Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status

•Use the new model (the 3D-3T model) to estimate plant transpiration.•The Normalized Difference Ratio Index (NDRI) is proposed for the first time.•The 2D-3T model was converted to the 5P-3T model.•The temperature of the canopy was accurately obtained by a portable thermal imager. Crop transpiration...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 615; p. 128671
Main Authors Zhao, Wenyi, Dong, Xiaohua, Wu, Zhengping, Wei, Chong, Li, Lu, Yu, Dan, Fan, Xu, Ma, Yaoming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Use the new model (the 3D-3T model) to estimate plant transpiration.•The Normalized Difference Ratio Index (NDRI) is proposed for the first time.•The 2D-3T model was converted to the 5P-3T model.•The temperature of the canopy was accurately obtained by a portable thermal imager. Crop transpiration is the main dissipation way of agricultural water. Accurate and effective estimation of crop transpiration is of great significance for the study of the carbon-water cycle relationship and efficient water-saving irrigation. This study uses infrared thermal imaging technology to accurately extract the average temperature of the plant canopy as a key input for the new model (three-dimensional temperature (3D-3T) model), which is an extension of the three-temperature (3T) model and applied to estimate the canopy transpiration rate of typical citrus trees (variety named Guoqing No. 1) from 8:00 to 18:00 on May 7 to 11, 2021. And a processing method for extracting green plants in visible-light images based on the Normalized Difference Ratio Index (NDRI) is proposed for the first time, which can distinguish green plants from other ground objects, backgrounds, and shadows in the visible-light image, and then help to accurately extract the average canopy temperature from infrared thermal images. For this experiment, the canopy structure characteristics of the selected experimental subjects and the measurement methods used were considered, so the 3D-3T model was converted to a 5-point three-temperature model (5P-3T model) to estimate the canopy transpiration rate of citrus trees and evaluate the plant water status, and then the sap flow measurement was used for validation. The results showed that: (1) The 3T model overestimated the transpiration rate of the citrus tree, while the 5P-3T model underestimated it. The estimated values of the 5P-3T model have a good correlation with the measured values of the packaged stem sap flow gauge method, with a determination coefficient (R2) of 0.72 and root mean square error (RMSE) of 0.35 mm/d. (2) In this model, the plant transpiration transfer coefficient (hat) can evaluate the water shortage of plants, where the value of hat increased with the aggravation of plant water stress. (3) The citrus trees have lower transpiration rates under water stress, ranging from 0.06 to 0.12 mm/h in the daytime (from 8-10 May 2021). The model used in this study only needs the input of temperature information and net radiation, and would not depend on aerodynamic resistance. The method in this paper can realize the non-contact and non-invasive measurement of crop transpiration, and it provides a feasible way to use a portable thermal imager to accurately obtain the temperature for estimating plant canopy transpiration rate.
AbstractList •Use the new model (the 3D-3T model) to estimate plant transpiration.•The Normalized Difference Ratio Index (NDRI) is proposed for the first time.•The 2D-3T model was converted to the 5P-3T model.•The temperature of the canopy was accurately obtained by a portable thermal imager. Crop transpiration is the main dissipation way of agricultural water. Accurate and effective estimation of crop transpiration is of great significance for the study of the carbon-water cycle relationship and efficient water-saving irrigation. This study uses infrared thermal imaging technology to accurately extract the average temperature of the plant canopy as a key input for the new model (three-dimensional temperature (3D-3T) model), which is an extension of the three-temperature (3T) model and applied to estimate the canopy transpiration rate of typical citrus trees (variety named Guoqing No. 1) from 8:00 to 18:00 on May 7 to 11, 2021. And a processing method for extracting green plants in visible-light images based on the Normalized Difference Ratio Index (NDRI) is proposed for the first time, which can distinguish green plants from other ground objects, backgrounds, and shadows in the visible-light image, and then help to accurately extract the average canopy temperature from infrared thermal images. For this experiment, the canopy structure characteristics of the selected experimental subjects and the measurement methods used were considered, so the 3D-3T model was converted to a 5-point three-temperature model (5P-3T model) to estimate the canopy transpiration rate of citrus trees and evaluate the plant water status, and then the sap flow measurement was used for validation. The results showed that: (1) The 3T model overestimated the transpiration rate of the citrus tree, while the 5P-3T model underestimated it. The estimated values of the 5P-3T model have a good correlation with the measured values of the packaged stem sap flow gauge method, with a determination coefficient (R2) of 0.72 and root mean square error (RMSE) of 0.35 mm/d. (2) In this model, the plant transpiration transfer coefficient (hat) can evaluate the water shortage of plants, where the value of hat increased with the aggravation of plant water stress. (3) The citrus trees have lower transpiration rates under water stress, ranging from 0.06 to 0.12 mm/h in the daytime (from 8-10 May 2021). The model used in this study only needs the input of temperature information and net radiation, and would not depend on aerodynamic resistance. The method in this paper can realize the non-contact and non-invasive measurement of crop transpiration, and it provides a feasible way to use a portable thermal imager to accurately obtain the temperature for estimating plant canopy transpiration rate.
Crop transpiration is the main dissipation way of agricultural water. Accurate and effective estimation of crop transpiration is of great significance for the study of the carbon-water cycle relationship and efficient water-saving irrigation. This study uses infrared thermal imaging technology to accurately extract the average temperature of the plant canopy as a key input for the new model (three-dimensional temperature (3D-3T) model), which is an extension of the three-temperature (3T) model and applied to estimate the canopy transpiration rate of typical citrus trees (variety named Guoqing No. 1) from 8:00 to 18:00 on May 7 to 11, 2021. And a processing method for extracting green plants in visible-light images based on the Normalized Difference Ratio Index (NDRI) is proposed for the first time, which can distinguish green plants from other ground objects, backgrounds, and shadows in the visible-light image, and then help to accurately extract the average canopy temperature from infrared thermal images. For this experiment, the canopy structure characteristics of the selected experimental subjects and the measurement methods used were considered, so the 3D-3T model was converted to a 5-point three-temperature model (5P-3T model) to estimate the canopy transpiration rate of citrus trees and evaluate the plant water status, and then the sap flow measurement was used for validation. The results showed that: (1) The 3T model overestimated the transpiration rate of the citrus tree, while the 5P-3T model underestimated it. The estimated values of the 5P-3T model have a good correlation with the measured values of the packaged stem sap flow gauge method, with a determination coefficient (R²) of 0.72 and root mean square error (RMSE) of 0.35 mm/d. (2) In this model, the plant transpiration transfer coefficient (hat) can evaluate the water shortage of plants, where the value of hat increased with the aggravation of plant water stress. (3) The citrus trees have lower transpiration rates under water stress, ranging from 0.06 to 0.12 mm/h in the daytime (from 8-10 May 2021). The model used in this study only needs the input of temperature information and net radiation, and would not depend on aerodynamic resistance. The method in this paper can realize the non-contact and non-invasive measurement of crop transpiration, and it provides a feasible way to use a portable thermal imager to accurately obtain the temperature for estimating plant canopy transpiration rate.
ArticleNumber 128671
Author Ma, Yaoming
Zhao, Wenyi
Li, Lu
Dong, Xiaohua
Wu, Zhengping
Fan, Xu
Wei, Chong
Yu, Dan
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Zhao
  fullname: Zhao, Wenyi
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 2
  givenname: Xiaohua
  surname: Dong
  fullname: Dong, Xiaohua
  email: xhdong@ctgu.edu.cn
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 3
  givenname: Zhengping
  surname: Wu
  fullname: Wu, Zhengping
  organization: Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 4
  givenname: Chong
  surname: Wei
  fullname: Wei, Chong
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 5
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 6
  givenname: Dan
  surname: Yu
  fullname: Yu, Dan
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 7
  givenname: Xu
  surname: Fan
  fullname: Fan, Xu
  organization: College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
– sequence: 8
  givenname: Yaoming
  surname: Ma
  fullname: Ma, Yaoming
  email: ymma@itpcas.ac.cn
  organization: Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
BookMark eNqFkM1qGzEUhUVxoXaaRwhomc04-pkZzdBFKaZtCoFskrXQSFe2zFhyJI2LIQ8fTZ1VN9FGQuecyz3fCi188IDQDSVrSmh7t1_vd2cTw7hmhLE1ZV0r6Ce0pJ3oKyaIWKAlKUpF277-glYp7Uk5nNdL9PqcnN9i521UEQzOO4gHNWJ3UNtZyKB3Poxhe8Y5YEi5CBlmG85R-XR0UWUXPI7zd7BYuxynVESAhJU3GE5qnGbxOCqf8d_yjDhllaf0FX22akxw_X5foedfP58299XD4-8_mx8PleY1yxWrjaoFtaLlBIaO0kFYAGB9x4GoljW8aUAMtremNoOxPe3YYJVuGss7U3f8Ct1e5h5jeJlKCXlwScNYFoIwJclpw7u6F6wt1m8Xq44hpQhWlkL_Gpa6bpSUyJm53Mt35nJmLi_MS7r5L32MBVg8f5j7fslBoXByEGXSDrwG4yLoLE1wH0x4A3r3pMQ
CitedBy_id crossref_primary_10_19047_0136_1694_2023_116_43_75
crossref_primary_10_1016_j_jhydrol_2023_129459
crossref_primary_10_1016_j_agwat_2024_108705
crossref_primary_10_3390_drones7100617
crossref_primary_10_1002_fes3_70050
crossref_primary_10_3390_fi16020044
crossref_primary_10_3390_su151612389
Cites_doi 10.2134/agronj1990.00021962008200010032x
10.1016/j.rse.2007.07.018
10.1175/JHM464.1
10.1016/j.agwat.2010.08.001
10.3390/rs13050902
10.1016/0022-1694(92)90041-S
10.1098/rspa.1948.0037
10.1007/s12355-020-00919-7
10.1016/S0168-1923(98)00115-4
10.1016/j.jhydrol.2014.04.056
10.1002/eco.1352
10.1029/2002JD002247
10.6090/jarq.37.141
10.3390/rs9050502
10.1016/j.jhydrol.2020.125940
10.1029/2019JD030774
10.5194/bg-14-4533-2017
10.1016/j.agrformet.2020.108034
10.1080/01431161.2014.885149
10.1007/s40415-019-00523-4
10.1016/j.agrformet.2016.03.012
10.1016/j.agwat.2018.08.005
10.1590/S0100-29452011005000007
10.1007/s10342-021-01433-5
10.1097/00010694-198605000-00003
10.1016/S0168-1923(99)00108-2
10.1002/qj.49711146910
10.1016/j.agrformet.2006.08.007
10.1071/FP09132
10.1007/978-94-017-0519-6_48
10.1093/treephys/18.8-9.499
10.1016/j.scienta.2013.02.010
10.1016/j.rse.2005.05.015
10.13031/trans.59.11087
10.1016/S0022-1694(98)00174-7
10.2480/agrmet.37.9
10.1016/j.agwat.2021.106932
10.5194/essd-14-3673-2022
10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2
10.1016/j.jhydrol.2020.125034
10.2136/sssaj1999.6361608x
10.1016/j.jhydrol.2016.04.002
10.1007/s40333-017-0024-4
10.21273/HORTSCI.40.7.2118
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128671
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_128671
S0022169422012410
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-24da471f7630eb811b7feee2983e0a625355e7bf9fd4dbdf9182bfac55f38d483
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 02:56:08 EDT 2025
Tue Jul 01 01:53:43 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Fri Feb 23 02:40:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transpiration
Three-temperature model
Water stress
Plant transpiration transfer coefficient
Infrared thermal imaging technology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-24da471f7630eb811b7feee2983e0a625355e7bf9fd4dbdf9182bfac55f38d483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153849726
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153849726
crossref_citationtrail_10_1016_j_jhydrol_2022_128671
crossref_primary_10_1016_j_jhydrol_2022_128671
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guillevic (b0085) 2003; 108
Terry, Nelson (b0250) 1986; 141
Milly, Dunne (b0135) 1994; 7
Qiu, Yano, Momii (b0205) 1996; 1996
Qiu, Omasa, Sase (b0180) 2009; 36
Qiu, Sase, Shi, Ding (b0185) 2003; 37
Barr, Morgenstern, Black, McCaughey, Nesic (b0010) 2006; 140
Danso, Jeffrey, Dridi, Veeman (b0035) 2021; 253
Qiu, Momii, Yano, Lascano (b0175) 1999; 93
Sánchez, Kustas, Caselles, Anderson (b0230) 2008; 112
Tian, Qiu, Lü, Yang, Xiong (b0255) 2014; 515
Govaerts, Verhulst (b0080) 2010; 128
Sakuratani (b0235) 1981; 37
Wullschleger, Meinzer, Vertessy (b0275) 1998; 8–9
Boegh, Soegaard, Friborg, Levy (b0020) 1999; 93
Jiang, Kang, Tong, Li (b0100) 2016; 538
Qiu, Ben-Asher, Yano, Momii (b0165) 1999; 63
Qiu, Wang, Wu (b0195) 2006; 30
French, Jacob, Anderson, Kustas, Timmermans, Gieske, Su, Su, McCabe, Li, Prueger, Brunsell (b0055) 2005; 99
Shuttleworth, Wallace (b0240) 1985; 111
Yan, Qiu (b0290) 2016; 59
Chen, Huang, Ji, Xu, Xue, Wang (b0030) 2018; 10
Li, Kustas, Prueger, Neale, Jackson (b0115) 2005; 6
Yao, Di, Xie, Xiao, Jia, Zhang, Shang, Yang, Bei, Guo, Yu (b0295) 2021; 13
.
Xiong, Zhao, Wang, Paw, K., T., Qiu, G., Y. (b0285) 2019; 124
Lu, Chen, Wang, Wan, Yu (b0125) 2004; 10
O'Keefe, Bell, McCulloh, Nippert (b0145) 2020; 125
Gao, Zhang, Yu, Wang, Wang, Dong, Zhang (b0065) 2014; 34
Rampazo, Picoli, Teixeira, Cavaliero (b0220) 2021; 23
He, Li, Kang, Yang, Qin (b0095) 2018; 210
Bo, Du, Ding, Comas (b0015) 2017; 9
Qiu, Wu, Wang, Song (b0200) 2006; 30
Qiu, Momii, Yano (b0170) 1996; 1996
Ham, Heilman (b0090) 1990; 82
Wang, Xiong, Qiu, Zhang (b0270) 2016; 230
Qiu, Wang, Li, Zhang, Zou, Yan (b0190) 2021; 594
Liu, Wei, Yao, Chen, Zhang (b0120) 2012; 2
Ding, Kang, Li, Zhang, Tong, Sun (b0040) 2010; 98
Girardi, Mourão Filho, Delgado-Rojas, Araújo (b0075) 2010; 32
Gao, Long (b0070) 2008; 12
Ball, Woodrow, Berry (b0005) 1987; 221–224
Bryla, Dickson, Shenk, Johnson, Crisosto, Trout (b0025) 2005; 40
Doupis, Bertaki, Psarras, Kasapakis, Chartzoulakis (b0045) 2013; 153
Qiu, Yano, Momii (b0210) 1998; 210
Vandewiele, Xu, Ni-Lar-Win (b0260) 1992; 134
Song, Yin, Wu (b0245) 2012; 31
Lei, Zhou, Zhang, Jiang, Shi-Jun (b0110) 2014; 11
Qiu (b0160) 1996
Yu, Qiu, Yan, Zhao, Zou, Ding, Qin, Xiong (b0300) 2022; 14
Wang, Yamanaka (b0265) 2014; 7
Ehoková, Kuera, Gebauer (b0050) 2022; 141
Le, Chunjie (b0105) 2016; 12
Ma, Li, Wu, Zhao, Chen, Gao (b0130) 2020; 290
Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 193(1032), 120-145.
Monteith (b0140) 1965; Vol. 19
Zha, Qian, Jia, Bai, Tian, Bourque, Ma, Feng, Wu, Peltola (b0305) 2017; 14
Xiong, Qiu (b0280) 2014; 35
Zhao, Liu, Li, Li (b0310) 2019; 42
Qiu, Yu, Wen, Yan (b0215) 2020; 587
Qiu, Tan, Wang, Yu, Yan (b0155) 2017; 9
Fritschen, Fritschen (b0060) 2005; 47
Ehoková (10.1016/j.jhydrol.2022.128671_b0050) 2022; 141
Ding (10.1016/j.jhydrol.2022.128671_b0040) 2010; 98
Bo (10.1016/j.jhydrol.2022.128671_b0015) 2017; 9
Yu (10.1016/j.jhydrol.2022.128671_b0300) 2022; 14
Xiong (10.1016/j.jhydrol.2022.128671_b0285) 2019; 124
Doupis (10.1016/j.jhydrol.2022.128671_b0045) 2013; 153
Guillevic (10.1016/j.jhydrol.2022.128671_b0085) 2003; 108
Qiu (10.1016/j.jhydrol.2022.128671_b0180) 2009; 36
Qiu (10.1016/j.jhydrol.2022.128671_b0205) 1996; 1996
Qiu (10.1016/j.jhydrol.2022.128671_b0210) 1998; 210
Shuttleworth (10.1016/j.jhydrol.2022.128671_b0240) 1985; 111
Jiang (10.1016/j.jhydrol.2022.128671_b0100) 2016; 538
Wang (10.1016/j.jhydrol.2022.128671_b0265) 2014; 7
Qiu (10.1016/j.jhydrol.2022.128671_b0190) 2021; 594
Qiu (10.1016/j.jhydrol.2022.128671_b0215) 2020; 587
Yao (10.1016/j.jhydrol.2022.128671_b0295) 2021; 13
Girardi (10.1016/j.jhydrol.2022.128671_b0075) 2010; 32
Milly (10.1016/j.jhydrol.2022.128671_b0135) 1994; 7
Sakuratani (10.1016/j.jhydrol.2022.128671_b0235) 1981; 37
O'Keefe (10.1016/j.jhydrol.2022.128671_b0145) 2020; 125
Lei (10.1016/j.jhydrol.2022.128671_b0110) 2014; 11
Qiu (10.1016/j.jhydrol.2022.128671_b0185) 2003; 37
Fritschen (10.1016/j.jhydrol.2022.128671_b0060) 2005; 47
Li (10.1016/j.jhydrol.2022.128671_b0115) 2005; 6
Le (10.1016/j.jhydrol.2022.128671_b0105) 2016; 12
Ma (10.1016/j.jhydrol.2022.128671_b0130) 2020; 290
Wang (10.1016/j.jhydrol.2022.128671_b0270) 2016; 230
Yan (10.1016/j.jhydrol.2022.128671_b0290) 2016; 59
Rampazo (10.1016/j.jhydrol.2022.128671_b0220) 2021; 23
Vandewiele (10.1016/j.jhydrol.2022.128671_b0260) 1992; 134
Chen (10.1016/j.jhydrol.2022.128671_b0030) 2018; 10
Xiong (10.1016/j.jhydrol.2022.128671_b0280) 2014; 35
Terry (10.1016/j.jhydrol.2022.128671_b0250) 1986; 141
Ball (10.1016/j.jhydrol.2022.128671_b0005) 1987; 221–224
Sánchez (10.1016/j.jhydrol.2022.128671_b0230) 2008; 112
Wullschleger (10.1016/j.jhydrol.2022.128671_b0275) 1998; 8–9
Qiu (10.1016/j.jhydrol.2022.128671_b0200) 2006; 30
Tian (10.1016/j.jhydrol.2022.128671_b0255) 2014; 515
Qiu (10.1016/j.jhydrol.2022.128671_b0160) 1996
Zha (10.1016/j.jhydrol.2022.128671_b0305) 2017; 14
Govaerts (10.1016/j.jhydrol.2022.128671_b0080) 2010; 128
Ham (10.1016/j.jhydrol.2022.128671_b0090) 1990; 82
Qiu (10.1016/j.jhydrol.2022.128671_b0175) 1999; 93
Boegh (10.1016/j.jhydrol.2022.128671_b0020) 1999; 93
Gao (10.1016/j.jhydrol.2022.128671_b0065) 2014; 34
Qiu (10.1016/j.jhydrol.2022.128671_b0155) 2017; 9
Gao (10.1016/j.jhydrol.2022.128671_b0070) 2008; 12
Lu (10.1016/j.jhydrol.2022.128671_b0125) 2004; 10
10.1016/j.jhydrol.2022.128671_b0150
Bryla (10.1016/j.jhydrol.2022.128671_b0025) 2005; 40
Monteith (10.1016/j.jhydrol.2022.128671_b0140) 1965; Vol. 19
Qiu (10.1016/j.jhydrol.2022.128671_b0195) 2006; 30
Zhao (10.1016/j.jhydrol.2022.128671_b0310) 2019; 42
Song (10.1016/j.jhydrol.2022.128671_b0245) 2012; 31
Barr (10.1016/j.jhydrol.2022.128671_b0010) 2006; 140
French (10.1016/j.jhydrol.2022.128671_b0055) 2005; 99
Danso (10.1016/j.jhydrol.2022.128671_b0035) 2021; 253
He (10.1016/j.jhydrol.2022.128671_b0095) 2018; 210
Qiu (10.1016/j.jhydrol.2022.128671_b0165) 1999; 63
Qiu (10.1016/j.jhydrol.2022.128671_b0170) 1996; 1996
Liu (10.1016/j.jhydrol.2022.128671_b0120) 2012; 2
References_xml – volume: 37
  start-page: 141
  year: 2003
  end-page: 149
  ident: b0185
  article-title: Theoretical analysis and experimental verification of a remotely measurable plant transpiration transfer coefficient
  publication-title: Japan Agricultural Research Quarterly.
– volume: 11
  start-page: 30
  year: 2014
  ident: b0110
  article-title: Effects of canopy film covering on citrus fruit drop and quality in winter in Kai county
  publication-title: Chongqing province. Chinese Horticulture Abstracts.
– volume: 12
  start-page: 515
  year: 2008
  end-page: 528
  ident: b0070
  article-title: Progress in models for evapotranspiration estimation using remotely sensed data
  publication-title: Journal of Remote Sensing.
– volume: 112
  start-page: 1130
  year: 2008
  end-page: 1143
  ident: b0230
  article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 990
  year: 2009
  end-page: 997
  ident: b0180
  article-title: An infrared-based coefficient to screen plant environmental stress: concept, test and applications
  publication-title: Funct. Plant Biol.
– year: 1996
  ident: b0160
  article-title: A new method for estimation of evapotranspiration
– volume: 134
  start-page: 315
  year: 1992
  end-page: 347
  ident: b0260
  article-title: Methodology and comparative study of monthly water balance models in Belgium, China and Burma
  publication-title: J. Hydrol.
– volume: 128
  start-page: 145
  year: 2010
  end-page: 146
  ident: b0080
  article-title: The normalized difference vegetation index (NDVI) Greenseeker (TM) handheld sensor: toward the integrated evaluation of crop management part A: concepts and case studies
  publication-title: Archivio Per Le Scienze Mediche.
– volume: 8–9
  start-page: 499
  year: 1998
  end-page: 512
  ident: b0275
  article-title: A review of whole-plant water use studies in tree
  publication-title: Tree Physiol.
– volume: 9
  start-page: 502
  year: 2017
  ident: b0155
  article-title: Characteristics of evapotranspiration of urban lawns in a sub-tropical megacity and its measurement by the ‘Three Temperature Model+ Infrared Remote Sensing’method
  publication-title: Remote Sensing.
– volume: 12
  start-page: 46
  year: 2016
  end-page: 52
  ident: b0105
  article-title: Status Quo and Development Trend of World's Citrus Industry
  publication-title: Agricultural Outlook.
– volume: 6
  start-page: 878
  year: 2005
  end-page: 891
  ident: b0115
  article-title: Utility of remote sensing–based two-source energy balance model under low-and high-vegetation cover conditions
  publication-title: J. Hydrometeorol.
– volume: 594
  year: 2021
  ident: b0190
  article-title: Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing
  publication-title: J. Hydrol.
– volume: 47
  start-page: 397
  year: 2005
  end-page: 405
  ident: b0060
  article-title: Bowen ratio energy balance method
  publication-title: Micrometeorology in agricultural systems.
– volume: 125
  year: 2020
  ident: b0145
  article-title: Bridging the flux gap: Sap flow measurements reveal species-specific patterns of water use in a tallgrass prairie. Journal of Geophysical Research
  publication-title: Biogeosciences.
– volume: 59
  start-page: 661
  year: 2016
  end-page: 670
  ident: b0290
  article-title: The Three-Temperature Model to Estimate Evapotranspiration and its Partitioning at Multiple Scales: A Review
  publication-title: Trans. ASABE
– volume: 99
  start-page: 55
  year: 2005
  end-page: 65
  ident: b0055
  article-title: Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA)
  publication-title: Remote Sens. Environ.
– volume: Vol. 19
  start-page: 205
  year: 1965
  end-page: 234
  ident: b0140
  publication-title: Evaporation and environment. Symposia of the society for experimental biology
– volume: 111
  start-page: 839
  year: 1985
  end-page: 855
  ident: b0240
  article-title: Evaporation from sparse crops-an energy combination theory
  publication-title: Q. J. R. Meteorolog. Soc.
– volume: 141
  start-page: 281
  year: 2022
  end-page: 292
  ident: b0050
  article-title: High versus coppice forests: comparison of sap flow and stem growth of Quercus petraea Matt. during two growing seasons withdifferent precipitation patterns
  publication-title: Eur. J. Forest Res.
– reference: Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 193(1032), 120-145.
– volume: 538
  start-page: 194
  year: 2016
  end-page: 207
  ident: b0100
  article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China
  publication-title: J. Hydrol.
– volume: 210
  start-page: 93
  year: 1998
  end-page: 105
  ident: b0210
  article-title: An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface
  publication-title: J. Hydrol.
– volume: 9
  start-page: 515
  year: 2017
  end-page: 529
  ident: b0015
  article-title: Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China
  publication-title: Journal of Arid Land.
– volume: 221–224
  year: 1987
  ident: b0005
  article-title: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
  publication-title: Progress in Photosynthesis Research.
– volume: 30
  start-page: 231
  year: 2006
  end-page: 238
  ident: b0195
  article-title: Three temperature (3T) model––-a method to estimate evapotranspiration and evaluate environmental quality
  publication-title: Acta Phytoecological Sinica.
– volume: 35
  start-page: 2003
  year: 2014
  end-page: 2027
  ident: b0280
  article-title: Simplifying the revised three-temperature model for remotely estimating regional evapotranspiration and its application to a semi-arid steppe
  publication-title: Int. J. Remote Sens.
– volume: 515
  start-page: 307
  year: 2014
  end-page: 315
  ident: b0255
  article-title: Use of high-resolution thermal infrared remote sensing and “three-temperature model” for transpiration monitoring in arid inland river catchment
  publication-title: J. Hydrol.
– volume: 141
  start-page: 317
  year: 1986
  end-page: 320
  ident: b0250
  article-title: Effects of polyacrylamide and irrigation method on soil physical properties
  publication-title: Soil Sci.
– volume: 1996
  start-page: 767
  year: 1996
  end-page: 773
  ident: b0205
  article-title: Estimation of Plant Transpiration by Imitation Leaf Temperature Application of imitation leaf temperature for detection of crop water stress (II)
  publication-title: Transactions of the Japanese society of irrigation, drainage and reclamation engineering.
– volume: 7
  start-page: 506
  year: 1994
  end-page: 526
  ident: b0135
  article-title: Sensitivity of the Global Water Cycle to the Water-Holding Capacity of Land
  publication-title: J. Clim.
– volume: 290
  year: 2020
  ident: b0130
  article-title: Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system
  publication-title: Agric. For. Meteorol.
– volume: 253
  start-page: 106932
  year: 2021
  ident: b0035
  article-title: Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta
  publication-title: Canada. Agricultural Water Management.
– volume: 10
  start-page: 413
  year: 2004
  end-page: 4181
  ident: b0125
  article-title: Effect of N, P, K fertilization on young citrus tree growth, fruit yield and quality in area of red soil
  publication-title: Plant Nutrition and Fertilizer Science.
– volume: 82
  start-page: 147
  year: 1990
  end-page: 152
  ident: b0090
  article-title: Dynamics of a heat balance stem flow gauge during high flow
  publication-title: Agron. J.
– volume: 153
  start-page: 150
  year: 2013
  end-page: 156
  ident: b0045
  article-title: Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes - ScienceDirect
  publication-title: Sci. Hortic.
– volume: 63
  start-page: 1608
  year: 1999
  end-page: 1614
  ident: b0165
  article-title: Estimation of Soil Evaporation Using the Differential Temperature Method
  publication-title: Soil Sci. Soc. Am. J.
– volume: 14
  start-page: 3673
  year: 2022
  end-page: 3693
  ident: b0300
  article-title: A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
  publication-title: Earth Syst. Sci. Data Discuss.
– volume: 34
  start-page: 5721
  year: 2014
  end-page: 5727
  ident: b0065
  article-title: Transpiration rate change in the rare and endangered eremophyte Helianthemum Songaricum Schrenk based on the “Three-Temperature Model”
  publication-title: Acta Ecologica Sinica.
– volume: 124
  start-page: 9963
  year: 2019
  end-page: 9982
  ident: b0285
  article-title: Simple and applicable method for estimating evapotranspiration and its components in arid regions
  publication-title: Journal of Geophysical Research: Atmospheres.
– volume: 14
  start-page: 4533
  year: 2017
  end-page: 4544
  ident: b0305
  article-title: Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species
  publication-title: Artemisia ordosica. Biogeosciences.
– volume: 31
  start-page: 1186
  year: 2012
  end-page: 1195
  ident: b0245
  article-title: Advancements of the metrics of evapotranspiration
  publication-title: Progress in Geography.
– volume: 230
  start-page: 128
  year: 2016
  end-page: 141
  ident: b0270
  article-title: Is scale really a challenge in evapotranspiration estimation? A multi-scale study in the Heihe oasis using thermal remote sensing and the three-temperature model
  publication-title: Agric. For. Meteorol.
– volume: 37
  start-page: 9
  year: 1981
  end-page: 17
  ident: b0235
  article-title: A heat balance method for measuring water flux in the stem of intact plants
  publication-title: J. Agric. Meteorol.
– volume: 40
  start-page: 2118
  year: 2005
  end-page: 2124
  ident: b0025
  article-title: Influence of irrigation method and scheduling on patterns of soil and tree water status and its relation to yield and fruit quality in peach
  publication-title: HortScience
– volume: 98
  start-page: 87
  year: 2010
  end-page: 95
  ident: b0040
  article-title: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China
  publication-title: Agric. Water Manag.
– volume: 210
  start-page: 252
  year: 2018
  end-page: 260
  ident: b0095
  article-title: Simulation of water balance in a maize field under film-mulching drip irrigation
  publication-title: Agric. Water Manag.
– volume: 13
  start-page: 902
  year: 2021
  ident: b0295
  article-title: Simplified Priestley-Taylor Model to Estimate Land-Surface Latent Heat of Evapotranspiration from Incident Shortwave Radiation, Satellite Vegetation Index, and Air Relative Humidity
  publication-title: Remote Sensing.
– volume: 32
  start-page: 976
  year: 2010
  end-page: 983
  ident: b0075
  article-title: Use of the heat dissipation method for sap flow measurement in citrus nursery trees1
  publication-title: Revista Brasileira de Fruticultura.
– volume: 140
  start-page: 322
  year: 2006
  end-page: 337
  ident: b0010
  article-title: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux
  publication-title: Agric. For. Meteorol.
– volume: 93
  start-page: 79
  year: 1999
  end-page: 93
  ident: b0175
  article-title: Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation
  publication-title: Agric. For. Meteorol.
– volume: 587
  year: 2020
  ident: b0215
  article-title: An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing
  publication-title: J. Hydrol.
– volume: 23
  start-page: 524
  year: 2021
  end-page: 535
  ident: b0220
  article-title: Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops
  publication-title: Sugar Tech.
– reference: .
– volume: 30
  start-page: 852
  year: 2006
  end-page: 860
  ident: b0200
  article-title: Three temperature (3t) model––-a method to estimative evapotranspiration and evaluate environmental quality based on surface temperature
  publication-title: IV. Plant transpiration transfer coefficient. Acta Phytoecological Sinica.
– volume: 7
  start-page: 345
  year: 2014
  end-page: 353
  ident: b0265
  article-title: Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan
  publication-title: Ecohydrology.
– volume: 108
  start-page: -
  year: 2003
  ident: b0085
  article-title: Thermal infrared radiative transfer within three-dimensional vegetation covers
  publication-title: Journal of Geophysical Research Atmospheres.
– volume: 1996
  start-page: 401
  year: 1996
  end-page: 410
  ident: b0170
  article-title: Estimation of Plant Transpiration by Imitation Leaf Temperature Theoretical consideration and field verification (I)
  publication-title: Transactions of the Japanese society of irrigation, Drainage and Reclamation Engineering.
– volume: 42
  start-page: 261
  year: 2019
  end-page: 269
  ident: b0310
  article-title: Water transport distance’s effect on tylose development and sap flow in Meili grapevine
  publication-title: Brazilian Journal of Botany.
– volume: 10
  start-page: 54
  year: 2018
  end-page: 68
  ident: b0030
  article-title: Effects of Different Irrigation Methods on Growth, Fruit Quality and Yield of Apple Trees. Asian Agricultural
  publication-title: Research.
– volume: 2
  start-page: 124
  year: 2012
  end-page: 127
  ident: b0120
  article-title: Influence of different field water-holding capacity on growth and physiological biochemical indexes of Comus wilsoniana seedlings at rapid growth stage
  publication-title: Guizhou Agricultural Sciences.
– volume: 93
  start-page: 7
  year: 1999
  end-page: 26
  ident: b0020
  article-title: Models of CO2 and water vapour fluxes from a sparse millet crop in the Sahel
  publication-title: Agric. For. Meteorol.
– volume: 82
  start-page: 147
  issue: 1
  year: 1990
  ident: 10.1016/j.jhydrol.2022.128671_b0090
  article-title: Dynamics of a heat balance stem flow gauge during high flow
  publication-title: Agron. J.
  doi: 10.2134/agronj1990.00021962008200010032x
– volume: 12
  start-page: 515
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128671_b0070
  article-title: Progress in models for evapotranspiration estimation using remotely sensed data
  publication-title: Journal of Remote Sensing.
– volume: 112
  start-page: 1130
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128671_b0230
  article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.018
– volume: 6
  start-page: 878
  issue: 6
  year: 2005
  ident: 10.1016/j.jhydrol.2022.128671_b0115
  article-title: Utility of remote sensing–based two-source energy balance model under low-and high-vegetation cover conditions
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM464.1
– volume: 98
  start-page: 87
  issue: 1
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128671_b0040
  article-title: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.08.001
– volume: 13
  start-page: 902
  issue: 5
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128671_b0295
  article-title: Simplified Priestley-Taylor Model to Estimate Land-Surface Latent Heat of Evapotranspiration from Incident Shortwave Radiation, Satellite Vegetation Index, and Air Relative Humidity
  publication-title: Remote Sensing.
  doi: 10.3390/rs13050902
– volume: 10
  start-page: 413
  issue: 4
  year: 2004
  ident: 10.1016/j.jhydrol.2022.128671_b0125
  article-title: Effect of N, P, K fertilization on young citrus tree growth, fruit yield and quality in area of red soil
  publication-title: Plant Nutrition and Fertilizer Science.
– year: 1996
  ident: 10.1016/j.jhydrol.2022.128671_b0160
– volume: 128
  start-page: 145
  issue: 3
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128671_b0080
  article-title: The normalized difference vegetation index (NDVI) Greenseeker (TM) handheld sensor: toward the integrated evaluation of crop management part A: concepts and case studies
  publication-title: Archivio Per Le Scienze Mediche.
– volume: 12
  start-page: 46
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128671_b0105
  article-title: Status Quo and Development Trend of World's Citrus Industry
  publication-title: Agricultural Outlook.
– volume: 134
  start-page: 315
  issue: 1-4
  year: 1992
  ident: 10.1016/j.jhydrol.2022.128671_b0260
  article-title: Methodology and comparative study of monthly water balance models in Belgium, China and Burma
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90041-S
– ident: 10.1016/j.jhydrol.2022.128671_b0150
  doi: 10.1098/rspa.1948.0037
– volume: 23
  start-page: 524
  issue: 3
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128671_b0220
  article-title: Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops
  publication-title: Sugar Tech.
  doi: 10.1007/s12355-020-00919-7
– volume: 93
  start-page: 79
  issue: 2
  year: 1999
  ident: 10.1016/j.jhydrol.2022.128671_b0175
  article-title: Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(98)00115-4
– volume: 515
  start-page: 307
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128671_b0255
  article-title: Use of high-resolution thermal infrared remote sensing and “three-temperature model” for transpiration monitoring in arid inland river catchment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.04.056
– volume: 7
  start-page: 345
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128671_b0265
  article-title: Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan
  publication-title: Ecohydrology.
  doi: 10.1002/eco.1352
– volume: 108
  start-page: -
  issue: D8
  year: 2003
  ident: 10.1016/j.jhydrol.2022.128671_b0085
  article-title: Thermal infrared radiative transfer within three-dimensional vegetation covers
  publication-title: Journal of Geophysical Research Atmospheres.
  doi: 10.1029/2002JD002247
– volume: 37
  start-page: 141
  issue: 3
  year: 2003
  ident: 10.1016/j.jhydrol.2022.128671_b0185
  article-title: Theoretical analysis and experimental verification of a remotely measurable plant transpiration transfer coefficient
  publication-title: Japan Agricultural Research Quarterly.
  doi: 10.6090/jarq.37.141
– volume: 9
  start-page: 502
  issue: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128671_b0155
  article-title: Characteristics of evapotranspiration of urban lawns in a sub-tropical megacity and its measurement by the ‘Three Temperature Model+ Infrared Remote Sensing’method
  publication-title: Remote Sensing.
  doi: 10.3390/rs9050502
– volume: 594
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128671_b0190
  article-title: Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125940
– volume: 124
  start-page: 9963
  issue: 17–18
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128671_b0285
  article-title: Simple and applicable method for estimating evapotranspiration and its components in arid regions
  publication-title: Journal of Geophysical Research: Atmospheres.
  doi: 10.1029/2019JD030774
– volume: 31
  start-page: 1186
  issue: 9
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128671_b0245
  article-title: Advancements of the metrics of evapotranspiration
  publication-title: Progress in Geography.
– volume: 14
  start-page: 4533
  issue: 19
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128671_b0305
  article-title: Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species
  publication-title: Artemisia ordosica. Biogeosciences.
  doi: 10.5194/bg-14-4533-2017
– volume: 47
  start-page: 397
  year: 2005
  ident: 10.1016/j.jhydrol.2022.128671_b0060
  article-title: Bowen ratio energy balance method
  publication-title: Micrometeorology in agricultural systems.
– volume: 290
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128671_b0130
  article-title: Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108034
– volume: 2
  start-page: 124
  year: 2012
  ident: 10.1016/j.jhydrol.2022.128671_b0120
  article-title: Influence of different field water-holding capacity on growth and physiological biochemical indexes of Comus wilsoniana seedlings at rapid growth stage
  publication-title: Guizhou Agricultural Sciences.
– volume: 125
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128671_b0145
  article-title: Bridging the flux gap: Sap flow measurements reveal species-specific patterns of water use in a tallgrass prairie. Journal of Geophysical Research
  publication-title: Biogeosciences.
– volume: 35
  start-page: 2003
  issue: 6
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128671_b0280
  article-title: Simplifying the revised three-temperature model for remotely estimating regional evapotranspiration and its application to a semi-arid steppe
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.885149
– volume: 42
  start-page: 261
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128671_b0310
  article-title: Water transport distance’s effect on tylose development and sap flow in Meili grapevine
  publication-title: Brazilian Journal of Botany.
  doi: 10.1007/s40415-019-00523-4
– volume: 230
  start-page: 128
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128671_b0270
  article-title: Is scale really a challenge in evapotranspiration estimation? A multi-scale study in the Heihe oasis using thermal remote sensing and the three-temperature model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.03.012
– volume: 210
  start-page: 252
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128671_b0095
  article-title: Simulation of water balance in a maize field under film-mulching drip irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.08.005
– volume: 32
  start-page: 976
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128671_b0075
  article-title: Use of the heat dissipation method for sap flow measurement in citrus nursery trees1
  publication-title: Revista Brasileira de Fruticultura.
  doi: 10.1590/S0100-29452011005000007
– volume: 10
  start-page: 54
  issue: 1812–2019-028
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128671_b0030
  article-title: Effects of Different Irrigation Methods on Growth, Fruit Quality and Yield of Apple Trees. Asian Agricultural
  publication-title: Research.
– volume: 141
  start-page: 281
  issue: 2
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128671_b0050
  article-title: High versus coppice forests: comparison of sap flow and stem growth of Quercus petraea Matt. during two growing seasons withdifferent precipitation patterns
  publication-title: Eur. J. Forest Res.
  doi: 10.1007/s10342-021-01433-5
– volume: 141
  start-page: 317
  issue: 5
  year: 1986
  ident: 10.1016/j.jhydrol.2022.128671_b0250
  article-title: Effects of polyacrylamide and irrigation method on soil physical properties
  publication-title: Soil Sci.
  doi: 10.1097/00010694-198605000-00003
– volume: 1996
  start-page: 401
  issue: 183
  year: 1996
  ident: 10.1016/j.jhydrol.2022.128671_b0170
  article-title: Estimation of Plant Transpiration by Imitation Leaf Temperature Theoretical consideration and field verification (I)
  publication-title: Transactions of the Japanese society of irrigation, Drainage and Reclamation Engineering.
– volume: 93
  start-page: 7
  issue: 1
  year: 1999
  ident: 10.1016/j.jhydrol.2022.128671_b0020
  article-title: Models of CO2 and water vapour fluxes from a sparse millet crop in the Sahel
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00108-2
– volume: 111
  start-page: 839
  issue: 469
  year: 1985
  ident: 10.1016/j.jhydrol.2022.128671_b0240
  article-title: Evaporation from sparse crops-an energy combination theory
  publication-title: Q. J. R. Meteorolog. Soc.
  doi: 10.1002/qj.49711146910
– volume: 140
  start-page: 322
  issue: 1–4
  year: 2006
  ident: 10.1016/j.jhydrol.2022.128671_b0010
  article-title: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.08.007
– volume: Vol. 19
  start-page: 205
  year: 1965
  ident: 10.1016/j.jhydrol.2022.128671_b0140
  publication-title: Evaporation and environment. Symposia of the society for experimental biology
– volume: 36
  start-page: 990
  issue: 11
  year: 2009
  ident: 10.1016/j.jhydrol.2022.128671_b0180
  article-title: An infrared-based coefficient to screen plant environmental stress: concept, test and applications
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09132
– volume: 30
  start-page: 231
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2022.128671_b0195
  article-title: Three temperature (3T) model––-a method to estimate evapotranspiration and evaluate environmental quality
  publication-title: Acta Phytoecological Sinica.
– volume: 221–224
  year: 1987
  ident: 10.1016/j.jhydrol.2022.128671_b0005
  article-title: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
  publication-title: Progress in Photosynthesis Research.
  doi: 10.1007/978-94-017-0519-6_48
– volume: 1996
  start-page: 767
  issue: 185
  year: 1996
  ident: 10.1016/j.jhydrol.2022.128671_b0205
  article-title: Estimation of Plant Transpiration by Imitation Leaf Temperature Application of imitation leaf temperature for detection of crop water stress (II)
  publication-title: Transactions of the Japanese society of irrigation, drainage and reclamation engineering.
– volume: 30
  start-page: 852
  issue: 5
  year: 2006
  ident: 10.1016/j.jhydrol.2022.128671_b0200
  article-title: Three temperature (3t) model––-a method to estimative evapotranspiration and evaluate environmental quality based on surface temperature
  publication-title: IV. Plant transpiration transfer coefficient. Acta Phytoecological Sinica.
– volume: 8–9
  start-page: 499
  year: 1998
  ident: 10.1016/j.jhydrol.2022.128671_b0275
  article-title: A review of whole-plant water use studies in tree
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/18.8-9.499
– volume: 153
  start-page: 150
  issue: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128671_b0045
  article-title: Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes - ScienceDirect
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2013.02.010
– volume: 99
  start-page: 55
  issue: 1-2
  year: 2005
  ident: 10.1016/j.jhydrol.2022.128671_b0055
  article-title: Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.015
– volume: 59
  start-page: 661
  issue: 2
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128671_b0290
  article-title: The Three-Temperature Model to Estimate Evapotranspiration and its Partitioning at Multiple Scales: A Review
  publication-title: Trans. ASABE
  doi: 10.13031/trans.59.11087
– volume: 210
  start-page: 93
  issue: 1–4
  year: 1998
  ident: 10.1016/j.jhydrol.2022.128671_b0210
  article-title: An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00174-7
– volume: 37
  start-page: 9
  issue: 1
  year: 1981
  ident: 10.1016/j.jhydrol.2022.128671_b0235
  article-title: A heat balance method for measuring water flux in the stem of intact plants
  publication-title: J. Agric. Meteorol.
  doi: 10.2480/agrmet.37.9
– volume: 253
  start-page: 106932
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128671_b0035
  article-title: Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta
  publication-title: Canada. Agricultural Water Management.
  doi: 10.1016/j.agwat.2021.106932
– volume: 14
  start-page: 3673
  issue: 8
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128671_b0300
  article-title: A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
  publication-title: Earth Syst. Sci. Data Discuss.
  doi: 10.5194/essd-14-3673-2022
– volume: 7
  start-page: 506
  issue: 4
  year: 1994
  ident: 10.1016/j.jhydrol.2022.128671_b0135
  article-title: Sensitivity of the Global Water Cycle to the Water-Holding Capacity of Land
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2
– volume: 11
  start-page: 30
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128671_b0110
  article-title: Effects of canopy film covering on citrus fruit drop and quality in winter in Kai county
  publication-title: Chongqing province. Chinese Horticulture Abstracts.
– volume: 587
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128671_b0215
  article-title: An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125034
– volume: 63
  start-page: 1608
  issue: 6
  year: 1999
  ident: 10.1016/j.jhydrol.2022.128671_b0165
  article-title: Estimation of Soil Evaporation Using the Differential Temperature Method
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6361608x
– volume: 538
  start-page: 194
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128671_b0100
  article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.002
– volume: 34
  start-page: 5721
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128671_b0065
  article-title: Transpiration rate change in the rare and endangered eremophyte Helianthemum Songaricum Schrenk based on the “Three-Temperature Model”
  publication-title: Acta Ecologica Sinica.
– volume: 9
  start-page: 515
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128671_b0015
  article-title: Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China
  publication-title: Journal of Arid Land.
  doi: 10.1007/s40333-017-0024-4
– volume: 40
  start-page: 2118
  issue: 7
  year: 2005
  ident: 10.1016/j.jhydrol.2022.128671_b0025
  article-title: Influence of irrigation method and scheduling on patterns of soil and tree water status and its relation to yield and fruit quality in peach
  publication-title: HortScience
  doi: 10.21273/HORTSCI.40.7.2118
SSID ssj0000334
Score 2.4427154
Snippet •Use the new model (the 3D-3T model) to estimate plant transpiration.•The Normalized Difference Ratio Index (NDRI) is proposed for the first time.•The 2D-3T...
Crop transpiration is the main dissipation way of agricultural water. Accurate and effective estimation of crop transpiration is of great significance for the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128671
SubjectTerms aerodynamics
canopy
Citrus
hydrology
Infrared thermal imaging technology
irrigation
light
net radiation
Plant transpiration transfer coefficient
sap flow
temperature
Three-temperature model
Transpiration
trees
water conservation
water shortages
Water stress
Title Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128671
https://www.proquest.com/docview/3153849726
Volume 615
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EPrQv0g-LWitb8DV3tx9Jdh9FlGtLfVLwbdlPvEOT4y5ShNK_vTPJRmlBhL6FsBPCzux87Mz8hpBjlbx2WrLCMW0LGWVZWOZtUauq9KXn0Vu8h_xxUc2v5Lfr8nqLnI69MFhWmXX_oNN7bZ3fTPNuTleLBfb4cs4qLTnYMLBDGLdLWaOUT34_lXnMhJAjYjiufurimS4ny5uHsG4xA8H5BDR1VbPn7NM_mro3P-dvyU72G-nJ8GvvyFZs3pPXeYT5zcMH8qtP_lMQmDXWlFN07O6AYnHXzyGi3eMdOu1aitga4KtGXEa7HuB8McgCRewI2ibq-34MilnrDbVNoBkYPNLVLbCD_oTHNcWGpPvNLrk6P7s8nRd5tELhheRdwWWwYJYSaJdZdIoxV6cYI9dKxJmFmAjckFi7pFOQwYWkIQxxyfqyTEIFqcRHst20TdwjFE48t2ymbUCkQ-EVE0EmXZUuuFKFep_IcUONz7jjOP7i1owFZkuT-WCQD2bgwz6ZPJKtBuCNlwjUyC3zlwQZMA4vkX4ZuWvgdGHKxDaxvd8YgQZB6ppXB___-U_kDe_FD4tgDsk2cC9-Blemc0e9rB6RVydfv88v_gApefcf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhOaSX0vRBkzatCr16d_WwLR1LSNi2SU4J5Cb0JLsk9rLrUAKlv70ztpzQQgn0ZozGGM1TmplvCPmsktdOS1Y4pm0hoywLy7wtalWVvvQ8eov3kGfn1fxSfrsqr7bI0dgLg2WV2fYPNr231vnNNO_mdLVYYI8v56zSkoMPAz8E5_YdCeqLYwwmvx7rPGZCyBEyHJc_tvFMl5Pl9X1Yt5iC4HwCprqq2b8c1F-muvc_Jy_I8xw40i_Dv-2Rrdi8JLt5hvn1_Svys8_-U5CYNRaVU4zsboFicdsPIqLdwyU67VqK4BoQrEZcRrse4XwxCANF8AjaJur7hgyKaesNtU2gGRk80tUN8IP-gMc1xY6ku81rcnlyfHE0L_JshcILybuCy2DBLyUwL7PoFGOuTjFGrpWIMwuHIohDYu2STkEGF5KGc4hL1pdlEipIJd6Q7aZt4ltCQeW5ZTNtA0IdCq-YCDLpqnTBlSrU-0SOG2p8Bh7H-Rc3ZqwwW5rMB4N8MAMf9snkgWw1IG88RaBGbpk_RMiAd3iK9NPIXQPqhTkT28T2bmMEegSpa14d_P_nP5Ld-cXZqTn9ev79HXnGe1HEipj3ZBs4GQ8hrunch15ufwPJbfit
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+infrared+thermal+imaging+technology+to+estimate+the+transpiration+rate+of+citrus+trees+and+evaluate+plant+water+status&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Wenyi&rft.au=Dong%2C+Xiaohua&rft.au=Wu%2C+Zhengping&rft.au=Wei%2C+Chong&rft.date=2022-12-01&rft.issn=0022-1694&rft.volume=615+p.128671-&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128671&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon