Process integration methods for multi-period carbon trading
Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions...
Saved in:
Published in | Journal of cleaner production Vol. 447; p. 141131 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy.
[Display omitted]
•Pinch analysis for optimizing carbon credit trading.•Targets carbon credit import before pinch point.•Graphical and algebraic variants can be used.•Grand composite curve identifies the timing of imports and exports. |
---|---|
AbstractList | Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy. Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from firms that perform better than their expected emissions cuts, or from companies that generate carbon dioxide removal using negative emissions technologies. Carbon trading is subject to constraints depending on the rate of generation or consumption of these credits, as well as the timeframe of these flows. In this work, a process integration-based approach is developed for planning carbon trading among corporations. A new pinch analysis methodology is proposed in this work for finding an optimal trading scheme among corporations buying and selling carbon credits. The combination of time intervals during which the credits are generated and purchased by different firms defines a planning horizon within which trading occurs. In the initial targeting step, the overall potential for carbon trading among firms is determined; this step also finds the temporal bottleneck (pinch point), the required import of carbon credits prior to this point in time, and opportunities to export surplus carbon credits afterward. The methodology can be implemented using either a new graphical tool called carbon trading pinch diagram, or the algebraiccarbon trading method. Both approaches lead to the construction of the grand composite curve (GCC), which gives in-depth information about how to meet the targets. Three illustrative case studies show how the methodology can be used to identify targets for performance benchmarking, and generate allocation networks that achieve these targets. The graphical approach generates the composite curves for easy visualization, while the algebraic approach is used for speed and accuracy. [Display omitted] •Pinch analysis for optimizing carbon credit trading.•Targets carbon credit import before pinch point.•Graphical and algebraic variants can be used.•Grand composite curve identifies the timing of imports and exports. |
ArticleNumber | 141131 |
Author | Aviso, Kathleen B. Migo-Sumagang, Maria Victoria Tan, Raymond R. Bandyopadhyay, Santanu Foo, Dominic C.Y. |
Author_xml | – sequence: 1 givenname: Maria Victoria orcidid: 0000-0002-0695-4900 surname: Migo-Sumagang fullname: Migo-Sumagang, Maria Victoria email: mpmigo@up.edu.ph organization: Department of Chemical Engineering, University of the Philippines Los Baños, Laguna, Philippines – sequence: 2 givenname: Kathleen B. orcidid: 0000-0002-9994-5172 surname: Aviso fullname: Aviso, Kathleen B. organization: Department of Chemical Engineering, De La Salle University, Manila, Philippines – sequence: 3 givenname: Santanu orcidid: 0000-0002-0892-4799 surname: Bandyopadhyay fullname: Bandyopadhyay, Santanu organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India – sequence: 4 givenname: Dominic C.Y. surname: Foo fullname: Foo, Dominic C.Y. organization: Centre for Green Technologies/Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, 43500, Semenyih, Selangor, Malaysia – sequence: 5 givenname: Raymond R. orcidid: 0000-0002-9872-6066 surname: Tan fullname: Tan, Raymond R. organization: Department of Chemical Engineering, De La Salle University, Manila, Philippines |
BookMark | eNqFkLFOwzAURT0UibbwCUgZWRLs2IljdUCogoJUCQaYLcd-KY6SuNguEn9PSjqxdHrDu-dK9yzQbHADIHRDcEYwKe_arNUd7L3LcpyzjDBCKJmhORaFSMsiLy_RIoQWY8IxZ3O0evNOQwiJHSLsvIrWDUkP8dOZkDTOJ_2hizbdg7fOJFr5evxHr4wddlfoolFdgOvTXaKPp8f39XO6fd28rB-2qaYsjylV3AiRKxC5obWgFTBeKyi5pgQzURra0FwQ1mheaaVUZWoiKkwaIepCM06X6HbqHWd9HSBE2dugoevUAO4QJCUFLQnjmI7RYopq70Lw0Mi9t73yP5JgeRQkW3kSJI-C5CRo5Fb_OG3jn4xxq-3O0vcTDaOFbwteBm1h0GCsBx2lcfZMwy8pOYlD |
CitedBy_id | crossref_primary_10_1016_j_compchemeng_2025_109086 crossref_primary_10_1007_s41660_024_00463_x crossref_primary_10_1016_j_psep_2024_07_122 |
Cites_doi | 10.1007/s41660-018-0050-5 10.3389/fclim.2022.927408 10.1016/B978-0-443-15274-0.50173-6 10.3389/fclim.2022.1101525 10.1016/j.compchemeng.2023.108478 10.1016/j.ces.2018.06.036 10.1016/j.jclepro.2022.134462 10.1002/aic.10235 10.1002/aic.690350802 10.1002/aic.690240411 10.1016/0098-1354(93)85015-E 10.1016/j.coche.2013.10.003 10.1021/acs.iecr.8b06156 10.1007/s10479-022-04519-4 10.1016/S1359-4311(96)00087-7 10.1016/j.energy.2022.124885 10.1016/j.rser.2018.09.030 10.1016/j.joule.2019.08.008 10.1016/j.energy.2006.09.018 10.1021/ie101472h 10.1016/0009-2509(83)80185-7 10.1007/s10666-020-09734-6 10.1111/j.1744-7976.2005.00022.x 10.1016/j.jclepro.2023.137759 10.1016/B978-0-443-15274-0.50371-1 10.1021/ie051322k |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2024.141131 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jclepro_2024_141131 S095965262400578X |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SEN SES SPC SPCBC SSH SSJ SSR SSZ T5K ~G- 29K AAQXK AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-3a7d992ae92d3b938e47bae67c310496d3f32914fc78caaa8db19801f99b5c473 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Aug 22 20:41:20 EDT 2025 Tue Jul 01 04:42:54 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Fri May 16 00:29:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cap-and-trade Pinch analysis Targeting CO2 emission Carbon offsets Decarbonization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-3a7d992ae92d3b938e47bae67c310496d3f32914fc78caaa8db19801f99b5c473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9872-6066 0000-0002-9994-5172 0000-0002-0695-4900 0000-0002-0892-4799 |
PQID | 3153614703 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153614703 crossref_primary_10_1016_j_jclepro_2024_141131 crossref_citationtrail_10_1016_j_jclepro_2024_141131 elsevier_sciencedirect_doi_10_1016_j_jclepro_2024_141131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lakner, Orosz, How, Friedler (bib24) 2023; 42 Klemeš, Varbanov, Walmsley, Jia (bib22) 2018; 98 Manan, Tan, Foo (bib30) 2004; 50 Tan, Foo (bib35) 2007; 32 Hohmann (bib13) 1971 Klemeš (bib18) 2022 Kazi, Faruque Hasan (bib16) 2024; 180 Magenthirarajah, Gamage, Chandrasiri (bib29) 2022 Tsai, Lu, Hsieh (bib38) 2022; 379 Foo, Tan (bib10) 2020 Smith (bib33) 2016 Wang, Zhang, Guo (bib39) 2022; 132790 Klemeš, Varbanov, Fan, Seferlis, Wang, Wang (bib21) 2022; 94 Ipcc (bib15) 2022 Krcmar, Van Kooten (bib23) 2005; 53 Hong, Wang, Zhang, Lim, Varbanov, Jia, Ji, Tao, Li, Wang (bib14) 2023; 415 Hickey, Fankhauser, Smith, Allen (bib12) 2023; 4 Linnhoff, Townsend, Boland (bib28) 1982 Dhole, Linnhoff (bib6) 1993; 17 Abraham, Linke, Al-Mohannadi (bib1) 2023; 52 Lincoln, Kong, Pineda, Walmsley (bib25) 2022; 258 Hashim, Zubir, Kamyab, Zahran (bib11) 2022; 97 Linnhoff, Hindmarsh (bib27) 1983; 38 Daggash, Mac Dowell (bib5) 2019; 3 Linnhoff, Flower (bib26) 1978; 24 Klemeš, Dhole, Raissi, Perry, Puigjaner (bib19) 1997; 17 Choi (bib4) 2023; 52 Babonneau, Bahn, Haurie, Vielle (bib2) 2021; 26 Badri, Bohmert, Evans, Gibbs, Kansy, Mannion, Patel (bib3) 2023 Tsai, Lai, Hsieh (bib37) 2023; 322 Bandyopadhyay, Sahu (bib41) 2010; 49 Thengane, Tan, Foo, Bandyopadhyay (bib36) 2019; 58 Nemet, Isafiade, Klemeš, Kravanja (bib31) 2019; 197 Tan, Bandyopadhyay, Foo (bib34) 2022; 9 Foo, Manan (bib9) 2006; 45 Putra, Juwari, Handogo (bib32) 2018; 2 Foo (bib8) 2012 Klemeš, Kravanja (bib20) 2013; 2 El‐Halwagi, Manousiouthakis (bib7) 1989; 35 Wenger, D'Alessandro, Wright (bib40) 2022; 4 Klemeš (10.1016/j.jclepro.2024.141131_bib18) 2022 Wenger (10.1016/j.jclepro.2024.141131_bib40) 2022; 4 Tsai (10.1016/j.jclepro.2024.141131_bib38) 2022; 379 Bandyopadhyay (10.1016/j.jclepro.2024.141131_bib41) 2010; 49 Kazi (10.1016/j.jclepro.2024.141131_bib16) 2024; 180 Abraham (10.1016/j.jclepro.2024.141131_bib1) 2023; 52 Linnhoff (10.1016/j.jclepro.2024.141131_bib27) 1983; 38 Linnhoff (10.1016/j.jclepro.2024.141131_bib26) 1978; 24 Foo (10.1016/j.jclepro.2024.141131_bib10) 2020 Hickey (10.1016/j.jclepro.2024.141131_bib12) 2023; 4 Klemeš (10.1016/j.jclepro.2024.141131_bib20) 2013; 2 Foo (10.1016/j.jclepro.2024.141131_bib8) 2012 Hashim (10.1016/j.jclepro.2024.141131_bib11) 2022; 97 Smith (10.1016/j.jclepro.2024.141131_bib33) 2016 Choi (10.1016/j.jclepro.2024.141131_bib4) 2023; 52 Klemeš (10.1016/j.jclepro.2024.141131_bib19) 1997; 17 El‐Halwagi (10.1016/j.jclepro.2024.141131_bib7) 1989; 35 Hong (10.1016/j.jclepro.2024.141131_bib14) 2023; 415 Dhole (10.1016/j.jclepro.2024.141131_bib6) 1993; 17 Ipcc (10.1016/j.jclepro.2024.141131_bib15) 2022 Tsai (10.1016/j.jclepro.2024.141131_bib37) 2023; 322 Linnhoff (10.1016/j.jclepro.2024.141131_bib28) 1982 Nemet (10.1016/j.jclepro.2024.141131_bib31) 2019; 197 Manan (10.1016/j.jclepro.2024.141131_bib30) 2004; 50 Klemeš (10.1016/j.jclepro.2024.141131_bib22) 2018; 98 Lakner (10.1016/j.jclepro.2024.141131_bib24) 2023; 42 Wang (10.1016/j.jclepro.2024.141131_bib39) 2022; 132790 Putra (10.1016/j.jclepro.2024.141131_bib32) 2018; 2 Tan (10.1016/j.jclepro.2024.141131_bib35) 2007; 32 Thengane (10.1016/j.jclepro.2024.141131_bib36) 2019; 58 Hohmann (10.1016/j.jclepro.2024.141131_bib13) 1971 Babonneau (10.1016/j.jclepro.2024.141131_bib2) 2021; 26 Daggash (10.1016/j.jclepro.2024.141131_bib5) 2019; 3 Badri (10.1016/j.jclepro.2024.141131_bib3) 2023 Krcmar (10.1016/j.jclepro.2024.141131_bib23) 2005; 53 Magenthirarajah (10.1016/j.jclepro.2024.141131_bib29) 2022 Tan (10.1016/j.jclepro.2024.141131_bib34) 2022; 9 Klemeš (10.1016/j.jclepro.2024.141131_bib21) 2022; 94 Lincoln (10.1016/j.jclepro.2024.141131_bib25) 2022; 258 Foo (10.1016/j.jclepro.2024.141131_bib9) 2006; 45 |
References_xml | – volume: 415 year: 2023 ident: bib14 article-title: Carbon emission pinch analysis for shipping fuel planning considering multiple period and fuel conversion rates publication-title: J. Clean. Prod. – year: 2022 ident: bib18 article-title: Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions – year: 1982 ident: bib28 article-title: A User Guide on Process Integration for the Efficient Use of Energy – volume: 17 start-page: 993 year: 1997 end-page: 1003 ident: bib19 article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites publication-title: Appl. Therm. Eng. – volume: 52 start-page: 2331 year: 2023 end-page: 2337 ident: bib1 article-title: Incorporating negative emissions technologies with policy instruments for net-zero emissions publication-title: Comput. Aided Chem. Eng. – volume: 4 year: 2022 ident: bib40 article-title: Maximizing global cooling potential in carbon dioxide removal (CDR) procurements: a proposal for tonne-year pricing publication-title: Front Clim – volume: 379 year: 2022 ident: bib38 article-title: Comparison of production decision-making models under carbon tax and carbon rights trading publication-title: J. Clean. Prod. – volume: 2 start-page: 461 year: 2013 end-page: 474 ident: bib20 article-title: Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP) publication-title: Curr Opin Chem Eng – volume: 45 start-page: 5986 year: 2006 end-page: 5995 ident: bib9 article-title: Setting the minimum utility gas flowrate targets using cascade analysis technique publication-title: Ind. Eng. Chem. Res. – volume: 9 start-page: 37 year: 2022 end-page: 42 ident: bib34 article-title: Using pinch analysis to plan peer-to-peer carbon trading publication-title: Chem. Eng. Prog. – volume: 50 start-page: 3169 year: 2004 end-page: 3183 ident: bib30 article-title: Targeting the minimum water flow rate using water cascade analysis technique publication-title: AIChE J. – volume: 258 year: 2022 ident: bib25 article-title: Process integration and electrification for efficient milk evaporation systems publication-title: Energy – volume: 42 year: 2023 ident: bib24 article-title: Synthesis of multiperiod heat exchanger networks: n-best networks with variable approach temperature publication-title: Therm. Sci. Eng. Prog. – volume: 132790 year: 2022 ident: bib39 article-title: Graphical approaches for cleaner production and sustainability in process systems publication-title: J. Clean. Prod. – volume: 3 start-page: 2120 year: 2019 end-page: 2133 ident: bib5 article-title: Higher carbon prices on emissions alone will not deliver the Paris agreement publication-title: Joule – year: 2020 ident: bib10 article-title: Process Integration Approaches to Planning Carbon Management Networks – volume: 26 start-page: 969 year: 2021 end-page: 984 ident: bib2 article-title: An oligopoly game of CDR strategy deployment in a steady-state net-zero emission climate regime publication-title: Environ. Model. Assess. – start-page: 133 year: 2012 end-page: 158 ident: bib8 article-title: Resource conservation through pinch analysis, techniques publication-title: Recent Advances in Sustainable Process Design and Optimization (With Cd-Rom) – year: 2022 ident: bib15 article-title: Summary for policymakers publication-title: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 180 year: 2024 ident: bib16 article-title: Optimal and secure peer-to-peer carbon emission trading: a game theory informed framework on blockchain publication-title: Comput. Chem. Eng. – volume: 24 start-page: 633 year: 1978 end-page: 642 ident: bib26 article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks publication-title: AIChE J. – year: 2016 ident: bib33 article-title: Chemical Process Design and Integration – start-page: 494 year: 2022 end-page: 498 ident: bib29 article-title: Carbon emission optimization using linear programming publication-title: 4th International Conference on Advancements in Computing, ICAC 2022 - Proceeding – volume: 4 year: 2023 ident: bib12 article-title: A review of commercialisation mechanisms for carbon dioxide removal publication-title: Front. Clim. – volume: 322 start-page: 41 year: 2023 end-page: 74 ident: bib37 article-title: Exploring the impact of different carbon emission cost models on corporate profitability publication-title: Ann. Oper. Res. – volume: 52 start-page: 1083 year: 2023 end-page: 1088 ident: bib4 article-title: Modeling of carbon offset networks for process systems to achieve net zero emissions publication-title: Computer Aided Chem. Eng. – volume: 2 start-page: 321 year: 2018 end-page: 341 ident: bib32 article-title: Multi Region Carbon Capture and Storage Network in Indonesia Using Pinch Design Method publication-title: Process Integr Optim Sustain – volume: 38 start-page: 745 year: 1983 end-page: 763 ident: bib27 article-title: The pinch design method for heat exchanger networks publication-title: Chem. Eng. Sci. – volume: 53 start-page: 325 year: 2005 end-page: 341 ident: bib23 article-title: Boreal forest carbon sequestration strategies: a case study of the Little Red River Cree First Nation land tenures publication-title: Can. J. Agric. Econ. – volume: 58 start-page: 3188 year: 2019 end-page: 3198 ident: bib36 article-title: A pinch-based approach for targeting carbon capture, utilization, and storage systems publication-title: Ind. Eng. Chem. Res. – volume: 32 start-page: 1422 year: 2007 end-page: 1429 ident: bib35 article-title: Pinch analysis approach to carbon-constrained energy sector planning publication-title: Energy – year: 2023 ident: bib3 article-title: CO – volume: 17 start-page: S101 year: 1993 ident: bib6 article-title: Total site targets for fuel, co-generation, emissions, and cooling publication-title: Comput. Chem. Eng. – volume: 94 start-page: 1 year: 2022 end-page: 12 ident: bib21 article-title: Silver ubilee of PRES conferences: contributions to process integration towards sustainability publication-title: Chemical Engineering Transactions – volume: 49 start-page: 11557 year: 2010 end-page: 11563 ident: bib41 article-title: Modified problem table algorithm for energy targeting publication-title: Ind. Eng. Chem. Res. – volume: 98 start-page: 439 year: 2018 end-page: 468 ident: bib22 article-title: New directions in the implementation of pinch methodology (PM) publication-title: Renew. Sustain. Energy Rev. – volume: 197 start-page: 432 year: 2019 end-page: 448 ident: bib31 article-title: Two-step MILP/MINLP approach for the synthesis of large-scale HENs publication-title: Chem. Eng. Sci. – volume: 97 start-page: 511 year: 2022 end-page: 516 ident: bib11 article-title: Decarbonisation of the industrial sector through greenhouse gas mitigation, offset, and emission trading schemes publication-title: Chem Eng Trans – volume: 35 start-page: 1233 year: 1989 end-page: 1244 ident: bib7 article-title: Synthesis of mass exchange networks publication-title: AIChE J. – year: 1971 ident: bib13 article-title: Optimum Networks for Heat Exchange – volume: 2 start-page: 321 year: 2018 ident: 10.1016/j.jclepro.2024.141131_bib32 article-title: Multi Region Carbon Capture and Storage Network in Indonesia Using Pinch Design Method publication-title: Process Integr Optim Sustain doi: 10.1007/s41660-018-0050-5 – year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib3 – volume: 4 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib40 article-title: Maximizing global cooling potential in carbon dioxide removal (CDR) procurements: a proposal for tonne-year pricing publication-title: Front Clim doi: 10.3389/fclim.2022.927408 – volume: 52 start-page: 1083 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib4 article-title: Modeling of carbon offset networks for process systems to achieve net zero emissions publication-title: Computer Aided Chem. Eng. doi: 10.1016/B978-0-443-15274-0.50173-6 – start-page: 494 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib29 article-title: Carbon emission optimization using linear programming – volume: 4 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib12 article-title: A review of commercialisation mechanisms for carbon dioxide removal publication-title: Front. Clim. doi: 10.3389/fclim.2022.1101525 – year: 1982 ident: 10.1016/j.jclepro.2024.141131_bib28 – volume: 180 year: 2024 ident: 10.1016/j.jclepro.2024.141131_bib16 article-title: Optimal and secure peer-to-peer carbon emission trading: a game theory informed framework on blockchain publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108478 – volume: 197 start-page: 432 year: 2019 ident: 10.1016/j.jclepro.2024.141131_bib31 article-title: Two-step MILP/MINLP approach for the synthesis of large-scale HENs publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.036 – volume: 379 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib38 article-title: Comparison of production decision-making models under carbon tax and carbon rights trading publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134462 – volume: 50 start-page: 3169 year: 2004 ident: 10.1016/j.jclepro.2024.141131_bib30 article-title: Targeting the minimum water flow rate using water cascade analysis technique publication-title: AIChE J. doi: 10.1002/aic.10235 – volume: 35 start-page: 1233 year: 1989 ident: 10.1016/j.jclepro.2024.141131_bib7 article-title: Synthesis of mass exchange networks publication-title: AIChE J. doi: 10.1002/aic.690350802 – year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib18 – volume: 24 start-page: 633 year: 1978 ident: 10.1016/j.jclepro.2024.141131_bib26 article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks publication-title: AIChE J. doi: 10.1002/aic.690240411 – year: 1971 ident: 10.1016/j.jclepro.2024.141131_bib13 – year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib15 article-title: Summary for policymakers – volume: 94 start-page: 1 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib21 article-title: Silver ubilee of PRES conferences: contributions to process integration towards sustainability publication-title: Chemical Engineering Transactions – volume: 17 start-page: S101 year: 1993 ident: 10.1016/j.jclepro.2024.141131_bib6 article-title: Total site targets for fuel, co-generation, emissions, and cooling publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)85015-E – volume: 2 start-page: 461 year: 2013 ident: 10.1016/j.jclepro.2024.141131_bib20 article-title: Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP) publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2013.10.003 – volume: 58 start-page: 3188 year: 2019 ident: 10.1016/j.jclepro.2024.141131_bib36 article-title: A pinch-based approach for targeting carbon capture, utilization, and storage systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b06156 – volume: 132790 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib39 article-title: Graphical approaches for cleaner production and sustainability in process systems publication-title: J. Clean. Prod. – volume: 322 start-page: 41 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib37 article-title: Exploring the impact of different carbon emission cost models on corporate profitability publication-title: Ann. Oper. Res. doi: 10.1007/s10479-022-04519-4 – start-page: 133 year: 2012 ident: 10.1016/j.jclepro.2024.141131_bib8 article-title: Resource conservation through pinch analysis, techniques – volume: 17 start-page: 993 year: 1997 ident: 10.1016/j.jclepro.2024.141131_bib19 article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(96)00087-7 – volume: 42 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib24 article-title: Synthesis of multiperiod heat exchanger networks: n-best networks with variable approach temperature publication-title: Therm. Sci. Eng. Prog. – volume: 258 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib25 article-title: Process integration and electrification for efficient milk evaporation systems publication-title: Energy doi: 10.1016/j.energy.2022.124885 – year: 2020 ident: 10.1016/j.jclepro.2024.141131_bib10 – volume: 98 start-page: 439 year: 2018 ident: 10.1016/j.jclepro.2024.141131_bib22 article-title: New directions in the implementation of pinch methodology (PM) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.09.030 – volume: 3 start-page: 2120 year: 2019 ident: 10.1016/j.jclepro.2024.141131_bib5 article-title: Higher carbon prices on emissions alone will not deliver the Paris agreement publication-title: Joule doi: 10.1016/j.joule.2019.08.008 – volume: 32 start-page: 1422 year: 2007 ident: 10.1016/j.jclepro.2024.141131_bib35 article-title: Pinch analysis approach to carbon-constrained energy sector planning publication-title: Energy doi: 10.1016/j.energy.2006.09.018 – volume: 49 start-page: 11557 year: 2010 ident: 10.1016/j.jclepro.2024.141131_bib41 article-title: Modified problem table algorithm for energy targeting publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101472h – volume: 38 start-page: 745 year: 1983 ident: 10.1016/j.jclepro.2024.141131_bib27 article-title: The pinch design method for heat exchanger networks publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(83)80185-7 – volume: 26 start-page: 969 year: 2021 ident: 10.1016/j.jclepro.2024.141131_bib2 article-title: An oligopoly game of CDR strategy deployment in a steady-state net-zero emission climate regime publication-title: Environ. Model. Assess. doi: 10.1007/s10666-020-09734-6 – year: 2016 ident: 10.1016/j.jclepro.2024.141131_bib33 – volume: 9 start-page: 37 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib34 article-title: Using pinch analysis to plan peer-to-peer carbon trading publication-title: Chem. Eng. Prog. – volume: 53 start-page: 325 year: 2005 ident: 10.1016/j.jclepro.2024.141131_bib23 article-title: Boreal forest carbon sequestration strategies: a case study of the Little Red River Cree First Nation land tenures publication-title: Can. J. Agric. Econ. doi: 10.1111/j.1744-7976.2005.00022.x – volume: 415 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib14 article-title: Carbon emission pinch analysis for shipping fuel planning considering multiple period and fuel conversion rates publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137759 – volume: 97 start-page: 511 year: 2022 ident: 10.1016/j.jclepro.2024.141131_bib11 article-title: Decarbonisation of the industrial sector through greenhouse gas mitigation, offset, and emission trading schemes publication-title: Chem Eng Trans – volume: 52 start-page: 2331 year: 2023 ident: 10.1016/j.jclepro.2024.141131_bib1 article-title: Incorporating negative emissions technologies with policy instruments for net-zero emissions publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-443-15274-0.50371-1 – volume: 45 start-page: 5986 year: 2006 ident: 10.1016/j.jclepro.2024.141131_bib9 article-title: Setting the minimum utility gas flowrate targets using cascade analysis technique publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051322k |
SSID | ssj0017074 |
Score | 2.4493406 |
Snippet | Emissions trading is one of the strategies that may be adopted by corporations seeking to reduce their carbon footprints. Carbon credits can be purchased from... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141131 |
SubjectTerms | Cap-and-trade carbon carbon dioxide Carbon offsets CO2 emission Decarbonization imports Pinch analysis Targeting |
Title | Process integration methods for multi-period carbon trading |
URI | https://dx.doi.org/10.1016/j.jclepro.2024.141131 https://www.proquest.com/docview/3153614703 |
Volume | 447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jvuiDeMV5GRV87bpc2jT4NIYyFfaig72FNElhQ7qxda_-dr-06byADHzsJaGcfj3f1-TkBKG7WJMcKtssxFixkPFMhEowE7rULqhR_VhXKt9xMpqw52k8baFhsxbGySo999ecXrG1PxN5NKPlbBa9uhGsJCaJU0FC3E3dCnbGXZT3PrYyD8z7tROzG-5yd3-t4onmvTl0BkQFv4mEAWdgTPFf-ekXU1fp5_EIHfq6MRjUj3aMWrY4QQff3ARP0b0X_QeNBQRAHtQ7RK8DqE2DSjwYOmvjhQm0WmVwvVxVIvozNHl8eBuOQr83QqgpI2VIFTdCEGUFMTQTNLWAs7IJ11CvMZEYmlMiMMs1T7VSKjUZFpCNciGyWDNOz1G7WBT2AgWCa5NrbQgxGoonobDFJnUKf2f3Rm0HsQYRqb1xuNu_4l02CrG59EBKB6Ssgeyg3rbZsnbO2NUgbeCWP0JAArvvanrbvB4Jn4eb81CFXWzWkgKjQwUCvHb5_-6v0L47qgU716hdrjb2BmqRMutWwdZFe4Onl9H4E36e3fA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxGA21HtSDuGJdR_CatllmCZ6kWKrWXmyht5BJMtAi09JOr_52v8xSF5CC18kkDG-S973JvHwfQne-pgko2xgTojjmYSywEtxgF9oFM6rt69zlOwh6I_489sc11KnOwjhbZcn9BafnbF1eaZVotuaTSevN7WAFPg2cCxLm3XgLbXNYvq6MQfNj7fMgYbtIxez2u9ztX8d4WtPmFEYDpoLvRMqBNAhh5K8A9Yuq8_jTPUD7pXD0HopnO0Q1mx6hvW_pBI_Rfen696ocEIC5V5SIXnogTr3cPYhdbuOZ8bRaxNCeLXIX_QkadR-HnR4uiyNgzTjNMFOhEYIqK6hhsWCRBaCVDUINgo2LwLCEUUF4osNIK6UiExMB4SgRIvY1D9kpqqez1J4hT4TaJFobSo0G9SQUscREzuLv8r0x20C8QkTqMnO4K2DxLiuL2FSWQEoHpCyAbKDmutu8SJ2xqUNUwS1_zAEJ9L6p6231eiSsD_fTQ6V2tlpKBpQOEgSI7fz_w9-gnd7wtS_7T4OXC7TrWgr3ziWqZ4uVvQJhksXX-cT7BKza334 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+integration+methods+for+multi-period+carbon+trading&rft.jtitle=Journal+of+cleaner+production&rft.au=Migo-Sumagang%2C+Maria+Victoria&rft.au=Aviso%2C+Kathleen+B.&rft.au=Bandyopadhyay%2C+Santanu&rft.au=Foo%2C+Dominic+C.Y.&rft.date=2024-04-01&rft.issn=0959-6526&rft.volume=447+p.141131-&rft_id=info:doi/10.1016%2Fj.jclepro.2024.141131&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |