An integrated separation technology for high fluoride-containing wastewater treatment: Fluoride removal, membrane fouling behavior and control
The high concentration of fluoride in aqueous, which exacerbated by the discharged wastewater from semiconductor, electroplating, metallurgical and ceramics industries, has gone far beyond the World Health Organization (WHO) standard and seriously affected the health of human life. This study aims t...
Saved in:
Published in | Journal of cleaner production Vol. 349; p. 131225 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The high concentration of fluoride in aqueous, which exacerbated by the discharged wastewater from semiconductor, electroplating, metallurgical and ceramics industries, has gone far beyond the World Health Organization (WHO) standard and seriously affected the health of human life. This study aims to validate the deep removal of fluoride from high fluoride-containing wastewater by using an integrated precipitation/crystallization/ultrafiltration (UF)/reverse osmosis (RO) system. The system enables an extremely low residual fluoride concentration (down to 0.25 mg L−1) qualified WHO standard, which was much lower than those of other reported membrane-based processes. In particular, the application of crystallization rather than conventional coagulation/flocculation was demonstrated to be effective in reducing fluoride, turbidity and sludge water content. Membrane fouling analysis indicated that UF membrane scaling was attributed to the CaF2 particles deposition at recovery rates of 70%–90%. RO membrane fouling behaviors were identified at recovery rate of 50% (organic fouling), 70% (inorganic scaling occurred and organic fouling) and 80% (inorganic scaling and organic fouling). Meanwhile, UF/RO membrane scaling/fouling could be removed by pure water cleaning (UF) and Na2CO3/NaOH/HCl cleaning (RO). Results of this work shall provide useful information on the application of a precipitation/crystallization/UF/RO system to purify and recover high fluoride-containing wastewater.
[Display omitted]
●A new integrated system for fluoride-containing wastewater treatment was developed.●Crystallization process reduced fluoride, turbidity and sludge water content.●UF/RO fouling behaviors were identified along the permeate recovery rates.●Residual fluoride in integrated system effluent qualified WHO standard. |
---|---|
AbstractList | The high concentration of fluoride in aqueous, which exacerbated by the discharged wastewater from semiconductor, electroplating, metallurgical and ceramics industries, has gone far beyond the World Health Organization (WHO) standard and seriously affected the health of human life. This study aims to validate the deep removal of fluoride from high fluoride-containing wastewater by using an integrated precipitation/crystallization/ultrafiltration (UF)/reverse osmosis (RO) system. The system enables an extremely low residual fluoride concentration (down to 0.25 mg L⁻¹) qualified WHO standard, which was much lower than those of other reported membrane-based processes. In particular, the application of crystallization rather than conventional coagulation/flocculation was demonstrated to be effective in reducing fluoride, turbidity and sludge water content. Membrane fouling analysis indicated that UF membrane scaling was attributed to the CaF₂ particles deposition at recovery rates of 70%–90%. RO membrane fouling behaviors were identified at recovery rate of 50% (organic fouling), 70% (inorganic scaling occurred and organic fouling) and 80% (inorganic scaling and organic fouling). Meanwhile, UF/RO membrane scaling/fouling could be removed by pure water cleaning (UF) and Na₂CO₃/NaOH/HCl cleaning (RO). Results of this work shall provide useful information on the application of a precipitation/crystallization/UF/RO system to purify and recover high fluoride-containing wastewater. The high concentration of fluoride in aqueous, which exacerbated by the discharged wastewater from semiconductor, electroplating, metallurgical and ceramics industries, has gone far beyond the World Health Organization (WHO) standard and seriously affected the health of human life. This study aims to validate the deep removal of fluoride from high fluoride-containing wastewater by using an integrated precipitation/crystallization/ultrafiltration (UF)/reverse osmosis (RO) system. The system enables an extremely low residual fluoride concentration (down to 0.25 mg L−1) qualified WHO standard, which was much lower than those of other reported membrane-based processes. In particular, the application of crystallization rather than conventional coagulation/flocculation was demonstrated to be effective in reducing fluoride, turbidity and sludge water content. Membrane fouling analysis indicated that UF membrane scaling was attributed to the CaF2 particles deposition at recovery rates of 70%–90%. RO membrane fouling behaviors were identified at recovery rate of 50% (organic fouling), 70% (inorganic scaling occurred and organic fouling) and 80% (inorganic scaling and organic fouling). Meanwhile, UF/RO membrane scaling/fouling could be removed by pure water cleaning (UF) and Na2CO3/NaOH/HCl cleaning (RO). Results of this work shall provide useful information on the application of a precipitation/crystallization/UF/RO system to purify and recover high fluoride-containing wastewater. [Display omitted] ●A new integrated system for fluoride-containing wastewater treatment was developed.●Crystallization process reduced fluoride, turbidity and sludge water content.●UF/RO fouling behaviors were identified along the permeate recovery rates.●Residual fluoride in integrated system effluent qualified WHO standard. |
ArticleNumber | 131225 |
Author | Qiu, Yangbo Shao, Jiahui Ren, Long-Fei Xia, Lei Zhao, Yan |
Author_xml | – sequence: 1 givenname: Yangbo surname: Qiu fullname: Qiu, Yangbo organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, PR China – sequence: 2 givenname: Long-Fei surname: Ren fullname: Ren, Long-Fei organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, PR China – sequence: 3 givenname: Jiahui surname: Shao fullname: Shao, Jiahui email: jhshao@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, PR China – sequence: 4 givenname: Lei surname: Xia fullname: Xia, Lei organization: Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, 3001, Leuven, Belgium – sequence: 5 givenname: Yan orcidid: 0000-0003-3660-4669 surname: Zhao fullname: Zhao, Yan organization: Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium |
BookMark | eNqFkMFuGyEURVGUSnHSfkIklllkXGAYZmgXURQlbaVI3bRrBMwbG4sBF7Cj_ES_Obj2qpuseIt7jtC5ROchBkDompIlJVR83iw31sM2xSUjjC1pSxnrztCCDr1saD-Ic7QgspON6Ji4QJc5bwihPen5Av29D9iFAqukC4w4w1bXy8WAC9h1iD6uXvEUE1671RpPfheTG6GxMRTtggsr_KJzgZdKJ1wS6DJDKF_w02mJE8xxr_0tnmE2SQeotp0_gAbWeu-qWocRH4Qp-o_ow6R9hk-n9wr9fnr89fC9ef757cfD_XNjW85K006CcTZISkXbawm9tNLYXnJDuZyIoAMZpr4zRo5GaqMtCNMR2nLDdSutaK_QzdFbq_3ZQS5qdtmC9_WDcZcVE3wYOiYpr9PuOLUp5pxgUtvkZp1eFSXq0F9t1Km_OvRXx_6V-_ofZ135l7Yk7fy79N2Rhlph7yCpbB0EC6NLYIsao3vH8AZM46qk |
CitedBy_id | crossref_primary_10_1016_j_watres_2022_119451 crossref_primary_10_1016_j_cej_2023_143264 crossref_primary_10_1016_j_jenvman_2023_118222 crossref_primary_10_1016_j_desal_2024_117392 crossref_primary_10_1016_j_watres_2024_122785 crossref_primary_10_1016_j_nxnano_2023_100024 crossref_primary_10_1016_j_jenvman_2024_122564 crossref_primary_10_1016_j_jenvman_2024_123016 crossref_primary_10_1021_acsomega_4c11404 crossref_primary_10_1061_JOEEDU_EEENG_7781 crossref_primary_10_1002_advs_202411659 crossref_primary_10_1016_j_ces_2024_120630 crossref_primary_10_1002_chem_202303742 crossref_primary_10_2166_wst_2023_268 crossref_primary_10_1016_j_cej_2024_156523 crossref_primary_10_1016_j_cej_2024_152343 crossref_primary_10_3390_ijerph191710710 crossref_primary_10_1021_acs_est_3c10298 crossref_primary_10_1016_j_seppur_2024_130240 crossref_primary_10_1007_s13399_024_05987_3 crossref_primary_10_1021_acsomega_4c01874 crossref_primary_10_1016_j_jclepro_2024_142558 crossref_primary_10_1021_acsestwater_2c00625 crossref_primary_10_1016_j_cej_2023_147950 crossref_primary_10_1016_j_jwpe_2024_105450 crossref_primary_10_1016_j_surfin_2025_106304 crossref_primary_10_1016_j_jece_2024_111974 crossref_primary_10_1016_j_envres_2024_118641 crossref_primary_10_1016_j_jece_2024_113738 crossref_primary_10_1016_j_seppur_2025_132626 crossref_primary_10_1016_j_cej_2024_152474 crossref_primary_10_1016_j_rineng_2025_104363 crossref_primary_10_1007_s11356_024_31932_y crossref_primary_10_1016_j_cej_2022_139733 crossref_primary_10_1039_D4RA01928H crossref_primary_10_1016_j_seppur_2023_124771 crossref_primary_10_1016_S1003_6326_24_66569_6 crossref_primary_10_1016_j_jece_2022_108807 crossref_primary_10_1016_j_seppur_2022_121945 crossref_primary_10_2166_wst_2024_211 crossref_primary_10_1016_j_seppur_2024_130171 crossref_primary_10_1021_acsestwater_3c00463 crossref_primary_10_1016_j_jenvman_2024_122064 crossref_primary_10_1016_j_desal_2024_117831 crossref_primary_10_1016_j_cej_2023_147330 |
Cites_doi | 10.1016/j.jhazmat.2020.124748 10.1016/j.memsci.2020.118185 10.1016/j.envres.2020.109833 10.1080/19443994.2014.959737 10.1021/acs.est.8b01040 10.1016/j.chemosphere.2019.124671 10.4028/www.scientific.net/AMM.361-363.755 10.1016/j.cej.2016.08.134 10.1007/s10163-017-0659-4 10.1016/j.scitotenv.2017.03.235 10.1080/09593330.2016.1272641 10.1016/j.serj.2017.06.002 10.1016/j.desal.2005.12.045 10.1016/j.watres.2017.01.068 10.1016/j.jece.2020.104514 10.1016/0376-7388(95)00102-I 10.1016/j.colsurfa.2008.12.006 10.1007/s11814-016-0120-8 10.1016/j.chemosphere.2018.04.159 10.1016/j.molliq.2020.112799 10.1016/j.desal.2016.04.008 10.1007/s11356-019-04691-4 10.1016/j.jhazmat.2012.08.004 10.1016/j.memsci.2020.118831 10.1016/j.ccr.2021.214037 10.1016/j.desal.2004.07.042 10.1016/j.desal.2012.11.031 10.1016/j.cej.2021.128917 10.1016/j.memsci.2011.04.020 10.1016/j.envres.2021.110756 10.1016/S1001-0742(12)60204-6 10.1016/j.watres.2018.01.002 10.1016/j.chemosphere.2019.07.019 10.1016/j.jtice.2015.05.038 10.1016/j.memsci.2004.12.023 10.1016/j.seppur.2020.116747 10.1016/j.jece.2020.104516 10.1016/j.chemosphere.2014.09.090 10.1021/es060831q 10.1016/j.desal.2015.01.023 10.1016/j.desal.2020.114857 10.1016/j.desal.2018.02.030 10.1016/j.jclepro.2020.124236 10.1016/j.desal.2014.03.008 10.1016/j.desal.2007.01.040 10.1021/acs.est.9b03856 10.1016/j.cej.2015.11.011 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2022.131225 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2022_131225 S0959652622008563 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-3f62428911637a9e79c9bc794b149f061808f75bb9db9abace6b50134b4a39c63 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Tue Aug 05 10:52:44 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 03:23:58 EDT 2025 Fri Feb 23 02:39:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Recovery rate High fluoride-containing wastewater Precipitation/crystallization/UF/RO system Membrane fouling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-3f62428911637a9e79c9bc794b149f061808f75bb9db9abace6b50134b4a39c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3660-4669 |
PQID | 2648852914 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2648852914 crossref_primary_10_1016_j_jclepro_2022_131225 crossref_citationtrail_10_1016_j_jclepro_2022_131225 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_131225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Luna, Warmadewanthi, Liu (bib28) 2009; 347 Ke, Zhou, Yang, Hu (bib21) 2013; 25 Liu, He, Pan, Huang, Lin, Zhang (bib27) 2020; 238 Wang, Tang, Xu, Cheng, Li, Liang (bib45) 2020; 188 Meng, Nan, Wang, Ji, Wu, Liu, Xiao (bib32) 2019; 26 Ang, Mohammad, Hilal, Leo (bib5) 2015; 363 Tam, Tang, Lau, Sharma, Chen (bib41) 2007; 202 Kim, Yoon, Hong, Lee, Wilf (bib22) 2013; 313 Wijmans, Baker (bib47) 1995; 107 Won, Choi, Chung (bib48) 2012; 239–240 Huang, Liu, Zhang, Zhang, Gao (bib17) 2017; 307 Balcik-Canbolat, Sengezer, Sakar, Karagunduz, Keskinler (bib8) 2017; 38 Borgohain, Boruah, Sarma, Rashid (bib10) 2020; 305 Polat, Ozay, Bilici, Kucukkara, Dizge (bib35) 2020; 241 Shen, Schäfer (bib37) 2014; 117 Breitner, Howe, Minakata (bib11) 2019; 53 Lacson, Lu, Huang (bib23) 2021; 415 Mantel, Benne, Ernst (bib30) 2021; 620 Zhao, Liao, Fane, Li, Kong (bib52) 2021; 499 Aliaskari, Schfer (bib3) 2020; 190 Tiraferri, Chen, Elimelech (bib43) 2011; 376 Amaral, Grossi, Ramos, Ricci, Andrade (bib4) 2018; 440 Deng, Liu, Huang, Tian (bib13) 2016; 287 Li, Shi, Gao, Huang (bib25) 2016; 390 Bagastyo, Anggrainy, Nindita, Warmadewanthi (bib7) 2017; 27 Tsuchiya, Fuchida, Tokoro (bib44) 2020; 8 Song, Gao, Li, Gao, Zhou (bib40) 2015; 361 Mei, Li, Xia (bib31) 2016; 33 Zhai, Sun, He (bib51) 2013; 361–363 Paudyal, Inoue, Kawakita, Ohto, Kamata, Alam (bib34) 2018; 20 Hui, Huang, Pan (bib18) 2008; 220 Xia, Lan, Li, Xie, Liang, Yan, Chen, Xing (bib49) 2018; 206 Shih, Rahardianto, Lee, Cohen (bib38) 2005; 252 Tang, Fu, Robertson, Criddle, Leckie (bib42) 2006; 40 Yu, Meng, Zhao, Shi, Hu, Lu (bib50) 2017; 113 Jiang, Zhou, Yang, Du (bib20) 2013; 25 Ndiaye, Moulin, Dominguez, Millet, Charbit (bib33) 2005; 173 Ashfaq, Al-Ghouti, Da'na, Qiblawey, Zouari (bib6) 2019; 703 Song, Lee, Liu, Shi, Ng (bib39) 2020; 609 Boo, Wang, Zucker, Choo, Osuji, Elimelech (bib9) 2018; 52 Sandoval, Fuentes, Thiam, Salazar (bib36) 2020; 753 Liu, Liu (bib26) 2016; 58 Wang, Su, Hu, Ali, Wu (bib46) 2021; 406 Jiang, Li, Ladewig (bib19) 2017; 595 Lacson, Lu, Huang (bib24) 2021; 280 Lv, Li, Chen, Tang (bib29) 2017; 39 Ding, Li, Qiu, Ma, Wu (bib14) 2021; 195 He, Yang, Wu, Xie, Zhang, Kong, Liu (bib16) 2020; 8 Ahmadijokani, Molavi, Rezakazemi, Aminabhavi, Arjmand (bib2) 2021; 445 Ezzeddine, Meftah, Hannachi (bib15) 2014; 55 Agrawal, Guest, Cusick (bib1) 2018; 132 Damtie, Hailemariam, Woo, Park, Choi (bib12) 2019; 236 Borgohain (10.1016/j.jclepro.2022.131225_bib10) 2020; 305 Sandoval (10.1016/j.jclepro.2022.131225_bib36) 2020; 753 Ke (10.1016/j.jclepro.2022.131225_bib21) 2013; 25 Tang (10.1016/j.jclepro.2022.131225_bib42) 2006; 40 Jiang (10.1016/j.jclepro.2022.131225_bib20) 2013; 25 Paudyal (10.1016/j.jclepro.2022.131225_bib34) 2018; 20 Yu (10.1016/j.jclepro.2022.131225_bib50) 2017; 113 Ding (10.1016/j.jclepro.2022.131225_bib14) 2021; 195 Tsuchiya (10.1016/j.jclepro.2022.131225_bib44) 2020; 8 Wang (10.1016/j.jclepro.2022.131225_bib45) 2020; 188 Ashfaq (10.1016/j.jclepro.2022.131225_bib6) 2019; 703 Li (10.1016/j.jclepro.2022.131225_bib25) 2016; 390 Huang (10.1016/j.jclepro.2022.131225_bib17) 2017; 307 Amaral (10.1016/j.jclepro.2022.131225_bib4) 2018; 440 Liu (10.1016/j.jclepro.2022.131225_bib27) 2020; 238 Mantel (10.1016/j.jclepro.2022.131225_bib30) 2021; 620 Tam (10.1016/j.jclepro.2022.131225_bib41) 2007; 202 Ang (10.1016/j.jclepro.2022.131225_bib5) 2015; 363 Deng (10.1016/j.jclepro.2022.131225_bib13) 2016; 287 Mei (10.1016/j.jclepro.2022.131225_bib31) 2016; 33 Bagastyo (10.1016/j.jclepro.2022.131225_bib7) 2017; 27 Lacson (10.1016/j.jclepro.2022.131225_bib24) 2021; 280 Tiraferri (10.1016/j.jclepro.2022.131225_bib43) 2011; 376 Agrawal (10.1016/j.jclepro.2022.131225_bib1) 2018; 132 Zhao (10.1016/j.jclepro.2022.131225_bib52) 2021; 499 Won (10.1016/j.jclepro.2022.131225_bib48) 2012; 239–240 Ezzeddine (10.1016/j.jclepro.2022.131225_bib15) 2014; 55 Shen (10.1016/j.jclepro.2022.131225_bib37) 2014; 117 Boo (10.1016/j.jclepro.2022.131225_bib9) 2018; 52 Aliaskari (10.1016/j.jclepro.2022.131225_bib3) 2020; 190 He (10.1016/j.jclepro.2022.131225_bib16) 2020; 8 Shih (10.1016/j.jclepro.2022.131225_bib38) 2005; 252 Song (10.1016/j.jclepro.2022.131225_bib39) 2020; 609 Wijmans (10.1016/j.jclepro.2022.131225_bib47) 1995; 107 Breitner (10.1016/j.jclepro.2022.131225_bib11) 2019; 53 Damtie (10.1016/j.jclepro.2022.131225_bib12) 2019; 236 Meng (10.1016/j.jclepro.2022.131225_bib32) 2019; 26 Xia (10.1016/j.jclepro.2022.131225_bib49) 2018; 206 Jiang (10.1016/j.jclepro.2022.131225_bib19) 2017; 595 Liu (10.1016/j.jclepro.2022.131225_bib26) 2016; 58 Lv (10.1016/j.jclepro.2022.131225_bib29) 2017; 39 Song (10.1016/j.jclepro.2022.131225_bib40) 2015; 361 Lacson (10.1016/j.jclepro.2022.131225_bib23) 2021; 415 Polat (10.1016/j.jclepro.2022.131225_bib35) 2020; 241 Wang (10.1016/j.jclepro.2022.131225_bib46) 2021; 406 Zhai (10.1016/j.jclepro.2022.131225_bib51) 2013; 361–363 Hui (10.1016/j.jclepro.2022.131225_bib18) 2008; 220 Balcik-Canbolat (10.1016/j.jclepro.2022.131225_bib8) 2017; 38 Ndiaye (10.1016/j.jclepro.2022.131225_bib33) 2005; 173 Ahmadijokani (10.1016/j.jclepro.2022.131225_bib2) 2021; 445 Luna (10.1016/j.jclepro.2022.131225_bib28) 2009; 347 Kim (10.1016/j.jclepro.2022.131225_bib22) 2013; 313 |
References_xml | – volume: 38 start-page: 2668 year: 2017 end-page: 2676 ident: bib8 article-title: Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes publication-title: Environ. Technol. – volume: 595 start-page: 567 year: 2017 end-page: 583 ident: bib19 article-title: A review of reverse osmosis membrane fouling and control strategies publication-title: Sci. Total Environ. – volume: 117 start-page: 679 year: 2014 end-page: 691 ident: bib37 article-title: Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review publication-title: Chemosphere – volume: 27 start-page: 230 year: 2017 end-page: 237 ident: bib7 article-title: Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater publication-title: Sustainable Environ. Res. – volume: 313 start-page: 28 year: 2013 end-page: 35 ident: bib22 article-title: Evaluation of new compact pretreatment system for high turbidity seawater: fiber filter and ultrafiltration publication-title: Desalination – volume: 376 start-page: 196 year: 2011 end-page: 206 ident: bib43 article-title: Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent publication-title: J. Membr. Sci. – volume: 132 start-page: 252 year: 2018 end-page: 259 ident: bib1 article-title: Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth publication-title: Water Res. – volume: 415 year: 2021 ident: bib23 article-title: Chemical precipitation at extreme fluoride concentration and potential recovery of CaF publication-title: Chem. Eng. J. – volume: 107 start-page: 1 year: 1995 end-page: 21 ident: bib47 article-title: The solution-diffusion model: a review publication-title: J. Membr. Sci. – volume: 239–240 start-page: 110 year: 2012 end-page: 117 ident: bib48 article-title: Evaluation of optimal reuse system for hydrofluoric acid wastewater publication-title: J. Hazard Mater. – volume: 58 start-page: 259 year: 2016 end-page: 263 ident: bib26 article-title: Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater publication-title: J. Taiwan Inst. Chem. Eng. – volume: 20 start-page: 975 year: 2018 end-page: 984 ident: bib34 article-title: Removal of fluoride by effectively using spent cation exchange resin publication-title: J. Mater. Cycles Waste Manag. – volume: 287 start-page: 83 year: 2016 end-page: 91 ident: bib13 article-title: Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals publication-title: Chem. Eng. J. – volume: 8 year: 2020 ident: bib16 article-title: Review of fluoride removal from water environment by adsorption publication-title: J. Environ. Chem. Eng. – volume: 33 start-page: 2668 year: 2016 end-page: 2673 ident: bib31 article-title: On the cleaning procedure of reverse osmosis membrane fouled by steel wastewater publication-title: Kor. J. Chem. Eng. – volume: 753 year: 2020 ident: bib36 article-title: Arsenic and fluoride removal by electrocoagulation process: a general review publication-title: Sci. Total Environ. – volume: 220 start-page: 353 year: 2008 end-page: 358 ident: bib18 article-title: Characteristics of RO foulants in a brackish water desalination plant publication-title: Desalination – volume: 206 start-page: 701 year: 2018 end-page: 708 ident: bib49 article-title: Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment publication-title: Chemosphere – volume: 363 start-page: 2 year: 2015 end-page: 18 ident: bib5 article-title: A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants publication-title: Desalination – volume: 406 year: 2021 ident: bib46 article-title: Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater publication-title: J. Hazard Mater. – volume: 280 year: 2021 ident: bib24 article-title: Fluoride-containing water: a global perspective and a pursuit to sustainable water defluoridation management -An overview publication-title: J. Clean. Prod. – volume: 620 year: 2021 ident: bib30 article-title: Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement publication-title: J. Membr. Sci. – volume: 347 start-page: 64 year: 2009 end-page: 68 ident: bib28 article-title: Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer publication-title: Colloids Surf., A – volume: 361–363 start-page: 755 year: 2013 end-page: 759 ident: bib51 article-title: Research on coagulation/sedimentation process for simulation of fluorine-containing wastewater treatment publication-title: Appl. Mech. Mater. – volume: 238 year: 2020 ident: bib27 article-title: Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism publication-title: Chemosphere – volume: 236 year: 2019 ident: bib12 article-title: Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater publication-title: Chemosphere – volume: 361 start-page: 95 year: 2015 end-page: 104 ident: bib40 article-title: Improvement of overall water recovery by increasing R publication-title: Desalination – volume: 390 start-page: 62 year: 2016 end-page: 71 ident: bib25 article-title: Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system publication-title: Desalination – volume: 241 year: 2020 ident: bib35 article-title: Membrane modification with semiconductor diode laser to reduce membrane biofouling for external MBR system and modelling study publication-title: Separ. Purif. Technol. – volume: 53 start-page: 11401 year: 2019 end-page: 11409 ident: bib11 article-title: Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse publication-title: Environ. Sci. Technol. – volume: 499 year: 2021 ident: bib52 article-title: Engineering antifouling reverse osmosis membranes: a review publication-title: Desalination – volume: 113 start-page: 1 year: 2017 end-page: 10 ident: bib50 article-title: Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation publication-title: Water Res. – volume: 307 start-page: 696 year: 2017 end-page: 706 ident: bib17 article-title: Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation publication-title: Chem. Eng. J. – volume: 609 year: 2020 ident: bib39 article-title: Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge publication-title: J. Membr. Sci. – volume: 26 start-page: 16641 year: 2019 end-page: 16651 ident: bib32 article-title: Study on the efficiency of ultrafiltration technology in dealing with sudden cadmium pollution in surface water and ultrafiltration membrane fouling publication-title: Environ. Sci. Pollut. Res. – volume: 173 start-page: 25 year: 2005 end-page: 32 ident: bib33 article-title: Removal of fluoride from electronic industrial effluentby RO membrane separation publication-title: Desalination – volume: 202 start-page: 106 year: 2007 end-page: 113 ident: bib41 article-title: A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems publication-title: Desalination – volume: 195 year: 2021 ident: bib14 article-title: Membrane fouling performance of Fe-based coagulation-ultrafiltration process: effect of sedimentation time publication-title: Environ. Res. – volume: 703 year: 2019 ident: bib6 article-title: Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis publication-title: Sci. Total Environ. – volume: 55 start-page: 2618 year: 2014 end-page: 2625 ident: bib15 article-title: Removal of fluoride from an industrial wastewater by a hybrid process combining precipitation and reverse osmosis publication-title: Desalination Water Treat. – volume: 40 start-page: 7343 year: 2006 end-page: 7349 ident: bib42 article-title: Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater publication-title: Environ. Sci. Technol. – volume: 188 year: 2020 ident: bib45 article-title: Hybrid UF/NF process treating secondary effluent of wastewater treatment plants for potable water reuse: adsorption vs. coagulation for removal improvements and membrane fouling alleviation publication-title: Environ. Res. – volume: 440 start-page: 111 year: 2018 end-page: 121 ident: bib4 article-title: Integrated UF–NF–RO route for gold mining effluent treatment: from bench-scale to pilot-scale publication-title: Desalination – volume: 25 start-page: 1331 year: 2013 end-page: 1337 ident: bib20 article-title: A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor publication-title: J. Environ. Sci. – volume: 190 year: 2020 ident: bib3 article-title: Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater publication-title: Water Res. – volume: 445 year: 2021 ident: bib2 article-title: Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents publication-title: Coord. Chem. Rev. – volume: 52 start-page: 7279 year: 2018 end-page: 7288 ident: bib9 article-title: High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery publication-title: Environ. Sci. Technol. – volume: 25 start-page: 1331 year: 2013 end-page: 1337 ident: bib21 article-title: A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor publication-title: J. Environ. Sci. – volume: 39 start-page: 1 year: 2017 end-page: 7 ident: bib29 article-title: Copper wastewater treatment with high concentration in a two-stage crystallization-based combined process publication-title: Environ. Technol. – volume: 305 year: 2020 ident: bib10 article-title: Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water publication-title: J. Mol. Liq. – volume: 252 start-page: 253 year: 2005 end-page: 263 ident: bib38 article-title: Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 8 year: 2020 ident: bib44 article-title: Experimental study and surface complexation modeling of fluoride removal by magnesium hydroxide in adsorption and coprecipitation processes publication-title: J. Environ. Chem. Eng. – volume: 406 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib46 article-title: Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124748 – volume: 609 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib39 article-title: Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118185 – volume: 188 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib45 article-title: Hybrid UF/NF process treating secondary effluent of wastewater treatment plants for potable water reuse: adsorption vs. coagulation for removal improvements and membrane fouling alleviation publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109833 – volume: 55 start-page: 2618 year: 2014 ident: 10.1016/j.jclepro.2022.131225_bib15 article-title: Removal of fluoride from an industrial wastewater by a hybrid process combining precipitation and reverse osmosis publication-title: Desalination Water Treat. doi: 10.1080/19443994.2014.959737 – volume: 52 start-page: 7279 year: 2018 ident: 10.1016/j.jclepro.2022.131225_bib9 article-title: High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01040 – volume: 238 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib27 article-title: Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124671 – volume: 361–363 start-page: 755 year: 2013 ident: 10.1016/j.jclepro.2022.131225_bib51 article-title: Research on coagulation/sedimentation process for simulation of fluorine-containing wastewater treatment publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.361-363.755 – volume: 307 start-page: 696 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib17 article-title: Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.134 – volume: 20 start-page: 975 year: 2018 ident: 10.1016/j.jclepro.2022.131225_bib34 article-title: Removal of fluoride by effectively using spent cation exchange resin publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-017-0659-4 – volume: 595 start-page: 567 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib19 article-title: A review of reverse osmosis membrane fouling and control strategies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.235 – volume: 38 start-page: 2668 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib8 article-title: Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes publication-title: Environ. Technol. doi: 10.1080/09593330.2016.1272641 – volume: 27 start-page: 230 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib7 article-title: Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater publication-title: Sustainable Environ. Res. doi: 10.1016/j.serj.2017.06.002 – volume: 202 start-page: 106 year: 2007 ident: 10.1016/j.jclepro.2022.131225_bib41 article-title: A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems publication-title: Desalination doi: 10.1016/j.desal.2005.12.045 – volume: 113 start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib50 article-title: Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation publication-title: Water Res. doi: 10.1016/j.watres.2017.01.068 – volume: 8 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib44 article-title: Experimental study and surface complexation modeling of fluoride removal by magnesium hydroxide in adsorption and coprecipitation processes publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104514 – volume: 107 start-page: 1 year: 1995 ident: 10.1016/j.jclepro.2022.131225_bib47 article-title: The solution-diffusion model: a review publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00102-I – volume: 347 start-page: 64 year: 2009 ident: 10.1016/j.jclepro.2022.131225_bib28 article-title: Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2008.12.006 – volume: 33 start-page: 2668 year: 2016 ident: 10.1016/j.jclepro.2022.131225_bib31 article-title: On the cleaning procedure of reverse osmosis membrane fouled by steel wastewater publication-title: Kor. J. Chem. Eng. doi: 10.1007/s11814-016-0120-8 – volume: 206 start-page: 701 year: 2018 ident: 10.1016/j.jclepro.2022.131225_bib49 article-title: Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.159 – volume: 305 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib10 article-title: Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112799 – volume: 390 start-page: 62 year: 2016 ident: 10.1016/j.jclepro.2022.131225_bib25 article-title: Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system publication-title: Desalination doi: 10.1016/j.desal.2016.04.008 – volume: 753 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib36 article-title: Arsenic and fluoride removal by electrocoagulation process: a general review publication-title: Sci. Total Environ. – volume: 26 start-page: 16641 year: 2019 ident: 10.1016/j.jclepro.2022.131225_bib32 article-title: Study on the efficiency of ultrafiltration technology in dealing with sudden cadmium pollution in surface water and ultrafiltration membrane fouling publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04691-4 – volume: 239–240 start-page: 110 year: 2012 ident: 10.1016/j.jclepro.2022.131225_bib48 article-title: Evaluation of optimal reuse system for hydrofluoric acid wastewater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.08.004 – volume: 620 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib30 article-title: Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118831 – volume: 703 year: 2019 ident: 10.1016/j.jclepro.2022.131225_bib6 article-title: Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis publication-title: Sci. Total Environ. – volume: 445 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib2 article-title: Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214037 – volume: 190 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib3 article-title: Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater publication-title: Water Res. – volume: 173 start-page: 25 year: 2005 ident: 10.1016/j.jclepro.2022.131225_bib33 article-title: Removal of fluoride from electronic industrial effluentby RO membrane separation publication-title: Desalination doi: 10.1016/j.desal.2004.07.042 – volume: 313 start-page: 28 year: 2013 ident: 10.1016/j.jclepro.2022.131225_bib22 article-title: Evaluation of new compact pretreatment system for high turbidity seawater: fiber filter and ultrafiltration publication-title: Desalination doi: 10.1016/j.desal.2012.11.031 – volume: 415 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib23 article-title: Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128917 – volume: 376 start-page: 196 year: 2011 ident: 10.1016/j.jclepro.2022.131225_bib43 article-title: Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.020 – volume: 195 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib14 article-title: Membrane fouling performance of Fe-based coagulation-ultrafiltration process: effect of sedimentation time publication-title: Environ. Res. doi: 10.1016/j.envres.2021.110756 – volume: 25 start-page: 1331 year: 2013 ident: 10.1016/j.jclepro.2022.131225_bib21 article-title: A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60204-6 – volume: 132 start-page: 252 year: 2018 ident: 10.1016/j.jclepro.2022.131225_bib1 article-title: Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth publication-title: Water Res. doi: 10.1016/j.watres.2018.01.002 – volume: 25 start-page: 1331 year: 2013 ident: 10.1016/j.jclepro.2022.131225_bib20 article-title: A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60204-6 – volume: 236 year: 2019 ident: 10.1016/j.jclepro.2022.131225_bib12 article-title: Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.019 – volume: 58 start-page: 259 year: 2016 ident: 10.1016/j.jclepro.2022.131225_bib26 article-title: Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2015.05.038 – volume: 252 start-page: 253 year: 2005 ident: 10.1016/j.jclepro.2022.131225_bib38 article-title: Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.12.023 – volume: 39 start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2022.131225_bib29 article-title: Copper wastewater treatment with high concentration in a two-stage crystallization-based combined process publication-title: Environ. Technol. – volume: 241 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib35 article-title: Membrane modification with semiconductor diode laser to reduce membrane biofouling for external MBR system and modelling study publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2020.116747 – volume: 8 year: 2020 ident: 10.1016/j.jclepro.2022.131225_bib16 article-title: Review of fluoride removal from water environment by adsorption publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104516 – volume: 117 start-page: 679 year: 2014 ident: 10.1016/j.jclepro.2022.131225_bib37 article-title: Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.090 – volume: 40 start-page: 7343 year: 2006 ident: 10.1016/j.jclepro.2022.131225_bib42 article-title: Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/es060831q – volume: 361 start-page: 95 year: 2015 ident: 10.1016/j.jclepro.2022.131225_bib40 article-title: Improvement of overall water recovery by increasing RNF with recirculation in a NF–RO integrated membrane process for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2015.01.023 – volume: 499 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib52 article-title: Engineering antifouling reverse osmosis membranes: a review publication-title: Desalination doi: 10.1016/j.desal.2020.114857 – volume: 440 start-page: 111 year: 2018 ident: 10.1016/j.jclepro.2022.131225_bib4 article-title: Integrated UF–NF–RO route for gold mining effluent treatment: from bench-scale to pilot-scale publication-title: Desalination doi: 10.1016/j.desal.2018.02.030 – volume: 280 year: 2021 ident: 10.1016/j.jclepro.2022.131225_bib24 article-title: Fluoride-containing water: a global perspective and a pursuit to sustainable water defluoridation management -An overview publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124236 – volume: 363 start-page: 2 year: 2015 ident: 10.1016/j.jclepro.2022.131225_bib5 article-title: A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants publication-title: Desalination doi: 10.1016/j.desal.2014.03.008 – volume: 220 start-page: 353 year: 2008 ident: 10.1016/j.jclepro.2022.131225_bib18 article-title: Characteristics of RO foulants in a brackish water desalination plant publication-title: Desalination doi: 10.1016/j.desal.2007.01.040 – volume: 53 start-page: 11401 year: 2019 ident: 10.1016/j.jclepro.2022.131225_bib11 article-title: Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03856 – volume: 287 start-page: 83 year: 2016 ident: 10.1016/j.jclepro.2022.131225_bib13 article-title: Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.011 |
SSID | ssj0017074 |
Score | 2.5677018 |
Snippet | The high concentration of fluoride in aqueous, which exacerbated by the discharged wastewater from semiconductor, electroplating, metallurgical and ceramics... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131225 |
SubjectTerms | coagulation crystallization flocculation fluorides High fluoride-containing wastewater humans Membrane fouling Precipitation/crystallization/UF/RO system Recovery rate semiconductors sludge turbidity ultrafiltration wastewater wastewater treatment water content World Health Organization |
Title | An integrated separation technology for high fluoride-containing wastewater treatment: Fluoride removal, membrane fouling behavior and control |
URI | https://dx.doi.org/10.1016/j.jclepro.2022.131225 https://www.proquest.com/docview/2648852914 |
Volume | 349 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOgBlZYKKCBX6rHZxY84MbcV6mpbBJeCxM2yHQftik1W-xA3fgK_mZmNE2hVCYljongUzYxnxuNvZgj5LoQMXmi8dNcqkdyViWPSJUy7UpfOMm8xD3l5pUY38vdtertBzttaGIRVRtvf2PS1tY5v-pGb_dl43P-DGSyVcsXxCj9V2PFTygy1vPfYwTxYdtp0YsZ0F379UsXTn_QmQAwMFRwTOe8xwThOzP6_f_rHUq_dz_Aj2YlxIx00v7ZLNkL1iXx41U3wM3kaVLTr_lDQRWjaetcVXXb5cwoxKsUWxbS8X9XzcRESBKs3YyLog11gLg1YTTsA-hkdxi_pPExrUMwfdBqmcMiuAlBDIPsdbYv9qa0KGtHve-Rm-PP6fJTEcQuJF5IvE1FirUgO1k-JzOqQaa-dh_0KwtMl-P38NC-z1DldOG2d9UG5FCJI6aQV2ivxhWxWdRX2CVWlEj44J6UtJHMcKAkNJxkuhNU2zw-IbJlsfOxFjiMx7k0LOpuYKBuDsjGNbA5Ir1s2a5pxvLUgbyVo_tIqAw7jraXfWokb2HF4jQJ8rVcLg5jAPOWaycP3k_9KtvEJcQgsPSKby_kqHEN4s3Qna_09IVuDXxejq2dLx_3C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoADoqUVz9aVODa7-BFvzA2hrra8LgWJm2U7DtoVm6B9iBs_gd_MzMYJpaqE1Gtsj6IZe2Y8_maGkEMhZPBC46O7Vonkrkgcky5h2hW6cJZ5i3HIyys1uJFnt-ntEjltcmEQVhl1f63TF9o6fulGbnYfhsPub4xgqZQrjk_4qRLL5IOE44ttDDpPLc6D9Y7qUswY78Lpr2k83VFnBNRAU8E9kfMOE4xjy-x_G6i_VPXC_vQ3yUZ0HOlJ_W8fyVIoP5H1P8oJbpHnk5K25R9yOg11Xe-qpLM2gE7BSaVYo5gW9_NqMsxDgmj1uk8EfbRTDKYBr2mLQD-m_TiTTsK4gp35g47DGG7ZZQBqiGS_o022P7VlTiP8_TO56f-8Ph0ksd9C4oXks0QUmCySgfpTomd16GmvnYcDC9LTBRj-7CgreqlzOnfaOuuDcim4kNJJK7RX4gtZKasybBOqCiV8cE5Km0vmOFASGq4yXAirbZbtENkw2fhYjBx7YtybBnU2MlE2BmVjatnskE677KGuxvHegqyRoHmzrQxYjPeWfm8kbuDI4TsK8LWaTw2CArOUayZ3_5_8N7I6uL68MBe_rs73yBqOICiBpftkZTaZhwPwdWbu62IvvwAJ1P9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+separation+technology+for+high+fluoride-containing+wastewater+treatment%3A+Fluoride+removal%2C+membrane+fouling+behavior+and+control&rft.jtitle=Journal+of+cleaner+production&rft.au=Qiu%2C+Yangbo&rft.au=Ren%2C+Long-Fei&rft.au=Shao%2C+Jiahui&rft.au=Xia%2C+Lei&rft.date=2022-05-15&rft.issn=0959-6526&rft.volume=349+p.131225-&rft_id=info:doi/10.1016%2Fj.jclepro.2022.131225&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |