The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes
Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at di...
Saved in:
Published in | Soil biology & biochemistry Vol. 168; p. 108636 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha−1 yr−1) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha−1 yr−1. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha−1 yr−1 but a shift to N limitation when the straw addition rate was over 8 t ha−1 yr−1. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems.
•The rate of increase in Rs dropped when straw addition was greater than 8 t ha−1.•Straw input leads to soil microbes being increasingly limited by N rather than P.•Microbial metabolic limitation mediated CUE and the numbers of C-degrading genes. |
---|---|
AbstractList | Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha⁻¹ yr⁻¹) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha⁻¹ yr⁻¹. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha⁻¹ yr⁻¹ but a shift to N limitation when the straw addition rate was over 8 t ha⁻¹ yr⁻¹. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems. Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial metabolic process. However, the variation patterns of microbial respiration (Rs) and associated mechanisms under long-term straw input at different levels remain unclear. Here, this study investigated the changes in Rs and microbial metabolic limitation under straw input at four levels (0, 4, 8, and 12 t ha−1 yr−1) based on a long-term (11-year) field experiment. In addition, the C use efficiency (CUE) and C degradation genes were quantified via an enzyme-based biogeochemical-equilibrium model and high-throughput quantitative PCR-based chip technology, respectively. The results indicated that Rs significantly increased with the amount of straw addition, while its rate of increase dropped when the straw addition amount was greater than 8 t ha−1 yr−1. Interestingly, we also observed an apparent microbial P limitation under straw addition at 0 and 4 t ha−1 yr−1 but a shift to N limitation when the straw addition rate was over 8 t ha−1 yr−1. The shift suggested that Rs changes could be attributed to straw addition leading to soil microbes being increasingly limited by N rather than P. Moreover, straw addition significantly increased microbial biomass, reduced CUE and increased the absolute abundance of genes involved in degrading various organic polymers (e.g., starch, hemicellulose, cellulose, chitin and lignin). Partial least squares path modeling revealed that the variation in Rs was directly attributed to increased microbial biomass and C degradation genes as well as declining CUE, while C degradation genes and CUE were mediated by microbial relative C limitation and N vs. P limitation. This study provides insight into the mechanisms of the Rs response to straw addition by linking the Rs to microbial metabolic limitation, CUE and C degradation genes, highlighting that reducing microbial nutrient limitation by balancing metabolic demand and environmental nutrient supply potentially leads to a higher microbial CUE and lower Rs in agricultural ecosystems. •The rate of increase in Rs dropped when straw addition was greater than 8 t ha−1.•Straw input leads to soil microbes being increasingly limited by N rather than P.•Microbial metabolic limitation mediated CUE and the numbers of C-degrading genes. |
ArticleNumber | 108636 |
Author | Ma, Qiang Yu, Wantai Zhang, Xinhui Li, Shuailin An, Siyu Zhu, Mengmeng Gao, Yun Xia, Zhuqing Cui, Yongxing |
Author_xml | – sequence: 1 givenname: Shuailin orcidid: 0000-0001-9743-2915 surname: Li fullname: Li, Shuailin email: lishuailin@007.com organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 2 givenname: Yongxing surname: Cui fullname: Cui, Yongxing organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China – sequence: 3 givenname: Zhuqing surname: Xia fullname: Xia, Zhuqing organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 4 givenname: Xinhui surname: Zhang fullname: Zhang, Xinhui organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 5 givenname: Mengmeng surname: Zhu fullname: Zhu, Mengmeng organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 6 givenname: Yun surname: Gao fullname: Gao, Yun organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 7 givenname: Siyu surname: An fullname: An, Siyu organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 8 givenname: Wantai surname: Yu fullname: Yu, Wantai email: wtyu@iae.ac.cn organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 9 givenname: Qiang surname: Ma fullname: Ma, Qiang email: qma@iae.ac.cn organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China |
BookMark | eNqFkU1PAyEQhonRxPrxE0w4etkKLAtbPRjT1I-kiRc9E8oOlmYXKmxr6q-XtT158UTyzjzD8HCGjn3wgNAVJWNKqLhZjVNw7cKFMSOM5awWpThCI1rLSVFyVh-jESFlXRBJ5Sk6S2lFCGEVLUdo97YE3IFZau9Sh4PFfQ6akACDtWD6IUp91F84eDzcgyOktYu6d8Hf4tnWNeANYBtDh8F_77pcMRkJzixd6KCPO6x9g-3Gm4HRLf4AD-kCnVjdJrg8nOfo_XH2Nn0u5q9PL9OHeWHy6n1RMqktl43lhkoimbBkohtrueZCMqPpghNR8bISjZ1QSYUWckEWuSwrBtqW5-h6P3cdw-cGUq86lwy0rfYQNkkxwetaCsppbr3bt5oYUopglXH970OzANcqStQgXK3UQbgahKu98ExXf-h1dJ2Ou3-5-z0H2cLWQVTJuMFp42L-ANUE98-EHxLkoeU |
CitedBy_id | crossref_primary_10_1007_s11104_025_07297_7 crossref_primary_10_1016_j_fecs_2023_100116 crossref_primary_10_1016_j_apsoil_2025_105904 crossref_primary_10_1016_j_ejsobi_2024_103695 crossref_primary_10_1016_j_ibiod_2023_105728 crossref_primary_10_1016_j_soilbio_2022_108814 crossref_primary_10_1016_j_ejsobi_2024_103646 crossref_primary_10_1016_j_pedobi_2023_150913 crossref_primary_10_1016_j_scitotenv_2023_166777 crossref_primary_10_1016_j_still_2023_105859 crossref_primary_10_1016_j_scitotenv_2023_167346 crossref_primary_10_1016_j_agee_2023_108438 crossref_primary_10_1016_j_envres_2024_120155 crossref_primary_10_1016_j_scitotenv_2024_172789 crossref_primary_10_1016_j_scitotenv_2024_176729 crossref_primary_10_1016_j_chemosphere_2022_136311 crossref_primary_10_1016_j_apsoil_2023_105192 crossref_primary_10_1016_j_apsoil_2024_105370 crossref_primary_10_1111_gcb_70036 crossref_primary_10_1016_j_apsoil_2024_105354 crossref_primary_10_1016_j_apsoil_2025_105874 crossref_primary_10_1016_j_scitotenv_2024_174548 crossref_primary_10_1016_j_apsoil_2025_106001 crossref_primary_10_1016_j_catena_2024_108050 crossref_primary_10_1016_j_scitotenv_2023_169731 crossref_primary_10_3390_f16010004 crossref_primary_10_1007_s11356_023_28062_2 crossref_primary_10_1016_j_apsoil_2024_105779 crossref_primary_10_1007_s42729_023_01352_x crossref_primary_10_1016_j_scitotenv_2023_161865 crossref_primary_10_1007_s42729_024_01786_x crossref_primary_10_1016_j_agee_2024_109142 crossref_primary_10_1016_j_pedsph_2023_04_003 crossref_primary_10_1007_s00271_024_00988_6 crossref_primary_10_1016_j_soilbio_2024_109614 crossref_primary_10_1111_sum_13020 crossref_primary_10_1016_j_scitotenv_2022_159498 crossref_primary_10_1016_j_catena_2024_108197 crossref_primary_10_1016_j_catena_2022_106652 |
Cites_doi | 10.1111/geb.13378 10.18637/jss.v017.i01 10.1016/0038-0717(95)00101-8 10.1016/j.fcr.2019.107616 10.1016/0038-0717(90)90046-3 10.1016/j.soilbio.2011.03.017 10.1007/s00521-020-04816-8 10.1016/j.soilbio.2018.09.028 10.1016/j.apsoil.2010.09.006 10.1016/j.scitotenv.2020.139479 10.1214/12-EJS724 10.1016/j.soilbio.2019.05.007 10.1016/j.apsoil.2019.02.018 10.1016/j.geoderma.2016.10.007 10.1016/0038-0717(87)90052-6 10.1890/06-0219 10.1146/annurev-ecolsys-071112-124414 10.1007/s11427-018-9364-7 10.1007/s11104-014-2049-1 10.1111/gcb.15018 10.1007/s10533-007-9132-0 10.1016/j.still.2020.104735 10.1016/j.scitotenv.2017.06.275 10.1016/0038-0717(82)90001-3 10.1016/j.soilbio.2018.09.036 10.1016/j.geoderma.2016.05.019 10.1016/j.soilbio.2018.03.003 10.1016/j.geoderma.2019.113883 10.1016/j.soilbio.2018.09.003 10.3390/su9122316 10.1111/ele.12113 10.1016/j.geoderma.2011.11.005 10.1111/gcb.12140 10.17221/434/2020-PSE 10.1007/s10533-013-9849-x 10.1038/nature08632 10.1007/s00253-018-9563-7 10.1016/j.soilbio.2017.09.025 10.1016/S0038-0717(02)00074-3 10.1016/j.soilbio.2020.107814 10.1016/j.soilbio.2015.10.019 10.3389/fmicb.2014.00022 10.1016/j.scitotenv.2018.08.173 10.1038/nmicrobiol.2017.105 10.1016/j.soilbio.2005.08.012 10.1016/j.agwat.2018.09.049 10.1007/s00374-013-0794-6 10.1016/j.soilbio.2013.07.002 10.1016/0038-0717(85)90144-0 10.1016/j.soilbio.2016.01.016 10.1016/j.geoderma.2021.114928 10.1016/j.geoderma.2014.09.010 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2022.108636 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2022_108636 S0038071722000931 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-327af47df4c170726f09adff4a4672ca1b40654356df91716a67b0b4a4752eaf3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 00:15:39 EDT 2025 Tue Jul 01 03:20:06 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Agricultural ecosystems Microbial CUE Microbial metabolic limitation Soil C cycling Ecoenzymatic stoichiometry Functional genes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-327af47df4c170726f09adff4a4672ca1b40654356df91716a67b0b4a4752eaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9743-2915 |
PQID | 2648876141 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2648876141 crossref_citationtrail_10_1016_j_soilbio_2022_108636 crossref_primary_10_1016_j_soilbio_2022_108636 elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jones, Willett (bib22) 2006; 38 Paterson, Sim (bib34) 2013; 19 Guenet, Neill, Bardoux, Abbadie (bib19) 2010; 46 Joergensen, Mueller (bib21) 1996; 28 Maarastawi, Frindte, Bodelier, Knief (bib29) 2019; 135 Saiya-Cork, Sinsabaugh, Zak (bib38) 2002; 34 Cui, Fang, Guo, Han, Ju, Ye, Wang, Tan, Zhang (bib7) 2019; 648 Cui, Moorhead, Guo, Peng, Wang, Zhang, Fang (bib9) 2021; 30 Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (bib32) 2014; 5 Fang, Singh, Cowie, Wang, Arachchi, Wang, Tavakkoli (bib11) 2019; 354 Cui, Fang, Guo, Wang, Zhang, Li, Zhang (bib8) 2018; 116 Geyer, Dijkstra, Sinsabaugh, Frey (bib15) 2019; 128 Fang, Singh, Collins, Li, Zhu, Tavakkoli (bib12) 2018; 126 Spohn, Klaus, Wanek, Richter (bib44) 2016; 96 Poirier, Angers, Rochette, Whalen (bib36) 2013; 49 van Groenigen, Forristal, Jones, Smyth, Schwartz, Hungate, Dijkstra (bib46) 2013; 66 Poeplau, Kaetterer, Bolinder, Borjesson, Berti, Lugato (bib35) 2015; 237 Liang, Schimel, Jastrow (bib25) 2017; 2 Cleveland, Liptzin (bib5) 2007; 85 Zhao, Qiu, Xu, Ciampitti, Zhang, He (bib50) 2019; 138 Heitkamp, Wendland, Offenberger, Gerold (bib20) 2012; 170 Chen, Ding, Li, Yan, He, Hu (bib4) 2020; 734 Ma, Kong, Wang, Luo, Lv, Zhou, Meng (bib26) 2019; 243 Wu, Joergensen, Pommerening, Chaussod, Brookes (bib49) 1990; 22 Cui, Wang, Zhang, Ju, Duan, Guo, Wang, Fang (bib10) 2020; 147 Suriyagoda, De Costa, Lambers (bib45) 2014; 384 Ma, Zhang, Zheng, Yue, Zhang, Zhai, Wang, Zheng, Li, Zamanian, Razavi (bib28) 2021; 388 Schimel, Balser, Wallenstein (bib39) 2007; 88 Feng, Su, He, Hu, Zhang, He, Kariman, Wu, Chen (bib13) 2019; 103 Russolillo (bib37) 2012; 6 Gong, Liu, Sun, Zhou (bib17) 2020; 32 Sinsabaugh, Hill, Shah (bib41) 2009; 462 Li, Liang, Shangguan (bib24) 2017; 607 Brookes, Landman, Pruden, Jenkinson (bib2) 1985; 17 Ghimire, Ghimire, VanLeeuwen, Mesbah (bib16) 2017; 9 Cong, Wang, Li, Liu, Dong, Pang, Zhang, Gao (bib6) 2020; 204 Berhane, Xu, Liang, Shi, Wei, Tian (bib1) 2020; 26 Sinsabaugh, Shah (bib43) 2012; 43 Waring, Weintraub, Sinsabaugh (bib48) 2014; 117 Maarastawi, Frindte, Geer, Krober, Knief (bib30) 2018; 127 Olsen, Sommers (bib33) 1982 Vance, Brooks, Jenkinson (bib47) 1987; 19 Zheng, Zhu, Sardans, Penuelas, Su (bib52) 2018; 61 Shahbaz, Kuzyakov, Heitkamp (bib40) 2017; 304 Zheng, Marschner (bib51) 2017; 285 Zhu, Ge, Luo, Liu, Xu, Tong, Shibistova, Guggenberger, Wu (bib53) 2018; 121 Sinsabaugh, Manzoni, Moorhead, Richter (bib42) 2013; 16 German, Weintraub, Grandy, Lauber, Rinkes, Allison (bib14) 2011; 43 Ma, Jiang, Li, Yu (bib27) 2021; 67 Gromping (bib18) 2006; 17 Brookes, Powlson, Jenkinson (bib3) 1982; 14 Moorhead, Sinsabaugh, Hill, Weintraub (bib31) 2016; 93 Li, Yang, Zhou, Zhang, Luo, Li, Lindsey, Shi, He, Zhang (bib23) 2019; 211 Poirier (10.1016/j.soilbio.2022.108636_bib36) 2013; 49 Li (10.1016/j.soilbio.2022.108636_bib24) 2017; 607 Chen (10.1016/j.soilbio.2022.108636_bib4) 2020; 734 Sinsabaugh (10.1016/j.soilbio.2022.108636_bib41) 2009; 462 German (10.1016/j.soilbio.2022.108636_bib14) 2011; 43 Fang (10.1016/j.soilbio.2022.108636_bib11) 2019; 354 Ma (10.1016/j.soilbio.2022.108636_bib28) 2021; 388 Russolillo (10.1016/j.soilbio.2022.108636_bib37) 2012; 6 Moorhead (10.1016/j.soilbio.2022.108636_bib31) 2016; 93 Zhu (10.1016/j.soilbio.2022.108636_bib53) 2018; 121 Gromping (10.1016/j.soilbio.2022.108636_bib18) 2006; 17 Shahbaz (10.1016/j.soilbio.2022.108636_bib40) 2017; 304 Cui (10.1016/j.soilbio.2022.108636_bib8) 2018; 116 Schimel (10.1016/j.soilbio.2022.108636_bib39) 2007; 88 Cui (10.1016/j.soilbio.2022.108636_bib10) 2020; 147 Ma (10.1016/j.soilbio.2022.108636_bib26) 2019; 243 Fang (10.1016/j.soilbio.2022.108636_bib12) 2018; 126 Saiya-Cork (10.1016/j.soilbio.2022.108636_bib38) 2002; 34 Heitkamp (10.1016/j.soilbio.2022.108636_bib20) 2012; 170 van Groenigen (10.1016/j.soilbio.2022.108636_bib46) 2013; 66 Poeplau (10.1016/j.soilbio.2022.108636_bib35) 2015; 237 Ma (10.1016/j.soilbio.2022.108636_bib27) 2021; 67 Berhane (10.1016/j.soilbio.2022.108636_bib1) 2020; 26 Zheng (10.1016/j.soilbio.2022.108636_bib52) 2018; 61 Liang (10.1016/j.soilbio.2022.108636_bib25) 2017; 2 Wu (10.1016/j.soilbio.2022.108636_bib49) 1990; 22 Brookes (10.1016/j.soilbio.2022.108636_bib3) 1982; 14 Cui (10.1016/j.soilbio.2022.108636_bib9) 2021; 30 Waring (10.1016/j.soilbio.2022.108636_bib48) 2014; 117 Zhao (10.1016/j.soilbio.2022.108636_bib50) 2019; 138 Gong (10.1016/j.soilbio.2022.108636_bib17) 2020; 32 Vance (10.1016/j.soilbio.2022.108636_bib47) 1987; 19 Brookes (10.1016/j.soilbio.2022.108636_bib2) 1985; 17 Joergensen (10.1016/j.soilbio.2022.108636_bib21) 1996; 28 Olsen (10.1016/j.soilbio.2022.108636_bib33) 1982 Guenet (10.1016/j.soilbio.2022.108636_bib19) 2010; 46 Spohn (10.1016/j.soilbio.2022.108636_bib44) 2016; 96 Suriyagoda (10.1016/j.soilbio.2022.108636_bib45) 2014; 384 Maarastawi (10.1016/j.soilbio.2022.108636_bib30) 2018; 127 Li (10.1016/j.soilbio.2022.108636_bib23) 2019; 211 Zheng (10.1016/j.soilbio.2022.108636_bib51) 2017; 285 Ghimire (10.1016/j.soilbio.2022.108636_bib16) 2017; 9 Maarastawi (10.1016/j.soilbio.2022.108636_bib29) 2019; 135 Sinsabaugh (10.1016/j.soilbio.2022.108636_bib43) 2012; 43 Geyer (10.1016/j.soilbio.2022.108636_bib15) 2019; 128 Paterson (10.1016/j.soilbio.2022.108636_bib34) 2013; 19 Cleveland (10.1016/j.soilbio.2022.108636_bib5) 2007; 85 Cong (10.1016/j.soilbio.2022.108636_bib6) 2020; 204 Mooshammer (10.1016/j.soilbio.2022.108636_bib32) 2014; 5 Cui (10.1016/j.soilbio.2022.108636_bib7) 2019; 648 Feng (10.1016/j.soilbio.2022.108636_bib13) 2019; 103 Jones (10.1016/j.soilbio.2022.108636_bib22) 2006; 38 Sinsabaugh (10.1016/j.soilbio.2022.108636_bib42) 2013; 16 |
References_xml | – volume: 304 start-page: 76 year: 2017 end-page: 82 ident: bib40 article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls publication-title: Geoderma – volume: 128 start-page: 79 year: 2019 end-page: 88 ident: bib15 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology & Biochemistry – volume: 34 start-page: 1309 year: 2002 end-page: 1315 ident: bib38 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biology & Biochemistry – volume: 285 start-page: 217 year: 2017 end-page: 224 ident: bib51 article-title: Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition publication-title: Geoderma – volume: 127 start-page: 200 year: 2018 end-page: 212 ident: bib30 article-title: Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize publication-title: Soil Biology & Biochemistry – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: bib2 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology & Biochemistry – volume: 354 year: 2019 ident: bib11 article-title: Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions publication-title: Geoderma – volume: 9 start-page: 2316 year: 2017 ident: bib16 article-title: Cover crop residue amount and quality effects on soil organic carbon mineralization publication-title: Sustainability – volume: 243 start-page: 10 year: 2019 ident: bib26 article-title: Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input publication-title: Field Crops Research – volume: 117 start-page: 101 year: 2014 end-page: 113 ident: bib48 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry – start-page: 403 year: 1982 end-page: 430 ident: bib33 article-title: Phosphorous publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: bib44 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biology & Biochemistry – volume: 2 year: 2017 ident: bib25 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 26 start-page: 2686 year: 2020 end-page: 2701 ident: bib1 article-title: Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis publication-title: Global Change Biology – volume: 30 start-page: 2297 year: 2021 end-page: 2311 ident: bib9 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecology and Biogeography – volume: 103 start-page: 1961 year: 2019 end-page: 1972 ident: bib13 article-title: Effects of long-term straw incorporation on lignin accumulation and its association with bacterial laccase-like genes in arable soils publication-title: Applied Microbiology and Biotechnology – volume: 204 year: 2020 ident: bib6 article-title: Changes in soil organic carbon and microbial community under varying straw incorporation strategies publication-title: Soil & Tillage Research – volume: 88 start-page: 1386 year: 2007 end-page: 1394 ident: bib39 article-title: Microbial stress-response physiology and its implications for ecosystem function publication-title: Ecology – volume: 116 start-page: 11 year: 2018 end-page: 21 ident: bib8 article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China publication-title: Soil Biology & Biochemistry – volume: 67 start-page: 383 year: 2021 end-page: 389 ident: bib27 article-title: Maize yield and nitrogen-use characteristics were promoted as consistently improved soil fertility: 6-year straw incorporation in Northeast China publication-title: Plant Soil and Environment – volume: 648 start-page: 388 year: 2019 end-page: 397 ident: bib7 article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes publication-title: Science of the Total Environment – volume: 147 year: 2020 ident: bib10 article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region publication-title: Soil Biology & Biochemistry – volume: 43 start-page: 1387 year: 2011 end-page: 1397 ident: bib14 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biology & Biochemistry – volume: 6 start-page: 1641 year: 2012 end-page: 1669 ident: bib37 article-title: Non-metric partial least squares publication-title: Electronic Journal of Statistics – volume: 61 start-page: 1451 year: 2018 end-page: 1462 ident: bib52 article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling publication-title: Science China-Life Sciences – volume: 32 start-page: 14623 year: 2020 end-page: 14638 ident: bib17 article-title: Evaluating the retest reproducibility of intrinsic connectivity network using multivariate correlation coefficient publication-title: Neural Computing & Applications – volume: 49 start-page: 527 year: 2013 end-page: 535 ident: bib36 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biology and Fertility of Soils – volume: 43 start-page: 313 year: 2012 end-page: 343 ident: bib43 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 121 start-page: 67 year: 2018 end-page: 76 ident: bib53 article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil publication-title: Soil Biology & Biochemistry – volume: 211 start-page: 132 year: 2019 end-page: 141 ident: bib23 article-title: Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil publication-title: Agricultural Water Management – volume: 135 start-page: 235 year: 2019 end-page: 238 ident: bib29 article-title: Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption publication-title: Soil Biology & Biochemistry – volume: 66 start-page: 139 year: 2013 end-page: 145 ident: bib46 article-title: Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil publication-title: Soil Biology & Biochemistry – volume: 38 start-page: 991 year: 2006 end-page: 999 ident: bib22 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 319 year: 1982 end-page: 329 ident: bib3 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biology & Biochemistry – volume: 16 start-page: 930 year: 2013 end-page: 939 ident: bib42 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters – volume: 462 start-page: 795 year: 2009 end-page: 798 ident: bib41 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – volume: 607 start-page: 109 year: 2017 end-page: 119 ident: bib24 article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N publication-title: Science of the Total Environment – volume: 28 start-page: 33 year: 1996 end-page: 37 ident: bib21 article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EN) value publication-title: Soil Biology & Biochemistry – volume: 93 start-page: 1 year: 2016 end-page: 7 ident: bib31 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biology & Biochemistry – volume: 17 start-page: 1 year: 2006 end-page: 27 ident: bib18 article-title: Relative importance for linear regression in R: the package relaimpo publication-title: Journal of Statistical Software – volume: 19 start-page: 1562 year: 2013 end-page: 1571 ident: bib34 article-title: Soil-specific response functions of organic matter mineralization to the availability of labile carbon publication-title: Global Change Biology – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: bib5 article-title: C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? publication-title: Biogeochemistry – volume: 138 start-page: 123 year: 2019 end-page: 133 ident: bib50 article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils publication-title: Applied Soil Ecology – volume: 46 start-page: 436 year: 2010 end-page: 442 ident: bib19 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Applied Soil Ecology – volume: 384 start-page: 53 year: 2014 end-page: 68 ident: bib45 article-title: Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils publication-title: Plant and Soil – volume: 388 year: 2021 ident: bib28 article-title: Effects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry publication-title: Geoderma – volume: 734 year: 2020 ident: bib4 article-title: Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes publication-title: Science of the Total Environment – volume: 170 start-page: 168 year: 2012 end-page: 175 ident: bib20 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model publication-title: Geoderma – volume: 237 start-page: 246 year: 2015 end-page: 255 ident: bib35 article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments publication-title: Geoderma – volume: 5 start-page: 22 year: 2014 ident: bib32 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Frontiers in Microbiology – volume: 22 start-page: 1167 year: 1990 end-page: 1169 ident: bib49 article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure publication-title: Soil Biology & Biochemistry – volume: 126 start-page: 168 year: 2018 end-page: 178 ident: bib12 article-title: Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils publication-title: Soil Biology & Biochemistry – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bib47 article-title: An extraction method for measuring soil microbial biomass publication-title: Soil Biology & Biochemistry – volume: 30 start-page: 2297 year: 2021 ident: 10.1016/j.soilbio.2022.108636_bib9 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecology and Biogeography doi: 10.1111/geb.13378 – volume: 17 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.soilbio.2022.108636_bib18 article-title: Relative importance for linear regression in R: the package relaimpo publication-title: Journal of Statistical Software doi: 10.18637/jss.v017.i01 – volume: 28 start-page: 33 year: 1996 ident: 10.1016/j.soilbio.2022.108636_bib21 article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EN) value publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(95)00101-8 – volume: 243 start-page: 10 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib26 article-title: Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input publication-title: Field Crops Research doi: 10.1016/j.fcr.2019.107616 – volume: 22 start-page: 1167 year: 1990 ident: 10.1016/j.soilbio.2022.108636_bib49 article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(90)90046-3 – volume: 43 start-page: 1387 year: 2011 ident: 10.1016/j.soilbio.2022.108636_bib14 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.03.017 – volume: 32 start-page: 14623 year: 2020 ident: 10.1016/j.soilbio.2022.108636_bib17 article-title: Evaluating the retest reproducibility of intrinsic connectivity network using multivariate correlation coefficient publication-title: Neural Computing & Applications doi: 10.1007/s00521-020-04816-8 – volume: 127 start-page: 200 year: 2018 ident: 10.1016/j.soilbio.2022.108636_bib30 article-title: Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2018.09.028 – volume: 46 start-page: 436 year: 2010 ident: 10.1016/j.soilbio.2022.108636_bib19 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2010.09.006 – volume: 734 year: 2020 ident: 10.1016/j.soilbio.2022.108636_bib4 article-title: Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.139479 – volume: 6 start-page: 1641 year: 2012 ident: 10.1016/j.soilbio.2022.108636_bib37 article-title: Non-metric partial least squares publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS724 – volume: 135 start-page: 235 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib29 article-title: Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2019.05.007 – volume: 138 start-page: 123 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib50 article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2019.02.018 – volume: 285 start-page: 217 year: 2017 ident: 10.1016/j.soilbio.2022.108636_bib51 article-title: Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.007 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.soilbio.2022.108636_bib47 article-title: An extraction method for measuring soil microbial biomass publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(87)90052-6 – volume: 88 start-page: 1386 year: 2007 ident: 10.1016/j.soilbio.2022.108636_bib39 article-title: Microbial stress-response physiology and its implications for ecosystem function publication-title: Ecology doi: 10.1890/06-0219 – volume: 43 start-page: 313 year: 2012 ident: 10.1016/j.soilbio.2022.108636_bib43 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution, and Systematics doi: 10.1146/annurev-ecolsys-071112-124414 – volume: 61 start-page: 1451 year: 2018 ident: 10.1016/j.soilbio.2022.108636_bib52 article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling publication-title: Science China-Life Sciences doi: 10.1007/s11427-018-9364-7 – volume: 384 start-page: 53 year: 2014 ident: 10.1016/j.soilbio.2022.108636_bib45 article-title: Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils publication-title: Plant and Soil doi: 10.1007/s11104-014-2049-1 – volume: 26 start-page: 2686 issue: 4 year: 2020 ident: 10.1016/j.soilbio.2022.108636_bib1 article-title: Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis publication-title: Global Change Biology doi: 10.1111/gcb.15018 – volume: 85 start-page: 235 year: 2007 ident: 10.1016/j.soilbio.2022.108636_bib5 article-title: C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 204 year: 2020 ident: 10.1016/j.soilbio.2022.108636_bib6 article-title: Changes in soil organic carbon and microbial community under varying straw incorporation strategies publication-title: Soil & Tillage Research doi: 10.1016/j.still.2020.104735 – volume: 607 start-page: 109 year: 2017 ident: 10.1016/j.soilbio.2022.108636_bib24 article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2017.06.275 – volume: 14 start-page: 319 year: 1982 ident: 10.1016/j.soilbio.2022.108636_bib3 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(82)90001-3 – volume: 128 start-page: 79 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib15 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2018.09.036 – volume: 304 start-page: 76 year: 2017 ident: 10.1016/j.soilbio.2022.108636_bib40 article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.019 – volume: 121 start-page: 67 year: 2018 ident: 10.1016/j.soilbio.2022.108636_bib53 article-title: Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2018.03.003 – volume: 354 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib11 article-title: Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113883 – volume: 126 start-page: 168 year: 2018 ident: 10.1016/j.soilbio.2022.108636_bib12 article-title: Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2018.09.003 – volume: 9 start-page: 2316 issue: 12 year: 2017 ident: 10.1016/j.soilbio.2022.108636_bib16 article-title: Cover crop residue amount and quality effects on soil organic carbon mineralization publication-title: Sustainability doi: 10.3390/su9122316 – volume: 16 start-page: 930 year: 2013 ident: 10.1016/j.soilbio.2022.108636_bib42 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters doi: 10.1111/ele.12113 – volume: 170 start-page: 168 year: 2012 ident: 10.1016/j.soilbio.2022.108636_bib20 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model publication-title: Geoderma doi: 10.1016/j.geoderma.2011.11.005 – volume: 19 start-page: 1562 year: 2013 ident: 10.1016/j.soilbio.2022.108636_bib34 article-title: Soil-specific response functions of organic matter mineralization to the availability of labile carbon publication-title: Global Change Biology doi: 10.1111/gcb.12140 – start-page: 403 year: 1982 ident: 10.1016/j.soilbio.2022.108636_bib33 article-title: Phosphorous – volume: 67 start-page: 383 year: 2021 ident: 10.1016/j.soilbio.2022.108636_bib27 article-title: Maize yield and nitrogen-use characteristics were promoted as consistently improved soil fertility: 6-year straw incorporation in Northeast China publication-title: Plant Soil and Environment doi: 10.17221/434/2020-PSE – volume: 117 start-page: 101 year: 2014 ident: 10.1016/j.soilbio.2022.108636_bib48 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 462 start-page: 795 year: 2009 ident: 10.1016/j.soilbio.2022.108636_bib41 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature doi: 10.1038/nature08632 – volume: 103 start-page: 1961 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib13 article-title: Effects of long-term straw incorporation on lignin accumulation and its association with bacterial laccase-like genes in arable soils publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-018-9563-7 – volume: 116 start-page: 11 year: 2018 ident: 10.1016/j.soilbio.2022.108636_bib8 article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2017.09.025 – volume: 34 start-page: 1309 year: 2002 ident: 10.1016/j.soilbio.2022.108636_bib38 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(02)00074-3 – volume: 147 year: 2020 ident: 10.1016/j.soilbio.2022.108636_bib10 article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2020.107814 – volume: 93 start-page: 1 year: 2016 ident: 10.1016/j.soilbio.2022.108636_bib31 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2015.10.019 – volume: 5 start-page: 22 year: 2014 ident: 10.1016/j.soilbio.2022.108636_bib32 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2014.00022 – volume: 648 start-page: 388 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib7 article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.08.173 – volume: 2 issue: 8 year: 2017 ident: 10.1016/j.soilbio.2022.108636_bib25 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology doi: 10.1038/nmicrobiol.2017.105 – volume: 38 start-page: 991 year: 2006 ident: 10.1016/j.soilbio.2022.108636_bib22 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2005.08.012 – volume: 211 start-page: 132 year: 2019 ident: 10.1016/j.soilbio.2022.108636_bib23 article-title: Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2018.09.049 – volume: 49 start-page: 527 year: 2013 ident: 10.1016/j.soilbio.2022.108636_bib36 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-013-0794-6 – volume: 66 start-page: 139 year: 2013 ident: 10.1016/j.soilbio.2022.108636_bib46 article-title: Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2013.07.002 – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.soilbio.2022.108636_bib2 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(85)90144-0 – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.soilbio.2022.108636_bib44 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2016.01.016 – volume: 388 year: 2021 ident: 10.1016/j.soilbio.2022.108636_bib28 article-title: Effects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry publication-title: Geoderma doi: 10.1016/j.geoderma.2021.114928 – volume: 237 start-page: 246 year: 2015 ident: 10.1016/j.soilbio.2022.108636_bib35 article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.010 |
SSID | ssj0002513 |
Score | 2.5585918 |
Snippet | Straw return to soil is a global field practice for sequestering carbon (C) in agricultural ecosystems, and soil C mineralization depends on the soil microbial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108636 |
SubjectTerms | Agricultural ecosystems carbon cellulose chitin dose response Ecoenzymatic stoichiometry field experimentation Functional genes hemicellulose lignin microbial biomass Microbial CUE Microbial metabolic limitation mineralization polymerase chain reaction soil Soil C cycling soil respiration starch stoichiometry straw |
Title | The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes |
URI | https://dx.doi.org/10.1016/j.soilbio.2022.108636 https://www.proquest.com/docview/2648876141 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHtSD6FScP0YEr93WNG1ab2MoU3EnB7uFtE1mh2vHfiB68G83L00diiB4bMpLQ174Xpq873sIXaWh9CJXUscPksChHkk1DnrS0Xjsu0JAsSQ473gcBoMRvR_74xrqV1wYSKu02F9iukFr29Kxs9mZZxlwfEEsXQdgYv7LDYOdMljl7Y9NmoeO31Z4NwSyDtuweDpT0Mt9iTPgABJiag4ZpeZf49MPpDbh53Yf7dl9I-6VQztANZk30G5vsrDaGbKBtvtV8bZDBPXo8EwCrTdbznChsN7o4bRYSlxmcEATnHK84iLHMEC8sJfu2lHXuCo2ioF-gmX-_makXbVJkSXPQNnXn8EiTzEExvI8EU8AN4_Q6PbmqT9wbJUFJ_EoWTkeYUJRliqauKzLSKC6kUiVokJjKEmEG1NDQPWDVEUgriMCFndj_Zr5RArlHaN6XuTyBPjfrq9kmDKfUW0QRiELAx8U1mSYsEg0Ea3mlidWghwqYbzwKtdsyq1LOLiEly5povaX2bzU4PjLIKwcx78tJq7jxF-ml5WjuXYZ3J6IXBbrJYdUQB06XOqe_r_7M7QDT2XG5DmqrxZreaF3Nau4ZZZtC2317h4Gw0_zKPf3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5je1AfRKfi3Qi-1q1p0rS-jeGYuu1pgm8hbRPtmO3YBdFfb06bThRB8DXhtCEnfCeX830HoaskUF7oKuowP_Yd6pHE4KCnHIPHzJUSiiXBfcdw5Pcf6f0Te6qhbsWFgbRKi_0lphdobVtadjZbszQFji-IpZsATIpzuTkCNUCditVRo3P30B-tAdmEcKu9GwBfh38ReVoTkMydRinQAAkpyg4VYs2_hqgfYF1EoN4O2rZbR9wpR7eLaiproq3O89zKZ6gm2uhW9dv2EJSkw68KmL3p4hXnGpu9Hk7yhcJlEgc0wUXHG84zDAPEc_vubnx1g6t6oxgYKFhlH--FuqsxydP4BVj75jdYZgmG2FheKeJngM599Ni7HXf7ji204MQeJUvHI1xqyhNNY5e3OfF1O5SJ1lQaGCWxdCNacFCZn-gQ9HWkz6N2ZLo5I0pq7wDVszxTh0ABd5lWQcIZp8YgCAMe-AxE1lQQ81AeIVrNrYitCjkUw5iKKt1sIqxLBLhElC45Qtdrs1kpw_GXQVA5TnxbT8KEir9MLytHC-MyeECRmcpXCwHZgCZ6uNQ9_v_nL9BGfzwciMHd6OEEbUJPmUB5iurL-UqdmU3OMjq3i_gTbdj6qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+the+dose+effect+of+straw+on+soil+respiration%3A+Evidence+from+enzymatic+stoichiometry+and+functional+genes&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Li%2C+Shuailin&rft.au=Cui%2C+Yongxing&rft.au=Xia%2C+Zhuqing&rft.au=Zhang%2C+Xinhui&rft.date=2022-05-01&rft.issn=0038-0717&rft.volume=168+p.108636-&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108636&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |