The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes

Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at di...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 168; p. 108636
Main Authors Li, Shuailin, Cui, Yongxing, Xia, Zhuqing, Zhang, Xinhui, Zhu, Mengmeng, Gao, Yun, An, Siyu, Yu, Wantai, Ma, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha−1 yr−1) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha−1 yr−1. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha−1 yr−1 but a shift to N limitation when the straw addition rate was over 8 t ha−1 yr−1. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems. •The rate of increase in Rs dropped when straw addition was greater than 8 t ha−1.•Straw input leads to soil microbes being increasingly limited by N rather than P.•Microbial metabolic limitation mediated CUE and the numbers of C-degrading genes.
AbstractList Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha⁻¹ yr⁻¹) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha⁻¹ yr⁻¹. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha⁻¹ yr⁻¹ but a shift to N limitation when the straw addition rate was over 8 t ha⁻¹ yr⁻¹. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems.
Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha−1 yr−1) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha−1 yr−1. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha−1 yr−1 but a shift to N limitation when the straw addition rate was over 8 t ha−1 yr−1. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems. •The rate of increase in Rs dropped when straw addition was greater than 8 t ha−1.•Straw input leads to soil microbes being increasingly limited by N rather than P.•Microbial metabolic limitation mediated CUE and the numbers of C-degrading genes.
ArticleNumber 108636
Author Ma, Qiang
Yu, Wantai
Zhang, Xinhui
Li, Shuailin
An, Siyu
Zhu, Mengmeng
Gao, Yun
Xia, Zhuqing
Cui, Yongxing
Author_xml – sequence: 1
  givenname: Shuailin
  orcidid: 0000-0001-9743-2915
  surname: Li
  fullname: Li, Shuailin
  email: lishuailin@007.com
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 2
  givenname: Yongxing
  surname: Cui
  fullname: Cui, Yongxing
  organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
– sequence: 3
  givenname: Zhuqing
  surname: Xia
  fullname: Xia, Zhuqing
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 4
  givenname: Xinhui
  surname: Zhang
  fullname: Zhang, Xinhui
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 5
  givenname: Mengmeng
  surname: Zhu
  fullname: Zhu, Mengmeng
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 6
  givenname: Yun
  surname: Gao
  fullname: Gao, Yun
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 7
  givenname: Siyu
  surname: An
  fullname: An, Siyu
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 8
  givenname: Wantai
  surname: Yu
  fullname: Yu, Wantai
  email: wtyu@iae.ac.cn
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 9
  givenname: Qiang
  surname: Ma
  fullname: Ma, Qiang
  email: qma@iae.ac.cn
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
BookMark eNqFkU1PAyEQhonRxPrxE0w4etkKLAtbPRjT1I-kiRc9E8oOlmYXKmxr6q-XtT158UTyzjzD8HCGjn3wgNAVJWNKqLhZjVNw7cKFMSOM5awWpThCI1rLSVFyVh-jESFlXRBJ5Sk6S2lFCGEVLUdo97YE3IFZau9Sh4PFfQ6akACDtWD6IUp91F84eDzcgyOktYu6d8Hf4tnWNeANYBtDh8F_77pcMRkJzixd6KCPO6x9g-3Gm4HRLf4AD-kCnVjdJrg8nOfo_XH2Nn0u5q9PL9OHeWHy6n1RMqktl43lhkoimbBkohtrueZCMqPpghNR8bISjZ1QSYUWckEWuSwrBtqW5-h6P3cdw-cGUq86lwy0rfYQNkkxwetaCsppbr3bt5oYUopglXH970OzANcqStQgXK3UQbgahKu98ExXf-h1dJ2Ou3-5-z0H2cLWQVTJuMFp42L-ANUE98-EHxLkoeU
CitedBy_id crossref_primary_10_1007_s11104_025_07297_7
crossref_primary_10_1016_j_fecs_2023_100116
crossref_primary_10_1016_j_apsoil_2025_105904
crossref_primary_10_1016_j_ejsobi_2024_103695
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_1016_j_soilbio_2022_108814
crossref_primary_10_1016_j_ejsobi_2024_103646
crossref_primary_10_1016_j_pedobi_2023_150913
crossref_primary_10_1016_j_scitotenv_2023_166777
crossref_primary_10_1016_j_still_2023_105859
crossref_primary_10_1016_j_scitotenv_2023_167346
crossref_primary_10_1016_j_agee_2023_108438
crossref_primary_10_1016_j_envres_2024_120155
crossref_primary_10_1016_j_scitotenv_2024_172789
crossref_primary_10_1016_j_scitotenv_2024_176729
crossref_primary_10_1016_j_chemosphere_2022_136311
crossref_primary_10_1016_j_apsoil_2023_105192
crossref_primary_10_1016_j_apsoil_2024_105370
crossref_primary_10_1111_gcb_70036
crossref_primary_10_1016_j_apsoil_2024_105354
crossref_primary_10_1016_j_apsoil_2025_105874
crossref_primary_10_1016_j_scitotenv_2024_174548
crossref_primary_10_1016_j_apsoil_2025_106001
crossref_primary_10_1016_j_catena_2024_108050
crossref_primary_10_1016_j_scitotenv_2023_169731
crossref_primary_10_3390_f16010004
crossref_primary_10_1007_s11356_023_28062_2
crossref_primary_10_1016_j_apsoil_2024_105779
crossref_primary_10_1007_s42729_023_01352_x
crossref_primary_10_1016_j_scitotenv_2023_161865
crossref_primary_10_1007_s42729_024_01786_x
crossref_primary_10_1016_j_agee_2024_109142
crossref_primary_10_1016_j_pedsph_2023_04_003
crossref_primary_10_1007_s00271_024_00988_6
crossref_primary_10_1016_j_soilbio_2024_109614
crossref_primary_10_1111_sum_13020
crossref_primary_10_1016_j_scitotenv_2022_159498
crossref_primary_10_1016_j_catena_2024_108197
crossref_primary_10_1016_j_catena_2022_106652
Cites_doi 10.1111/geb.13378
10.18637/jss.v017.i01
10.1016/0038-0717(95)00101-8
10.1016/j.fcr.2019.107616
10.1016/0038-0717(90)90046-3
10.1016/j.soilbio.2011.03.017
10.1007/s00521-020-04816-8
10.1016/j.soilbio.2018.09.028
10.1016/j.apsoil.2010.09.006
10.1016/j.scitotenv.2020.139479
10.1214/12-EJS724
10.1016/j.soilbio.2019.05.007
10.1016/j.apsoil.2019.02.018
10.1016/j.geoderma.2016.10.007
10.1016/0038-0717(87)90052-6
10.1890/06-0219
10.1146/annurev-ecolsys-071112-124414
10.1007/s11427-018-9364-7
10.1007/s11104-014-2049-1
10.1111/gcb.15018
10.1007/s10533-007-9132-0
10.1016/j.still.2020.104735
10.1016/j.scitotenv.2017.06.275
10.1016/0038-0717(82)90001-3
10.1016/j.soilbio.2018.09.036
10.1016/j.geoderma.2016.05.019
10.1016/j.soilbio.2018.03.003
10.1016/j.geoderma.2019.113883
10.1016/j.soilbio.2018.09.003
10.3390/su9122316
10.1111/ele.12113
10.1016/j.geoderma.2011.11.005
10.1111/gcb.12140
10.17221/434/2020-PSE
10.1007/s10533-013-9849-x
10.1038/nature08632
10.1007/s00253-018-9563-7
10.1016/j.soilbio.2017.09.025
10.1016/S0038-0717(02)00074-3
10.1016/j.soilbio.2020.107814
10.1016/j.soilbio.2015.10.019
10.3389/fmicb.2014.00022
10.1016/j.scitotenv.2018.08.173
10.1038/nmicrobiol.2017.105
10.1016/j.soilbio.2005.08.012
10.1016/j.agwat.2018.09.049
10.1007/s00374-013-0794-6
10.1016/j.soilbio.2013.07.002
10.1016/0038-0717(85)90144-0
10.1016/j.soilbio.2016.01.016
10.1016/j.geoderma.2021.114928
10.1016/j.geoderma.2014.09.010
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2022.108636
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2022_108636
S0038071722000931
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-327af47df4c170726f09adff4a4672ca1b40654356df91716a67b0b4a4752eaf3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 00:15:39 EDT 2025
Tue Jul 01 03:20:06 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Agricultural ecosystems
Microbial CUE
Microbial metabolic limitation
Soil C cycling
Ecoenzymatic stoichiometry
Functional genes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-327af47df4c170726f09adff4a4672ca1b40654356df91716a67b0b4a4752eaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9743-2915
PQID 2648876141
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2648876141
crossref_citationtrail_10_1016_j_soilbio_2022_108636
crossref_primary_10_1016_j_soilbio_2022_108636
elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jones, Willett (bib22) 2006; 38
Paterson, Sim (bib34) 2013; 19
Guenet, Neill, Bardoux, Abbadie (bib19) 2010; 46
Joergensen, Mueller (bib21) 1996; 28
Maarastawi, Frindte, Bodelier, Knief (bib29) 2019; 135
Saiya-Cork, Sinsabaugh, Zak (bib38) 2002; 34
Cui, Fang, Guo, Han, Ju, Ye, Wang, Tan, Zhang (bib7) 2019; 648
Cui, Moorhead, Guo, Peng, Wang, Zhang, Fang (bib9) 2021; 30
Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (bib32) 2014; 5
Fang, Singh, Cowie, Wang, Arachchi, Wang, Tavakkoli (bib11) 2019; 354
Cui, Fang, Guo, Wang, Zhang, Li, Zhang (bib8) 2018; 116
Geyer, Dijkstra, Sinsabaugh, Frey (bib15) 2019; 128
Fang, Singh, Collins, Li, Zhu, Tavakkoli (bib12) 2018; 126
Spohn, Klaus, Wanek, Richter (bib44) 2016; 96
Poirier, Angers, Rochette, Whalen (bib36) 2013; 49
van Groenigen, Forristal, Jones, Smyth, Schwartz, Hungate, Dijkstra (bib46) 2013; 66
Poeplau, Kaetterer, Bolinder, Borjesson, Berti, Lugato (bib35) 2015; 237
Liang, Schimel, Jastrow (bib25) 2017; 2
Cleveland, Liptzin (bib5) 2007; 85
Zhao, Qiu, Xu, Ciampitti, Zhang, He (bib50) 2019; 138
Heitkamp, Wendland, Offenberger, Gerold (bib20) 2012; 170
Chen, Ding, Li, Yan, He, Hu (bib4) 2020; 734
Ma, Kong, Wang, Luo, Lv, Zhou, Meng (bib26) 2019; 243
Wu, Joergensen, Pommerening, Chaussod, Brookes (bib49) 1990; 22
Cui, Wang, Zhang, Ju, Duan, Guo, Wang, Fang (bib10) 2020; 147
Suriyagoda, De Costa, Lambers (bib45) 2014; 384
Ma, Zhang, Zheng, Yue, Zhang, Zhai, Wang, Zheng, Li, Zamanian, Razavi (bib28) 2021; 388
Schimel, Balser, Wallenstein (bib39) 2007; 88
Feng, Su, He, Hu, Zhang, He, Kariman, Wu, Chen (bib13) 2019; 103
Russolillo (bib37) 2012; 6
Gong, Liu, Sun, Zhou (bib17) 2020; 32
Sinsabaugh, Hill, Shah (bib41) 2009; 462
Li, Liang, Shangguan (bib24) 2017; 607
Brookes, Landman, Pruden, Jenkinson (bib2) 1985; 17
Ghimire, Ghimire, VanLeeuwen, Mesbah (bib16) 2017; 9
Cong, Wang, Li, Liu, Dong, Pang, Zhang, Gao (bib6) 2020; 204
Berhane, Xu, Liang, Shi, Wei, Tian (bib1) 2020; 26
Sinsabaugh, Shah (bib43) 2012; 43
Waring, Weintraub, Sinsabaugh (bib48) 2014; 117
Maarastawi, Frindte, Geer, Krober, Knief (bib30) 2018; 127
Olsen, Sommers (bib33) 1982
Vance, Brooks, Jenkinson (bib47) 1987; 19
Zheng, Zhu, Sardans, Penuelas, Su (bib52) 2018; 61
Shahbaz, Kuzyakov, Heitkamp (bib40) 2017; 304
Zheng, Marschner (bib51) 2017; 285
Zhu, Ge, Luo, Liu, Xu, Tong, Shibistova, Guggenberger, Wu (bib53) 2018; 121
Sinsabaugh, Manzoni, Moorhead, Richter (bib42) 2013; 16
German, Weintraub, Grandy, Lauber, Rinkes, Allison (bib14) 2011; 43
Ma, Jiang, Li, Yu (bib27) 2021; 67
Gromping (bib18) 2006; 17
Brookes, Powlson, Jenkinson (bib3) 1982; 14
Moorhead, Sinsabaugh, Hill, Weintraub (bib31) 2016; 93
Li, Yang, Zhou, Zhang, Luo, Li, Lindsey, Shi, He, Zhang (bib23) 2019; 211
Poirier (10.1016/j.soilbio.2022.108636_bib36) 2013; 49
Li (10.1016/j.soilbio.2022.108636_bib24) 2017; 607
Chen (10.1016/j.soilbio.2022.108636_bib4) 2020; 734
Sinsabaugh (10.1016/j.soilbio.2022.108636_bib41) 2009; 462
German (10.1016/j.soilbio.2022.108636_bib14) 2011; 43
Fang (10.1016/j.soilbio.2022.108636_bib11) 2019; 354
Ma (10.1016/j.soilbio.2022.108636_bib28) 2021; 388
Russolillo (10.1016/j.soilbio.2022.108636_bib37) 2012; 6
Moorhead (10.1016/j.soilbio.2022.108636_bib31) 2016; 93
Zhu (10.1016/j.soilbio.2022.108636_bib53) 2018; 121
Gromping (10.1016/j.soilbio.2022.108636_bib18) 2006; 17
Shahbaz (10.1016/j.soilbio.2022.108636_bib40) 2017; 304
Cui (10.1016/j.soilbio.2022.108636_bib8) 2018; 116
Schimel (10.1016/j.soilbio.2022.108636_bib39) 2007; 88
Cui (10.1016/j.soilbio.2022.108636_bib10) 2020; 147
Ma (10.1016/j.soilbio.2022.108636_bib26) 2019; 243
Fang (10.1016/j.soilbio.2022.108636_bib12) 2018; 126
Saiya-Cork (10.1016/j.soilbio.2022.108636_bib38) 2002; 34
Heitkamp (10.1016/j.soilbio.2022.108636_bib20) 2012; 170
van Groenigen (10.1016/j.soilbio.2022.108636_bib46) 2013; 66
Poeplau (10.1016/j.soilbio.2022.108636_bib35) 2015; 237
Ma (10.1016/j.soilbio.2022.108636_bib27) 2021; 67
Berhane (10.1016/j.soilbio.2022.108636_bib1) 2020; 26
Zheng (10.1016/j.soilbio.2022.108636_bib52) 2018; 61
Liang (10.1016/j.soilbio.2022.108636_bib25) 2017; 2
Wu (10.1016/j.soilbio.2022.108636_bib49) 1990; 22
Brookes (10.1016/j.soilbio.2022.108636_bib3) 1982; 14
Cui (10.1016/j.soilbio.2022.108636_bib9) 2021; 30
Waring (10.1016/j.soilbio.2022.108636_bib48) 2014; 117
Zhao (10.1016/j.soilbio.2022.108636_bib50) 2019; 138
Gong (10.1016/j.soilbio.2022.108636_bib17) 2020; 32
Vance (10.1016/j.soilbio.2022.108636_bib47) 1987; 19
Brookes (10.1016/j.soilbio.2022.108636_bib2) 1985; 17
Joergensen (10.1016/j.soilbio.2022.108636_bib21) 1996; 28
Olsen (10.1016/j.soilbio.2022.108636_bib33) 1982
Guenet (10.1016/j.soilbio.2022.108636_bib19) 2010; 46
Spohn (10.1016/j.soilbio.2022.108636_bib44) 2016; 96
Suriyagoda (10.1016/j.soilbio.2022.108636_bib45) 2014; 384
Maarastawi (10.1016/j.soilbio.2022.108636_bib30) 2018; 127
Li (10.1016/j.soilbio.2022.108636_bib23) 2019; 211
Zheng (10.1016/j.soilbio.2022.108636_bib51) 2017; 285
Ghimire (10.1016/j.soilbio.2022.108636_bib16) 2017; 9
Maarastawi (10.1016/j.soilbio.2022.108636_bib29) 2019; 135
Sinsabaugh (10.1016/j.soilbio.2022.108636_bib43) 2012; 43
Geyer (10.1016/j.soilbio.2022.108636_bib15) 2019; 128
Paterson (10.1016/j.soilbio.2022.108636_bib34) 2013; 19
Cleveland (10.1016/j.soilbio.2022.108636_bib5) 2007; 85
Cong (10.1016/j.soilbio.2022.108636_bib6) 2020; 204
Mooshammer (10.1016/j.soilbio.2022.108636_bib32) 2014; 5
Cui (10.1016/j.soilbio.2022.108636_bib7) 2019; 648
Feng (10.1016/j.soilbio.2022.108636_bib13) 2019; 103
Jones (10.1016/j.soilbio.2022.108636_bib22) 2006; 38
Sinsabaugh (10.1016/j.soilbio.2022.108636_bib42) 2013; 16
References_xml – volume: 304
  start-page: 76
  year: 2017
  end-page: 82
  ident: bib40
  article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls
  publication-title: Geoderma
– volume: 128
  start-page: 79
  year: 2019
  end-page: 88
  ident: bib15
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology & Biochemistry
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  ident: bib38
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil
  publication-title: Soil Biology & Biochemistry
– volume: 285
  start-page: 217
  year: 2017
  end-page: 224
  ident: bib51
  article-title: Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition
  publication-title: Geoderma
– volume: 127
  start-page: 200
  year: 2018
  end-page: 212
  ident: bib30
  article-title: Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize
  publication-title: Soil Biology & Biochemistry
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: bib2
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology & Biochemistry
– volume: 354
  year: 2019
  ident: bib11
  article-title: Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions
  publication-title: Geoderma
– volume: 9
  start-page: 2316
  year: 2017
  ident: bib16
  article-title: Cover crop residue amount and quality effects on soil organic carbon mineralization
  publication-title: Sustainability
– volume: 243
  start-page: 10
  year: 2019
  ident: bib26
  article-title: Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input
  publication-title: Field Crops Research
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  ident: bib48
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– start-page: 403
  year: 1982
  end-page: 430
  ident: bib33
  article-title: Phosphorous
  publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties
– volume: 96
  start-page: 74
  year: 2016
  end-page: 81
  ident: bib44
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling
  publication-title: Soil Biology & Biochemistry
– volume: 2
  year: 2017
  ident: bib25
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 26
  start-page: 2686
  year: 2020
  end-page: 2701
  ident: bib1
  article-title: Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis
  publication-title: Global Change Biology
– volume: 30
  start-page: 2297
  year: 2021
  end-page: 2311
  ident: bib9
  article-title: Stoichiometric models of microbial metabolic limitation in soil systems
  publication-title: Global Ecology and Biogeography
– volume: 103
  start-page: 1961
  year: 2019
  end-page: 1972
  ident: bib13
  article-title: Effects of long-term straw incorporation on lignin accumulation and its association with bacterial laccase-like genes in arable soils
  publication-title: Applied Microbiology and Biotechnology
– volume: 204
  year: 2020
  ident: bib6
  article-title: Changes in soil organic carbon and microbial community under varying straw incorporation strategies
  publication-title: Soil & Tillage Research
– volume: 88
  start-page: 1386
  year: 2007
  end-page: 1394
  ident: bib39
  article-title: Microbial stress-response physiology and its implications for ecosystem function
  publication-title: Ecology
– volume: 116
  start-page: 11
  year: 2018
  end-page: 21
  ident: bib8
  article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China
  publication-title: Soil Biology & Biochemistry
– volume: 67
  start-page: 383
  year: 2021
  end-page: 389
  ident: bib27
  article-title: Maize yield and nitrogen-use characteristics were promoted as consistently improved soil fertility: 6-year straw incorporation in Northeast China
  publication-title: Plant Soil and Environment
– volume: 648
  start-page: 388
  year: 2019
  end-page: 397
  ident: bib7
  article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes
  publication-title: Science of the Total Environment
– volume: 147
  year: 2020
  ident: bib10
  article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region
  publication-title: Soil Biology & Biochemistry
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  ident: bib14
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology & Biochemistry
– volume: 6
  start-page: 1641
  year: 2012
  end-page: 1669
  ident: bib37
  article-title: Non-metric partial least squares
  publication-title: Electronic Journal of Statistics
– volume: 61
  start-page: 1451
  year: 2018
  end-page: 1462
  ident: bib52
  article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Science China-Life Sciences
– volume: 32
  start-page: 14623
  year: 2020
  end-page: 14638
  ident: bib17
  article-title: Evaluating the retest reproducibility of intrinsic connectivity network using multivariate correlation coefficient
  publication-title: Neural Computing & Applications
– volume: 49
  start-page: 527
  year: 2013
  end-page: 535
  ident: bib36
  article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
  publication-title: Biology and Fertility of Soils
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: bib43
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 121
  start-page: 67
  year: 2018
  end-page: 76
  ident: bib53
  article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
  publication-title: Soil Biology & Biochemistry
– volume: 211
  start-page: 132
  year: 2019
  end-page: 141
  ident: bib23
  article-title: Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil
  publication-title: Agricultural Water Management
– volume: 135
  start-page: 235
  year: 2019
  end-page: 238
  ident: bib29
  article-title: Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption
  publication-title: Soil Biology & Biochemistry
– volume: 66
  start-page: 139
  year: 2013
  end-page: 145
  ident: bib46
  article-title: Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil
  publication-title: Soil Biology & Biochemistry
– volume: 38
  start-page: 991
  year: 2006
  end-page: 999
  ident: bib22
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biology & Biochemistry
– volume: 14
  start-page: 319
  year: 1982
  end-page: 329
  ident: bib3
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biology & Biochemistry
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  ident: bib42
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: bib41
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 607
  start-page: 109
  year: 2017
  end-page: 119
  ident: bib24
  article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N
  publication-title: Science of the Total Environment
– volume: 28
  start-page: 33
  year: 1996
  end-page: 37
  ident: bib21
  article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EN) value
  publication-title: Soil Biology & Biochemistry
– volume: 93
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib31
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biology & Biochemistry
– volume: 17
  start-page: 1
  year: 2006
  end-page: 27
  ident: bib18
  article-title: Relative importance for linear regression in R: the package relaimpo
  publication-title: Journal of Statistical Software
– volume: 19
  start-page: 1562
  year: 2013
  end-page: 1571
  ident: bib34
  article-title: Soil-specific response functions of organic matter mineralization to the availability of labile carbon
  publication-title: Global Change Biology
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: bib5
  article-title: C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 138
  start-page: 123
  year: 2019
  end-page: 133
  ident: bib50
  article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils
  publication-title: Applied Soil Ecology
– volume: 46
  start-page: 436
  year: 2010
  end-page: 442
  ident: bib19
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Applied Soil Ecology
– volume: 384
  start-page: 53
  year: 2014
  end-page: 68
  ident: bib45
  article-title: Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils
  publication-title: Plant and Soil
– volume: 388
  year: 2021
  ident: bib28
  article-title: Effects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry
  publication-title: Geoderma
– volume: 734
  year: 2020
  ident: bib4
  article-title: Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes
  publication-title: Science of the Total Environment
– volume: 170
  start-page: 168
  year: 2012
  end-page: 175
  ident: bib20
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model
  publication-title: Geoderma
– volume: 237
  start-page: 246
  year: 2015
  end-page: 255
  ident: bib35
  article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments
  publication-title: Geoderma
– volume: 5
  start-page: 22
  year: 2014
  ident: bib32
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources
  publication-title: Frontiers in Microbiology
– volume: 22
  start-page: 1167
  year: 1990
  end-page: 1169
  ident: bib49
  article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure
  publication-title: Soil Biology & Biochemistry
– volume: 126
  start-page: 168
  year: 2018
  end-page: 178
  ident: bib12
  article-title: Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils
  publication-title: Soil Biology & Biochemistry
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bib47
  article-title: An extraction method for measuring soil microbial biomass
  publication-title: Soil Biology & Biochemistry
– volume: 30
  start-page: 2297
  year: 2021
  ident: 10.1016/j.soilbio.2022.108636_bib9
  article-title: Stoichiometric models of microbial metabolic limitation in soil systems
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.13378
– volume: 17
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.soilbio.2022.108636_bib18
  article-title: Relative importance for linear regression in R: the package relaimpo
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v017.i01
– volume: 28
  start-page: 33
  year: 1996
  ident: 10.1016/j.soilbio.2022.108636_bib21
  article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EN) value
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(95)00101-8
– volume: 243
  start-page: 10
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib26
  article-title: Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2019.107616
– volume: 22
  start-page: 1167
  year: 1990
  ident: 10.1016/j.soilbio.2022.108636_bib49
  article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(90)90046-3
– volume: 43
  start-page: 1387
  year: 2011
  ident: 10.1016/j.soilbio.2022.108636_bib14
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2011.03.017
– volume: 32
  start-page: 14623
  year: 2020
  ident: 10.1016/j.soilbio.2022.108636_bib17
  article-title: Evaluating the retest reproducibility of intrinsic connectivity network using multivariate correlation coefficient
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-04816-8
– volume: 127
  start-page: 200
  year: 2018
  ident: 10.1016/j.soilbio.2022.108636_bib30
  article-title: Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2018.09.028
– volume: 46
  start-page: 436
  year: 2010
  ident: 10.1016/j.soilbio.2022.108636_bib19
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2010.09.006
– volume: 734
  year: 2020
  ident: 10.1016/j.soilbio.2022.108636_bib4
  article-title: Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.139479
– volume: 6
  start-page: 1641
  year: 2012
  ident: 10.1016/j.soilbio.2022.108636_bib37
  article-title: Non-metric partial least squares
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS724
– volume: 135
  start-page: 235
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib29
  article-title: Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2019.05.007
– volume: 138
  start-page: 123
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib50
  article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2019.02.018
– volume: 285
  start-page: 217
  year: 2017
  ident: 10.1016/j.soilbio.2022.108636_bib51
  article-title: Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.007
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.soilbio.2022.108636_bib47
  article-title: An extraction method for measuring soil microbial biomass
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(87)90052-6
– volume: 88
  start-page: 1386
  year: 2007
  ident: 10.1016/j.soilbio.2022.108636_bib39
  article-title: Microbial stress-response physiology and its implications for ecosystem function
  publication-title: Ecology
  doi: 10.1890/06-0219
– volume: 43
  start-page: 313
  year: 2012
  ident: 10.1016/j.soilbio.2022.108636_bib43
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 61
  start-page: 1451
  year: 2018
  ident: 10.1016/j.soilbio.2022.108636_bib52
  article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Science China-Life Sciences
  doi: 10.1007/s11427-018-9364-7
– volume: 384
  start-page: 53
  year: 2014
  ident: 10.1016/j.soilbio.2022.108636_bib45
  article-title: Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils
  publication-title: Plant and Soil
  doi: 10.1007/s11104-014-2049-1
– volume: 26
  start-page: 2686
  issue: 4
  year: 2020
  ident: 10.1016/j.soilbio.2022.108636_bib1
  article-title: Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15018
– volume: 85
  start-page: 235
  year: 2007
  ident: 10.1016/j.soilbio.2022.108636_bib5
  article-title: C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 204
  year: 2020
  ident: 10.1016/j.soilbio.2022.108636_bib6
  article-title: Changes in soil organic carbon and microbial community under varying straw incorporation strategies
  publication-title: Soil & Tillage Research
  doi: 10.1016/j.still.2020.104735
– volume: 607
  start-page: 109
  year: 2017
  ident: 10.1016/j.soilbio.2022.108636_bib24
  article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2017.06.275
– volume: 14
  start-page: 319
  year: 1982
  ident: 10.1016/j.soilbio.2022.108636_bib3
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(82)90001-3
– volume: 128
  start-page: 79
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib15
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2018.09.036
– volume: 304
  start-page: 76
  year: 2017
  ident: 10.1016/j.soilbio.2022.108636_bib40
  article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.019
– volume: 121
  start-page: 67
  year: 2018
  ident: 10.1016/j.soilbio.2022.108636_bib53
  article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2018.03.003
– volume: 354
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib11
  article-title: Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113883
– volume: 126
  start-page: 168
  year: 2018
  ident: 10.1016/j.soilbio.2022.108636_bib12
  article-title: Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2018.09.003
– volume: 9
  start-page: 2316
  issue: 12
  year: 2017
  ident: 10.1016/j.soilbio.2022.108636_bib16
  article-title: Cover crop residue amount and quality effects on soil organic carbon mineralization
  publication-title: Sustainability
  doi: 10.3390/su9122316
– volume: 16
  start-page: 930
  year: 2013
  ident: 10.1016/j.soilbio.2022.108636_bib42
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
  doi: 10.1111/ele.12113
– volume: 170
  start-page: 168
  year: 2012
  ident: 10.1016/j.soilbio.2022.108636_bib20
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.11.005
– volume: 19
  start-page: 1562
  year: 2013
  ident: 10.1016/j.soilbio.2022.108636_bib34
  article-title: Soil-specific response functions of organic matter mineralization to the availability of labile carbon
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12140
– start-page: 403
  year: 1982
  ident: 10.1016/j.soilbio.2022.108636_bib33
  article-title: Phosphorous
– volume: 67
  start-page: 383
  year: 2021
  ident: 10.1016/j.soilbio.2022.108636_bib27
  article-title: Maize yield and nitrogen-use characteristics were promoted as consistently improved soil fertility: 6-year straw incorporation in Northeast China
  publication-title: Plant Soil and Environment
  doi: 10.17221/434/2020-PSE
– volume: 117
  start-page: 101
  year: 2014
  ident: 10.1016/j.soilbio.2022.108636_bib48
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9849-x
– volume: 462
  start-page: 795
  year: 2009
  ident: 10.1016/j.soilbio.2022.108636_bib41
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 103
  start-page: 1961
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib13
  article-title: Effects of long-term straw incorporation on lignin accumulation and its association with bacterial laccase-like genes in arable soils
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-018-9563-7
– volume: 116
  start-page: 11
  year: 2018
  ident: 10.1016/j.soilbio.2022.108636_bib8
  article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2017.09.025
– volume: 34
  start-page: 1309
  year: 2002
  ident: 10.1016/j.soilbio.2022.108636_bib38
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 147
  year: 2020
  ident: 10.1016/j.soilbio.2022.108636_bib10
  article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2020.107814
– volume: 93
  start-page: 1
  year: 2016
  ident: 10.1016/j.soilbio.2022.108636_bib31
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2015.10.019
– volume: 5
  start-page: 22
  year: 2014
  ident: 10.1016/j.soilbio.2022.108636_bib32
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2014.00022
– volume: 648
  start-page: 388
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib7
  article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.08.173
– volume: 2
  issue: 8
  year: 2017
  ident: 10.1016/j.soilbio.2022.108636_bib25
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
  doi: 10.1038/nmicrobiol.2017.105
– volume: 38
  start-page: 991
  year: 2006
  ident: 10.1016/j.soilbio.2022.108636_bib22
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2005.08.012
– volume: 211
  start-page: 132
  year: 2019
  ident: 10.1016/j.soilbio.2022.108636_bib23
  article-title: Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2018.09.049
– volume: 49
  start-page: 527
  year: 2013
  ident: 10.1016/j.soilbio.2022.108636_bib36
  article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-013-0794-6
– volume: 66
  start-page: 139
  year: 2013
  ident: 10.1016/j.soilbio.2022.108636_bib46
  article-title: Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2013.07.002
– volume: 17
  start-page: 837
  year: 1985
  ident: 10.1016/j.soilbio.2022.108636_bib2
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(85)90144-0
– volume: 96
  start-page: 74
  year: 2016
  ident: 10.1016/j.soilbio.2022.108636_bib44
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2016.01.016
– volume: 388
  year: 2021
  ident: 10.1016/j.soilbio.2022.108636_bib28
  article-title: Effects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114928
– volume: 237
  start-page: 246
  year: 2015
  ident: 10.1016/j.soilbio.2022.108636_bib35
  article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.010
SSID ssj0002513
Score 2.5585918
Snippet Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108636
SubjectTerms Agricultural ecosystems
carbon
cellulose
chitin
dose response
Ecoenzymatic stoichiometry
field experimentation
Functional genes
hemicellulose
lignin
microbial biomass
Microbial CUE
Microbial metabolic limitation
mineralization
polymerase chain reaction
soil
Soil C cycling
soil respiration
starch
stoichiometry
straw
Title The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes
URI https://dx.doi.org/10.1016/j.soilbio.2022.108636
https://www.proquest.com/docview/2648876141
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHtSD6FScP0YEr93WNG1ab2MoU3EnB7uFtE1mh2vHfiB68G83L00diiB4bMpLQ174Xpq873sIXaWh9CJXUscPksChHkk1DnrS0Xjsu0JAsSQ473gcBoMRvR_74xrqV1wYSKu02F9iukFr29Kxs9mZZxlwfEEsXQdgYv7LDYOdMljl7Y9NmoeO31Z4NwSyDtuweDpT0Mt9iTPgABJiag4ZpeZf49MPpDbh53Yf7dl9I-6VQztANZk30G5vsrDaGbKBtvtV8bZDBPXo8EwCrTdbznChsN7o4bRYSlxmcEATnHK84iLHMEC8sJfu2lHXuCo2ioF-gmX-_makXbVJkSXPQNnXn8EiTzEExvI8EU8AN4_Q6PbmqT9wbJUFJ_EoWTkeYUJRliqauKzLSKC6kUiVokJjKEmEG1NDQPWDVEUgriMCFndj_Zr5RArlHaN6XuTyBPjfrq9kmDKfUW0QRiELAx8U1mSYsEg0Ea3mlidWghwqYbzwKtdsyq1LOLiEly5povaX2bzU4PjLIKwcx78tJq7jxF-ml5WjuXYZ3J6IXBbrJYdUQB06XOqe_r_7M7QDT2XG5DmqrxZreaF3Nau4ZZZtC2317h4Gw0_zKPf3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5je1AfRKfi3Qi-1q1p0rS-jeGYuu1pgm8hbRPtmO3YBdFfb06bThRB8DXhtCEnfCeX830HoaskUF7oKuowP_Yd6pHE4KCnHIPHzJUSiiXBfcdw5Pcf6f0Te6qhbsWFgbRKi_0lphdobVtadjZbszQFji-IpZsATIpzuTkCNUCditVRo3P30B-tAdmEcKu9GwBfh38ReVoTkMydRinQAAkpyg4VYs2_hqgfYF1EoN4O2rZbR9wpR7eLaiproq3O89zKZ6gm2uhW9dv2EJSkw68KmL3p4hXnGpu9Hk7yhcJlEgc0wUXHG84zDAPEc_vubnx1g6t6oxgYKFhlH--FuqsxydP4BVj75jdYZgmG2FheKeJngM599Ni7HXf7ji204MQeJUvHI1xqyhNNY5e3OfF1O5SJ1lQaGCWxdCNacFCZn-gQ9HWkz6N2ZLo5I0pq7wDVszxTh0ABd5lWQcIZp8YgCAMe-AxE1lQQ81AeIVrNrYitCjkUw5iKKt1sIqxLBLhElC45Qtdrs1kpw_GXQVA5TnxbT8KEir9MLytHC-MyeECRmcpXCwHZgCZ6uNQ9_v_nL9BGfzwciMHd6OEEbUJPmUB5iurL-UqdmU3OMjq3i_gTbdj6qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+the+dose+effect+of+straw+on+soil+respiration%3A+Evidence+from+enzymatic+stoichiometry+and+functional+genes&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Li%2C+Shuailin&rft.au=Cui%2C+Yongxing&rft.au=Xia%2C+Zhuqing&rft.au=Zhang%2C+Xinhui&rft.date=2022-05-01&rft.issn=0038-0717&rft.volume=168+p.108636-&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108636&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon