (bib1) 1995; 27
Jungk (bib10) 2001; 64
Brown, George, Barrett, Hubbard, White (bib3) 2013; 372
Bucher (bib4) 2007; 173
Pausch, Loeppmann, Kühnel, Forbush, Kuzyakov, Cheng (bib18) 2016; 100
Paterson, Sim, Davidson, Daniell (bib17) 2016; 408
Brown, George, Thompson, Wright, Lyon, Hubbard, White (bib2) 2012; 110
Kuzyakov (10.1016/j.soilbio.2019.05.013_bib12) 2002; 165
Bucher (10.1016/j.soilbio.2019.05.013_bib4) 2007; 173
Jungk (10.1016/j.soilbio.2019.05.013_bib10) 2001; 64
FAO (10.1016/j.soilbio.2019.05.013_bib6) 1988
Hamel (10.1016/j.soilbio.2019.05.013_bib8) 2006; 38
Bradley (10.1016/j.soilbio.2019.05.013_bib1) 1995; 27
Paterson (10.1016/j.soilbio.2019.05.013_bib16) 2007; 173
Kaiser (10.1016/j.soilbio.2019.05.013_bib11) 2015; 205
George (10.1016/j.soilbio.2019.05.013_bib7) 2011; 339
Paterson (10.1016/j.soilbio.2019.05.013_bib17) 2016; 408
McGill (10.1016/j.soilbio.2019.05.013_bib13) 1981; 26
Murphy (10.1016/j.soilbio.2019.05.013_bib14) 2017; 417
Jansa (10.1016/j.soilbio.2019.05.013_bib9) 2003; 23
Ngosong (10.1016/j.soilbio.2019.05.013_bib15) 2012
Dijkstra (10.1016/j.soilbio.2019.05.013_bib5) 2013; 4
Brown (10.1016/j.soilbio.2019.05.013_bib2) 2012; 110
Brown (10.1016/j.soilbio.2019.05.013_bib3) 2013; 372
Pausch (10.1016/j.soilbio.2019.05.013_bib18) 2016; 100
References_xml – volume: 173
  start-page: 11
  year: 2007
  end-page: 26
  ident: bib4
  article-title: Functional biology of plant phosphate uptake at root and mycorrhizal interfaces
  publication-title: New Phytologist
– start-page: 140
  year: 1988
  ident: bib6
  article-title: FAO/Unesco Soil Map of the World. Revised Legend with Corrections
– volume: 110
  start-page: 319
  year: 2012
  end-page: 328
  ident: bib2
  article-title: What are the implications of variation in root hair length on P-limited yield in barley (
  publication-title: Annals of Botany
– volume: 64
  start-page: 121
  year: 2001
  end-page: 129
  ident: bib10
  article-title: Root hairs and the acquisition of plant nutrients from soil
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 100
  start-page: 74
  year: 2016
  end-page: 82
  ident: bib18
  article-title: Rhizosphere priming of barley with and without root hairs
  publication-title: Soil Biology and Biochemistry
– volume: 38
  start-page: 2104
  year: 2006
  end-page: 2116
  ident: bib8
  article-title: Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie
  publication-title: Soil Biology and Biochemistry
– volume: 173
  start-page: 600
  year: 2007
  end-page: 610
  ident: bib16
  publication-title: New Phytologist
– volume: 339
  start-page: 113
  year: 2011
  end-page: 123
  ident: bib7
  article-title: Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (
  publication-title: Plant and Soil
– volume: 417
  start-page: 499
  year: 2017
  end-page: 510
  ident: bib14
  article-title: Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation
  publication-title: Plant and Soil
– volume: 23
  start-page: 481
  year: 2003
  end-page: 488
  ident: bib9
  article-title: Long-distance transport of P and Zn through hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize
  publication-title: Agronomie
– start-page: 8
  year: 2012
  ident: bib15
  article-title: Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil
  publication-title: Journal of Lipids
– volume: 27
  start-page: 1565
  year: 1995
  end-page: 1571
  ident: bib1
  article-title: Growth of paper birch (
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 216
  year: 2013
  ident: bib5
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Frontiers in Microbiology
– volume: 372
  start-page: 195
  year: 2013
  end-page: 205
  ident: bib3
  article-title: Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (
  publication-title: Plant and Soil
– volume: 205
  start-page: 1537
  year: 2015
  end-page: 1551
  ident: bib11
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytologist
– volume: 408
  start-page: 243
  year: 2016
  end-page: 254
  ident: bib17
  article-title: Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation
  publication-title: Plant and Soil
– volume: 26
  start-page: 267
  year: 1981
  end-page: 286
  ident: bib13
  article-title: Comparative aspects of cycling of organic C, N, S, and P through soil organic matter
  publication-title: Geoderma
– volume: 165
  start-page: 382
  year: 2002
  end-page: 396
  ident: bib12
  article-title: Review: factors affecting rhizosphere priming effects
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 110
  start-page: 319
  year: 2012
  ident: 10.1016/j.soilbio.2019.05.013_bib2
  article-title: What are the implications of variation in root hair length on P-limited yield in barley (Hordeum vulgare L.)
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs085
– volume: 26
  start-page: 267
  year: 1981
  ident: 10.1016/j.soilbio.2019.05.013_bib13
  article-title: Comparative aspects of cycling of organic C, N, S, and P through soil organic matter
  publication-title: Geoderma
  doi: 10.1016/0016-7061(81)90024-0
– volume: 38
  start-page: 2104
  year: 2006
  ident: 10.1016/j.soilbio.2019.05.013_bib8
  article-title: Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2006.01.011
– volume: 64
  start-page: 121
  year: 2001
  ident: 10.1016/j.soilbio.2019.05.013_bib10
  article-title: Root hairs and the acquisition of plant nutrients from soil
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6
– volume: 27
  start-page: 1565
  year: 1995
  ident: 10.1016/j.soilbio.2019.05.013_bib1
  article-title: Growth of paper birch (Betula papyrifera) seedlings increases soil available C and microbial acquisition of soil-nutrients
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(95)00089-W
– volume: 165
  start-page: 382
  year: 2002
  ident: 10.1016/j.soilbio.2019.05.013_bib12
  article-title: Review: factors affecting rhizosphere priming effects
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
– volume: 173
  start-page: 600
  year: 2007
  ident: 10.1016/j.soilbio.2019.05.013_bib16
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01931.x
– volume: 173
  start-page: 11
  year: 2007
  ident: 10.1016/j.soilbio.2019.05.013_bib4
  article-title: Functional biology of plant phosphate uptake at root and mycorrhizal interfaces
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01935.x
– volume: 205
  start-page: 1537
  year: 2015
  ident: 10.1016/j.soilbio.2019.05.013_bib11
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytologist
  doi: 10.1111/nph.13138
– volume: 417
  start-page: 499
  year: 2017
  ident: 10.1016/j.soilbio.2019.05.013_bib14
  article-title: Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation
  publication-title: Plant and Soil
  doi: 10.1007/s11104-017-3275-0
– volume: 100
  start-page: 74
  year: 2016
  ident: 10.1016/j.soilbio.2019.05.013_bib18
  article-title: Rhizosphere priming of barley with and without root hairs
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.05.009
– start-page: 8
  year: 2012
  ident: 10.1016/j.soilbio.2019.05.013_bib15
  article-title: Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil
  publication-title: Journal of Lipids
– volume: 372
  start-page: 195
  year: 2013
  ident: 10.1016/j.soilbio.2019.05.013_bib3
  article-title: Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1718-9
– volume: 23
  start-page: 481
  year: 2003
  ident: 10.1016/j.soilbio.2019.05.013_bib9
  article-title: Long-distance transport of P and Zn through hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize
  publication-title: Agronomie
  doi: 10.1051/agro:2003013
– volume: 4
  start-page: 216
  year: 2013
  ident: 10.1016/j.soilbio.2019.05.013_bib5
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2013.00216
– start-page: 140
  year: 1988
  ident: 10.1016/j.soilbio.2019.05.013_bib6
– volume: 339
  start-page: 113
  year: 2011
  ident: 10.1016/j.soilbio.2019.05.013_bib7
  article-title: Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-0209-5
– volume: 408
  start-page: 243
  year: 2016
  ident: 10.1016/j.soilbio.2019.05.013_bib17
  article-title: Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation
  publication-title: Plant and Soil
  doi: 10.1007/s11104-016-2928-8
SSID ssj0002513
Score 2.3977213
Snippet We hypothesized that the rhizosphere priming effect (RPE) of soil organic matter by mutant barley lacking root hairs is dependant on a large network of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 264
SubjectTerms Arbuscular mycorrhizae
Barley
biomarkers
carbon
carbon dioxide
fatty acids
headspace analysis
mutants
mycorrhizal fungi
phosphorus
prediction
rhizosphere
Rhizosphere priming effect
Root hairs
soil
soil organic matter
Soil phosphorus
soil respiration
stable isotopes
Title Interaction between root hairs and soil phosphorus on rhizosphere priming of soil organic matter
URI https://dx.doi.org/10.1016/j.soilbio.2019.05.013
https://www.proquest.com/docview/2271806834
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iD-qD6FScX0Twta5r0rR5HMMxFfek4FtM0nSbaDf28erf7l2bOhRk4EMpDU0Jl-Pud83d7wi51sJBjKOjwLXzMOCgE4HkkgeJNLnNTMqYxkLhx4HoP_P7l_hlg3TrWhhMq_S2v7LppbX2Iy0vzdZ0PMYaXyRLbycAQQDnJ0i7zeEGOn3zuUrzAP_tiXdTLNZJVlU8rTfky303Y6wBbMuKwJP95Z9-WerS_fT2yZ7HjbRTLe2AbLiiQXY7w5nnznANst2tm7cdktfyT19VtEB9LhYFkLygIzzAobrIKC6LTkeTOVyz5ZzCmzPMwJsj04Cj07Lh15BO8urNqv-TpR8lI-cRee7dPnX7gW-mEFjGo0XAjXEa8ZWwLM-EdC7J87Bto0zE1oCTEiIJ08TkDgI2qS1AC5vFjOcQcnDpMnZMNotJ4U4IlUynmRY6lJmF-IobbVxiEJvAMIQ0TcJrESrrmcax4cW7qlPK3pSXvELJqzBWIPkmufmeNq2oNtZNSOv9UT90RoE7WDf1qt5PBTuDhyS6cJPlXEUReOtQpIyf_v_zZ2QHn6pEwXOyuZgt3QWAl4W5LLXzkmx17h76gy8Gx_Fo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAcUEtblVcxEhzDZmOvEx84IFq0lMcJJG6u7TiwiGZXm10hLvwp_iAziQMqEkJC4pCLY0fRjDPzTTzzDcCmkR5jHJNEvlvEkcA9ESmhRJQqW7jcZpwbKhQ-PpH9M_HnvHc-A_dtLQylVQbb39j02lqHkU6QZmc0GFCNL5Gld1OEIIjzUxkyKw_97Q3GbdXOwS9U8laS7P8-3etHobVA5LhIJpGw1htCG9LxIpfK-7Qo4q5LctlzFk22lGmcpbbwGL4o49DRurzHRYEAXCifc3zuB_go0FxQ24Ttu6e8EgQMgek3o-qg9KlsqHNFBL3XdkBFh13VMIbylxziM9dQ-7v9z7AQgCrbbWTxBWZ8uQjzuxfjQNbhF2Fur-0W9xX-1r8WmyoJFpK_GKLyCbukEyNmypzRa7HR5bDCazytGM4cU8pfRdQGno3qDmMXbFg0M5uGU479qylAv8HZu4j4O8yWw9L_AKa4yXIjTaxyhwGdsMb61BIYwmGMoZZAtCLULlCbU4eNa93msF3pIHlNktdxT6Pkl2D7cdmo4fZ4bUHW6kf_t0k1-p_Xlm60-tSoGTqVMaUfTiudJAgPYplxsfz2x6_DXP_0-EgfHZwcrsAnutNkKa7C7GQ89WuInCb2Z71TGW6Jd_40HgAKES1r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+between+root+hairs+and+soil+phosphorus+on+rhizosphere+priming+of+soil+organic+matter&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Boilard%2C+Gabriel&rft.au=Bradley%2C+Robert+L&rft.au=Paterson%2C+Eric&rft.au=Sim%2C+Allan&rft.date=2019-08-01&rft.issn=0038-0717&rft.volume=135+p.264-266&rft.spage=264&rft.epage=266&rft_id=info:doi/10.1016%2Fj.soilbio.2019.05.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon