The hydration rate of konjac glucomannan after consumption affects its in vivo glycemic response and appetite sensation and in vitro digestion characteristics
Viscosity development in the gastrointestinal tract may affect gastric emptying, nutrient absorption, postprandial glycemic response and satiety. Konjac glucomannan (KGM), a viscous soluble dietary fiber that hydrates gradually and develops high viscosity in solution, has drawn special attention for...
Saved in:
Published in | Food hydrocolloids Vol. 122; p. 107102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viscosity development in the gastrointestinal tract may affect gastric emptying, nutrient absorption, postprandial glycemic response and satiety. Konjac glucomannan (KGM), a viscous soluble dietary fiber that hydrates gradually and develops high viscosity in solution, has drawn special attention for its effects on appetite. In this study, we introduce the role of dynamic hydration of KGM to the traditional methods of characterizing viscous fibers. In the digestive tract the two simultaneous processes of dilution by digestive fluids and hydration of KGM fibers have opposite effects on viscosity and must be coordinated to achieve an optimum postprandial glycemia reducing- and appetite-suppressing effect. A randomized crossover trial was conducted on 16 healthy subjects. Glucose solution (GS) and rice porridge (RP) were used to deliver the KGM powders with different hydration rates and ultimate viscosities. KGM with medium hydration rate and medium viscosity (MHMV) exhibited the greatest postprandial glycemia reducing ability, while with faster hydration and higher viscosity (FHHV and MHHV) KGM had greater appetite suppressing ability. Gastric emptying characteristics were also determined with a human gastric simulator (HGS), which indicated that MHMV maintained a higher viscosity during gastric emptying and in simulated intestinal exposure it continued rehydrating, was more resistant to digestion and had a higher viscosity retention rate (11–13%). MHMV retarded glucose diffusion and delayed gastric emptying, which may have contributed to lower blood glucose level in vivo. This result suggests that hydration rate may be an important new property in the design of functional dietary fiber foods for dietary intervention purposes.
[Display omitted]
•In vivo hydration after consumption of dry konjac glucomannan affects digestion.•Viscosity increases due to hydration can offset viscosity reductions due to dilution.•Medium hydration, medium viscosity KGM reduced postprandial glucose levels.•Fast hydration, high viscosity KGM suppressed appetite. |
---|---|
AbstractList | Viscosity development in the gastrointestinal tract may affect gastric emptying, nutrient absorption, postprandial glycemic response and satiety. Konjac glucomannan (KGM), a viscous soluble dietary fiber that hydrates gradually and develops high viscosity in solution, has drawn special attention for its effects on appetite. In this study, we introduce the role of dynamic hydration of KGM to the traditional methods of characterizing viscous fibers. In the digestive tract the two simultaneous processes of dilution by digestive fluids and hydration of KGM fibers have opposite effects on viscosity and must be coordinated to achieve an optimum postprandial glycemia reducing- and appetite-suppressing effect. A randomized crossover trial was conducted on 16 healthy subjects. Glucose solution (GS) and rice porridge (RP) were used to deliver the KGM powders with different hydration rates and ultimate viscosities. KGM with medium hydration rate and medium viscosity (MHMV) exhibited the greatest postprandial glycemia reducing ability, while with faster hydration and higher viscosity (FHHV and MHHV) KGM had greater appetite suppressing ability. Gastric emptying characteristics were also determined with a human gastric simulator (HGS), which indicated that MHMV maintained a higher viscosity during gastric emptying and in simulated intestinal exposure it continued rehydrating, was more resistant to digestion and had a higher viscosity retention rate (11–13%). MHMV retarded glucose diffusion and delayed gastric emptying, which may have contributed to lower blood glucose level in vivo. This result suggests that hydration rate may be an important new property in the design of functional dietary fiber foods for dietary intervention purposes. Viscosity development in the gastrointestinal tract may affect gastric emptying, nutrient absorption, postprandial glycemic response and satiety. Konjac glucomannan (KGM), a viscous soluble dietary fiber that hydrates gradually and develops high viscosity in solution, has drawn special attention for its effects on appetite. In this study, we introduce the role of dynamic hydration of KGM to the traditional methods of characterizing viscous fibers. In the digestive tract the two simultaneous processes of dilution by digestive fluids and hydration of KGM fibers have opposite effects on viscosity and must be coordinated to achieve an optimum postprandial glycemia reducing- and appetite-suppressing effect. A randomized crossover trial was conducted on 16 healthy subjects. Glucose solution (GS) and rice porridge (RP) were used to deliver the KGM powders with different hydration rates and ultimate viscosities. KGM with medium hydration rate and medium viscosity (MHMV) exhibited the greatest postprandial glycemia reducing ability, while with faster hydration and higher viscosity (FHHV and MHHV) KGM had greater appetite suppressing ability. Gastric emptying characteristics were also determined with a human gastric simulator (HGS), which indicated that MHMV maintained a higher viscosity during gastric emptying and in simulated intestinal exposure it continued rehydrating, was more resistant to digestion and had a higher viscosity retention rate (11–13%). MHMV retarded glucose diffusion and delayed gastric emptying, which may have contributed to lower blood glucose level in vivo. This result suggests that hydration rate may be an important new property in the design of functional dietary fiber foods for dietary intervention purposes. [Display omitted] •In vivo hydration after consumption of dry konjac glucomannan affects digestion.•Viscosity increases due to hydration can offset viscosity reductions due to dilution.•Medium hydration, medium viscosity KGM reduced postprandial glucose levels.•Fast hydration, high viscosity KGM suppressed appetite. |
ArticleNumber | 107102 |
Author | Chen, Maoshen Guo, Liping Goff, H. Douglas Zhong, Fang |
Author_xml | – sequence: 1 givenname: Liping orcidid: 0000-0002-3508-3665 surname: Guo fullname: Guo, Liping organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China – sequence: 2 givenname: H. Douglas orcidid: 0000-0002-0724-4484 surname: Goff fullname: Goff, H. Douglas organization: Department of Food Science, University of Guelph, Guelph, N1H 6J2, ON, Canada – sequence: 3 givenname: Maoshen surname: Chen fullname: Chen, Maoshen organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China – sequence: 4 givenname: Fang orcidid: 0000-0002-5850-4960 surname: Zhong fullname: Zhong, Fang email: fzhong@jiangnan.edu.cn organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China |
BookMark | eNqFkc9q3DAQxkVJoZu0j1DQsRdvJcu2bHooJfQfBHJJoTcxHo-y2tqSK3kX9mXyrNWuc-olBzHo4_vNDPNdsysfPDH2XoqtFLL5uN_aEIbdadiWopRZ01KUr9hGtloVWip9xTaibNpCiPr3G3ad0l4IqYWUG_b0sCOe0QiLC57nQjxY_if4PSB_HA8YJvAePAe7UOQYfDpM88UM1hIuibvz8_zojiETJ6TJIY-U5uwlDn7gMM-0uNw6kU_rpLN8gZYY-OAeKV1k3EEEzJNc_mN6y15bGBO9e6437Ne3rw-3P4q7--8_b7_cFaiqcinKqodaV1JhRVb3bYddi63VTUu1atDWFqlX3UCgew0DVNRXAptOW-o7qq26YR_WvnMMfw95FzO5hDSO4Ckckikb1bRSNlpla71aMYaUIlkzRzdBPBkpzDkPszfPeZhzHmbNI3Of_uPQLZdbLBHc-CL9eaUpX-HoKJqEjjzS4GIOwQzBvdDhHx9-skI |
CitedBy_id | crossref_primary_10_1021_acsomega_3c02265 crossref_primary_10_3390_foods11121764 crossref_primary_10_3390_plants13131721 crossref_primary_10_1080_10408398_2023_2278169 crossref_primary_10_1016_j_foodhyd_2025_111347 crossref_primary_10_1039_D4FO04174G crossref_primary_10_1111_ijfs_16005 crossref_primary_10_3390_foods12040743 crossref_primary_10_1016_j_ijbiomac_2025_142089 crossref_primary_10_1016_j_cofs_2022_100976 crossref_primary_10_1016_j_eurpolymj_2022_111242 crossref_primary_10_1021_acs_jafc_4c07730 crossref_primary_10_1039_D3FO01068F crossref_primary_10_1016_j_foodchem_2023_137188 crossref_primary_10_3390_molecules29071681 crossref_primary_10_1016_j_ijbiomac_2024_132253 crossref_primary_10_1016_j_neuropharm_2022_109315 crossref_primary_10_1016_j_foodres_2024_114247 crossref_primary_10_1080_10408398_2023_2202778 crossref_primary_10_1108_NFS_12_2023_0290 crossref_primary_10_1002_pat_6512 crossref_primary_10_1016_j_carbpol_2024_121849 crossref_primary_10_1039_D4FO00319E crossref_primary_10_1002_fsn3_3841 crossref_primary_10_1016_j_foodhyd_2022_108410 crossref_primary_10_1021_acs_jafc_4c03819 crossref_primary_10_1016_j_jff_2024_106108 crossref_primary_10_1016_j_foodres_2024_114682 crossref_primary_10_3390_coatings13101757 |
Cites_doi | 10.1093/jn/130.1.122 10.1093/nutrit/nuv063 10.1111/j.1365-2982.2007.00972.x 10.1016/j.foodhyd.2021.106818 10.1039/C7FO00331E 10.1093/ajcn/48.4.1041 10.1016/j.tifs.2003.03.001 10.1080/10408398.2012.700654 10.1111/j.1750-3841.2010.01856.x 10.1039/C3FO60702J 10.1152/ajpgi.00060.2013 10.1111/j.1467-789X.2010.00714.x 10.1038/ejcn.2013.25 10.1016/j.foodhyd.2020.105739 10.1016/j.bcdf.2017.07.005 10.1039/c3sm52758a 10.1039/D0FO01104E 10.2337/diacare.22.6.913 10.1016/j.foodhyd.2013.08.007 10.1152/ajpgi.2001.280.6.G1227 10.1016/j.foodhyd.2018.02.034 10.1111/j.1467-789X.2011.00895.x 10.1080/00365520510023503 10.1039/C4FO00253A 10.1007/s11483-009-9135-6 10.1113/jphysiol.1975.sp010841 10.1016/j.carbpol.2014.09.038 10.1038/ejcn.2012.152 10.1016/S0140-6736(79)91777-X 10.1136/gut.29.7.930 10.1054/mehy.2001.1457 10.1016/j.diabres.2008.11.014 10.1080/07315724.2003.10719273 10.1016/j.jada.2010.06.206 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.foodhyd.2021.107102 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7137 |
ExternalDocumentID | 10_1016_j_foodhyd_2021_107102 S0268005X2100518X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-24ba57413c4ef7b89c98c8f768e536cf5fceb39dea7b7ada4eb40c697feb9e5f3 |
IEDL.DBID | .~1 |
ISSN | 0268-005X |
IngestDate | Mon Jul 21 10:09:38 EDT 2025 Tue Jul 01 00:41:52 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Fri Feb 23 02:44:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Konjac glucomannan Viscosity retention ability Satiation Glycemic response Hydration rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-24ba57413c4ef7b89c98c8f768e536cf5fceb39dea7b7ada4eb40c697feb9e5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3508-3665 0000-0002-0724-4484 0000-0002-5850-4960 |
PQID | 2636811673 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636811673 crossref_primary_10_1016_j_foodhyd_2021_107102 crossref_citationtrail_10_1016_j_foodhyd_2021_107102 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2021_107102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Food hydrocolloids |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Marciani, Gowland, Spiller, Manoj, Moore, Young (bib29) 2001; 280 Goff, Repin, Fabek, El Khoury, Gidley (bib13) 2018; 14 Kong, Singh (bib22) 2009; 4 Low, Pluschke, Gerrits, Zhang, Shelat, Gidley (bib25) 2020; 104 Hopman, Houben, Speth, Lamers (bib18) 1988; 29 Rebello, O’ Neil, Greenway (bib33) 2016; 74 Ebihara, Masuhara, Kiriyama (bib8) 1981; 23 (bib11) 1998 Chen, Sheu, Tai, Liaw, Chen (bib4) 2003; 22 Marciani, Gowland, Spiller, Manoj, Moore, Young (bib28) 2000; 130 Minekus, Alminger, Alvito, Ballance, Bohn, Bourlieu (bib31) 2014; 5 Woods, Shay, Mathews (bib42) 2010 Hunt, Stubbs (bib20) 1975; 245 Blundell, de Graaf, Hulshof, Jebb, Livingstone, Lluch (bib2) 2010; 11 Huang, Zhang, Peng, Hong, Wang, Jiang (bib19) 1990; 3 Keithley, Swanson (bib21) 2005; 11 Lu, Zheng, Miao (bib26) 2018; 81 Zhao, Li, Jin, Geng, Xu, Ye (bib44) 2015; 117 McCarty (bib30) 2002; 58 Wolever, Jenkins, Ocana, Rao, Collier (bib40) 1988; 48 Wanders, van den Borne, de Graaf, Hulshof, Jonathan, Kristensen (bib39) 2011; 12 Kong, Singh (bib23) 2010; 75 Wood (bib41) 2004; 15 El Khoury, Goff, Anderson (bib9) 2015; 55 Guo, Ye, Lad, Dalgleish, Singh (bib14) 2014; 10 Mackie, Rafiee, Malcolm, Salt, van Aken (bib27) 2013; 304 Vuksan, Jenkins, Spadafora, Sievenpiper, Owen, Vidgen (bib38) 1999; 22 Clegg, Ranawana, Shafat, Henry (bib5) 2013; 67 Doi (bib6) 1995; 49 Shimoyama, Kusano, Kawamura, Zai, Kuribayashi, Higuchi (bib36) 2007; 19 Chearskul, Kriengsinyos, Kooptiwut, Sangurai, Onreabroi, Churintaraphan (bib3) 2009; 83 Shang, Wang, Ren, Ai, Zhou, Wang (bib35) 2020; 22 Tosh (bib37) 2013; 67 (bib17) 2013 Repin, Kay, Cui, Wright, Duncan, Goff (bib34) 2017; 8 Fabek, Messerschmidt, Brulport, Goff (bib10) 2014; 35 Doi, Matsuura, Kawara, Baba (bib7) 1979; 1 Harrold, Breslin, Walsh, Halford, Pelkman (bib16) 2014; 5 Yu, Ke, Li, Zhang, Fang (bib43) 2014; 23 Guo, Yokoyama, Chen, Liu, Chen, Zhong (bib15) 2021; 120 Kusano, Minashi, Maeda, Shimoyama, Mori (bib24) 2005; 20 Garcia, Charlez, Fauli, Del Pozo Carrascos, Ghirardi (bib12) 1988; 43 Zhu, Hsu, Hollis, Singh (bib45) 2013; 8 Fabek (10.1016/j.foodhyd.2021.107102_bib10) 2014; 35 Huang (10.1016/j.foodhyd.2021.107102_bib19) 1990; 3 Zhu (10.1016/j.foodhyd.2021.107102_bib45) 2013; 8 Shimoyama (10.1016/j.foodhyd.2021.107102_bib36) 2007; 19 Hunt (10.1016/j.foodhyd.2021.107102_bib20) 1975; 245 Repin (10.1016/j.foodhyd.2021.107102_bib34) 2017; 8 Lu (10.1016/j.foodhyd.2021.107102_bib26) 2018; 81 Garcia (10.1016/j.foodhyd.2021.107102_bib12) 1988; 43 Wolever (10.1016/j.foodhyd.2021.107102_bib40) 1988; 48 Goff (10.1016/j.foodhyd.2021.107102_bib13) 2018; 14 (10.1016/j.foodhyd.2021.107102_bib17) 2013 Guo (10.1016/j.foodhyd.2021.107102_bib15) 2021; 120 (10.1016/j.foodhyd.2021.107102_bib11) 1998 Chearskul (10.1016/j.foodhyd.2021.107102_bib3) 2009; 83 Clegg (10.1016/j.foodhyd.2021.107102_bib5) 2013; 67 McCarty (10.1016/j.foodhyd.2021.107102_bib30) 2002; 58 Zhao (10.1016/j.foodhyd.2021.107102_bib44) 2015; 117 Ebihara (10.1016/j.foodhyd.2021.107102_bib8) 1981; 23 Kong (10.1016/j.foodhyd.2021.107102_bib23) 2010; 75 Guo (10.1016/j.foodhyd.2021.107102_bib14) 2014; 10 Doi (10.1016/j.foodhyd.2021.107102_bib7) 1979; 1 Keithley (10.1016/j.foodhyd.2021.107102_bib21) 2005; 11 Tosh (10.1016/j.foodhyd.2021.107102_bib37) 2013; 67 Woods (10.1016/j.foodhyd.2021.107102_bib42) 2010 Shang (10.1016/j.foodhyd.2021.107102_bib35) 2020; 22 Kusano (10.1016/j.foodhyd.2021.107102_bib24) 2005; 20 Marciani (10.1016/j.foodhyd.2021.107102_bib29) 2001; 280 Mackie (10.1016/j.foodhyd.2021.107102_bib27) 2013; 304 Rebello (10.1016/j.foodhyd.2021.107102_bib33) 2016; 74 El Khoury (10.1016/j.foodhyd.2021.107102_bib9) 2015; 55 Blundell (10.1016/j.foodhyd.2021.107102_bib2) 2010; 11 Low (10.1016/j.foodhyd.2021.107102_bib25) 2020; 104 Vuksan (10.1016/j.foodhyd.2021.107102_bib38) 1999; 22 Doi (10.1016/j.foodhyd.2021.107102_bib6) 1995; 49 Hopman (10.1016/j.foodhyd.2021.107102_bib18) 1988; 29 Marciani (10.1016/j.foodhyd.2021.107102_bib28) 2000; 130 Minekus (10.1016/j.foodhyd.2021.107102_bib31) 2014; 5 Chen (10.1016/j.foodhyd.2021.107102_bib4) 2003; 22 Harrold (10.1016/j.foodhyd.2021.107102_bib16) 2014; 5 Yu (10.1016/j.foodhyd.2021.107102_bib43) 2014; 23 Wanders (10.1016/j.foodhyd.2021.107102_bib39) 2011; 12 Kong (10.1016/j.foodhyd.2021.107102_bib22) 2009; 4 Wood (10.1016/j.foodhyd.2021.107102_bib41) 2004; 15 |
References_xml | – volume: 120 start-page: 106818 year: 2021 ident: bib15 article-title: Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships publication-title: Food Hydrocolloids – year: 2013 ident: bib17 article-title: Draft guidance document on food health claims related to the reduction in post-prandial glycaemic response – volume: 67 start-page: 8 year: 2013 end-page: 11 ident: bib5 article-title: Soups increase satiety through delayed gastric emptying yet increased glycaemic response publication-title: European Journal of Clinical Nutrition – volume: 8 start-page: 2142 year: 2017 end-page: 2154 ident: bib34 article-title: Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption publication-title: Food & Function – volume: 22 start-page: 913 year: 1999 end-page: 919 ident: bib38 article-title: Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes: Arandomized controlled metabolic trial publication-title: Diabetes Care – volume: 49 start-page: S190 year: 1995 end-page: S197 ident: bib6 article-title: Effect of konjac fibre (glucomannan) on glucose and lipids publication-title: European Journal of Clinical Nutrition – volume: 4 start-page: 365 year: 2009 end-page: 377 ident: bib22 article-title: Digestion of raw and roasted almonds in simulated gastric environment publication-title: Food Biophysics – volume: 11 start-page: 30 year: 2005 end-page: 34 ident: bib21 article-title: Glucomannan and obesity: A critical review publication-title: Alternative Therapies in Health & Medicine – volume: 3 start-page: 123 year: 1990 end-page: 131 ident: bib19 article-title: Effect of konjac food on blood glucose level in patients with diabetes publication-title: Biomedical and Environmental Sciences – volume: 48 start-page: 1041 year: 1988 end-page: 1047 ident: bib40 article-title: Second-meal effect: Low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response publication-title: The American Journal of Clinical Nutrition – year: 2010 ident: bib42 article-title: Does glucomannan fiber beneficially effect glycemic response in women at risk for type 2 diabetes? publication-title: Journal of the American Dietetic Association – volume: 55 start-page: 1406 year: 2015 end-page: 1424 ident: bib9 article-title: The role of alginates in regulation of food intake and glycemia: A gastroenterological perspective publication-title: Critical Reviews in Food Science and Nutrition – volume: 22 start-page: 36 year: 2003 end-page: 42 ident: bib4 article-title: Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subject-a randomized double-blind trial publication-title: Journal of the American College of Nutrition – volume: 23 start-page: 577 year: 1981 end-page: 583 ident: bib8 article-title: Effect of konjac mannan, a water-soluble dietary fiber on plasma glucose and insulin responses in young men undergone glucose tolerance test publication-title: Nutrition Reports International – volume: 104 start-page: 105739 year: 2020 ident: bib25 article-title: Cereal dietary fibres influence retention time of digesta solid and liquid phases along the gastrointestinal tract publication-title: Food Hydrocolloids – volume: 83 start-page: 40 year: 2009 end-page: 42 ident: bib3 article-title: Immediate and long-term effects of glucomannan on total ghrelin and leptin in type 2 diabetes mellitus publication-title: Diabetes Research and Clinical Practice – volume: 67 start-page: 310 year: 2013 end-page: 318 ident: bib37 article-title: Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products publication-title: European Journal of Clinical Nutrition – volume: 12 start-page: 724 year: 2011 end-page: 739 ident: bib39 article-title: Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trial publication-title: Obesity Reviews – volume: 8 start-page: 6 year: 2013 end-page: 9 ident: bib45 article-title: The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate publication-title: PloS One – volume: 11 start-page: 251 year: 2010 end-page: 270 ident: bib2 article-title: Appetite control: Methodological aspects of the evaluation of foods publication-title: Obesity Reviews – volume: 75 start-page: E627 year: 2010 end-page: E635 ident: bib23 article-title: A human gastric simulator (HGS) to study food digestion in human stomach publication-title: Journal of Food Science – volume: 20 start-page: 1176 year: 2005 end-page: 1181 ident: bib24 article-title: Postprandial water intake inhibits gastric antral motility with increase of cholecystokinin in humans publication-title: Scandinavian Journal of Gastroenterology – volume: 5 start-page: 1113 year: 2014 end-page: 1124 ident: bib31 article-title: A standardised static in vitro digestion method suitable for food–an international consensus publication-title: Food & Function – volume: 74 start-page: 131 year: 2016 end-page: 147 ident: bib33 article-title: Dietary fiber and satiety: The effects of oats on satiety publication-title: Nutrition Reviews – volume: 35 start-page: 718 year: 2014 end-page: 726 ident: bib10 article-title: The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion publication-title: Food Hydrocolloids – volume: 1 start-page: 987 year: 1979 end-page: 988 ident: bib7 article-title: Treatment of diabetes with glucomannan (konjac mannan) (letter) publication-title: Lancet – volume: 130 start-page: 122 year: 2000 end-page: 127 ident: bib28 article-title: Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans publication-title: The Journal of Nutrition – volume: 22 start-page: 7596 year: 2020 end-page: 7610 ident: bib35 article-title: In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation publication-title: Food & Function – volume: 14 start-page: 39 year: 2018 end-page: 53 ident: bib13 article-title: Dietary fibre for glycaemia control: Towards a mechanistic understanding publication-title: Bioactive Carbohydrates and Dietary Fibre – volume: 117 start-page: 1 year: 2015 end-page: 10 ident: bib44 article-title: Preparation and characterization of a novel pH-response dietary fiber: Chitosan-coated konjac glucomannan publication-title: Carbohydrate Polymers – volume: 29 start-page: 930 year: 1988 end-page: 934 ident: bib18 article-title: Glucomannan prevents postprandial hypoglycaemia in patients with previous gastric surgery publication-title: Gut – volume: 81 start-page: 120 year: 2018 end-page: 128 ident: bib26 article-title: Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan publication-title: Food Hydrocolloids – volume: 280 start-page: G1227 year: 2001 end-page: G1233 ident: bib29 article-title: Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology – volume: 15 start-page: 313 year: 2004 end-page: 320 ident: bib41 article-title: Relationships between solution properties of cereal-glucans and physiological effects – a review publication-title: Trends in Food Science & Technology – volume: 5 start-page: 2574 year: 2014 end-page: 2581 ident: bib16 article-title: Satiety effects of a whole-grain fibre composite ingredient: Reduced food intake and appetite rating publication-title: Food & Function – volume: 43 start-page: 1010 year: 1988 end-page: 1013 ident: bib12 article-title: Physicochemical comparison of the dietary fibers glucomannan, galactomannan, carboxymethylcellulose, pectin, and wheat bran publication-title: Current Therapeutic Research – volume: 58 start-page: 487 year: 2002 end-page: 490 ident: bib30 article-title: Glucomannan minimizes the postprandial insulin surge: A potential adjuvant for hepatothermic therapy publication-title: Medical Hypotheses – volume: 245 start-page: 209 year: 1975 end-page: 225 ident: bib20 article-title: The volume and energy content of meals as determinants of gastric emptying publication-title: The Journal of Physiology – volume: 304 start-page: G1038 year: 2013 end-page: G1043 ident: bib27 article-title: Specific food structures suppress appetite through reduced gastric emptying rate publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology – volume: 23 start-page: 210 year: 2014 end-page: 218 ident: bib43 article-title: The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes publication-title: Asia Pacific Journal of Clinical Nutrition – volume: 19 start-page: 879 year: 2007 end-page: 886 ident: bib36 article-title: High-viscosity liquid meal accelerates gastric emptying publication-title: Journal of Neurogastroenterology Motility – year: 1998 ident: bib11 article-title: Carbohydrates in human nutrition-report of a joint FAO/WHO expert consultation food and agriculture organization, Rome – volume: 10 start-page: 1214 year: 2014 end-page: 1223 ident: bib14 article-title: Effect of gel structure on the gastric digestion of whey protein emulsion gels publication-title: Soft Matter – volume: 11 start-page: 30 year: 2005 ident: 10.1016/j.foodhyd.2021.107102_bib21 article-title: Glucomannan and obesity: A critical review publication-title: Alternative Therapies in Health & Medicine – volume: 130 start-page: 122 year: 2000 ident: 10.1016/j.foodhyd.2021.107102_bib28 article-title: Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans publication-title: The Journal of Nutrition doi: 10.1093/jn/130.1.122 – volume: 49 start-page: S190 issue: Suppl.3 year: 1995 ident: 10.1016/j.foodhyd.2021.107102_bib6 article-title: Effect of konjac fibre (glucomannan) on glucose and lipids publication-title: European Journal of Clinical Nutrition – volume: 74 start-page: 131 issue: 2 year: 2016 ident: 10.1016/j.foodhyd.2021.107102_bib33 article-title: Dietary fiber and satiety: The effects of oats on satiety publication-title: Nutrition Reviews doi: 10.1093/nutrit/nuv063 – volume: 19 start-page: 879 year: 2007 ident: 10.1016/j.foodhyd.2021.107102_bib36 article-title: High-viscosity liquid meal accelerates gastric emptying publication-title: Journal of Neurogastroenterology Motility doi: 10.1111/j.1365-2982.2007.00972.x – volume: 120 start-page: 106818 year: 2021 ident: 10.1016/j.foodhyd.2021.107102_bib15 article-title: Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106818 – volume: 23 start-page: 577 year: 1981 ident: 10.1016/j.foodhyd.2021.107102_bib8 article-title: Effect of konjac mannan, a water-soluble dietary fiber on plasma glucose and insulin responses in young men undergone glucose tolerance test publication-title: Nutrition Reports International – volume: 8 start-page: 2142 issue: 6 year: 2017 ident: 10.1016/j.foodhyd.2021.107102_bib34 article-title: Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption publication-title: Food & Function doi: 10.1039/C7FO00331E – volume: 48 start-page: 1041 year: 1988 ident: 10.1016/j.foodhyd.2021.107102_bib40 article-title: Second-meal effect: Low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response publication-title: The American Journal of Clinical Nutrition doi: 10.1093/ajcn/48.4.1041 – volume: 15 start-page: 313 year: 2004 ident: 10.1016/j.foodhyd.2021.107102_bib41 article-title: Relationships between solution properties of cereal-glucans and physiological effects – a review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2003.03.001 – volume: 55 start-page: 1406 issue: 10 year: 2015 ident: 10.1016/j.foodhyd.2021.107102_bib9 article-title: The role of alginates in regulation of food intake and glycemia: A gastroenterological perspective publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2012.700654 – volume: 75 start-page: E627 issue: 9 year: 2010 ident: 10.1016/j.foodhyd.2021.107102_bib23 article-title: A human gastric simulator (HGS) to study food digestion in human stomach publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2010.01856.x – volume: 5 start-page: 1113 issue: 6 year: 2014 ident: 10.1016/j.foodhyd.2021.107102_bib31 article-title: A standardised static in vitro digestion method suitable for food–an international consensus publication-title: Food & Function doi: 10.1039/C3FO60702J – volume: 304 start-page: G1038 issue: 11 year: 2013 ident: 10.1016/j.foodhyd.2021.107102_bib27 article-title: Specific food structures suppress appetite through reduced gastric emptying rate publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology doi: 10.1152/ajpgi.00060.2013 – volume: 11 start-page: 251 issue: 3 year: 2010 ident: 10.1016/j.foodhyd.2021.107102_bib2 article-title: Appetite control: Methodological aspects of the evaluation of foods publication-title: Obesity Reviews doi: 10.1111/j.1467-789X.2010.00714.x – volume: 67 start-page: 310 year: 2013 ident: 10.1016/j.foodhyd.2021.107102_bib37 article-title: Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products publication-title: European Journal of Clinical Nutrition doi: 10.1038/ejcn.2013.25 – volume: 8 start-page: 6 year: 2013 ident: 10.1016/j.foodhyd.2021.107102_bib45 article-title: The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate publication-title: PloS One – volume: 104 start-page: 105739 year: 2020 ident: 10.1016/j.foodhyd.2021.107102_bib25 article-title: Cereal dietary fibres influence retention time of digesta solid and liquid phases along the gastrointestinal tract publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105739 – year: 1998 ident: 10.1016/j.foodhyd.2021.107102_bib11 – volume: 3 start-page: 123 issue: 2 year: 1990 ident: 10.1016/j.foodhyd.2021.107102_bib19 article-title: Effect of konjac food on blood glucose level in patients with diabetes publication-title: Biomedical and Environmental Sciences – volume: 14 start-page: 39 year: 2018 ident: 10.1016/j.foodhyd.2021.107102_bib13 article-title: Dietary fibre for glycaemia control: Towards a mechanistic understanding publication-title: Bioactive Carbohydrates and Dietary Fibre doi: 10.1016/j.bcdf.2017.07.005 – volume: 10 start-page: 1214 year: 2014 ident: 10.1016/j.foodhyd.2021.107102_bib14 article-title: Effect of gel structure on the gastric digestion of whey protein emulsion gels publication-title: Soft Matter doi: 10.1039/c3sm52758a – volume: 22 start-page: 7596 year: 2020 ident: 10.1016/j.foodhyd.2021.107102_bib35 article-title: In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation publication-title: Food & Function doi: 10.1039/D0FO01104E – volume: 22 start-page: 913 issue: 6 year: 1999 ident: 10.1016/j.foodhyd.2021.107102_bib38 article-title: Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes: Arandomized controlled metabolic trial publication-title: Diabetes Care doi: 10.2337/diacare.22.6.913 – volume: 35 start-page: 718 year: 2014 ident: 10.1016/j.foodhyd.2021.107102_bib10 article-title: The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.08.007 – volume: 280 start-page: G1227 issue: 6 43–6 year: 2001 ident: 10.1016/j.foodhyd.2021.107102_bib29 article-title: Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology doi: 10.1152/ajpgi.2001.280.6.G1227 – year: 2013 ident: 10.1016/j.foodhyd.2021.107102_bib17 – volume: 81 start-page: 120 year: 2018 ident: 10.1016/j.foodhyd.2021.107102_bib26 article-title: Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.034 – volume: 12 start-page: 724 year: 2011 ident: 10.1016/j.foodhyd.2021.107102_bib39 article-title: Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trial publication-title: Obesity Reviews doi: 10.1111/j.1467-789X.2011.00895.x – volume: 20 start-page: 1176 year: 2005 ident: 10.1016/j.foodhyd.2021.107102_bib24 article-title: Postprandial water intake inhibits gastric antral motility with increase of cholecystokinin in humans publication-title: Scandinavian Journal of Gastroenterology doi: 10.1080/00365520510023503 – volume: 5 start-page: 2574 issue: 10 year: 2014 ident: 10.1016/j.foodhyd.2021.107102_bib16 article-title: Satiety effects of a whole-grain fibre composite ingredient: Reduced food intake and appetite rating publication-title: Food & Function doi: 10.1039/C4FO00253A – volume: 4 start-page: 365 issue: 4 year: 2009 ident: 10.1016/j.foodhyd.2021.107102_bib22 article-title: Digestion of raw and roasted almonds in simulated gastric environment publication-title: Food Biophysics doi: 10.1007/s11483-009-9135-6 – volume: 245 start-page: 209 year: 1975 ident: 10.1016/j.foodhyd.2021.107102_bib20 article-title: The volume and energy content of meals as determinants of gastric emptying publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1975.sp010841 – volume: 117 start-page: 1 year: 2015 ident: 10.1016/j.foodhyd.2021.107102_bib44 article-title: Preparation and characterization of a novel pH-response dietary fiber: Chitosan-coated konjac glucomannan publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.09.038 – volume: 67 start-page: 8 year: 2013 ident: 10.1016/j.foodhyd.2021.107102_bib5 article-title: Soups increase satiety through delayed gastric emptying yet increased glycaemic response publication-title: European Journal of Clinical Nutrition doi: 10.1038/ejcn.2012.152 – volume: 43 start-page: 1010 year: 1988 ident: 10.1016/j.foodhyd.2021.107102_bib12 article-title: Physicochemical comparison of the dietary fibers glucomannan, galactomannan, carboxymethylcellulose, pectin, and wheat bran publication-title: Current Therapeutic Research – volume: 23 start-page: 210 year: 2014 ident: 10.1016/j.foodhyd.2021.107102_bib43 article-title: The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes publication-title: Asia Pacific Journal of Clinical Nutrition – volume: 1 start-page: 987 year: 1979 ident: 10.1016/j.foodhyd.2021.107102_bib7 article-title: Treatment of diabetes with glucomannan (konjac mannan) (letter) publication-title: Lancet doi: 10.1016/S0140-6736(79)91777-X – volume: 29 start-page: 930 year: 1988 ident: 10.1016/j.foodhyd.2021.107102_bib18 article-title: Glucomannan prevents postprandial hypoglycaemia in patients with previous gastric surgery publication-title: Gut doi: 10.1136/gut.29.7.930 – volume: 58 start-page: 487 issue: 6 year: 2002 ident: 10.1016/j.foodhyd.2021.107102_bib30 article-title: Glucomannan minimizes the postprandial insulin surge: A potential adjuvant for hepatothermic therapy publication-title: Medical Hypotheses doi: 10.1054/mehy.2001.1457 – volume: 83 start-page: 40 issue: 2 year: 2009 ident: 10.1016/j.foodhyd.2021.107102_bib3 article-title: Immediate and long-term effects of glucomannan on total ghrelin and leptin in type 2 diabetes mellitus publication-title: Diabetes Research and Clinical Practice doi: 10.1016/j.diabres.2008.11.014 – volume: 22 start-page: 36 issue: 1 year: 2003 ident: 10.1016/j.foodhyd.2021.107102_bib4 article-title: Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subject-a randomized double-blind trial publication-title: Journal of the American College of Nutrition doi: 10.1080/07315724.2003.10719273 – year: 2010 ident: 10.1016/j.foodhyd.2021.107102_bib42 article-title: Does glucomannan fiber beneficially effect glycemic response in women at risk for type 2 diabetes? publication-title: Journal of the American Dietetic Association doi: 10.1016/j.jada.2010.06.206 |
SSID | ssj0017011 |
Score | 2.508622 |
Snippet | Viscosity development in the gastrointestinal tract may affect gastric emptying, nutrient absorption, postprandial glycemic response and satiety. Konjac... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107102 |
SubjectTerms | appetite blood glucose cross-over studies dietary fiber digestion digestive tract glucose glycemic effect Glycemic response humans Hydration rate hydrocolloids intestines Konjac glucomannan konjac mannan nutrient uptake nutritional intervention porridge rice Satiation satiety sensation viscosity Viscosity retention ability |
Title | The hydration rate of konjac glucomannan after consumption affects its in vivo glycemic response and appetite sensation and in vitro digestion characteristics |
URI | https://dx.doi.org/10.1016/j.foodhyd.2021.107102 https://www.proquest.com/docview/2636811673 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhuaSH0jYNTR9BhVy964dePoalYZM2IbQN7E1IY4nu0srLZhPIpT-lv7Ua2c4LSqAHYxg8ltGM5yHNNyLkQCjvhC2aTJrcZgyiLOpS8AxyCQKsY7VBgPPpmZhesJMZn22QyYCFwbLK3vZ3Nj1Z654y7mdzvJzPx99i9hCjnZhsFahZaoYIdiZRy0e_b8s8sN140a2zqAyfvkPxjBcj37bNjxtsGFoWkYbe9l_-6ZGlTu7n6AV53seN9LD7tJdkw4VX5Nm9boI75E8UOY3jdDKl2AOCtp7GCHBhgKba9F8mBBNoOhicQkJfJpMRKamsg87xCvR6ft1GjhvA0nm66upoHTWhoWa5RGCao5cxAe5GQnJiWq9a2qQdKyTDw17Qr8nF0afvk2nWH7-QQcXKdVYya3gMOCpgzkuraqgVKB_zE8crAZ57iJl43TgjrTSNYc6yHEQtvbO1477aJZuhDe4Noc7wvLAul4Y3DApphXSguMq9aMBX5R5hw6Rr6HuT4xEZP_VQhLbQvaw0ykp3stojo1u2Zdec4ykGNUhUP9AyHR3IU6wfBw3Q8Q_EbRUTXHt1qUtRCYXbWdXb_3_9O7JdIrAiLe68J5vr1ZX7EMOdtd1P-rxPtg4nX7-c4_348_TsLwKMB_k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmh7qOhLpaWtK_UaNg-_ckQItBTYS0Ham2VPbHVX1FktCxJ_ht-Kx0loqYSQeshllIkjf5N5ZB4m5LtQ3glbNJk0uc0YRCzqUvAMcgkCrGO1wQbn06mYnLMfMz7bIPtDLwyWVfa6v9PpSVv3lHG_m-PlfD7-GaOH6O3EYKtAyVKzZ2QTp1PxEdncOzqeTO-TCTJPx_Di_Rky_GnkGS92fds2v25wZmhZRBoa3MdM1D_KOlmgwy3yqncd6V73dq_JhgtvyMu_Bgq-JbcRdRrX6WClOAaCtp5GJ3BhgKby9N8mBBNoOhucQmrATFojUlJlB53jFej1_LqNHDeA1fN01ZXSOmpCQ81yib1pjl7GGLhbCcmJab1qaZOSVkiGh-Og35Hzw4Oz_UnWn8CQQcXKdVYya3j0OSpgzkuraqgVKB9DFMcrAZ57iMF43TgjrTSNYc6yHEQtvbO14756T0ahDe4Doc7wvLAul4Y3DApphXSguMq9aMBX5TZhw6Zr6MeT4ykZF3qoQ1voHiuNWOkOq22ye8-27OZzPMWgBkT1A0HT0YY8xfptkAAdP0LMrJjg2qtLXYpKKMxoVR____FfyfPJ2emJPjmaHn8iL0rss0j_enbIaL26cp-j97O2X3rpvgOw3AkV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hydration+rate+of+konjac+glucomannan+after+consumption+affects+its+in+vivo+glycemic+response+and+appetite+sensation+and+in+vitro+digestion+characteristics&rft.jtitle=Food+hydrocolloids&rft.au=Guo%2C+Liping&rft.au=Goff%2C+H.+Douglas&rft.au=Chen%2C+Maoshen&rft.au=Zhong%2C+Fang&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0268-005X&rft.eissn=1873-7137&rft.volume=122&rft_id=info:doi/10.1016%2Fj.foodhyd.2021.107102&rft.externalDocID=S0268005X2100518X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |