Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints
Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. Th...
Saved in:
Published in | Journal of cleaner production Vol. 245; p. 118714 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. This work establishes a dual-objective optimization model for the selection of milling parameters such that power consumption and process time are minimized. With multiple constraints of milling processing conditions, an improved artificial bee colony (ABC) intelligent algorithm is used to handle the proposed dual-objective optimization model. Compared with the non-dominated sorting genetic algorithm (NSGA-II), our improved algorithm has good performance. |
---|---|
AbstractList | Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. This work establishes a dual-objective optimization model for the selection of milling parameters such that power consumption and process time are minimized. With multiple constraints of milling processing conditions, an improved artificial bee colony (ABC) intelligent algorithm is used to handle the proposed dual-objective optimization model. Compared with the non-dominated sorting genetic algorithm (NSGA-II), our improved algorithm has good performance. |
ArticleNumber | 118714 |
Author | Chen, Maoning Tao, Fei Tian, Guangdong Li, Zhiwu AI-Ahmari, Abdulraham Zhang, Chaoyong Jiang, Zhigang Wang, Wenjie |
Author_xml | – sequence: 1 givenname: Wenjie surname: Wang fullname: Wang, Wenjie organization: School of Mechanical Engineering, Shandong University, Jinan, 250061, China – sequence: 2 givenname: Guangdong surname: Tian fullname: Tian, Guangdong email: tiangd2013@163.com organization: School of Mechanical Engineering, Shandong University, Jinan, 250061, China – sequence: 3 givenname: Maoning surname: Chen fullname: Chen, Maoning organization: Faculty of Robotics Science and Engineering, Northeastern University, Shenyang, 110004, China – sequence: 4 givenname: Fei surname: Tao fullname: Tao, Fei organization: Institute of Science and Technology, Beihang University, Beijing, 100191, China – sequence: 5 givenname: Chaoyong surname: Zhang fullname: Zhang, Chaoyong organization: State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China – sequence: 6 givenname: Abdulraham surname: AI-Ahmari fullname: AI-Ahmari, Abdulraham organization: Advanced Manufacturing Institute, King Saud University, Riyadh, 11421, Saudi Arabia – sequence: 7 givenname: Zhiwu surname: Li fullname: Li, Zhiwu organization: Institute of Systems Engineering, Macau University of Science and Technology, Taipa, 999078, Macau, China – sequence: 8 givenname: Zhigang surname: Jiang fullname: Jiang, Zhigang organization: College of Machinery and Automation, Wuhan University of Science & Technology, Wuhan, 430081, China |
BookMark | eNqFkc1uFDEQhC0UJDYhj4DkI5fZ2PM_4oBQgBApEhdytnrtnqVHHnuwPStt3oP3xZvNiUtOLUtdn7uqLtmF8w4Z-yDFVgrZ3kzbSVtcgt-WQg5bKftO1m_YJs-hkF3fXrCNGJqhaJuyfccuY5yEkJ3o6g37-3UFW_jdhDrRAXmm7APMHJzhNOfXAQ2HkGgkTWD5DpFrb7078tEHnn4j90uimZ4gkXfcjxwdhv2x0N5FTX6NfCZrye35ApmMCUPkcX3-kSfP59UmWuwJ62IKQC7F9-ztCDbi9cu8Yo_fv_26_VE8_Ly7v_3yUOiqLlNRNVAZ0dZtXYEAXZtaShhBCNMPfbnTY91rrcdGozG4EwZawHbExgxDBwPU1RX7eOZmo39WjEnNFDVaCw7z5aqsqkaWQytFXv10XtXBxxhwVJrSs-fTzVZJoU5lqEm9lKFOZahzGVnd_KdeAs0Qjq_qPp91mFM4EAaVM0WXDVHI-Snj6RXCP_nDr4E |
CitedBy_id | crossref_primary_10_3390_buildings12101677 crossref_primary_10_1007_s10668_022_02599_7 crossref_primary_10_1016_j_energy_2024_132556 crossref_primary_10_1109_ACCESS_2020_3008443 crossref_primary_10_1109_ACCESS_2020_3022947 crossref_primary_10_1007_s11356_021_17445_y crossref_primary_10_1007_s11356_023_25599_0 crossref_primary_10_1007_s13762_021_03576_9 crossref_primary_10_1016_j_jclepro_2020_125287 crossref_primary_10_1016_j_energy_2023_127046 crossref_primary_10_1016_j_energy_2023_127244 crossref_primary_10_1016_j_jclepro_2021_127466 crossref_primary_10_1109_ACCESS_2020_3004447 crossref_primary_10_1007_s11356_021_16234_x crossref_primary_10_1007_s11831_025_10269_w crossref_primary_10_1109_ACCESS_2020_3045980 crossref_primary_10_1007_s00170_022_10626_0 crossref_primary_10_1007_s11356_021_15581_z crossref_primary_10_1109_TCYB_2020_3042896 crossref_primary_10_3390_app11167366 crossref_primary_10_3390_app11146466 crossref_primary_10_3390_ma17164093 crossref_primary_10_1007_s40430_024_04740_1 crossref_primary_10_3390_app11125642 crossref_primary_10_3390_machines12090635 crossref_primary_10_1007_s11356_021_16303_1 crossref_primary_10_1109_ACCESS_2020_3010376 crossref_primary_10_3390_sym13040663 crossref_primary_10_1109_ACCESS_2020_3016959 crossref_primary_10_1016_j_cie_2021_107456 crossref_primary_10_1016_j_cie_2021_107810 crossref_primary_10_3390_sym15020558 crossref_primary_10_1007_s41315_024_00338_x crossref_primary_10_1007_s00170_021_08273_y crossref_primary_10_1177_16878140211051220 crossref_primary_10_1007_s40436_021_00349_y crossref_primary_10_3390_mi14081578 crossref_primary_10_1109_ACCESS_2020_3001279 crossref_primary_10_1109_TASE_2020_3014907 crossref_primary_10_1109_ACCESS_2020_3023961 crossref_primary_10_1007_s00500_024_09819_4 crossref_primary_10_1109_ACCESS_2020_3011509 crossref_primary_10_1016_j_est_2021_103717 crossref_primary_10_1155_2021_2919073 crossref_primary_10_3390_electronics12163387 crossref_primary_10_3390_en14238125 crossref_primary_10_1109_TASE_2021_3126077 crossref_primary_10_3390_app13169392 crossref_primary_10_1109_ACCESS_2020_3038801 crossref_primary_10_1007_s12008_022_01130_6 crossref_primary_10_1016_j_engappai_2021_104324 crossref_primary_10_1016_j_enconman_2023_117069 crossref_primary_10_1016_j_jmsy_2024_11_013 crossref_primary_10_1080_15397734_2024_2377257 crossref_primary_10_1177_16878140211023603 crossref_primary_10_3390_math11061557 crossref_primary_10_1007_s00170_023_10927_y crossref_primary_10_1016_j_compeleceng_2024_109813 crossref_primary_10_3390_sym14010171 crossref_primary_10_1007_s10845_021_01837_5 crossref_primary_10_1016_j_asoc_2023_110330 crossref_primary_10_21597_jist_939332 crossref_primary_10_1016_j_heliyon_2022_e11629 crossref_primary_10_1016_j_jmrt_2022_10_060 crossref_primary_10_1016_j_cej_2024_156306 crossref_primary_10_1007_s00170_021_07804_x crossref_primary_10_3390_machines10100923 crossref_primary_10_1016_j_cie_2023_109111 crossref_primary_10_1016_j_rcim_2022_102509 crossref_primary_10_1007_s11465_022_0703_5 crossref_primary_10_1109_ACCESS_2020_3015601 crossref_primary_10_3934_jimo_2021005 crossref_primary_10_1109_ACCESS_2020_3014396 crossref_primary_10_3390_systems10050180 crossref_primary_10_1007_s13042_021_01326_4 crossref_primary_10_3390_pr10010098 crossref_primary_10_1109_ACCESS_2021_3070981 crossref_primary_10_1016_j_simpat_2022_102575 crossref_primary_10_1109_ACCESS_2020_3005529 crossref_primary_10_1007_s11356_021_17292_x crossref_primary_10_1007_s40684_021_00413_9 crossref_primary_10_3390_pr10101998 crossref_primary_10_1016_j_jii_2021_100220 crossref_primary_10_1007_s00170_021_07646_7 crossref_primary_10_1007_s00170_021_07228_7 |
Cites_doi | 10.1016/j.rcim.2018.12.020 10.1016/j.ins.2018.05.009 10.1016/j.ins.2017.07.011 10.1016/j.cie.2018.07.009 10.1007/s10845-016-1233-y 10.1016/j.jclepro.2018.07.258 10.1177/0954405416629098 10.1016/j.jclepro.2013.02.030 10.1109/TII.2018.2884845 10.1177/0954405413508945 10.1016/j.swevo.2011.08.001 10.1016/j.jclepro.2016.04.012 10.1109/TII.2017.2682855 10.1016/j.ins.2012.07.012 10.1016/j.jclepro.2012.08.008 10.1016/j.engappai.2018.04.009 10.1007/s10845-016-1210-5 10.1016/j.jclepro.2017.08.022 10.3390/app9050957 10.1016/j.ins.2019.05.014 10.1109/TCYB.2014.2309478 10.1109/TNNLS.2014.2298402 10.1016/j.ins.2018.12.071 10.1016/j.esr.2017.09.016 10.1016/j.jclepro.2017.05.013 10.1109/TSMC.2019.2906635 10.1007/s001700300000 10.1016/j.swevo.2011.10.001 10.3901/JME.2012.21.132 10.1016/j.jclepro.2017.07.028 10.1016/j.engappai.2017.01.012 10.1016/j.jclepro.2017.01.054 10.1016/j.ins.2016.07.022 10.1016/j.asoc.2007.05.007 10.1016/j.asoc.2016.12.017 10.1016/j.jclepro.2016.07.029 10.1016/j.asoc.2018.07.025 10.1109/TASE.2012.2216876 10.1016/j.jclepro.2016.07.086 10.1016/j.jmatprotec.2007.09.041 10.1016/j.jclepro.2015.02.076 10.1016/j.procir.2013.05.055 10.1016/j.jclepro.2013.02.039 10.1016/j.enconman.2019.111844 10.1016/j.rser.2017.08.050 10.1080/0951192X.2018.1550680 10.1016/j.jclepro.2017.01.077 10.1016/j.measurement.2017.11.011 10.1016/j.energy.2018.09.191 10.1007/978-3-642-20183-7_13 10.1109/TASE.2017.2690802 10.1016/j.energy.2019.02.157 10.1007/s00170-019-03620-6 10.1109/TITS.2015.2505323 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2019.118714 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2019_118714 S095965261933584X |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-35a3d064643a0ac4d411afa00d8982bcf48cccf5ceddeb0da6ae6fe5d997a9a43 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Jul 11 00:42:45 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 03:02:59 EDT 2025 Fri Feb 23 02:49:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scheduling and optimization Intelligent algorithm Milling process model Energy consumption model Dual-objective optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-35a3d064643a0ac4d411afa00d8982bcf48cccf5ceddeb0da6ae6fe5d997a9a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2335129610 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2335129610 crossref_citationtrail_10_1016_j_jclepro_2019_118714 crossref_primary_10_1016_j_jclepro_2019_118714 elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_118714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tian, Zhang, Feng, Jia, Zhang, Jiang, Li, Li (bib44) 2017; 164 Vu, Nguyen, Tran, Le, Nguyen, Luu, Nguyen, Le (bib48) 2019; 9 Arif, Sari (bib5) 2017; 18 Fathollahi-Fard, Hajiaghaei-Keshteli, Tavakkoli-Moghaddam (bib15) 2018; 200 Gutowski, Dahmus, Thiriez (bib22) 2006 Tian, Zhang, Feng, Wang, Peng, Jia (bib46) 2018; 8 Deng, Zhang, Fu, Wan, Liu (bib14) 2017; 166 Lin, Yu, Zhang, Zhang, Tian, Liu, Luo (bib33) 2017; 231 Zhou (bib58) 2019; 496 Cui, Li, Wang, Lin, Chen, Lu, Lu (bib10) 2017; 417 Tian, Zhou, Li (bib45) 2018; 15 Sun, Li (bib42) 2013; 10 Li, Tang, Cui, Yi (bib29) 2013 Akbari (bib2) 2012; 2 Ding, Jiang, Zhang, Cai, Liu (bib61) 2018 Albertelli, Keshari, Matta (bib3) 2016; 137 Jiang, Zhang, Wei, Zhou (bib25) 2011; 4 Arif, Stroud, Akten (bib4) 2014; 228 Li, Li, Tang, Zhu Y (bib28) 2019; 30 Shin, Woo, Rachuri (bib40) 2017; 161 Fathollahi-Fard, Hajiaghaei-Keshteli, Tavakkoli-Moghaddam (bib19) 2018; 72 Li, Cui, Fu, Wen, Lu, Lu (bib31) 2017; 52 Zhang, Wang, Zhou (bib53) 2014; 44 Xiao, Li, Tang, Li, Li (bib49) 2019; 166 D’Addona, Teti (bib12) 2013 Jiang, Ding, Zhang, Cai, Liu (bib62) 2019 Dong, Zhou (bib13) 2014; 25 Fathollahi-Fard, Hajiaghaei-Keshteli, Mirjalili (bib18) 2019 Saravanan, Asokan, Vijayakumar (bib37) 2003; 21 Gadaleta, Pellicciari, Berselli (bib20) 2019; 57 Mezura-Montes (bib36) 2011; 1 Rao, Rai, Balic (bib60) 2018; 29 Bhushan (bib6) 2013; 39 Karaboga, Basturk (bib26) 2008; 8 Liu, Liu (bib34) 2012; 48 Fathollahi-Fard, Hajiaghaei-Keshteli, Mirjalili (bib16) 2018; 71 Lu, Gao, Li, Chen (bib35) 2016; 137 Zhou, Yao, Lin, Chan, Li (bib57) 2018; 456 Schlosser, Klocke, Lung (bib38) 2011 Zhang, Liu, Zhou, Ying (bib54) 2017; 149 Tian, Hao, Zhou, Pedrycz, Zhang, Ma, Li (bib63) 2019 Zhang, Deng, Fu, Lv, Yan (bib55) 2017; 148 Zhang, Peng, Hou, Tian, Li (bib56) 2019; 481 Subramanian, Sakthivel, Sooryaprakash, Sudhakaran (bib41) 2013; 64 Tian, Ren, Feng, Zhou, Zhang (bib47) 2019; 15 Aggarwal, Singh, Kumar, Singh (bib1) 2008; 200 Fard, Hajiaghaei-Keshteli (bib17) 2016; 12 Sen (bib39) 2019; 103 Chen, Li, Tang (bib9) 2019; 175 Li, Yan, Xing (bib27) 2013; 52 Liu, You, Li, Tian (bib32) 2017; 60 Tian, Ren, Zhou (bib43) 2016; 17 Chen (bib8) 2017; 13 Gopal, Soorya (bib21) 2018; 116 Li, Chen, Tang, Li (bib30) 2017; 140 Yan, Li (bib50) 2013; 52 Huang, Yang, Zhang, Zhou, Xie, Lin (bib24) 2016; 27 Yi, Li, Tang, Chen (bib51) 2015; 95 Cui (bib11) 2016; 367–368 Hajiaghaei-Keshteli, Fathollahi-Fard (bib23) 2018; 123 Yildiz (bib52) 2013; 220 Zhang, Peng, Hou, Wang, Tian, Li (bib64) 2019 Li (10.1016/j.jclepro.2019.118714_bib30) 2017; 140 Ding (10.1016/j.jclepro.2019.118714_bib61) 2018 Zhang (10.1016/j.jclepro.2019.118714_bib56) 2019; 481 Jiang (10.1016/j.jclepro.2019.118714_bib25) 2011; 4 Liu (10.1016/j.jclepro.2019.118714_bib32) 2017; 60 Lu (10.1016/j.jclepro.2019.118714_bib35) 2016; 137 Huang (10.1016/j.jclepro.2019.118714_bib24) 2016; 27 Gadaleta (10.1016/j.jclepro.2019.118714_bib20) 2019; 57 Li (10.1016/j.jclepro.2019.118714_bib27) 2013; 52 Deng (10.1016/j.jclepro.2019.118714_bib14) 2017; 166 Tian (10.1016/j.jclepro.2019.118714_bib63) 2019 Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib18) 2019 Gopal (10.1016/j.jclepro.2019.118714_bib21) 2018; 116 Sun (10.1016/j.jclepro.2019.118714_bib42) 2013; 10 Tian (10.1016/j.jclepro.2019.118714_bib47) 2019; 15 Li (10.1016/j.jclepro.2019.118714_bib29) 2013 Chen (10.1016/j.jclepro.2019.118714_bib8) 2017; 13 Zhang (10.1016/j.jclepro.2019.118714_bib54) 2017; 149 Chen (10.1016/j.jclepro.2019.118714_bib9) 2019; 175 Bhushan (10.1016/j.jclepro.2019.118714_bib6) 2013; 39 Tian (10.1016/j.jclepro.2019.118714_bib44) 2017; 164 Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib16) 2018; 71 Yan (10.1016/j.jclepro.2019.118714_bib50) 2013; 52 Zhang (10.1016/j.jclepro.2019.118714_bib53) 2014; 44 Sen (10.1016/j.jclepro.2019.118714_bib39) 2019; 103 Zhang (10.1016/j.jclepro.2019.118714_bib64) 2019 Tian (10.1016/j.jclepro.2019.118714_bib45) 2018; 15 Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib19) 2018; 72 Karaboga (10.1016/j.jclepro.2019.118714_bib26) 2008; 8 Li (10.1016/j.jclepro.2019.118714_bib31) 2017; 52 Tian (10.1016/j.jclepro.2019.118714_bib43) 2016; 17 Aggarwal (10.1016/j.jclepro.2019.118714_bib1) 2008; 200 Zhang (10.1016/j.jclepro.2019.118714_bib55) 2017; 148 D’Addona (10.1016/j.jclepro.2019.118714_bib12) 2013 Li (10.1016/j.jclepro.2019.118714_bib28) 2019; 30 Mezura-Montes (10.1016/j.jclepro.2019.118714_bib36) 2011; 1 Gutowski (10.1016/j.jclepro.2019.118714_bib22) 2006 Akbari (10.1016/j.jclepro.2019.118714_bib2) 2012; 2 Jiang (10.1016/j.jclepro.2019.118714_bib62) 2019 Shin (10.1016/j.jclepro.2019.118714_bib40) 2017; 161 Vu (10.1016/j.jclepro.2019.118714_bib48) 2019; 9 Yildiz (10.1016/j.jclepro.2019.118714_bib52) 2013; 220 Arif (10.1016/j.jclepro.2019.118714_bib4) 2014; 228 Liu (10.1016/j.jclepro.2019.118714_bib34) 2012; 48 Zhou (10.1016/j.jclepro.2019.118714_bib57) 2018; 456 Fard (10.1016/j.jclepro.2019.118714_bib17) 2016; 12 Lin (10.1016/j.jclepro.2019.118714_bib33) 2017; 231 Yi (10.1016/j.jclepro.2019.118714_bib51) 2015; 95 Schlosser (10.1016/j.jclepro.2019.118714_bib38) 2011 Xiao (10.1016/j.jclepro.2019.118714_bib49) 2019; 166 Zhou (10.1016/j.jclepro.2019.118714_bib58) 2019; 496 Rao (10.1016/j.jclepro.2019.118714_bib60) 2018; 29 Arif (10.1016/j.jclepro.2019.118714_bib5) 2017; 18 Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib15) 2018; 200 Saravanan (10.1016/j.jclepro.2019.118714_bib37) 2003; 21 Subramanian (10.1016/j.jclepro.2019.118714_bib41) 2013; 64 Albertelli (10.1016/j.jclepro.2019.118714_bib3) 2016; 137 Tian (10.1016/j.jclepro.2019.118714_bib46) 2018; 8 Dong (10.1016/j.jclepro.2019.118714_bib13) 2014; 25 Cui (10.1016/j.jclepro.2019.118714_bib10) 2017; 417 Hajiaghaei-Keshteli (10.1016/j.jclepro.2019.118714_bib23) 2018; 123 Cui (10.1016/j.jclepro.2019.118714_bib11) 2016; 367–368 |
References_xml | – year: 2018 ident: bib61 article-title: An integrated decision-making method for selecting machine tool guideways considering remanufacturability publication-title: Int. J. Comput. Integ. M. – volume: 456 start-page: 50 year: 2018 end-page: 82 ident: bib57 article-title: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing publication-title: Inf. Sci. – volume: 30 start-page: 123 year: 2019 end-page: 138 ident: bib28 article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling publication-title: J. Intell. Manuf. – volume: 166 start-page: 1407 year: 2017 end-page: 1414 ident: bib14 article-title: Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption publication-title: J. Clean. Prod. – volume: 12 start-page: 331 year: 2016 end-page: 342 ident: bib17 article-title: Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating publication-title: Int. Conf. Ind. Eng. IEEE – volume: 52 start-page: 113 year: 2013 end-page: 121 ident: bib27 article-title: Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling publication-title: J. Clean. Prod. – volume: 17 start-page: 3009 year: 2016 end-page: 3021 ident: bib43 article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 137 start-page: 1516 year: 2016 end-page: 1531 ident: bib35 article-title: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm publication-title: J. Clean. Prod. – volume: 44 start-page: 2484 year: 2014 end-page: 2492 ident: bib53 article-title: Last-position elimination-based learning automata publication-title: IEEE Trans. Cybern. – volume: 367–368 start-page: 1012 year: 2016 end-page: 1044 ident: bib11 article-title: A novel artificial bee colony algorithm with depth-first search framework an elite-guided search equation publication-title: Inf. Sci. – volume: 71 start-page: 505 year: 2018 end-page: 525 ident: bib16 article-title: Multi-objective stochastic closed-loop supply chain network design with social considerations publication-title: Appl. Soft Comput. – year: 2019 ident: bib64 article-title: Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology publication-title: IEEE Trans. Ind. Inform. – volume: 496 start-page: 82 year: 2019 end-page: 108 ident: bib58 article-title: A decomposition and statistical learning based many-objective artificial bee colony optimizer publication-title: Inf. Sci. – volume: 123 start-page: 378 year: 2018 end-page: 395 ident: bib23 article-title: A set of efficient heuristics and metaheuristics to solve a two-stage stochastic bi-level decision-making model for the distribution network problem publication-title: Comput. Ind. Eng. – volume: 29 start-page: 1715 year: 2018 end-page: 1737 ident: bib60 article-title: Multi-objective optimization of maching and micro-maching processes using non-dominated sorting teaching-learning-based optimization algorithm publication-title: J. Intell. Manuf. – volume: 148 start-page: 174 year: 2017 end-page: 184 ident: bib55 article-title: A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions publication-title: J. Clean. Prod. – volume: 116 start-page: 178 year: 2018 end-page: 192 ident: bib21 article-title: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC publication-title: Measurement – volume: 64 start-page: 690 year: 2013 end-page: 700 ident: bib41 article-title: Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm publication-title: Int. Conf. Des. Manuf. – year: 2019 ident: bib62 article-title: Data-driven ecological performance evaluation for remanufacturing process publication-title: Energ. Convers. Manage. – start-page: 85 year: 2011 end-page: 89 ident: bib38 article-title: Sustainability in manufacturing-energy consumption of cutting processes publication-title: Adv. Sustain. Manuf.: Proc. 8th Glob. Conf. Sustain. Manuf. – volume: 137 start-page: 1602 year: 2016 end-page: 1618 ident: bib3 article-title: Energy oriented multi cutting parameter optimization in face milling publication-title: J. Clean. Prod. – volume: 175 start-page: 1021 year: 2019 end-page: 1037 ident: bib9 article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time publication-title: Energy – volume: 72 start-page: 267 year: 2018 end-page: 293 ident: bib19 article-title: The social engineering optimizer (SEO) publication-title: Eng. Appl. Artif. Intell. – year: 2019 ident: bib63 article-title: Fuzzy grey choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices publication-title: IEEE Trans. Sys. Man Cy-S. – volume: 57 start-page: 452 year: 2019 end-page: 464 ident: bib20 article-title: Optimization of the energy consumption of industrial robots for automatic code generation publication-title: Robot. Comput. Integr. Manuf. – volume: 39 start-page: 242 year: 2013 end-page: 254 ident: bib6 article-title: Optimization of cutting parameters for minimizing power consumption andmaximizing tool life during machining of Al alloy SiC particle composites publication-title: J. Clean. Prod. – volume: 27 start-page: 2524 year: 2016 end-page: 2532 ident: bib24 article-title: Energy consumption oriented NC milling process modeling and parameter optimization publication-title: China Mech. Eng. – volume: 52 start-page: 146 year: 2017 end-page: 159 ident: bib31 article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization publication-title: Appl. Soft Comput. – volume: 9 start-page: 957 year: 2019 ident: bib48 article-title: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine publication-title: Appl. Sci. – volume: 21 start-page: 1 year: 2003 end-page: 9 ident: bib37 article-title: Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing(SA) publication-title: Int. J. Adv. Manuf. Technol. – volume: 8 start-page: 682 year: 2018 end-page: 692 ident: bib46 article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method publication-title: Renew. Sustain. Energy Rev. – volume: 60 start-page: 45 year: 2017 end-page: 56 ident: bib32 article-title: Fuzzy petri nets for knowledge representation and reasoning: a literature review publication-title: Eng. Appl. Artif. Intell. – volume: 52 start-page: 462 year: 2013 end-page: 471 ident: bib50 article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality publication-title: J. Clean. Prod. – volume: 200 start-page: 423 year: 2018 end-page: 443 ident: bib15 article-title: A bi-objective green home health care routing problem publication-title: J. Clean. Prod. – volume: 200 start-page: 373 year: 2008 end-page: 384 ident: bib1 article-title: Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis publication-title: J. Mater. Process. Technol. – volume: 164 start-page: 1363 year: 2017 end-page: 1375 ident: bib44 article-title: Operation patterns analysis of automotive components remanufacturing industry development in China publication-title: J. Clean. Prod. – volume: 15 start-page: 2456 year: 2019 end-page: 2468 ident: bib47 article-title: Modeling and for dual-objective selective disassembly using and/or graph and discrete artificial bee colony publication-title: IEEE Trans. Ind. Inform. – volume: 166 start-page: 142 year: 2019 end-page: 156 ident: bib49 article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning publication-title: Energy – volume: 95 start-page: 256 year: 2015 end-page: 264 ident: bib51 article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing publication-title: J. Clean. Prod. – volume: 2 start-page: 39 year: 2012 end-page: 52 ident: bib2 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. – start-page: 323 year: 2013 end-page: 328 ident: bib12 article-title: Genetic algorithm based optimization of cutting parameters in turning process publication-title: Procedia CIRP 7 – volume: 228 start-page: 866 year: 2014 end-page: 877 ident: bib4 article-title: A model to determine the optimal parameters for sustainable-energy machining in a multi-pass turning operation publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. – start-page: 869 year: 2013 end-page: 874 ident: bib29 article-title: Quantitative analysis of carbon emissions of CNC-based machining systems publication-title: Netw. Sens. Control, IEEE Int. Conf. – volume: 15 start-page: 748 year: 2018 end-page: 760 ident: bib45 article-title: Disassembly sequence planning considering fuzzy component quality and varying operational cost publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 220 start-page: 399 year: 2013 end-page: 407 ident: bib52 article-title: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach publication-title: Inf. Sci. – volume: 103 start-page: 1811 year: 2019 end-page: 1829 ident: bib39 article-title: Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690 publication-title: Int. J. Adv. Manuf. Technol. – volume: 417 start-page: 169 year: 2017 end-page: 185 ident: bib10 article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization publication-title: Inf. Sci. – volume: 18 start-page: 175 year: 2017 end-page: 182 ident: bib5 article-title: Differentiation of developed and developing countries for the Paris Agreement publication-title: Energy Strateg. Rev. – volume: 48 start-page: 132 year: 2012 end-page: 140 ident: bib34 article-title: Multi-period energy model of electro-mechanical main driving system during the service process of machine tools publication-title: Chin. J. Mach. Eng. – volume: 1 start-page: 173 year: 2011 end-page: 194 ident: bib36 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. – volume: 161 start-page: 12 year: 2017 end-page: 29 ident: bib40 article-title: Energy efficiency of milling machining: component modeling and online optimization of cutting parameters publication-title: J. Clean. Prod. – volume: 13 start-page: 2000 year: 2017 end-page: 2008 ident: bib8 article-title: Research on traffic flow prediction in the big data environment based on the improved RBF neural network publication-title: IEEE Trans. Ind. Inf. – volume: 10 start-page: 38 year: 2013 end-page: 44 ident: bib42 article-title: Opportunity estimation for real-time energy control of sustainable manufacturing systems publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 1 year: 2019 end-page: 21 ident: bib18 article-title: A set of efficient heuristics for a home healthcare problem publication-title: Neural Comput. Appl. – volume: 25 start-page: 1200 year: 2014 end-page: 1216 ident: bib13 article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization publication-title: IEEE Trans. Netw. Learn. Syst. – volume: 149 start-page: 886 year: 2017 end-page: 895 ident: bib54 article-title: Integrated optimization of cutting parameters and scheduling for reducing carbon emissions publication-title: J. Clean. Prod. – volume: 140 start-page: 1805 year: 2017 end-page: 1818 ident: bib30 article-title: Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost publication-title: J. Clean. Prod. – volume: 4 start-page: 1724 year: 2011 end-page: 1728 ident: bib25 article-title: An evaluation model of machining process for green manufacturing publication-title: J. Comput. Theor. Nanosci. – volume: 481 start-page: 491 year: 2019 end-page: 506 ident: bib56 article-title: A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions publication-title: Inf. Sci. – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: bib26 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – start-page: 5 year: 2006 end-page: 11 ident: bib22 article-title: Electrical energy requirements for manufacturing processes publication-title: 13th CIPR Int. Conf. Life Cycle Eng. – volume: 231 start-page: 2372 year: 2017 end-page: 2383 ident: bib33 article-title: Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. – volume: 57 start-page: 452 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib20 article-title: Optimization of the energy consumption of industrial robots for automatic code generation publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2018.12.020 – volume: 456 start-page: 50 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib57 article-title: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.05.009 – volume: 417 start-page: 169 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib10 article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.011 – volume: 27 start-page: 2524 issue: 18 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib24 article-title: Energy consumption oriented NC milling process modeling and parameter optimization publication-title: China Mech. Eng. – volume: 123 start-page: 378 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib23 article-title: A set of efficient heuristics and metaheuristics to solve a two-stage stochastic bi-level decision-making model for the distribution network problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.07.009 – volume: 30 start-page: 123 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib28 article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling publication-title: J. Intell. Manuf. doi: 10.1007/s10845-016-1233-y – volume: 200 start-page: 423 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib15 article-title: A bi-objective green home health care routing problem publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.07.258 – volume: 12 start-page: 331 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib17 article-title: Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating publication-title: Int. Conf. Ind. Eng. IEEE – volume: 231 start-page: 2372 issue: 13 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib33 article-title: Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. doi: 10.1177/0954405416629098 – volume: 64 start-page: 690 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib41 article-title: Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm publication-title: Int. Conf. Des. Manuf. – volume: 52 start-page: 462 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib50 article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.02.030 – volume: 15 start-page: 2456 issue: 4 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib47 article-title: Modeling and for dual-objective selective disassembly using and/or graph and discrete artificial bee colony publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2884845 – volume: 228 start-page: 866 issue: 6 year: 2014 ident: 10.1016/j.jclepro.2019.118714_bib4 article-title: A model to determine the optimal parameters for sustainable-energy machining in a multi-pass turning operation publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. doi: 10.1177/0954405413508945 – volume: 2 start-page: 39 year: 2012 ident: 10.1016/j.jclepro.2019.118714_bib2 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.08.001 – volume: 137 start-page: 1602 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib3 article-title: Energy oriented multi cutting parameter optimization in face milling publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.012 – volume: 13 start-page: 2000 issue: 4 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib8 article-title: Research on traffic flow prediction in the big data environment based on the improved RBF neural network publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2682855 – volume: 220 start-page: 399 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib52 article-title: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.07.012 – volume: 39 start-page: 242 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib6 article-title: Optimization of cutting parameters for minimizing power consumption andmaximizing tool life during machining of Al alloy SiC particle composites publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.08.008 – volume: 72 start-page: 267 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib19 article-title: The social engineering optimizer (SEO) publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.009 – volume: 29 start-page: 1715 issue: 8 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib60 article-title: Multi-objective optimization of maching and micro-maching processes using non-dominated sorting teaching-learning-based optimization algorithm publication-title: J. Intell. Manuf. doi: 10.1007/s10845-016-1210-5 – volume: 166 start-page: 1407 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib14 article-title: Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.022 – volume: 9 start-page: 957 issue: 5 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib48 article-title: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine publication-title: Appl. Sci. doi: 10.3390/app9050957 – volume: 496 start-page: 82 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib58 article-title: A decomposition and statistical learning based many-objective artificial bee colony optimizer publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.014 – volume: 44 start-page: 2484 issue: 12 year: 2014 ident: 10.1016/j.jclepro.2019.118714_bib53 article-title: Last-position elimination-based learning automata publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2309478 – volume: 25 start-page: 1200 issue: 6 year: 2014 ident: 10.1016/j.jclepro.2019.118714_bib13 article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization publication-title: IEEE Trans. Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2298402 – volume: 481 start-page: 491 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib56 article-title: A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.071 – volume: 18 start-page: 175 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib5 article-title: Differentiation of developed and developing countries for the Paris Agreement publication-title: Energy Strateg. Rev. doi: 10.1016/j.esr.2017.09.016 – volume: 161 start-page: 12 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib40 article-title: Energy efficiency of milling machining: component modeling and online optimization of cutting parameters publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.05.013 – year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib63 article-title: Fuzzy grey choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices publication-title: IEEE Trans. Sys. Man Cy-S. doi: 10.1109/TSMC.2019.2906635 – start-page: 5 year: 2006 ident: 10.1016/j.jclepro.2019.118714_bib22 article-title: Electrical energy requirements for manufacturing processes publication-title: 13th CIPR Int. Conf. Life Cycle Eng. – start-page: 869 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib29 article-title: Quantitative analysis of carbon emissions of CNC-based machining systems publication-title: Netw. Sens. Control, IEEE Int. Conf. – volume: 21 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.jclepro.2019.118714_bib37 article-title: Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing(SA) publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s001700300000 – volume: 1 start-page: 173 year: 2011 ident: 10.1016/j.jclepro.2019.118714_bib36 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.10.001 – year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib64 article-title: Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology publication-title: IEEE Trans. Ind. Inform. – volume: 48 start-page: 132 issue: 21 year: 2012 ident: 10.1016/j.jclepro.2019.118714_bib34 article-title: Multi-period energy model of electro-mechanical main driving system during the service process of machine tools publication-title: Chin. J. Mach. Eng. doi: 10.3901/JME.2012.21.132 – volume: 164 start-page: 1363 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib44 article-title: Operation patterns analysis of automotive components remanufacturing industry development in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.028 – volume: 60 start-page: 45 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib32 article-title: Fuzzy petri nets for knowledge representation and reasoning: a literature review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.012 – volume: 149 start-page: 886 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib54 article-title: Integrated optimization of cutting parameters and scheduling for reducing carbon emissions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.054 – volume: 367–368 start-page: 1012 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib11 article-title: A novel artificial bee colony algorithm with depth-first search framework an elite-guided search equation publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.07.022 – start-page: 1 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib18 article-title: A set of efficient heuristics for a home healthcare problem publication-title: Neural Comput. Appl. – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.jclepro.2019.118714_bib26 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – volume: 52 start-page: 146 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib31 article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.017 – volume: 137 start-page: 1516 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib35 article-title: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.029 – volume: 71 start-page: 505 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib16 article-title: Multi-objective stochastic closed-loop supply chain network design with social considerations publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.025 – volume: 10 start-page: 38 issue: 1 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib42 article-title: Opportunity estimation for real-time energy control of sustainable manufacturing systems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2216876 – volume: 140 start-page: 1805 issue: 3 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib30 article-title: Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.086 – volume: 200 start-page: 373 issue: 1–3 year: 2008 ident: 10.1016/j.jclepro.2019.118714_bib1 article-title: Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.09.041 – volume: 95 start-page: 256 year: 2015 ident: 10.1016/j.jclepro.2019.118714_bib51 article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.02.076 – start-page: 323 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib12 article-title: Genetic algorithm based optimization of cutting parameters in turning process publication-title: Procedia CIRP 7 doi: 10.1016/j.procir.2013.05.055 – volume: 52 start-page: 113 issue: 1 year: 2013 ident: 10.1016/j.jclepro.2019.118714_bib27 article-title: Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.02.039 – year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib62 article-title: Data-driven ecological performance evaluation for remanufacturing process publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2019.111844 – volume: 8 start-page: 682 issue: 11 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib46 article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.050 – year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib61 article-title: An integrated decision-making method for selecting machine tool guideways considering remanufacturability publication-title: Int. J. Comput. Integ. M. doi: 10.1080/0951192X.2018.1550680 – volume: 148 start-page: 174 year: 2017 ident: 10.1016/j.jclepro.2019.118714_bib55 article-title: A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.077 – volume: 116 start-page: 178 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib21 article-title: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC publication-title: Measurement doi: 10.1016/j.measurement.2017.11.011 – volume: 4 start-page: 1724 issue: 4 year: 2011 ident: 10.1016/j.jclepro.2019.118714_bib25 article-title: An evaluation model of machining process for green manufacturing publication-title: J. Comput. Theor. Nanosci. – volume: 166 start-page: 142 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib49 article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning publication-title: Energy doi: 10.1016/j.energy.2018.09.191 – start-page: 85 year: 2011 ident: 10.1016/j.jclepro.2019.118714_bib38 article-title: Sustainability in manufacturing-energy consumption of cutting processes publication-title: Adv. Sustain. Manuf.: Proc. 8th Glob. Conf. Sustain. Manuf. doi: 10.1007/978-3-642-20183-7_13 – volume: 15 start-page: 748 issue: 2 year: 2018 ident: 10.1016/j.jclepro.2019.118714_bib45 article-title: Disassembly sequence planning considering fuzzy component quality and varying operational cost publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2690802 – volume: 175 start-page: 1021 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib9 article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time publication-title: Energy doi: 10.1016/j.energy.2019.02.157 – volume: 103 start-page: 1811 issue: 5–8 year: 2019 ident: 10.1016/j.jclepro.2019.118714_bib39 article-title: Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03620-6 – volume: 17 start-page: 3009 issue: 11 year: 2016 ident: 10.1016/j.jclepro.2019.118714_bib43 article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2505323 |
SSID | ssj0017074 |
Score | 2.5568075 |
Snippet | Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118714 |
SubjectTerms | algorithms Dual-objective optimization Energy consumption model energy use and consumption Intelligent algorithm milling Milling process model processing time Scheduling and optimization system optimization |
Title | Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints |
URI | https://dx.doi.org/10.1016/j.jclepro.2019.118714 https://www.proquest.com/docview/2335129610 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcikHBBREeVSD1Gt2k9h5-FgVqgXUXkqlvVl-Srtqk4rNHrjwL_i_zDhOgUpVpV6j-JGZ8cxnZ-YzY0eIAryQhc8aQSU51pa4pGTIdODBm7YOLjLenJ3Xi0vxdVktd9jJVAtDaZXJ948-PXrr9GSepDm_Wa3mF3SCVVe0A-Acw-iSKthFQ1Y--3Wb5lE0-cjETMdd9PbfKp75erbGztBRUYaXnNHF24W4Lz7d8dQx_Jw-Z88SboTjcWov2I7vXrKn_7AJ7rPfn7b6KuvNevRhkFKvQHcOVvHswDugbxtJI8B4D8RZ3f0ERK6ASBB6dCDXqTIT-gA-VgZmuGdG2fTbDdAlRTgYEGP4NWXSbGCzjSPC0MOUnQjUIF4-MWxescvTz99PFlm6dSGzXJRDxivNHQIVhCo611Y4URQ66Dx3rWxLY4NorbWhQgU5b3Kna-3r4CsnZaOlFvw12-36zr9hwGtjcqlbXnsnnG9kILq-os1bY7Wu9AETk6yVTZTkNLkrNeWerVVSkSIVqVFFB2x22-xm5OR4qEE7KVL9Z1wK48ZDTT9Oile48Ohviu48ClyVaHUIlhB-vn189-_YXkkb-JgG_p7tDj-2_gOinMEcRjM-ZE-Ov3xbnP8B9oEDIA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4IKAgyqMMUq_ZTWInGx-rQrV97YVW2pvlp7SrNqnY7IEfwv9lJnEKVKoq9RppbMdjz3y2Z75h7ABRgBcy88lUUEqOtTluKRkSHXjwpiqD6xhvLubl7EqcLorFFjsacmEorDLa_t6md9Y6fpnE2ZzcLpeTH3SDVRZ0AuAc3ejiGdsmdqpixLYPT85m87vHhGnakzHTjRcJ_E3kmazGK2wPbRUFeckx1d7OxEMu6p6x7jzQ8Sv2MkJHOOxH95pt-foNe_EPoeAu-_1to6-Txqx6MwYx-gp07WDZXR94B_R7PW8EGO-BaKvrX4DgFRAMQoM25CYmZ0ITwHfJgQkem3F6ms0aqE4RdgZEGn5DwTRrWG-6HqFtYAhQBBLo6k-067fs6vj75dEsiYUXEstF3ia80NwhVkG0olNthRNZpoNOU1fJKjc2iMpaGwrUkfMmdbrUvgy-cFJOtdSCv2Ojuqn9ewa8NCaVuuKld8L5qQzE2JdVaWWs1oXeY2KYa2UjKzkN7loN4WcrFVWkSEWqV9EeG9-J3fa0HI8JVIMi1X_rS6HreEz066B4hXuPHlR07XHCVY4LD_ESItAPT2_-C9uZXV6cq_OT-dlH9jyn83wXFf6JjdqfG_8ZQU9r9uOi_gPB0wXR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-objective+program+and+improved+artificial+bee+colony+for+the+optimization+of+energy-conscious+milling+parameters+subject+to+multiple+constraints&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Wenjie&rft.au=Tian%2C+Guangdong&rft.au=Chen%2C+Maoning&rft.au=Tao%2C+Fei&rft.date=2020-02-01&rft.issn=0959-6526&rft.volume=245&rft.spage=118714&rft_id=info:doi/10.1016%2Fj.jclepro.2019.118714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2019_118714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |