Process integration methods for multi-period carbon trading

Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 447; p. 141131
Main Authors Migo-Sumagang, Maria Victoria, Aviso, Kathleen B., Bandyopadhyay, Santanu, Foo, Dominic C.Y., Tan, Raymond R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy. [Display omitted] •Pinch analysis for optimizing carbon credit trading.•Targets carbon credit import before pinch point.•Graphical and algebraic variants can be used.•Grand composite curve identifies the timing of imports and exports.
AbstractList Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy.
Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy. [Display omitted] •Pinch analysis for optimizing carbon credit trading.•Targets carbon credit import before pinch point.•Graphical and algebraic variants can be used.•Grand composite curve identifies the timing of imports and exports.
ArticleNumber 141131
Author Aviso, Kathleen B.
Migo-Sumagang, Maria Victoria
Tan, Raymond R.
Bandyopadhyay, Santanu
Foo, Dominic C.Y.
Author_xml – sequence: 1
  givenname: Maria Victoria
  orcidid: 0000-0002-0695-4900
  surname: Migo-Sumagang
  fullname: Migo-Sumagang, Maria Victoria
  email: mpmigo@up.edu.ph
  organization: Department of Chemical Engineering, University of the Philippines Los Baños, Laguna, Philippines
– sequence: 2
  givenname: Kathleen B.
  orcidid: 0000-0002-9994-5172
  surname: Aviso
  fullname: Aviso, Kathleen B.
  organization: Department of Chemical Engineering, De La Salle University, Manila, Philippines
– sequence: 3
  givenname: Santanu
  orcidid: 0000-0002-0892-4799
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Santanu
  organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
– sequence: 4
  givenname: Dominic C.Y.
  surname: Foo
  fullname: Foo, Dominic C.Y.
  organization: Centre for Green Technologies/Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, 43500, Semenyih, Selangor, Malaysia
– sequence: 5
  givenname: Raymond R.
  orcidid: 0000-0002-9872-6066
  surname: Tan
  fullname: Tan, Raymond R.
  organization: Department of Chemical Engineering, De La Salle University, Manila, Philippines
BookMark eNqFkLFOwzAURT0UibbwCUgZWRLs2IljdUCogoJUCQaYLcd-KY6SuNguEn9PSjqxdHrDu-dK9yzQbHADIHRDcEYwKe_arNUd7L3LcpyzjDBCKJmhORaFSMsiLy_RIoQWY8IxZ3O0evNOQwiJHSLsvIrWDUkP8dOZkDTOJ_2hizbdg7fOJFr5evxHr4wddlfoolFdgOvTXaKPp8f39XO6fd28rB-2qaYsjylV3AiRKxC5obWgFTBeKyi5pgQzURra0FwQ1mheaaVUZWoiKkwaIepCM06X6HbqHWd9HSBE2dugoevUAO4QJCUFLQnjmI7RYopq70Lw0Mi9t73yP5JgeRQkW3kSJI-C5CRo5Fb_OG3jn4xxq-3O0vcTDaOFbwteBm1h0GCsBx2lcfZMwy8pOYlD
CitedBy_id crossref_primary_10_1016_j_compchemeng_2025_109086
crossref_primary_10_1007_s41660_024_00463_x
crossref_primary_10_1016_j_psep_2024_07_122
Cites_doi 10.1007/s41660-018-0050-5
10.3389/fclim.2022.927408
10.1016/B978-0-443-15274-0.50173-6
10.3389/fclim.2022.1101525
10.1016/j.compchemeng.2023.108478
10.1016/j.ces.2018.06.036
10.1016/j.jclepro.2022.134462
10.1002/aic.10235
10.1002/aic.690350802
10.1002/aic.690240411
10.1016/0098-1354(93)85015-E
10.1016/j.coche.2013.10.003
10.1021/acs.iecr.8b06156
10.1007/s10479-022-04519-4
10.1016/S1359-4311(96)00087-7
10.1016/j.energy.2022.124885
10.1016/j.rser.2018.09.030
10.1016/j.joule.2019.08.008
10.1016/j.energy.2006.09.018
10.1021/ie101472h
10.1016/0009-2509(83)80185-7
10.1007/s10666-020-09734-6
10.1111/j.1744-7976.2005.00022.x
10.1016/j.jclepro.2023.137759
10.1016/B978-0-443-15274-0.50371-1
10.1021/ie051322k
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2024.141131
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jclepro_2024_141131
S095965262400578X
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSH
SSJ
SSR
SSZ
T5K
~G-
29K
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c342t-3a7d992ae92d3b938e47bae67c310496d3f32914fc78caaa8db19801f99b5c473
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Aug 22 20:41:20 EDT 2025
Tue Jul 01 04:42:54 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Fri May 16 00:29:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cap-and-trade
Pinch analysis
Targeting
CO2 emission
Carbon offsets
Decarbonization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-3a7d992ae92d3b938e47bae67c310496d3f32914fc78caaa8db19801f99b5c473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9872-6066
0000-0002-9994-5172
0000-0002-0695-4900
0000-0002-0892-4799
PQID 3153614703
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153614703
crossref_primary_10_1016_j_jclepro_2024_141131
crossref_citationtrail_10_1016_j_jclepro_2024_141131
elsevier_sciencedirect_doi_10_1016_j_jclepro_2024_141131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lakner, Orosz, How, Friedler (bib24) 2023; 42
Klemeš, Varbanov, Walmsley, Jia (bib22) 2018; 98
Manan, Tan, Foo (bib30) 2004; 50
Tan, Foo (bib35) 2007; 32
Hohmann (bib13) 1971
Klemeš (bib18) 2022
Kazi, Faruque Hasan (bib16) 2024; 180
Magenthirarajah, Gamage, Chandrasiri (bib29) 2022
Tsai, Lu, Hsieh (bib38) 2022; 379
Foo, Tan (bib10) 2020
Smith (bib33) 2016
Wang, Zhang, Guo (bib39) 2022; 132790
Klemeš, Varbanov, Fan, Seferlis, Wang, Wang (bib21) 2022; 94
Ipcc (bib15) 2022
Krcmar, Van Kooten (bib23) 2005; 53
Hong, Wang, Zhang, Lim, Varbanov, Jia, Ji, Tao, Li, Wang (bib14) 2023; 415
Hickey, Fankhauser, Smith, Allen (bib12) 2023; 4
Linnhoff, Townsend, Boland (bib28) 1982
Dhole, Linnhoff (bib6) 1993; 17
Abraham, Linke, Al-Mohannadi (bib1) 2023; 52
Lincoln, Kong, Pineda, Walmsley (bib25) 2022; 258
Hashim, Zubir, Kamyab, Zahran (bib11) 2022; 97
Linnhoff, Hindmarsh (bib27) 1983; 38
Daggash, Mac Dowell (bib5) 2019; 3
Linnhoff, Flower (bib26) 1978; 24
Klemeš, Dhole, Raissi, Perry, Puigjaner (bib19) 1997; 17
Choi (bib4) 2023; 52
Babonneau, Bahn, Haurie, Vielle (bib2) 2021; 26
Badri, Bohmert, Evans, Gibbs, Kansy, Mannion, Patel (bib3) 2023
Tsai, Lai, Hsieh (bib37) 2023; 322
Bandyopadhyay, Sahu (bib41) 2010; 49
Thengane, Tan, Foo, Bandyopadhyay (bib36) 2019; 58
Nemet, Isafiade, Klemeš, Kravanja (bib31) 2019; 197
Tan, Bandyopadhyay, Foo (bib34) 2022; 9
Foo, Manan (bib9) 2006; 45
Putra, Juwari, Handogo (bib32) 2018; 2
Foo (bib8) 2012
Klemeš, Kravanja (bib20) 2013; 2
El‐Halwagi, Manousiouthakis (bib7) 1989; 35
Wenger, D'Alessandro, Wright (bib40) 2022; 4
Klemeš (10.1016/j.jclepro.2024.141131_bib18) 2022
Wenger (10.1016/j.jclepro.2024.141131_bib40) 2022; 4
Tsai (10.1016/j.jclepro.2024.141131_bib38) 2022; 379
Bandyopadhyay (10.1016/j.jclepro.2024.141131_bib41) 2010; 49
Kazi (10.1016/j.jclepro.2024.141131_bib16) 2024; 180
Abraham (10.1016/j.jclepro.2024.141131_bib1) 2023; 52
Linnhoff (10.1016/j.jclepro.2024.141131_bib27) 1983; 38
Linnhoff (10.1016/j.jclepro.2024.141131_bib26) 1978; 24
Foo (10.1016/j.jclepro.2024.141131_bib10) 2020
Hickey (10.1016/j.jclepro.2024.141131_bib12) 2023; 4
Klemeš (10.1016/j.jclepro.2024.141131_bib20) 2013; 2
Foo (10.1016/j.jclepro.2024.141131_bib8) 2012
Hashim (10.1016/j.jclepro.2024.141131_bib11) 2022; 97
Smith (10.1016/j.jclepro.2024.141131_bib33) 2016
Choi (10.1016/j.jclepro.2024.141131_bib4) 2023; 52
Klemeš (10.1016/j.jclepro.2024.141131_bib19) 1997; 17
El‐Halwagi (10.1016/j.jclepro.2024.141131_bib7) 1989; 35
Hong (10.1016/j.jclepro.2024.141131_bib14) 2023; 415
Dhole (10.1016/j.jclepro.2024.141131_bib6) 1993; 17
Ipcc (10.1016/j.jclepro.2024.141131_bib15) 2022
Tsai (10.1016/j.jclepro.2024.141131_bib37) 2023; 322
Linnhoff (10.1016/j.jclepro.2024.141131_bib28) 1982
Nemet (10.1016/j.jclepro.2024.141131_bib31) 2019; 197
Manan (10.1016/j.jclepro.2024.141131_bib30) 2004; 50
Klemeš (10.1016/j.jclepro.2024.141131_bib22) 2018; 98
Lakner (10.1016/j.jclepro.2024.141131_bib24) 2023; 42
Wang (10.1016/j.jclepro.2024.141131_bib39) 2022; 132790
Putra (10.1016/j.jclepro.2024.141131_bib32) 2018; 2
Tan (10.1016/j.jclepro.2024.141131_bib35) 2007; 32
Thengane (10.1016/j.jclepro.2024.141131_bib36) 2019; 58
Hohmann (10.1016/j.jclepro.2024.141131_bib13) 1971
Babonneau (10.1016/j.jclepro.2024.141131_bib2) 2021; 26
Daggash (10.1016/j.jclepro.2024.141131_bib5) 2019; 3
Badri (10.1016/j.jclepro.2024.141131_bib3) 2023
Krcmar (10.1016/j.jclepro.2024.141131_bib23) 2005; 53
Magenthirarajah (10.1016/j.jclepro.2024.141131_bib29) 2022
Tan (10.1016/j.jclepro.2024.141131_bib34) 2022; 9
Klemeš (10.1016/j.jclepro.2024.141131_bib21) 2022; 94
Lincoln (10.1016/j.jclepro.2024.141131_bib25) 2022; 258
Foo (10.1016/j.jclepro.2024.141131_bib9) 2006; 45
References_xml – volume: 415
  year: 2023
  ident: bib14
  article-title: Carbon emission pinch analysis for shipping fuel planning considering multiple period and fuel conversion rates
  publication-title: J. Clean. Prod.
– year: 2022
  ident: bib18
  article-title: Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions
– year: 1982
  ident: bib28
  article-title: A User Guide on Process Integration for the Efficient Use of Energy
– volume: 17
  start-page: 993
  year: 1997
  end-page: 1003
  ident: bib19
  article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 2331
  year: 2023
  end-page: 2337
  ident: bib1
  article-title: Incorporating negative emissions technologies with policy instruments for net-zero emissions
  publication-title: Comput. Aided Chem. Eng.
– volume: 4
  year: 2022
  ident: bib40
  article-title: Maximizing global cooling potential in carbon dioxide removal (CDR) procurements: a proposal for tonne-year pricing
  publication-title: Front Clim
– volume: 379
  year: 2022
  ident: bib38
  article-title: Comparison of production decision-making models under carbon tax and carbon rights trading
  publication-title: J. Clean. Prod.
– volume: 2
  start-page: 461
  year: 2013
  end-page: 474
  ident: bib20
  article-title: Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP)
  publication-title: Curr Opin Chem Eng
– volume: 45
  start-page: 5986
  year: 2006
  end-page: 5995
  ident: bib9
  article-title: Setting the minimum utility gas flowrate targets using cascade analysis technique
  publication-title: Ind. Eng. Chem. Res.
– volume: 9
  start-page: 37
  year: 2022
  end-page: 42
  ident: bib34
  article-title: Using pinch analysis to plan peer-to-peer carbon trading
  publication-title: Chem. Eng. Prog.
– volume: 50
  start-page: 3169
  year: 2004
  end-page: 3183
  ident: bib30
  article-title: Targeting the minimum water flow rate using water cascade analysis technique
  publication-title: AIChE J.
– volume: 258
  year: 2022
  ident: bib25
  article-title: Process integration and electrification for efficient milk evaporation systems
  publication-title: Energy
– volume: 42
  year: 2023
  ident: bib24
  article-title: Synthesis of multiperiod heat exchanger networks: n-best networks with variable approach temperature
  publication-title: Therm. Sci. Eng. Prog.
– volume: 132790
  year: 2022
  ident: bib39
  article-title: Graphical approaches for cleaner production and sustainability in process systems
  publication-title: J. Clean. Prod.
– volume: 3
  start-page: 2120
  year: 2019
  end-page: 2133
  ident: bib5
  article-title: Higher carbon prices on emissions alone will not deliver the Paris agreement
  publication-title: Joule
– year: 2020
  ident: bib10
  article-title: Process Integration Approaches to Planning Carbon Management Networks
– volume: 26
  start-page: 969
  year: 2021
  end-page: 984
  ident: bib2
  article-title: An oligopoly game of CDR strategy deployment in a steady-state net-zero emission climate regime
  publication-title: Environ. Model. Assess.
– start-page: 133
  year: 2012
  end-page: 158
  ident: bib8
  article-title: Resource conservation through pinch analysis, techniques
  publication-title: Recent Advances in Sustainable Process Design and Optimization (With Cd-Rom)
– year: 2022
  ident: bib15
  article-title: Summary for policymakers
  publication-title: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 180
  year: 2024
  ident: bib16
  article-title: Optimal and secure peer-to-peer carbon emission trading: a game theory informed framework on blockchain
  publication-title: Comput. Chem. Eng.
– volume: 24
  start-page: 633
  year: 1978
  end-page: 642
  ident: bib26
  article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks
  publication-title: AIChE J.
– year: 2016
  ident: bib33
  article-title: Chemical Process Design and Integration
– start-page: 494
  year: 2022
  end-page: 498
  ident: bib29
  article-title: Carbon emission optimization using linear programming
  publication-title: 4th International Conference on Advancements in Computing, ICAC 2022 - Proceeding
– volume: 4
  year: 2023
  ident: bib12
  article-title: A review of commercialisation mechanisms for carbon dioxide removal
  publication-title: Front. Clim.
– volume: 322
  start-page: 41
  year: 2023
  end-page: 74
  ident: bib37
  article-title: Exploring the impact of different carbon emission cost models on corporate profitability
  publication-title: Ann. Oper. Res.
– volume: 52
  start-page: 1083
  year: 2023
  end-page: 1088
  ident: bib4
  article-title: Modeling of carbon offset networks for process systems to achieve net zero emissions
  publication-title: Computer Aided Chem. Eng.
– volume: 2
  start-page: 321
  year: 2018
  end-page: 341
  ident: bib32
  article-title: Multi Region Carbon Capture and Storage Network in Indonesia Using Pinch Design Method
  publication-title: Process Integr Optim Sustain
– volume: 38
  start-page: 745
  year: 1983
  end-page: 763
  ident: bib27
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chem. Eng. Sci.
– volume: 53
  start-page: 325
  year: 2005
  end-page: 341
  ident: bib23
  article-title: Boreal forest carbon sequestration strategies: a case study of the Little Red River Cree First Nation land tenures
  publication-title: Can. J. Agric. Econ.
– volume: 58
  start-page: 3188
  year: 2019
  end-page: 3198
  ident: bib36
  article-title: A pinch-based approach for targeting carbon capture, utilization, and storage systems
  publication-title: Ind. Eng. Chem. Res.
– volume: 32
  start-page: 1422
  year: 2007
  end-page: 1429
  ident: bib35
  article-title: Pinch analysis approach to carbon-constrained energy sector planning
  publication-title: Energy
– year: 2023
  ident: bib3
  article-title: CO
– volume: 17
  start-page: S101
  year: 1993
  ident: bib6
  article-title: Total site targets for fuel, co-generation, emissions, and cooling
  publication-title: Comput. Chem. Eng.
– volume: 94
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib21
  article-title: Silver ubilee of PRES conferences: contributions to process integration towards sustainability
  publication-title: Chemical Engineering Transactions
– volume: 49
  start-page: 11557
  year: 2010
  end-page: 11563
  ident: bib41
  article-title: Modified problem table algorithm for energy targeting
  publication-title: Ind. Eng. Chem. Res.
– volume: 98
  start-page: 439
  year: 2018
  end-page: 468
  ident: bib22
  article-title: New directions in the implementation of pinch methodology (PM)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 197
  start-page: 432
  year: 2019
  end-page: 448
  ident: bib31
  article-title: Two-step MILP/MINLP approach for the synthesis of large-scale HENs
  publication-title: Chem. Eng. Sci.
– volume: 97
  start-page: 511
  year: 2022
  end-page: 516
  ident: bib11
  article-title: Decarbonisation of the industrial sector through greenhouse gas mitigation, offset, and emission trading schemes
  publication-title: Chem Eng Trans
– volume: 35
  start-page: 1233
  year: 1989
  end-page: 1244
  ident: bib7
  article-title: Synthesis of mass exchange networks
  publication-title: AIChE J.
– year: 1971
  ident: bib13
  article-title: Optimum Networks for Heat Exchange
– volume: 2
  start-page: 321
  year: 2018
  ident: 10.1016/j.jclepro.2024.141131_bib32
  article-title: Multi Region Carbon Capture and Storage Network in Indonesia Using Pinch Design Method
  publication-title: Process Integr Optim Sustain
  doi: 10.1007/s41660-018-0050-5
– year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib3
– volume: 4
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib40
  article-title: Maximizing global cooling potential in carbon dioxide removal (CDR) procurements: a proposal for tonne-year pricing
  publication-title: Front Clim
  doi: 10.3389/fclim.2022.927408
– volume: 52
  start-page: 1083
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib4
  article-title: Modeling of carbon offset networks for process systems to achieve net zero emissions
  publication-title: Computer Aided Chem. Eng.
  doi: 10.1016/B978-0-443-15274-0.50173-6
– start-page: 494
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib29
  article-title: Carbon emission optimization using linear programming
– volume: 4
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib12
  article-title: A review of commercialisation mechanisms for carbon dioxide removal
  publication-title: Front. Clim.
  doi: 10.3389/fclim.2022.1101525
– year: 1982
  ident: 10.1016/j.jclepro.2024.141131_bib28
– volume: 180
  year: 2024
  ident: 10.1016/j.jclepro.2024.141131_bib16
  article-title: Optimal and secure peer-to-peer carbon emission trading: a game theory informed framework on blockchain
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108478
– volume: 197
  start-page: 432
  year: 2019
  ident: 10.1016/j.jclepro.2024.141131_bib31
  article-title: Two-step MILP/MINLP approach for the synthesis of large-scale HENs
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.036
– volume: 379
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib38
  article-title: Comparison of production decision-making models under carbon tax and carbon rights trading
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134462
– volume: 50
  start-page: 3169
  year: 2004
  ident: 10.1016/j.jclepro.2024.141131_bib30
  article-title: Targeting the minimum water flow rate using water cascade analysis technique
  publication-title: AIChE J.
  doi: 10.1002/aic.10235
– volume: 35
  start-page: 1233
  year: 1989
  ident: 10.1016/j.jclepro.2024.141131_bib7
  article-title: Synthesis of mass exchange networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690350802
– year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib18
– volume: 24
  start-page: 633
  year: 1978
  ident: 10.1016/j.jclepro.2024.141131_bib26
  article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690240411
– year: 1971
  ident: 10.1016/j.jclepro.2024.141131_bib13
– year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib15
  article-title: Summary for policymakers
– volume: 94
  start-page: 1
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib21
  article-title: Silver ubilee of PRES conferences: contributions to process integration towards sustainability
  publication-title: Chemical Engineering Transactions
– volume: 17
  start-page: S101
  year: 1993
  ident: 10.1016/j.jclepro.2024.141131_bib6
  article-title: Total site targets for fuel, co-generation, emissions, and cooling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)85015-E
– volume: 2
  start-page: 461
  year: 2013
  ident: 10.1016/j.jclepro.2024.141131_bib20
  article-title: Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP)
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2013.10.003
– volume: 58
  start-page: 3188
  year: 2019
  ident: 10.1016/j.jclepro.2024.141131_bib36
  article-title: A pinch-based approach for targeting carbon capture, utilization, and storage systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b06156
– volume: 132790
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib39
  article-title: Graphical approaches for cleaner production and sustainability in process systems
  publication-title: J. Clean. Prod.
– volume: 322
  start-page: 41
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib37
  article-title: Exploring the impact of different carbon emission cost models on corporate profitability
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-022-04519-4
– start-page: 133
  year: 2012
  ident: 10.1016/j.jclepro.2024.141131_bib8
  article-title: Resource conservation through pinch analysis, techniques
– volume: 17
  start-page: 993
  year: 1997
  ident: 10.1016/j.jclepro.2024.141131_bib19
  article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(96)00087-7
– volume: 42
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib24
  article-title: Synthesis of multiperiod heat exchanger networks: n-best networks with variable approach temperature
  publication-title: Therm. Sci. Eng. Prog.
– volume: 258
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib25
  article-title: Process integration and electrification for efficient milk evaporation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124885
– year: 2020
  ident: 10.1016/j.jclepro.2024.141131_bib10
– volume: 98
  start-page: 439
  year: 2018
  ident: 10.1016/j.jclepro.2024.141131_bib22
  article-title: New directions in the implementation of pinch methodology (PM)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.09.030
– volume: 3
  start-page: 2120
  year: 2019
  ident: 10.1016/j.jclepro.2024.141131_bib5
  article-title: Higher carbon prices on emissions alone will not deliver the Paris agreement
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.008
– volume: 32
  start-page: 1422
  year: 2007
  ident: 10.1016/j.jclepro.2024.141131_bib35
  article-title: Pinch analysis approach to carbon-constrained energy sector planning
  publication-title: Energy
  doi: 10.1016/j.energy.2006.09.018
– volume: 49
  start-page: 11557
  year: 2010
  ident: 10.1016/j.jclepro.2024.141131_bib41
  article-title: Modified problem table algorithm for energy targeting
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101472h
– volume: 38
  start-page: 745
  year: 1983
  ident: 10.1016/j.jclepro.2024.141131_bib27
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(83)80185-7
– volume: 26
  start-page: 969
  year: 2021
  ident: 10.1016/j.jclepro.2024.141131_bib2
  article-title: An oligopoly game of CDR strategy deployment in a steady-state net-zero emission climate regime
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-020-09734-6
– year: 2016
  ident: 10.1016/j.jclepro.2024.141131_bib33
– volume: 9
  start-page: 37
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib34
  article-title: Using pinch analysis to plan peer-to-peer carbon trading
  publication-title: Chem. Eng. Prog.
– volume: 53
  start-page: 325
  year: 2005
  ident: 10.1016/j.jclepro.2024.141131_bib23
  article-title: Boreal forest carbon sequestration strategies: a case study of the Little Red River Cree First Nation land tenures
  publication-title: Can. J. Agric. Econ.
  doi: 10.1111/j.1744-7976.2005.00022.x
– volume: 415
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib14
  article-title: Carbon emission pinch analysis for shipping fuel planning considering multiple period and fuel conversion rates
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.137759
– volume: 97
  start-page: 511
  year: 2022
  ident: 10.1016/j.jclepro.2024.141131_bib11
  article-title: Decarbonisation of the industrial sector through greenhouse gas mitigation, offset, and emission trading schemes
  publication-title: Chem Eng Trans
– volume: 52
  start-page: 2331
  year: 2023
  ident: 10.1016/j.jclepro.2024.141131_bib1
  article-title: Incorporating negative emissions technologies with policy instruments for net-zero emissions
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-443-15274-0.50371-1
– volume: 45
  start-page: 5986
  year: 2006
  ident: 10.1016/j.jclepro.2024.141131_bib9
  article-title: Setting the minimum utility gas flowrate targets using cascade analysis technique
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie051322k
SSID ssj0017074
Score 2.4493406
Snippet Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141131
SubjectTerms Cap-and-trade
carbon
carbon dioxide
Carbon offsets
CO2 emission
Decarbonization
imports
Pinch analysis
Targeting
Title Process integration methods for multi-period carbon trading
URI https://dx.doi.org/10.1016/j.jclepro.2024.141131
https://www.proquest.com/docview/3153614703
Volume 447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jvuiDeMV5GRV87bpc2jT4NIYyFfaig72FNElhQ7qxda_-dr-06byADHzsJaGcfj3f1-TkBKG7WJMcKtssxFixkPFMhEowE7rULqhR_VhXKt9xMpqw52k8baFhsxbGySo999ecXrG1PxN5NKPlbBa9uhGsJCaJU0FC3E3dCnbGXZT3PrYyD8z7tROzG-5yd3-t4onmvTl0BkQFv4mEAWdgTPFf-ekXU1fp5_EIHfq6MRjUj3aMWrY4QQff3ARP0b0X_QeNBQRAHtQ7RK8DqE2DSjwYOmvjhQm0WmVwvVxVIvozNHl8eBuOQr83QqgpI2VIFTdCEGUFMTQTNLWAs7IJ11CvMZEYmlMiMMs1T7VSKjUZFpCNciGyWDNOz1G7WBT2AgWCa5NrbQgxGoonobDFJnUKf2f3Rm0HsQYRqb1xuNu_4l02CrG59EBKB6Ssgeyg3rbZsnbO2NUgbeCWP0JAArvvanrbvB4Jn4eb81CFXWzWkgKjQwUCvHb5_-6v0L47qgU716hdrjb2BmqRMutWwdZFe4Onl9H4E36e3fA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxGA21HtSDuGJdR_CatllmCZ6kWKrWXmyht5BJMtAi09JOr_52v8xSF5CC18kkDG-S973JvHwfQne-pgko2xgTojjmYSywEtxgF9oFM6rt69zlOwh6I_489sc11KnOwjhbZcn9BafnbF1eaZVotuaTSevN7WAFPg2cCxLm3XgLbXNYvq6MQfNj7fMgYbtIxez2u9ztX8d4WtPmFEYDpoLvRMqBNAhh5K8A9Yuq8_jTPUD7pXD0HopnO0Q1mx6hvW_pBI_Rfen696ocEIC5V5SIXnogTr3cPYhdbuOZ8bRaxNCeLXIX_QkadR-HnR4uiyNgzTjNMFOhEYIqK6hhsWCRBaCVDUINgo2LwLCEUUF4osNIK6UiExMB4SgRIvY1D9kpqqez1J4hT4TaJFobSo0G9SQUscREzuLv8r0x20C8QkTqMnO4K2DxLiuL2FSWQEoHpCyAbKDmutu8SJ2xqUNUwS1_zAEJ9L6p6231eiSsD_fTQ6V2tlpKBpQOEgSI7fz_w9-gnd7wtS_7T4OXC7TrWgr3ziWqZ4uVvQJhksXX-cT7BKza334
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+integration+methods+for+multi-period+carbon+trading&rft.jtitle=Journal+of+cleaner+production&rft.au=Migo-Sumagang%2C+Maria+Victoria&rft.au=Aviso%2C+Kathleen+B.&rft.au=Bandyopadhyay%2C+Santanu&rft.au=Foo%2C+Dominic+C.Y.&rft.date=2024-04-01&rft.issn=0959-6526&rft.volume=447+p.141131-&rft_id=info:doi/10.1016%2Fj.jclepro.2024.141131&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon