Microstructural development of hypoeutectic Zn–(10–40)wt%Sn solder alloys and impacts of interphase spacing and macrosegregation pattern on hardness

The most relevant range of compositions of Zn–Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification experiments have been carried out with Zn–10, 20, 30 and 40wt%Sn alloys under a wide range of cooling rates (T˙) with a view to investigating t...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 647; pp. 989 - 996
Main Authors Santos, Washington L.R., Brito, Crystopher, Bertelli, Felipe, Spinelli, José E., Garcia, Amauri
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The most relevant range of compositions of Zn–Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification experiments have been carried out with Zn–10, 20, 30 and 40wt%Sn alloys under a wide range of cooling rates (T˙) with a view to investigating the corresponding microstructural evolution. The microstructure is shown to be formed mainly by an alternation of Zn-rich plate-like cells and a eutectic mixture. Morphological instabilities of the Zn-rich plates are shown to start for the lower content Zn–10 and 20wt%Sn alloys, however a microstructural transition of these plates into cylindrical-type horizontal cells can only be found in the microstructure of the 30 and 40wt%Sn alloys. Experimental growth laws are proposed relating the microstructural spacing (λ) to solidification thermal parameters. Hardness (HV) is shown be affected by both the positive segregation of Sn, the alloy volumetric fraction of Zn and λ. Hall-Petch type equations are proposed relating HV to λ. Schematic representation and corresponding SEM sequential images of morphologies of a hypoeutectic Zn–30wt%Sn alloy considering the growth of the α-Zn phase: (a); (d) plate-like aligned cells; (b); (e) wavy lateral instabilities and (c); (f) formation of a sequence of cylinder-like horizontal bars. [Display omitted] •Plate-like cells become horizontal cylindrical-like cells with increasing Sn content.•For Zn(10; 20%)Sn alloys a –1/4 exponent relates λ to the cooling rate.•For Zn(30; 40%)Sn alloys a –1/2 exponent relates λ to the cooling rate.•Hardness depends on the balance between Sn segregation and λ value for DS Zn–Sn alloys.
AbstractList The most relevant range of compositions of Zn-Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification experiments have been carried out with Zn-10, 20, 30 and 40wt%Sn alloys under a wide range of cooling rates (T) with a view to investigating the corresponding microstructural evolution. The microstructure is shown to be formed mainly by an alternation of Zn-rich plate-like cells and a eutectic mixture. Morphological instabilities of the Zn-rich plates are shown to start for the lower content Zn-10 and 20wt%Sn alloys, however a microstructural transition of these plates into cylindrical-type horizontal cells can only be found in the microstructure of the 30 and 40wt%Sn alloys. Experimental growth laws are proposed relating the microstructural spacing ([lambda]) to solidification thermal parameters. Hardness (HV) is shown be affected by both the positive segregation of Sn, the alloy volumetric fraction of Zn and [lambda]. Hall-Petch type equations are proposed relating HV to [lambda].
The most relevant range of compositions of Zn–Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification experiments have been carried out with Zn–10, 20, 30 and 40wt%Sn alloys under a wide range of cooling rates (T˙) with a view to investigating the corresponding microstructural evolution. The microstructure is shown to be formed mainly by an alternation of Zn-rich plate-like cells and a eutectic mixture. Morphological instabilities of the Zn-rich plates are shown to start for the lower content Zn–10 and 20wt%Sn alloys, however a microstructural transition of these plates into cylindrical-type horizontal cells can only be found in the microstructure of the 30 and 40wt%Sn alloys. Experimental growth laws are proposed relating the microstructural spacing (λ) to solidification thermal parameters. Hardness (HV) is shown be affected by both the positive segregation of Sn, the alloy volumetric fraction of Zn and λ. Hall-Petch type equations are proposed relating HV to λ. Schematic representation and corresponding SEM sequential images of morphologies of a hypoeutectic Zn–30wt%Sn alloy considering the growth of the α-Zn phase: (a); (d) plate-like aligned cells; (b); (e) wavy lateral instabilities and (c); (f) formation of a sequence of cylinder-like horizontal bars. [Display omitted] •Plate-like cells become horizontal cylindrical-like cells with increasing Sn content.•For Zn(10; 20%)Sn alloys a –1/4 exponent relates λ to the cooling rate.•For Zn(30; 40%)Sn alloys a –1/2 exponent relates λ to the cooling rate.•Hardness depends on the balance between Sn segregation and λ value for DS Zn–Sn alloys.
Author Bertelli, Felipe
Spinelli, José E.
Garcia, Amauri
Santos, Washington L.R.
Brito, Crystopher
Author_xml – sequence: 1
  givenname: Washington L.R.
  surname: Santos
  fullname: Santos, Washington L.R.
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083 – 970 Campinas, SP, Brazil
– sequence: 2
  givenname: Crystopher
  surname: Brito
  fullname: Brito, Crystopher
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083 – 970 Campinas, SP, Brazil
– sequence: 3
  givenname: Felipe
  surname: Bertelli
  fullname: Bertelli, Felipe
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083 – 970 Campinas, SP, Brazil
– sequence: 4
  givenname: José E.
  surname: Spinelli
  fullname: Spinelli, José E.
  email: spinelli@ufscar.br
  organization: Department of Materials Engineering, Federal University of São Carlos – UFSCar, 13565-905 São Carlos, São Paulo, Brazil
– sequence: 5
  givenname: Amauri
  surname: Garcia
  fullname: Garcia, Amauri
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083 – 970 Campinas, SP, Brazil
BookMark eNqFkb1uHCEURlFkS1nbeYRINJGcYiYwDLOMUkSRlT_JVookTRrEwp1dVgxMgLG1Xd4hTZ7PTxLG6yqNG0DoO_deOGfoxAcPCL2kpKaEdm_29V45p8NYN4TymvCa9vwZWlGxZlXbdf0JWpG-4ZVgQjxHZyntCSG0Z3SF_t5YHUPKcdZ5jsphA7fgwjSCzzgMeHeYAswZdLYa__T3v_9cUlLWlry-y6--eZyCMxBxGSAcElbeYDtOSue00NZniNNOJcCpXFq_fUiMaukJ2whblW3weFK5BD0ux52KxkNKF-h0UC7Bi8f9HP34-OH71efq-uunL1fvryvN2iZXTCtgnGjRNpuGt5ptqDAt7xiYDgZFh3atmoFp2jVmUIQLLTZ0IIIIbpRhmp2jy2PdKYZfM6QsR5s0OKc8hDlJuu5Z0zaCkhJ9e4wu06cIg9Q2PzwgR2WdpEQuPuRePvqQiw9JuCw-Cs3_o6doRxUPT3LvjhyUX7i1EGXSFrwGY2PRIk2wT1T4B1-1sGI
CitedBy_id crossref_primary_10_1016_j_jallcom_2015_11_117
crossref_primary_10_1007_s10854_023_11099_x
crossref_primary_10_1007_s11661_016_3494_7
crossref_primary_10_1007_s42243_020_00365_5
crossref_primary_10_1016_j_jmrt_2020_03_013
crossref_primary_10_1016_j_msea_2019_138323
crossref_primary_10_1002_adem_202401074
crossref_primary_10_1134_S2075113321040407
crossref_primary_10_1016_j_applthermaleng_2016_06_177
crossref_primary_10_1016_j_jallcom_2016_09_003
crossref_primary_10_1007_s10854_018_9176_z
crossref_primary_10_33581_2520_2243_2021_2_44_52
crossref_primary_10_1016_j_matchar_2023_113337
crossref_primary_10_1007_s10854_020_04466_5
crossref_primary_10_1016_j_jmst_2021_01_058
crossref_primary_10_1007_s10854_018_9956_5
crossref_primary_10_1016_j_msea_2019_02_053
crossref_primary_10_1088_2053_1591_ab24f2
crossref_primary_10_1016_j_jallcom_2020_154812
crossref_primary_10_1016_j_microrel_2017_12_029
crossref_primary_10_1002_adem_202201270
crossref_primary_10_1016_j_matchar_2021_110936
crossref_primary_10_1007_s10853_019_04148_6
crossref_primary_10_1016_j_matchar_2023_112977
crossref_primary_10_1007_s10854_018_0352_y
crossref_primary_10_1557_adv_2017_610
Cites_doi 10.1080/14786435.2010.545779
10.1016/j.jallcom.2008.03.026
10.1007/s11664-008-0550-0
10.1016/S0921-5093(01)01649-5
10.1007/s11661-008-9542-1
10.1007/s10854-013-1612-5
10.1016/j.matchemphys.2013.11.030
10.1007/s10854-010-0279-4
10.1007/s11661-008-9536-z
10.1016/j.corsci.2012.05.006
10.2320/matertrans.48.1105
10.1016/S1468-6996(01)00038-9
10.1007/s11664-013-2653-5
10.2320/matertrans.48.584
10.1016/S0921-5093(02)00581-6
10.1016/j.matchemphys.2012.03.057
10.1016/j.matlet.2012.04.095
10.1016/j.microrel.2012.02.018
10.1016/S1359-6454(01)00321-4
10.1016/j.jallcom.2010.07.160
10.1007/s11664-010-1233-1
10.1016/j.mee.2010.12.072
10.1016/j.jallcom.2008.07.021
10.1016/j.msea.2004.01.022
10.1016/j.mseb.2013.11.016
10.1016/S1359-6454(99)00365-1
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2015.05.195
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 996
ExternalDocumentID 10_1016_j_jallcom_2015_05_195
S0925838815300943
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c342t-3cae350c842b254c3b18d4563ed6efa1f47a2f3c162dfa058c8b1f08085dad3c3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Wed Jul 30 11:17:27 EDT 2025
Tue Jul 01 02:08:48 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 23 02:26:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microstructure
Hardness
Zn–Sn solders
Solidification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-3cae350c842b254c3b18d4563ed6efa1f47a2f3c162dfa058c8b1f08085dad3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793242810
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1793242810
crossref_citationtrail_10_1016_j_jallcom_2015_05_195
crossref_primary_10_1016_j_jallcom_2015_05_195
elsevier_sciencedirect_doi_10_1016_j_jallcom_2015_05_195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-25
PublicationDateYYYYMMDD 2015-10-25
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-25
  day: 25
PublicationDecade 2010
PublicationTitle Journal of alloys and compounds
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Che, Zhu, Poh, Zhang, Zhang (bib12) 2010; 507
Spinelli, Garcia (bib14) 2014; 25
Santos, Brito, Quaresma, Spinelli, Garcia (bib11) 2014; 182
Wang, Chen, Li (bib1) 2012; 136
Dias, Brito, Bertelli, Garcia (bib15) 2014; 143
Takahashi, Komatsu, Nishikawa, Takemoto (bib5) 2010; 39
Song, Lin, Hsieh, Pai, Lai, Chiu (bib7) 2013; 42
Goulart, Cruz, Spinelli, Ferreira, Cheung, Garcia (bib20) 2009; 470
Kim, Kim, Kim, Suganuma (bib8) 2009; 38
Brito, Siqueira, Spinelli, Garcia (bib25) 2012; 80
Mahmudi, Eslami (bib6) 2011; 22
Rosa, Spinelli, Ferreira, Garcia (bib19) 2008; 39
Ma, Li, NG, Jones (bib22) 2001; 2
Chidambaram, Hattel, Hald (bib2) 2011; 88
Spinelli, Cheung, Garcia (bib28) 2011; 91
Ma, Li, NG, Jones (bib21) 2000; 48
Matsugi, Sasaki, Yanagisawa, Kumagai, Fujii (bib9) 2007; 48
Rocha, Siqueira, Garcia (bib27) 2003; 347
Lee, Kim, Suganuma, Inoue, Izuta (bib10) 2007; 48
Gunduz, Çardili (bib18) 2002; 327
Jackson, Hunt (bib26) 1966; 236
Xu, Feng, Li, Zhang, Li (bib23) 2002; 50
Wang, Wang, Feng, Ke (bib13) 2012; 63
Canté, Spinelli, Ferreira, Cheung, Garcia (bib17) 2008; 39
Zeng, McDonald, Nogita (bib3) 2012; 52
Musa, Salleh, Saud (bib4) 2013; 795
Xu, Feng, Li, Li (bib24) 2004; 373
Silva, Spinelli, Garcia (bib16) 2009; 475
Gunduz (10.1016/j.jallcom.2015.05.195_bib18) 2002; 327
Ma (10.1016/j.jallcom.2015.05.195_bib21) 2000; 48
Musa (10.1016/j.jallcom.2015.05.195_bib4) 2013; 795
Spinelli (10.1016/j.jallcom.2015.05.195_bib14) 2014; 25
Ma (10.1016/j.jallcom.2015.05.195_bib22) 2001; 2
Xu (10.1016/j.jallcom.2015.05.195_bib24) 2004; 373
Song (10.1016/j.jallcom.2015.05.195_bib7) 2013; 42
Che (10.1016/j.jallcom.2015.05.195_bib12) 2010; 507
Zeng (10.1016/j.jallcom.2015.05.195_bib3) 2012; 52
Canté (10.1016/j.jallcom.2015.05.195_bib17) 2008; 39
Santos (10.1016/j.jallcom.2015.05.195_bib11) 2014; 182
Silva (10.1016/j.jallcom.2015.05.195_bib16) 2009; 475
Wang (10.1016/j.jallcom.2015.05.195_bib1) 2012; 136
Dias (10.1016/j.jallcom.2015.05.195_bib15) 2014; 143
Xu (10.1016/j.jallcom.2015.05.195_bib23) 2002; 50
Kim (10.1016/j.jallcom.2015.05.195_bib8) 2009; 38
Chidambaram (10.1016/j.jallcom.2015.05.195_bib2) 2011; 88
Rocha (10.1016/j.jallcom.2015.05.195_bib27) 2003; 347
Lee (10.1016/j.jallcom.2015.05.195_bib10) 2007; 48
Wang (10.1016/j.jallcom.2015.05.195_bib13) 2012; 63
Jackson (10.1016/j.jallcom.2015.05.195_bib26) 1966; 236
Spinelli (10.1016/j.jallcom.2015.05.195_bib28) 2011; 91
Matsugi (10.1016/j.jallcom.2015.05.195_bib9) 2007; 48
Takahashi (10.1016/j.jallcom.2015.05.195_bib5) 2010; 39
Rosa (10.1016/j.jallcom.2015.05.195_bib19) 2008; 39
Goulart (10.1016/j.jallcom.2015.05.195_bib20) 2009; 470
Brito (10.1016/j.jallcom.2015.05.195_bib25) 2012; 80
Mahmudi (10.1016/j.jallcom.2015.05.195_bib6) 2011; 22
References_xml – volume: 88
  start-page: 981
  year: 2011
  end-page: 989
  ident: bib2
  article-title: High temperature lead-free solder alternatives
  publication-title: Microelectron. Eng.
– volume: 25
  start-page: 478
  year: 2014
  end-page: 486
  ident: bib14
  article-title: Development of solidification microstructure and tensile mechanical properties of Sn–0.7Cu and Sn–0.7Cu–2.0Ag solders
  publication-title: J. Mater. Sci. Mater. Electron
– volume: 80
  start-page: 106
  year: 2012
  end-page: 109
  ident: bib25
  article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–cu alloys on the resulting microhardness
  publication-title: Mater. Lett.
– volume: 38
  start-page: 266
  year: 2009
  end-page: 272
  ident: bib8
  article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders
  publication-title: J. Electron Mater.
– volume: 48
  start-page: 584
  year: 2007
  end-page: 593
  ident: bib10
  article-title: Thermal properties and phase stability of Zn–Sn and Zn–In alloys as high temperature lead-free solder
  publication-title: Mater. Trans.
– volume: 39
  start-page: 2161
  year: 2008
  end-page: 2174
  ident: bib19
  article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys
  publication-title: Metall. Mater. Trans. A
– volume: 182
  start-page: 29
  year: 2014
  end-page: 36
  ident: bib11
  article-title: Plate-like cell growth during directional solidification of a Zn-20wt%Sn high-temperature lead-free solder alloy
  publication-title: Mat. Sci. Eng. B
– volume: 50
  start-page: 183
  year: 2002
  end-page: 193
  ident: bib23
  article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys
  publication-title: Acta Mater.
– volume: 39
  start-page: 1241
  year: 2010
  end-page: 1247
  ident: bib5
  article-title: Improvement of high-temperature performance of Zn-Sn solder joint
  publication-title: J. Electron Mater.
– volume: 63
  start-page: 20
  year: 2012
  end-page: 28
  ident: bib13
  article-title: Effect of Ag
  publication-title: Corros. Sci.
– volume: 327
  start-page: 167
  year: 2002
  end-page: 185
  ident: bib18
  article-title: Directional solidification of aluminium–copper alloys
  publication-title: Mater. Sci. Eng. A
– volume: 143
  start-page: 895
  year: 2014
  end-page: 899
  ident: bib15
  article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified
  publication-title: Mater. Chem. Phys.
– volume: 91
  start-page: 1705
  year: 2011
  end-page: 1723
  ident: bib28
  article-title: On array models theoretical predictions versus measurements for the growth of cells and dendrites in the transient solidification of binary alloys
  publication-title: Philos. Mag.
– volume: 507
  start-page: 215
  year: 2010
  end-page: 224
  ident: bib12
  article-title: The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures
  publication-title: J. Alloy. Compd.
– volume: 2
  start-page: 127
  year: 2001
  end-page: 130
  ident: bib22
  article-title: Unidirectional solidification of a Zn-rich Zn-2.17 wt%Cu hypo-peritectic alloy
  publication-title: Sci. Technol. Adv. Mater.
– volume: 42
  start-page: 2813
  year: 2013
  end-page: 2821
  ident: bib7
  article-title: Ball impact reliabilityof Zn–Sn high-temperature solder joints bonded with different substrates
  publication-title: J. Electron Mater.
– volume: 48
  start-page: 419
  year: 2000
  end-page: 431
  ident: bib21
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. Microstructure selection
  publication-title: Acta Mater.
– volume: 52
  start-page: 1306
  year: 2012
  end-page: 1322
  ident: bib3
  article-title: Development of high-temperature solders: review
  publication-title: Microelectron. Reliab
– volume: 39
  start-page: 1712
  year: 2008
  end-page: 1726
  ident: bib17
  article-title: Microstructural development in Al–Ni alloys directionally solidified under unsteady-state conditions
  publication-title: Metall. Mater. Trans. A
– volume: 373
  start-page: 139
  year: 2004
  end-page: 145
  ident: bib24
  article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification
  publication-title: Mater. Sci. Eng. A
– volume: 795
  start-page: 518
  year: 2013
  end-page: 521
  ident: bib4
  article-title: Zn-based high temperature solder – a short review
  publication-title: Adv. Mat. Res.
– volume: 236
  start-page: 1129
  year: 1966
  end-page: 1142
  ident: bib26
  article-title: Lamellar and rod eutectic growth
  publication-title: Trans. Metall. Soc. AIME
– volume: 136
  start-page: 325
  year: 2012
  end-page: 333
  ident: bib1
  article-title: Interfacial reactions of high-temperature Zn–Sn solders with Ni substrate
  publication-title: Mater. Chem. Phys.
– volume: 347
  start-page: 59
  year: 2003
  end-page: 69
  ident: bib27
  article-title: Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn–Pb alloys
  publication-title: Mater. Sci. Eng. A
– volume: 48
  start-page: 1105
  year: 2007
  end-page: 1112
  ident: bib9
  article-title: Electrical and thermal characteristics of Pb-free Sn–Zn alloys for an AC-low voltage fuse element
  publication-title: Mater. Trans.
– volume: 22
  start-page: 1168
  year: 2011
  end-page: 1172
  ident: bib6
  article-title: Shear strength of the Zn-Sn high-temperature lead-free solders
  publication-title: J. Mater. Sci. Mater. Electron
– volume: 470
  start-page: 589
  year: 2009
  end-page: 599
  ident: bib20
  article-title: Cellular growth during transient solidification of hypoeutectic Al–Fe alloys
  publication-title: J. Alloy. Compd.
– volume: 475
  start-page: 347
  year: 2009
  end-page: 351
  ident: bib16
  article-title: Thermal parameters and microstructure during transient directional solidification of a monotectic Al–Bi alloy
  publication-title: J. Alloy. Compd.
– volume: 236
  start-page: 1129
  year: 1966
  ident: 10.1016/j.jallcom.2015.05.195_bib26
  article-title: Lamellar and rod eutectic growth
  publication-title: Trans. Metall. Soc. AIME
– volume: 91
  start-page: 1705
  year: 2011
  ident: 10.1016/j.jallcom.2015.05.195_bib28
  article-title: On array models theoretical predictions versus measurements for the growth of cells and dendrites in the transient solidification of binary alloys
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2010.545779
– volume: 470
  start-page: 589
  year: 2009
  ident: 10.1016/j.jallcom.2015.05.195_bib20
  article-title: Cellular growth during transient solidification of hypoeutectic Al–Fe alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2008.03.026
– volume: 38
  start-page: 266
  year: 2009
  ident: 10.1016/j.jallcom.2015.05.195_bib8
  article-title: Interfacial reaction and die attach properties of Zn–Sn high-temperature solders
  publication-title: J. Electron Mater.
  doi: 10.1007/s11664-008-0550-0
– volume: 327
  start-page: 167
  year: 2002
  ident: 10.1016/j.jallcom.2015.05.195_bib18
  article-title: Directional solidification of aluminium–copper alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01649-5
– volume: 39
  start-page: 2161
  year: 2008
  ident: 10.1016/j.jallcom.2015.05.195_bib19
  article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9542-1
– volume: 25
  start-page: 478
  year: 2014
  ident: 10.1016/j.jallcom.2015.05.195_bib14
  article-title: Development of solidification microstructure and tensile mechanical properties of Sn–0.7Cu and Sn–0.7Cu–2.0Ag solders
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1007/s10854-013-1612-5
– volume: 143
  start-page: 895
  year: 2014
  ident: 10.1016/j.jallcom.2015.05.195_bib15
  article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.11.030
– volume: 22
  start-page: 1168
  year: 2011
  ident: 10.1016/j.jallcom.2015.05.195_bib6
  article-title: Shear strength of the Zn-Sn high-temperature lead-free solders
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1007/s10854-010-0279-4
– volume: 39
  start-page: 1712
  year: 2008
  ident: 10.1016/j.jallcom.2015.05.195_bib17
  article-title: Microstructural development in Al–Ni alloys directionally solidified under unsteady-state conditions
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-008-9536-z
– volume: 63
  start-page: 20
  year: 2012
  ident: 10.1016/j.jallcom.2015.05.195_bib13
  article-title: Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.05.006
– volume: 48
  start-page: 1105
  year: 2007
  ident: 10.1016/j.jallcom.2015.05.195_bib9
  article-title: Electrical and thermal characteristics of Pb-free Sn–Zn alloys for an AC-low voltage fuse element
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.48.1105
– volume: 2
  start-page: 127
  year: 2001
  ident: 10.1016/j.jallcom.2015.05.195_bib22
  article-title: Unidirectional solidification of a Zn-rich Zn-2.17 wt%Cu hypo-peritectic alloy
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/S1468-6996(01)00038-9
– volume: 42
  start-page: 2813
  year: 2013
  ident: 10.1016/j.jallcom.2015.05.195_bib7
  article-title: Ball impact reliabilityof Zn–Sn high-temperature solder joints bonded with different substrates
  publication-title: J. Electron Mater.
  doi: 10.1007/s11664-013-2653-5
– volume: 48
  start-page: 584
  year: 2007
  ident: 10.1016/j.jallcom.2015.05.195_bib10
  article-title: Thermal properties and phase stability of Zn–Sn and Zn–In alloys as high temperature lead-free solder
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.48.584
– volume: 347
  start-page: 59
  year: 2003
  ident: 10.1016/j.jallcom.2015.05.195_bib27
  article-title: Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn–Pb alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00581-6
– volume: 136
  start-page: 325
  year: 2012
  ident: 10.1016/j.jallcom.2015.05.195_bib1
  article-title: Interfacial reactions of high-temperature Zn–Sn solders with Ni substrate
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.03.057
– volume: 80
  start-page: 106
  year: 2012
  ident: 10.1016/j.jallcom.2015.05.195_bib25
  article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–cu alloys on the resulting microhardness
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.04.095
– volume: 52
  start-page: 1306
  year: 2012
  ident: 10.1016/j.jallcom.2015.05.195_bib3
  article-title: Development of high-temperature solders: review
  publication-title: Microelectron. Reliab
  doi: 10.1016/j.microrel.2012.02.018
– volume: 50
  start-page: 183
  year: 2002
  ident: 10.1016/j.jallcom.2015.05.195_bib23
  article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00321-4
– volume: 507
  start-page: 215
  year: 2010
  ident: 10.1016/j.jallcom.2015.05.195_bib12
  article-title: The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.07.160
– volume: 39
  start-page: 1241
  year: 2010
  ident: 10.1016/j.jallcom.2015.05.195_bib5
  article-title: Improvement of high-temperature performance of Zn-Sn solder joint
  publication-title: J. Electron Mater.
  doi: 10.1007/s11664-010-1233-1
– volume: 88
  start-page: 981
  year: 2011
  ident: 10.1016/j.jallcom.2015.05.195_bib2
  article-title: High temperature lead-free solder alternatives
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2010.12.072
– volume: 475
  start-page: 347
  year: 2009
  ident: 10.1016/j.jallcom.2015.05.195_bib16
  article-title: Thermal parameters and microstructure during transient directional solidification of a monotectic Al–Bi alloy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2008.07.021
– volume: 373
  start-page: 139
  year: 2004
  ident: 10.1016/j.jallcom.2015.05.195_bib24
  article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.01.022
– volume: 182
  start-page: 29
  year: 2014
  ident: 10.1016/j.jallcom.2015.05.195_bib11
  article-title: Plate-like cell growth during directional solidification of a Zn-20wt%Sn high-temperature lead-free solder alloy
  publication-title: Mat. Sci. Eng. B
  doi: 10.1016/j.mseb.2013.11.016
– volume: 48
  start-page: 419
  year: 2000
  ident: 10.1016/j.jallcom.2015.05.195_bib21
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. Microstructure selection
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00365-1
– volume: 795
  start-page: 518
  year: 2013
  ident: 10.1016/j.jallcom.2015.05.195_bib4
  article-title: Zn-based high temperature solder – a short review
  publication-title: Adv. Mat. Res.
SSID ssj0001931
Score 2.319483
Snippet The most relevant range of compositions of Zn–Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification...
The most relevant range of compositions of Zn-Sn high-temperature solder alloys remains between 10 and 40 wt%Sn. Hence, transient directional solidification...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 989
SubjectTerms Alloys
Hardness
Mathematical analysis
Microstructure
Plates
Solders
Solidification
Zinc
Zinc base alloys
Zn–Sn solders
Title Microstructural development of hypoeutectic Zn–(10–40)wt%Sn solder alloys and impacts of interphase spacing and macrosegregation pattern on hardness
URI https://dx.doi.org/10.1016/j.jallcom.2015.05.195
https://www.proquest.com/docview/1793242810
Volume 647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF9KpagPYk-lrVpWUNCH3G2ym9zeYzks15b2pRaKL8vsn7R3XHOHd6X0RfwOvvj5_CTObBJPi1DwJSRhJwmZyfzJ_GaGsbdgC-19gRyQ_SxRpbCJVc4moIUToK23QP87jk-K0Zk6PM_P19iwrYUhWGWj-2udHrV1c6bXvM3efDzunYpBRjk_jd9sxMdRBbvqk5R3v65gHuigxKl5uDih1asqnt6kO4HplEAjaAVzauCZ0piJf9unO5o6mp_9p-xJ4zfyvfrRNtlaqDrs4bAd19Zhj__oLNhhGxHZ6RbP2I9jgtzVbWKpxQb3K5gQn5X88nY-C9eUShg7_rn6-e37-1TgVokPN8t3pxVH4fThC6cE_e2CQ-V5XVm5IOpxxCxeoinkqJoc3juuuAK6Z8BY_iJyns9jG8-K4y6VeZF-fc7O9j9-Go6SZhxD4qTKlol0EGQunFaZxbDSSZtqj_6XDL4IJaSl6kNWSpcWmS9B5Nppm5bokercg5dOvmDr1awKW4wHDJwKVYSQB6kGGnQGqXKgAcqBw5B0m6mWCcY1vcppZMbUtKC0iWl4Z4h3RuQGebfNur_J5nWzjvsIdMth85fUGTQo95G-aSXCIKcpzQJVmF0vDKk8dHx0Knb-__Iv2SM6IiuZ5a_YOkpJeI3uz9LuRvneZQ_2Do5GJ78As8cLPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVKhwQBBAtLwWCSQ4uFl71-7mWEVUKW1yaStVXFb7cpsoOFGTCvXGf-DC7-OXMLO2W0BIlbhYlu3xWv7G8_C8AN4aWyjvC0RA7GSJLLlNrHQ2MYo7bpT11tD_jtG4GJ7IT6f56RoM2loYSqtsZH8t06O0bo70mrfZW0wmvSPezyjmp_Cbjflxd2CdulPlHVjf3T8Yjq8FMtoocXAeXp8QwU0hT2-6PTWzGeWNoCLMqYdnSpMm_q2i_hLWUQPtPYQHjenIduunewRroerCxqCd2NaF-781F-zC3Zjc6ZaP4ceIsu7qTrHUZYP5m0whNi_Z-dViHi4pmjBx7HP189v39ynHreQfvq7eHVUM-dOHC0Yx-qslM5VndXHlkqgnMW3xHLUhQ-nkcO14xRdDawZ0588i-GwRO3lWDHep0otE7BM42ft4PBgmzUSGxAmZrRLhTBA5d0pmFj1LJ2yqPJpgIvgilCYt5Y7JSuHSIvOl4blyyqYlGqUq98YLJ55Cp5pX4RmwgL5TIYsQ8iBkXxmVmVQ6o4wp-w690k2QLQjaNe3KaWrGTLd5aVPdYKcJO81zjdhtwvY12aLu13EbgWoR1n8wnkadchvpm5YjNCJNkRZThfnlUpPUQ9tHpXzr_2__GjaGx6NDfbg_PngO9-gMKc0sfwEd5JjwEq2hlX3VcPsvxAAN8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+development+of+hypoeutectic+Zn%E2%80%93%2810%E2%80%9340%29wt%25Sn+solder+alloys+and+impacts+of+interphase+spacing+and+macrosegregation+pattern+on+hardness&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Santos%2C+Washington+L.R.&rft.au=Brito%2C+Crystopher&rft.au=Bertelli%2C+Felipe&rft.au=Spinelli%2C+Jos%C3%A9+E.&rft.date=2015-10-25&rft.issn=0925-8388&rft.volume=647&rft.spage=989&rft.epage=996&rft_id=info:doi/10.1016%2Fj.jallcom.2015.05.195&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2015_05_195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon