Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints

Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. Th...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 245; p. 118714
Main Authors Wang, Wenjie, Tian, Guangdong, Chen, Maoning, Tao, Fei, Zhang, Chaoyong, AI-Ahmari, Abdulraham, Li, Zhiwu, Jiang, Zhigang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. This work establishes a dual-objective optimization model for the selection of milling parameters such that power consumption and process time are minimized. With multiple constraints of milling processing conditions, an improved artificial bee colony (ABC) intelligent algorithm is used to handle the proposed dual-objective optimization model. Compared with the non-dominated sorting genetic algorithm (NSGA-II), our improved algorithm has good performance.
AbstractList Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and enhancing processing productivity. However, existing works pay little attention to the optimization of energy-conscious milling parameters. This work establishes a dual-objective optimization model for the selection of milling parameters such that power consumption and process time are minimized. With multiple constraints of milling processing conditions, an improved artificial bee colony (ABC) intelligent algorithm is used to handle the proposed dual-objective optimization model. Compared with the non-dominated sorting genetic algorithm (NSGA-II), our improved algorithm has good performance.
ArticleNumber 118714
Author Chen, Maoning
Tao, Fei
Tian, Guangdong
Li, Zhiwu
AI-Ahmari, Abdulraham
Zhang, Chaoyong
Jiang, Zhigang
Wang, Wenjie
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Wang
  fullname: Wang, Wenjie
  organization: School of Mechanical Engineering, Shandong University, Jinan, 250061, China
– sequence: 2
  givenname: Guangdong
  surname: Tian
  fullname: Tian, Guangdong
  email: tiangd2013@163.com
  organization: School of Mechanical Engineering, Shandong University, Jinan, 250061, China
– sequence: 3
  givenname: Maoning
  surname: Chen
  fullname: Chen, Maoning
  organization: Faculty of Robotics Science and Engineering, Northeastern University, Shenyang, 110004, China
– sequence: 4
  givenname: Fei
  surname: Tao
  fullname: Tao, Fei
  organization: Institute of Science and Technology, Beihang University, Beijing, 100191, China
– sequence: 5
  givenname: Chaoyong
  surname: Zhang
  fullname: Zhang, Chaoyong
  organization: State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, 430074, China
– sequence: 6
  givenname: Abdulraham
  surname: AI-Ahmari
  fullname: AI-Ahmari, Abdulraham
  organization: Advanced Manufacturing Institute, King Saud University, Riyadh, 11421, Saudi Arabia
– sequence: 7
  givenname: Zhiwu
  surname: Li
  fullname: Li, Zhiwu
  organization: Institute of Systems Engineering, Macau University of Science and Technology, Taipa, 999078, Macau, China
– sequence: 8
  givenname: Zhigang
  surname: Jiang
  fullname: Jiang, Zhigang
  organization: College of Machinery and Automation, Wuhan University of Science & Technology, Wuhan, 430081, China
BookMark eNqFkc1uFDEQhC0UJDYhj4DkI5fZ2PM_4oBQgBApEhdytnrtnqVHHnuwPStt3oP3xZvNiUtOLUtdn7uqLtmF8w4Z-yDFVgrZ3kzbSVtcgt-WQg5bKftO1m_YJs-hkF3fXrCNGJqhaJuyfccuY5yEkJ3o6g37-3UFW_jdhDrRAXmm7APMHJzhNOfXAQ2HkGgkTWD5DpFrb7078tEHnn4j90uimZ4gkXfcjxwdhv2x0N5FTX6NfCZrye35ApmMCUPkcX3-kSfP59UmWuwJ62IKQC7F9-ztCDbi9cu8Yo_fv_26_VE8_Ly7v_3yUOiqLlNRNVAZ0dZtXYEAXZtaShhBCNMPfbnTY91rrcdGozG4EwZawHbExgxDBwPU1RX7eOZmo39WjEnNFDVaCw7z5aqsqkaWQytFXv10XtXBxxhwVJrSs-fTzVZJoU5lqEm9lKFOZahzGVnd_KdeAs0Qjq_qPp91mFM4EAaVM0WXDVHI-Snj6RXCP_nDr4E
CitedBy_id crossref_primary_10_3390_buildings12101677
crossref_primary_10_1007_s10668_022_02599_7
crossref_primary_10_1016_j_energy_2024_132556
crossref_primary_10_1109_ACCESS_2020_3008443
crossref_primary_10_1109_ACCESS_2020_3022947
crossref_primary_10_1007_s11356_021_17445_y
crossref_primary_10_1007_s11356_023_25599_0
crossref_primary_10_1007_s13762_021_03576_9
crossref_primary_10_1016_j_jclepro_2020_125287
crossref_primary_10_1016_j_energy_2023_127046
crossref_primary_10_1016_j_energy_2023_127244
crossref_primary_10_1016_j_jclepro_2021_127466
crossref_primary_10_1109_ACCESS_2020_3004447
crossref_primary_10_1007_s11356_021_16234_x
crossref_primary_10_1007_s11831_025_10269_w
crossref_primary_10_1109_ACCESS_2020_3045980
crossref_primary_10_1007_s00170_022_10626_0
crossref_primary_10_1007_s11356_021_15581_z
crossref_primary_10_1109_TCYB_2020_3042896
crossref_primary_10_3390_app11167366
crossref_primary_10_3390_app11146466
crossref_primary_10_3390_ma17164093
crossref_primary_10_1007_s40430_024_04740_1
crossref_primary_10_3390_app11125642
crossref_primary_10_3390_machines12090635
crossref_primary_10_1007_s11356_021_16303_1
crossref_primary_10_1109_ACCESS_2020_3010376
crossref_primary_10_3390_sym13040663
crossref_primary_10_1109_ACCESS_2020_3016959
crossref_primary_10_1016_j_cie_2021_107456
crossref_primary_10_1016_j_cie_2021_107810
crossref_primary_10_3390_sym15020558
crossref_primary_10_1007_s41315_024_00338_x
crossref_primary_10_1007_s00170_021_08273_y
crossref_primary_10_1177_16878140211051220
crossref_primary_10_1007_s40436_021_00349_y
crossref_primary_10_3390_mi14081578
crossref_primary_10_1109_ACCESS_2020_3001279
crossref_primary_10_1109_TASE_2020_3014907
crossref_primary_10_1109_ACCESS_2020_3023961
crossref_primary_10_1007_s00500_024_09819_4
crossref_primary_10_1109_ACCESS_2020_3011509
crossref_primary_10_1016_j_est_2021_103717
crossref_primary_10_1155_2021_2919073
crossref_primary_10_3390_electronics12163387
crossref_primary_10_3390_en14238125
crossref_primary_10_1109_TASE_2021_3126077
crossref_primary_10_3390_app13169392
crossref_primary_10_1109_ACCESS_2020_3038801
crossref_primary_10_1007_s12008_022_01130_6
crossref_primary_10_1016_j_engappai_2021_104324
crossref_primary_10_1016_j_enconman_2023_117069
crossref_primary_10_1016_j_jmsy_2024_11_013
crossref_primary_10_1080_15397734_2024_2377257
crossref_primary_10_1177_16878140211023603
crossref_primary_10_3390_math11061557
crossref_primary_10_1007_s00170_023_10927_y
crossref_primary_10_1016_j_compeleceng_2024_109813
crossref_primary_10_3390_sym14010171
crossref_primary_10_1007_s10845_021_01837_5
crossref_primary_10_1016_j_asoc_2023_110330
crossref_primary_10_21597_jist_939332
crossref_primary_10_1016_j_heliyon_2022_e11629
crossref_primary_10_1016_j_jmrt_2022_10_060
crossref_primary_10_1016_j_cej_2024_156306
crossref_primary_10_1007_s00170_021_07804_x
crossref_primary_10_3390_machines10100923
crossref_primary_10_1016_j_cie_2023_109111
crossref_primary_10_1016_j_rcim_2022_102509
crossref_primary_10_1007_s11465_022_0703_5
crossref_primary_10_1109_ACCESS_2020_3015601
crossref_primary_10_3934_jimo_2021005
crossref_primary_10_1109_ACCESS_2020_3014396
crossref_primary_10_3390_systems10050180
crossref_primary_10_1007_s13042_021_01326_4
crossref_primary_10_3390_pr10010098
crossref_primary_10_1109_ACCESS_2021_3070981
crossref_primary_10_1016_j_simpat_2022_102575
crossref_primary_10_1109_ACCESS_2020_3005529
crossref_primary_10_1007_s11356_021_17292_x
crossref_primary_10_1007_s40684_021_00413_9
crossref_primary_10_3390_pr10101998
crossref_primary_10_1016_j_jii_2021_100220
crossref_primary_10_1007_s00170_021_07646_7
crossref_primary_10_1007_s00170_021_07228_7
Cites_doi 10.1016/j.rcim.2018.12.020
10.1016/j.ins.2018.05.009
10.1016/j.ins.2017.07.011
10.1016/j.cie.2018.07.009
10.1007/s10845-016-1233-y
10.1016/j.jclepro.2018.07.258
10.1177/0954405416629098
10.1016/j.jclepro.2013.02.030
10.1109/TII.2018.2884845
10.1177/0954405413508945
10.1016/j.swevo.2011.08.001
10.1016/j.jclepro.2016.04.012
10.1109/TII.2017.2682855
10.1016/j.ins.2012.07.012
10.1016/j.jclepro.2012.08.008
10.1016/j.engappai.2018.04.009
10.1007/s10845-016-1210-5
10.1016/j.jclepro.2017.08.022
10.3390/app9050957
10.1016/j.ins.2019.05.014
10.1109/TCYB.2014.2309478
10.1109/TNNLS.2014.2298402
10.1016/j.ins.2018.12.071
10.1016/j.esr.2017.09.016
10.1016/j.jclepro.2017.05.013
10.1109/TSMC.2019.2906635
10.1007/s001700300000
10.1016/j.swevo.2011.10.001
10.3901/JME.2012.21.132
10.1016/j.jclepro.2017.07.028
10.1016/j.engappai.2017.01.012
10.1016/j.jclepro.2017.01.054
10.1016/j.ins.2016.07.022
10.1016/j.asoc.2007.05.007
10.1016/j.asoc.2016.12.017
10.1016/j.jclepro.2016.07.029
10.1016/j.asoc.2018.07.025
10.1109/TASE.2012.2216876
10.1016/j.jclepro.2016.07.086
10.1016/j.jmatprotec.2007.09.041
10.1016/j.jclepro.2015.02.076
10.1016/j.procir.2013.05.055
10.1016/j.jclepro.2013.02.039
10.1016/j.enconman.2019.111844
10.1016/j.rser.2017.08.050
10.1080/0951192X.2018.1550680
10.1016/j.jclepro.2017.01.077
10.1016/j.measurement.2017.11.011
10.1016/j.energy.2018.09.191
10.1007/978-3-642-20183-7_13
10.1109/TASE.2017.2690802
10.1016/j.energy.2019.02.157
10.1007/s00170-019-03620-6
10.1109/TITS.2015.2505323
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2019.118714
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2019_118714
S095965261933584X
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c342t-35a3d064643a0ac4d411afa00d8982bcf48cccf5ceddeb0da6ae6fe5d997a9a43
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Jul 11 00:42:45 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 03:02:59 EDT 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Scheduling and optimization
Intelligent algorithm
Milling process model
Energy consumption model
Dual-objective optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-35a3d064643a0ac4d411afa00d8982bcf48cccf5ceddeb0da6ae6fe5d997a9a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2335129610
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2335129610
crossref_citationtrail_10_1016_j_jclepro_2019_118714
crossref_primary_10_1016_j_jclepro_2019_118714
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_118714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tian, Zhang, Feng, Jia, Zhang, Jiang, Li, Li (bib44) 2017; 164
Vu, Nguyen, Tran, Le, Nguyen, Luu, Nguyen, Le (bib48) 2019; 9
Arif, Sari (bib5) 2017; 18
Fathollahi-Fard, Hajiaghaei-Keshteli, Tavakkoli-Moghaddam (bib15) 2018; 200
Gutowski, Dahmus, Thiriez (bib22) 2006
Tian, Zhang, Feng, Wang, Peng, Jia (bib46) 2018; 8
Deng, Zhang, Fu, Wan, Liu (bib14) 2017; 166
Lin, Yu, Zhang, Zhang, Tian, Liu, Luo (bib33) 2017; 231
Zhou (bib58) 2019; 496
Cui, Li, Wang, Lin, Chen, Lu, Lu (bib10) 2017; 417
Tian, Zhou, Li (bib45) 2018; 15
Sun, Li (bib42) 2013; 10
Li, Tang, Cui, Yi (bib29) 2013
Akbari (bib2) 2012; 2
Ding, Jiang, Zhang, Cai, Liu (bib61) 2018
Albertelli, Keshari, Matta (bib3) 2016; 137
Jiang, Zhang, Wei, Zhou (bib25) 2011; 4
Arif, Stroud, Akten (bib4) 2014; 228
Li, Li, Tang, Zhu Y (bib28) 2019; 30
Shin, Woo, Rachuri (bib40) 2017; 161
Fathollahi-Fard, Hajiaghaei-Keshteli, Tavakkoli-Moghaddam (bib19) 2018; 72
Li, Cui, Fu, Wen, Lu, Lu (bib31) 2017; 52
Zhang, Wang, Zhou (bib53) 2014; 44
Xiao, Li, Tang, Li, Li (bib49) 2019; 166
D’Addona, Teti (bib12) 2013
Jiang, Ding, Zhang, Cai, Liu (bib62) 2019
Dong, Zhou (bib13) 2014; 25
Fathollahi-Fard, Hajiaghaei-Keshteli, Mirjalili (bib18) 2019
Saravanan, Asokan, Vijayakumar (bib37) 2003; 21
Gadaleta, Pellicciari, Berselli (bib20) 2019; 57
Mezura-Montes (bib36) 2011; 1
Rao, Rai, Balic (bib60) 2018; 29
Bhushan (bib6) 2013; 39
Karaboga, Basturk (bib26) 2008; 8
Liu, Liu (bib34) 2012; 48
Fathollahi-Fard, Hajiaghaei-Keshteli, Mirjalili (bib16) 2018; 71
Lu, Gao, Li, Chen (bib35) 2016; 137
Zhou, Yao, Lin, Chan, Li (bib57) 2018; 456
Schlosser, Klocke, Lung (bib38) 2011
Zhang, Liu, Zhou, Ying (bib54) 2017; 149
Tian, Hao, Zhou, Pedrycz, Zhang, Ma, Li (bib63) 2019
Zhang, Deng, Fu, Lv, Yan (bib55) 2017; 148
Zhang, Peng, Hou, Tian, Li (bib56) 2019; 481
Subramanian, Sakthivel, Sooryaprakash, Sudhakaran (bib41) 2013; 64
Tian, Ren, Feng, Zhou, Zhang (bib47) 2019; 15
Aggarwal, Singh, Kumar, Singh (bib1) 2008; 200
Fard, Hajiaghaei-Keshteli (bib17) 2016; 12
Sen (bib39) 2019; 103
Chen, Li, Tang (bib9) 2019; 175
Li, Yan, Xing (bib27) 2013; 52
Liu, You, Li, Tian (bib32) 2017; 60
Tian, Ren, Zhou (bib43) 2016; 17
Chen (bib8) 2017; 13
Gopal, Soorya (bib21) 2018; 116
Li, Chen, Tang, Li (bib30) 2017; 140
Yan, Li (bib50) 2013; 52
Huang, Yang, Zhang, Zhou, Xie, Lin (bib24) 2016; 27
Yi, Li, Tang, Chen (bib51) 2015; 95
Cui (bib11) 2016; 367–368
Hajiaghaei-Keshteli, Fathollahi-Fard (bib23) 2018; 123
Yildiz (bib52) 2013; 220
Zhang, Peng, Hou, Wang, Tian, Li (bib64) 2019
Li (10.1016/j.jclepro.2019.118714_bib30) 2017; 140
Ding (10.1016/j.jclepro.2019.118714_bib61) 2018
Zhang (10.1016/j.jclepro.2019.118714_bib56) 2019; 481
Jiang (10.1016/j.jclepro.2019.118714_bib25) 2011; 4
Liu (10.1016/j.jclepro.2019.118714_bib32) 2017; 60
Lu (10.1016/j.jclepro.2019.118714_bib35) 2016; 137
Huang (10.1016/j.jclepro.2019.118714_bib24) 2016; 27
Gadaleta (10.1016/j.jclepro.2019.118714_bib20) 2019; 57
Li (10.1016/j.jclepro.2019.118714_bib27) 2013; 52
Deng (10.1016/j.jclepro.2019.118714_bib14) 2017; 166
Tian (10.1016/j.jclepro.2019.118714_bib63) 2019
Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib18) 2019
Gopal (10.1016/j.jclepro.2019.118714_bib21) 2018; 116
Sun (10.1016/j.jclepro.2019.118714_bib42) 2013; 10
Tian (10.1016/j.jclepro.2019.118714_bib47) 2019; 15
Li (10.1016/j.jclepro.2019.118714_bib29) 2013
Chen (10.1016/j.jclepro.2019.118714_bib8) 2017; 13
Zhang (10.1016/j.jclepro.2019.118714_bib54) 2017; 149
Chen (10.1016/j.jclepro.2019.118714_bib9) 2019; 175
Bhushan (10.1016/j.jclepro.2019.118714_bib6) 2013; 39
Tian (10.1016/j.jclepro.2019.118714_bib44) 2017; 164
Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib16) 2018; 71
Yan (10.1016/j.jclepro.2019.118714_bib50) 2013; 52
Zhang (10.1016/j.jclepro.2019.118714_bib53) 2014; 44
Sen (10.1016/j.jclepro.2019.118714_bib39) 2019; 103
Zhang (10.1016/j.jclepro.2019.118714_bib64) 2019
Tian (10.1016/j.jclepro.2019.118714_bib45) 2018; 15
Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib19) 2018; 72
Karaboga (10.1016/j.jclepro.2019.118714_bib26) 2008; 8
Li (10.1016/j.jclepro.2019.118714_bib31) 2017; 52
Tian (10.1016/j.jclepro.2019.118714_bib43) 2016; 17
Aggarwal (10.1016/j.jclepro.2019.118714_bib1) 2008; 200
Zhang (10.1016/j.jclepro.2019.118714_bib55) 2017; 148
D’Addona (10.1016/j.jclepro.2019.118714_bib12) 2013
Li (10.1016/j.jclepro.2019.118714_bib28) 2019; 30
Mezura-Montes (10.1016/j.jclepro.2019.118714_bib36) 2011; 1
Gutowski (10.1016/j.jclepro.2019.118714_bib22) 2006
Akbari (10.1016/j.jclepro.2019.118714_bib2) 2012; 2
Jiang (10.1016/j.jclepro.2019.118714_bib62) 2019
Shin (10.1016/j.jclepro.2019.118714_bib40) 2017; 161
Vu (10.1016/j.jclepro.2019.118714_bib48) 2019; 9
Yildiz (10.1016/j.jclepro.2019.118714_bib52) 2013; 220
Arif (10.1016/j.jclepro.2019.118714_bib4) 2014; 228
Liu (10.1016/j.jclepro.2019.118714_bib34) 2012; 48
Zhou (10.1016/j.jclepro.2019.118714_bib57) 2018; 456
Fard (10.1016/j.jclepro.2019.118714_bib17) 2016; 12
Lin (10.1016/j.jclepro.2019.118714_bib33) 2017; 231
Yi (10.1016/j.jclepro.2019.118714_bib51) 2015; 95
Schlosser (10.1016/j.jclepro.2019.118714_bib38) 2011
Xiao (10.1016/j.jclepro.2019.118714_bib49) 2019; 166
Zhou (10.1016/j.jclepro.2019.118714_bib58) 2019; 496
Rao (10.1016/j.jclepro.2019.118714_bib60) 2018; 29
Arif (10.1016/j.jclepro.2019.118714_bib5) 2017; 18
Fathollahi-Fard (10.1016/j.jclepro.2019.118714_bib15) 2018; 200
Saravanan (10.1016/j.jclepro.2019.118714_bib37) 2003; 21
Subramanian (10.1016/j.jclepro.2019.118714_bib41) 2013; 64
Albertelli (10.1016/j.jclepro.2019.118714_bib3) 2016; 137
Tian (10.1016/j.jclepro.2019.118714_bib46) 2018; 8
Dong (10.1016/j.jclepro.2019.118714_bib13) 2014; 25
Cui (10.1016/j.jclepro.2019.118714_bib10) 2017; 417
Hajiaghaei-Keshteli (10.1016/j.jclepro.2019.118714_bib23) 2018; 123
Cui (10.1016/j.jclepro.2019.118714_bib11) 2016; 367–368
References_xml – year: 2018
  ident: bib61
  article-title: An integrated decision-making method for selecting machine tool guideways considering remanufacturability
  publication-title: Int. J. Comput. Integ. M.
– volume: 456
  start-page: 50
  year: 2018
  end-page: 82
  ident: bib57
  article-title: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing
  publication-title: Inf. Sci.
– volume: 30
  start-page: 123
  year: 2019
  end-page: 138
  ident: bib28
  article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling
  publication-title: J. Intell. Manuf.
– volume: 166
  start-page: 1407
  year: 2017
  end-page: 1414
  ident: bib14
  article-title: Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 331
  year: 2016
  end-page: 342
  ident: bib17
  article-title: Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating
  publication-title: Int. Conf. Ind. Eng. IEEE
– volume: 52
  start-page: 113
  year: 2013
  end-page: 121
  ident: bib27
  article-title: Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling
  publication-title: J. Clean. Prod.
– volume: 17
  start-page: 3009
  year: 2016
  end-page: 3021
  ident: bib43
  article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 137
  start-page: 1516
  year: 2016
  end-page: 1531
  ident: bib35
  article-title: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
– volume: 44
  start-page: 2484
  year: 2014
  end-page: 2492
  ident: bib53
  article-title: Last-position elimination-based learning automata
  publication-title: IEEE Trans. Cybern.
– volume: 367–368
  start-page: 1012
  year: 2016
  end-page: 1044
  ident: bib11
  article-title: A novel artificial bee colony algorithm with depth-first search framework an elite-guided search equation
  publication-title: Inf. Sci.
– volume: 71
  start-page: 505
  year: 2018
  end-page: 525
  ident: bib16
  article-title: Multi-objective stochastic closed-loop supply chain network design with social considerations
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: bib64
  article-title: Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology
  publication-title: IEEE Trans. Ind. Inform.
– volume: 496
  start-page: 82
  year: 2019
  end-page: 108
  ident: bib58
  article-title: A decomposition and statistical learning based many-objective artificial bee colony optimizer
  publication-title: Inf. Sci.
– volume: 123
  start-page: 378
  year: 2018
  end-page: 395
  ident: bib23
  article-title: A set of efficient heuristics and metaheuristics to solve a two-stage stochastic bi-level decision-making model for the distribution network problem
  publication-title: Comput. Ind. Eng.
– volume: 29
  start-page: 1715
  year: 2018
  end-page: 1737
  ident: bib60
  article-title: Multi-objective optimization of maching and micro-maching processes using non-dominated sorting teaching-learning-based optimization algorithm
  publication-title: J. Intell. Manuf.
– volume: 148
  start-page: 174
  year: 2017
  end-page: 184
  ident: bib55
  article-title: A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions
  publication-title: J. Clean. Prod.
– volume: 116
  start-page: 178
  year: 2018
  end-page: 192
  ident: bib21
  article-title: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC
  publication-title: Measurement
– volume: 64
  start-page: 690
  year: 2013
  end-page: 700
  ident: bib41
  article-title: Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm
  publication-title: Int. Conf. Des. Manuf.
– year: 2019
  ident: bib62
  article-title: Data-driven ecological performance evaluation for remanufacturing process
  publication-title: Energ. Convers. Manage.
– start-page: 85
  year: 2011
  end-page: 89
  ident: bib38
  article-title: Sustainability in manufacturing-energy consumption of cutting processes
  publication-title: Adv. Sustain. Manuf.: Proc. 8th Glob. Conf. Sustain. Manuf.
– volume: 137
  start-page: 1602
  year: 2016
  end-page: 1618
  ident: bib3
  article-title: Energy oriented multi cutting parameter optimization in face milling
  publication-title: J. Clean. Prod.
– volume: 175
  start-page: 1021
  year: 2019
  end-page: 1037
  ident: bib9
  article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time
  publication-title: Energy
– volume: 72
  start-page: 267
  year: 2018
  end-page: 293
  ident: bib19
  article-title: The social engineering optimizer (SEO)
  publication-title: Eng. Appl. Artif. Intell.
– year: 2019
  ident: bib63
  article-title: Fuzzy grey choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices
  publication-title: IEEE Trans. Sys. Man Cy-S.
– volume: 57
  start-page: 452
  year: 2019
  end-page: 464
  ident: bib20
  article-title: Optimization of the energy consumption of industrial robots for automatic code generation
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 39
  start-page: 242
  year: 2013
  end-page: 254
  ident: bib6
  article-title: Optimization of cutting parameters for minimizing power consumption andmaximizing tool life during machining of Al alloy SiC particle composites
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 2524
  year: 2016
  end-page: 2532
  ident: bib24
  article-title: Energy consumption oriented NC milling process modeling and parameter optimization
  publication-title: China Mech. Eng.
– volume: 52
  start-page: 146
  year: 2017
  end-page: 159
  ident: bib31
  article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 957
  year: 2019
  ident: bib48
  article-title: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine
  publication-title: Appl. Sci.
– volume: 21
  start-page: 1
  year: 2003
  end-page: 9
  ident: bib37
  article-title: Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing(SA)
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 8
  start-page: 682
  year: 2018
  end-page: 692
  ident: bib46
  article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method
  publication-title: Renew. Sustain. Energy Rev.
– volume: 60
  start-page: 45
  year: 2017
  end-page: 56
  ident: bib32
  article-title: Fuzzy petri nets for knowledge representation and reasoning: a literature review
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 462
  year: 2013
  end-page: 471
  ident: bib50
  article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality
  publication-title: J. Clean. Prod.
– volume: 200
  start-page: 423
  year: 2018
  end-page: 443
  ident: bib15
  article-title: A bi-objective green home health care routing problem
  publication-title: J. Clean. Prod.
– volume: 200
  start-page: 373
  year: 2008
  end-page: 384
  ident: bib1
  article-title: Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis
  publication-title: J. Mater. Process. Technol.
– volume: 164
  start-page: 1363
  year: 2017
  end-page: 1375
  ident: bib44
  article-title: Operation patterns analysis of automotive components remanufacturing industry development in China
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 2456
  year: 2019
  end-page: 2468
  ident: bib47
  article-title: Modeling and for dual-objective selective disassembly using and/or graph and discrete artificial bee colony
  publication-title: IEEE Trans. Ind. Inform.
– volume: 166
  start-page: 142
  year: 2019
  end-page: 156
  ident: bib49
  article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning
  publication-title: Energy
– volume: 95
  start-page: 256
  year: 2015
  end-page: 264
  ident: bib51
  article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing
  publication-title: J. Clean. Prod.
– volume: 2
  start-page: 39
  year: 2012
  end-page: 52
  ident: bib2
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
– start-page: 323
  year: 2013
  end-page: 328
  ident: bib12
  article-title: Genetic algorithm based optimization of cutting parameters in turning process
  publication-title: Procedia CIRP 7
– volume: 228
  start-page: 866
  year: 2014
  end-page: 877
  ident: bib4
  article-title: A model to determine the optimal parameters for sustainable-energy machining in a multi-pass turning operation
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
– start-page: 869
  year: 2013
  end-page: 874
  ident: bib29
  article-title: Quantitative analysis of carbon emissions of CNC-based machining systems
  publication-title: Netw. Sens. Control, IEEE Int. Conf.
– volume: 15
  start-page: 748
  year: 2018
  end-page: 760
  ident: bib45
  article-title: Disassembly sequence planning considering fuzzy component quality and varying operational cost
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 220
  start-page: 399
  year: 2013
  end-page: 407
  ident: bib52
  article-title: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach
  publication-title: Inf. Sci.
– volume: 103
  start-page: 1811
  year: 2019
  end-page: 1829
  ident: bib39
  article-title: Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 417
  start-page: 169
  year: 2017
  end-page: 185
  ident: bib10
  article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
  publication-title: Inf. Sci.
– volume: 18
  start-page: 175
  year: 2017
  end-page: 182
  ident: bib5
  article-title: Differentiation of developed and developing countries for the Paris Agreement
  publication-title: Energy Strateg. Rev.
– volume: 48
  start-page: 132
  year: 2012
  end-page: 140
  ident: bib34
  article-title: Multi-period energy model of electro-mechanical main driving system during the service process of machine tools
  publication-title: Chin. J. Mach. Eng.
– volume: 1
  start-page: 173
  year: 2011
  end-page: 194
  ident: bib36
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 161
  start-page: 12
  year: 2017
  end-page: 29
  ident: bib40
  article-title: Energy efficiency of milling machining: component modeling and online optimization of cutting parameters
  publication-title: J. Clean. Prod.
– volume: 13
  start-page: 2000
  year: 2017
  end-page: 2008
  ident: bib8
  article-title: Research on traffic flow prediction in the big data environment based on the improved RBF neural network
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  start-page: 38
  year: 2013
  end-page: 44
  ident: bib42
  article-title: Opportunity estimation for real-time energy control of sustainable manufacturing systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 1
  year: 2019
  end-page: 21
  ident: bib18
  article-title: A set of efficient heuristics for a home healthcare problem
  publication-title: Neural Comput. Appl.
– volume: 25
  start-page: 1200
  year: 2014
  end-page: 1216
  ident: bib13
  article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization
  publication-title: IEEE Trans. Netw. Learn. Syst.
– volume: 149
  start-page: 886
  year: 2017
  end-page: 895
  ident: bib54
  article-title: Integrated optimization of cutting parameters and scheduling for reducing carbon emissions
  publication-title: J. Clean. Prod.
– volume: 140
  start-page: 1805
  year: 2017
  end-page: 1818
  ident: bib30
  article-title: Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost
  publication-title: J. Clean. Prod.
– volume: 4
  start-page: 1724
  year: 2011
  end-page: 1728
  ident: bib25
  article-title: An evaluation model of machining process for green manufacturing
  publication-title: J. Comput. Theor. Nanosci.
– volume: 481
  start-page: 491
  year: 2019
  end-page: 506
  ident: bib56
  article-title: A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions
  publication-title: Inf. Sci.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib26
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– start-page: 5
  year: 2006
  end-page: 11
  ident: bib22
  article-title: Electrical energy requirements for manufacturing processes
  publication-title: 13th CIPR Int. Conf. Life Cycle Eng.
– volume: 231
  start-page: 2372
  year: 2017
  end-page: 2383
  ident: bib33
  article-title: Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
– volume: 57
  start-page: 452
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib20
  article-title: Optimization of the energy consumption of industrial robots for automatic code generation
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2018.12.020
– volume: 456
  start-page: 50
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib57
  article-title: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.05.009
– volume: 417
  start-page: 169
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib10
  article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.011
– volume: 27
  start-page: 2524
  issue: 18
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib24
  article-title: Energy consumption oriented NC milling process modeling and parameter optimization
  publication-title: China Mech. Eng.
– volume: 123
  start-page: 378
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib23
  article-title: A set of efficient heuristics and metaheuristics to solve a two-stage stochastic bi-level decision-making model for the distribution network problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.07.009
– volume: 30
  start-page: 123
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib28
  article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-016-1233-y
– volume: 200
  start-page: 423
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib15
  article-title: A bi-objective green home health care routing problem
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.258
– volume: 12
  start-page: 331
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib17
  article-title: Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating
  publication-title: Int. Conf. Ind. Eng. IEEE
– volume: 231
  start-page: 2372
  issue: 13
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib33
  article-title: Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
  doi: 10.1177/0954405416629098
– volume: 64
  start-page: 690
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib41
  article-title: Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm
  publication-title: Int. Conf. Des. Manuf.
– volume: 52
  start-page: 462
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib50
  article-title: Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.02.030
– volume: 15
  start-page: 2456
  issue: 4
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib47
  article-title: Modeling and for dual-objective selective disassembly using and/or graph and discrete artificial bee colony
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2884845
– volume: 228
  start-page: 866
  issue: 6
  year: 2014
  ident: 10.1016/j.jclepro.2019.118714_bib4
  article-title: A model to determine the optimal parameters for sustainable-energy machining in a multi-pass turning operation
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
  doi: 10.1177/0954405413508945
– volume: 2
  start-page: 39
  year: 2012
  ident: 10.1016/j.jclepro.2019.118714_bib2
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.08.001
– volume: 137
  start-page: 1602
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib3
  article-title: Energy oriented multi cutting parameter optimization in face milling
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.012
– volume: 13
  start-page: 2000
  issue: 4
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib8
  article-title: Research on traffic flow prediction in the big data environment based on the improved RBF neural network
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2682855
– volume: 220
  start-page: 399
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib52
  article-title: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.07.012
– volume: 39
  start-page: 242
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib6
  article-title: Optimization of cutting parameters for minimizing power consumption andmaximizing tool life during machining of Al alloy SiC particle composites
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.08.008
– volume: 72
  start-page: 267
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib19
  article-title: The social engineering optimizer (SEO)
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.009
– volume: 29
  start-page: 1715
  issue: 8
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib60
  article-title: Multi-objective optimization of maching and micro-maching processes using non-dominated sorting teaching-learning-based optimization algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-016-1210-5
– volume: 166
  start-page: 1407
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib14
  article-title: Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.022
– volume: 9
  start-page: 957
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib48
  article-title: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine
  publication-title: Appl. Sci.
  doi: 10.3390/app9050957
– volume: 496
  start-page: 82
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib58
  article-title: A decomposition and statistical learning based many-objective artificial bee colony optimizer
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.014
– volume: 44
  start-page: 2484
  issue: 12
  year: 2014
  ident: 10.1016/j.jclepro.2019.118714_bib53
  article-title: Last-position elimination-based learning automata
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2309478
– volume: 25
  start-page: 1200
  issue: 6
  year: 2014
  ident: 10.1016/j.jclepro.2019.118714_bib13
  article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization
  publication-title: IEEE Trans. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2298402
– volume: 481
  start-page: 491
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib56
  article-title: A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.071
– volume: 18
  start-page: 175
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib5
  article-title: Differentiation of developed and developing countries for the Paris Agreement
  publication-title: Energy Strateg. Rev.
  doi: 10.1016/j.esr.2017.09.016
– volume: 161
  start-page: 12
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib40
  article-title: Energy efficiency of milling machining: component modeling and online optimization of cutting parameters
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.05.013
– year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib63
  article-title: Fuzzy grey choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices
  publication-title: IEEE Trans. Sys. Man Cy-S.
  doi: 10.1109/TSMC.2019.2906635
– start-page: 5
  year: 2006
  ident: 10.1016/j.jclepro.2019.118714_bib22
  article-title: Electrical energy requirements for manufacturing processes
  publication-title: 13th CIPR Int. Conf. Life Cycle Eng.
– start-page: 869
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib29
  article-title: Quantitative analysis of carbon emissions of CNC-based machining systems
  publication-title: Netw. Sens. Control, IEEE Int. Conf.
– volume: 21
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.jclepro.2019.118714_bib37
  article-title: Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing(SA)
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s001700300000
– volume: 1
  start-page: 173
  year: 2011
  ident: 10.1016/j.jclepro.2019.118714_bib36
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.10.001
– year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib64
  article-title: Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology
  publication-title: IEEE Trans. Ind. Inform.
– volume: 48
  start-page: 132
  issue: 21
  year: 2012
  ident: 10.1016/j.jclepro.2019.118714_bib34
  article-title: Multi-period energy model of electro-mechanical main driving system during the service process of machine tools
  publication-title: Chin. J. Mach. Eng.
  doi: 10.3901/JME.2012.21.132
– volume: 164
  start-page: 1363
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib44
  article-title: Operation patterns analysis of automotive components remanufacturing industry development in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.028
– volume: 60
  start-page: 45
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib32
  article-title: Fuzzy petri nets for knowledge representation and reasoning: a literature review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.012
– volume: 149
  start-page: 886
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib54
  article-title: Integrated optimization of cutting parameters and scheduling for reducing carbon emissions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.054
– volume: 367–368
  start-page: 1012
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib11
  article-title: A novel artificial bee colony algorithm with depth-first search framework an elite-guided search equation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.022
– start-page: 1
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib18
  article-title: A set of efficient heuristics for a home healthcare problem
  publication-title: Neural Comput. Appl.
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.jclepro.2019.118714_bib26
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 52
  start-page: 146
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib31
  article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.017
– volume: 137
  start-page: 1516
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib35
  article-title: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.029
– volume: 71
  start-page: 505
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib16
  article-title: Multi-objective stochastic closed-loop supply chain network design with social considerations
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.025
– volume: 10
  start-page: 38
  issue: 1
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib42
  article-title: Opportunity estimation for real-time energy control of sustainable manufacturing systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2216876
– volume: 140
  start-page: 1805
  issue: 3
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib30
  article-title: Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.086
– volume: 200
  start-page: 373
  issue: 1–3
  year: 2008
  ident: 10.1016/j.jclepro.2019.118714_bib1
  article-title: Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.09.041
– volume: 95
  start-page: 256
  year: 2015
  ident: 10.1016/j.jclepro.2019.118714_bib51
  article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.02.076
– start-page: 323
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib12
  article-title: Genetic algorithm based optimization of cutting parameters in turning process
  publication-title: Procedia CIRP 7
  doi: 10.1016/j.procir.2013.05.055
– volume: 52
  start-page: 113
  issue: 1
  year: 2013
  ident: 10.1016/j.jclepro.2019.118714_bib27
  article-title: Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.02.039
– year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib62
  article-title: Data-driven ecological performance evaluation for remanufacturing process
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2019.111844
– volume: 8
  start-page: 682
  issue: 11
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib46
  article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.050
– year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib61
  article-title: An integrated decision-making method for selecting machine tool guideways considering remanufacturability
  publication-title: Int. J. Comput. Integ. M.
  doi: 10.1080/0951192X.2018.1550680
– volume: 148
  start-page: 174
  year: 2017
  ident: 10.1016/j.jclepro.2019.118714_bib55
  article-title: A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.077
– volume: 116
  start-page: 178
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib21
  article-title: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.011
– volume: 4
  start-page: 1724
  issue: 4
  year: 2011
  ident: 10.1016/j.jclepro.2019.118714_bib25
  article-title: An evaluation model of machining process for green manufacturing
  publication-title: J. Comput. Theor. Nanosci.
– volume: 166
  start-page: 142
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib49
  article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.191
– start-page: 85
  year: 2011
  ident: 10.1016/j.jclepro.2019.118714_bib38
  article-title: Sustainability in manufacturing-energy consumption of cutting processes
  publication-title: Adv. Sustain. Manuf.: Proc. 8th Glob. Conf. Sustain. Manuf.
  doi: 10.1007/978-3-642-20183-7_13
– volume: 15
  start-page: 748
  issue: 2
  year: 2018
  ident: 10.1016/j.jclepro.2019.118714_bib45
  article-title: Disassembly sequence planning considering fuzzy component quality and varying operational cost
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2690802
– volume: 175
  start-page: 1021
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib9
  article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.157
– volume: 103
  start-page: 1811
  issue: 5–8
  year: 2019
  ident: 10.1016/j.jclepro.2019.118714_bib39
  article-title: Selection of an ideal MQL-assisted milling condition: an NSGA-II-coupled TOPSIS approach for improving machinability of Inconel 690
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03620-6
– volume: 17
  start-page: 3009
  issue: 11
  year: 2016
  ident: 10.1016/j.jclepro.2019.118714_bib43
  article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2505323
SSID ssj0017074
Score 2.5568075
Snippet Selecting a set of reasonable milling parameters of computerized numerical control (CNC) machines is of great importance in decreasing energy consumption and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118714
SubjectTerms algorithms
Dual-objective optimization
Energy consumption model
energy use and consumption
Intelligent algorithm
milling
Milling process model
processing time
Scheduling and optimization
system optimization
Title Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints
URI https://dx.doi.org/10.1016/j.jclepro.2019.118714
https://www.proquest.com/docview/2335129610
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcikHBBREeVSD1Gt2k9h5-FgVqgXUXkqlvVl-Srtqk4rNHrjwL_i_zDhOgUpVpV6j-JGZ8cxnZ-YzY0eIAryQhc8aQSU51pa4pGTIdODBm7YOLjLenJ3Xi0vxdVktd9jJVAtDaZXJ948-PXrr9GSepDm_Wa3mF3SCVVe0A-Acw-iSKthFQ1Y--3Wb5lE0-cjETMdd9PbfKp75erbGztBRUYaXnNHF24W4Lz7d8dQx_Jw-Z88SboTjcWov2I7vXrKn_7AJ7rPfn7b6KuvNevRhkFKvQHcOVvHswDugbxtJI8B4D8RZ3f0ERK6ASBB6dCDXqTIT-gA-VgZmuGdG2fTbDdAlRTgYEGP4NWXSbGCzjSPC0MOUnQjUIF4-MWxescvTz99PFlm6dSGzXJRDxivNHQIVhCo611Y4URQ66Dx3rWxLY4NorbWhQgU5b3Kna-3r4CsnZaOlFvw12-36zr9hwGtjcqlbXnsnnG9kILq-os1bY7Wu9AETk6yVTZTkNLkrNeWerVVSkSIVqVFFB2x22-xm5OR4qEE7KVL9Z1wK48ZDTT9Oile48Ohviu48ClyVaHUIlhB-vn189-_YXkkb-JgG_p7tDj-2_gOinMEcRjM-ZE-Ov3xbnP8B9oEDIA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4IKAgyqMMUq_ZTWInGx-rQrV97YVW2pvlp7SrNqnY7IEfwv9lJnEKVKoq9RppbMdjz3y2Z75h7ABRgBcy88lUUEqOtTluKRkSHXjwpiqD6xhvLubl7EqcLorFFjsacmEorDLa_t6md9Y6fpnE2ZzcLpeTH3SDVRZ0AuAc3ejiGdsmdqpixLYPT85m87vHhGnakzHTjRcJ_E3kmazGK2wPbRUFeckx1d7OxEMu6p6x7jzQ8Sv2MkJHOOxH95pt-foNe_EPoeAu-_1to6-Txqx6MwYx-gp07WDZXR94B_R7PW8EGO-BaKvrX4DgFRAMQoM25CYmZ0ITwHfJgQkem3F6ms0aqE4RdgZEGn5DwTRrWG-6HqFtYAhQBBLo6k-067fs6vj75dEsiYUXEstF3ia80NwhVkG0olNthRNZpoNOU1fJKjc2iMpaGwrUkfMmdbrUvgy-cFJOtdSCv2Ojuqn9ewa8NCaVuuKld8L5qQzE2JdVaWWs1oXeY2KYa2UjKzkN7loN4WcrFVWkSEWqV9EeG9-J3fa0HI8JVIMi1X_rS6HreEz066B4hXuPHlR07XHCVY4LD_ESItAPT2_-C9uZXV6cq_OT-dlH9jyn83wXFf6JjdqfG_8ZQU9r9uOi_gPB0wXR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-objective+program+and+improved+artificial+bee+colony+for+the+optimization+of+energy-conscious+milling+parameters+subject+to+multiple+constraints&rft.jtitle=Journal+of+cleaner+production&rft.au=Wang%2C+Wenjie&rft.au=Tian%2C+Guangdong&rft.au=Chen%2C+Maoning&rft.au=Tao%2C+Fei&rft.date=2020-02-01&rft.issn=0959-6526&rft.volume=245&rft.spage=118714&rft_id=info:doi/10.1016%2Fj.jclepro.2019.118714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2019_118714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon