Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability
The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification ba...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 28; no. 1; pp. 37 - 50 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement. |
---|---|
AbstractList | The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement. The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement. |
Author | Liu, Shiwei Li, Deng'ao Zhang, Yuwei Geng, Yixuan Wang, Weijie Wang, Shaoping |
Author_xml | – sequence: 1 givenname: Weijie surname: Wang fullname: Wang, Weijie organization: Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences – sequence: 2 givenname: Shaoping surname: Wang fullname: Wang, Shaoping organization: Beijing Advanced Innovation Center for Big Data-based Precision Medicine – sequence: 3 givenname: Yuwei surname: Zhang fullname: Zhang, Yuwei organization: School of Automation Science and Electrical Engineering, Beihang University – sequence: 4 givenname: Yixuan surname: Geng fullname: Geng, Yixuan organization: School of Automation Science and Electrical Engineering, Beihang University – sequence: 5 givenname: Deng'ao surname: Li fullname: Li, Deng'ao organization: College of Data Science, Taiyuan University of Technology – sequence: 6 givenname: Shiwei surname: Liu fullname: Liu, Shiwei organization: Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37982220$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTmPFDEQhS20iD3gJ4AskZD04LPbnYFGXNKuIIDY8tUrDx578LFo_j0e9SwBAVFVSV89Vb13DS5iig6AlxhtMBLoLUaEc8HIhiBCN4QIMnPyBFxhNo2DIHy-6H1nhhN0Ca5L2SGEBBbsGbik0ywIIegK_LxrofoHlb3SwUFvXax-8UZVnyLUqjgL775t4ZIyNCH1cQgpHeB9aKZPMLv7Fla4NL1zpsKaoI_WP3jbVICrtA--Hp-Dp4sKxb041xvw4-OH79vPw-3XT1-2728HQxmpA9aCcoGtpVb1T6eFm0UQg_Uk-Oi05kIrjgxzmlpKRzKNTClMlVCjE2bB9Aa8WXUPOf1qrlS598W4EFR0qRVJxExQN5Gyjr7-B92llmO_TlLMMEIzYnOnXp2ppvfOykP2e5WP8tHGDvAVMDmVkt3yF8FInuKSj3HJU1zyHFffe7fu-dgN3qvfKQcrqzqGlJesovGnO_4r8Qd6Jpvl |
Cites_doi | 10.2337/dc18-1150 10.2337/dc15-2344 10.3390/bioengineering9110664 10.3934/mbe.2021420 10.2337/dc15-0168 10.1007/s13410-016-0475-8 10.1155/2015/281589 10.1016/j.jprocont.2019.03.009 10.2337/db05-1346 10.1109/JBHI.2015.2446413 10.1016/j.jprocont.2018.05.003 10.1111/dme.13793 10.1007/s002850050007 10.1109/TBME.2015.2394239 10.1016/j.automatica.2018.01.025 10.1016/j.bspc.2021.103166 10.1007/s13369-020-05263-2 10.1109/TBME.2012.2188893 10.1007/s13369-021-05945-5 10.1210/er.2018-00174 10.1109/MCS.2017.2766326 10.1109/91.481841 10.1109/tcst.2019.2939122 10.1172/jci110398 10.1088/0967-3334/25/4/010 10.1109/MSP.2014.2330626 10.1038/nrendo.2011.32 10.1016/j.jprocont.2020.06.009 10.1080/10255842.2015.1077234 10.1016/j.conengprac.2016.08.001 10.1038/srep36029 10.1109/TBME.2016.2590498 10.2337/dc09-1080 10.1016/j.conengprac.2022.105338 10.1002/oca.2178 10.1109/TRO.2021.3060335 10.2337/dci18-0002 10.1021/acs.iecr.7b01618 10.1371/journal.pcbi.1005232 10.1089/dia.2022.2504 10.1016/j.biosystems.2018.06.003 10.1109/JBHI.2019.2911701 10.1177/1932296813514502 10.1109/JBHI.2017.2677953 10.1109/TBME.2016.2535241 10.2337/dc18-1249 10.1109/TBME.2017.2746340 10.1007/s13369-013-0673-3 10.5815/ijitcs.2011.04.03 10.1109/TBME.2018.2866392 10.2337/dc10-S062 10.1016/j.bspc.2019.101627 10.1002/btm2.10119 10.1109/TBME.2014.2336772 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1080/10255842.2023.2282952 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 50 |
ExternalDocumentID | 37982220 10_1080_10255842_2023_2282952 2282952 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 05 – fundername: National Natural Science Foundation of China – fundername: Beijing Advanced Innovation Center for Big Data-based Precision Medicine – fundername: Key Medical Scientific Research Program of Shanxi Province grantid: XM23 |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION EMOBN 1TA ACTTO ADUMR AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG CGR COF CUY CVF CYRSC DAOYK ECM EIF EJD NPM OPCYK TASJS 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c342t-1b83581dd3da0807f5cf82c1b7856ebb58ba50c4eb3d3362764aa13a8a6e8cf13 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Fri Jul 11 07:45:26 EDT 2025 Wed Aug 13 08:16:58 EDT 2025 Mon Jul 21 06:07:37 EDT 2025 Tue Jul 01 03:32:17 EDT 2025 Wed Dec 25 09:04:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Artificial pancreas model predictive control multivariable identification particle filter |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-1b83581dd3da0807f5cf82c1b7856ebb58ba50c4eb3d3362764aa13a8a6e8cf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 37982220 |
PQID | 3141009049 |
PQPubID | 2045306 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1080_10255842_2023_2282952 informaworld_taylorfrancis_310_1080_10255842_2023_2282952 proquest_miscellaneous_2892010834 pubmed_primary_37982220 proquest_journals_3141009049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_52_1 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 Wang W (e_1_3_3_55_1) 2020 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_19_1 doi: 10.2337/dc18-1150 – ident: e_1_3_3_40_1 doi: 10.2337/dc15-2344 – ident: e_1_3_3_16_1 doi: 10.3390/bioengineering9110664 – ident: e_1_3_3_54_1 doi: 10.3934/mbe.2021420 – ident: e_1_3_3_24_1 doi: 10.2337/dc15-0168 – ident: e_1_3_3_41_1 doi: 10.1007/s13410-016-0475-8 – ident: e_1_3_3_27_1 doi: 10.1155/2015/281589 – ident: e_1_3_3_22_1 doi: 10.1016/j.jprocont.2019.03.009 – ident: e_1_3_3_38_1 doi: 10.2337/db05-1346 – ident: e_1_3_3_49_1 doi: 10.1109/JBHI.2015.2446413 – ident: e_1_3_3_11_1 doi: 10.1016/j.jprocont.2018.05.003 – ident: e_1_3_3_39_1 doi: 10.1111/dme.13793 – ident: e_1_3_3_17_1 doi: 10.1007/s002850050007 – ident: e_1_3_3_33_1 doi: 10.1109/TBME.2015.2394239 – ident: e_1_3_3_21_1 doi: 10.1016/j.automatica.2018.01.025 – ident: e_1_3_3_5_1 doi: 10.1016/j.bspc.2021.103166 – ident: e_1_3_3_7_1 doi: 10.1007/s13369-020-05263-2 – ident: e_1_3_3_56_1 doi: 10.1109/TBME.2012.2188893 – ident: e_1_3_3_28_1 doi: 10.1007/s13369-021-05945-5 – ident: e_1_3_3_30_1 doi: 10.1210/er.2018-00174 – ident: e_1_3_3_48_1 doi: 10.1109/MCS.2017.2766326 – ident: e_1_3_3_53_1 doi: 10.1109/91.481841 – ident: e_1_3_3_14_1 doi: 10.1109/tcst.2019.2939122 – ident: e_1_3_3_10_1 doi: 10.1172/jci110398 – ident: e_1_3_3_26_1 doi: 10.1088/0967-3334/25/4/010 – ident: e_1_3_3_31_1 doi: 10.1109/MSP.2014.2330626 – ident: e_1_3_3_25_1 doi: 10.1038/nrendo.2011.32 – ident: e_1_3_3_4_1 doi: 10.1016/j.jprocont.2020.06.009 – ident: e_1_3_3_18_1 doi: 10.1080/10255842.2015.1077234 – ident: e_1_3_3_47_1 doi: 10.1016/j.conengprac.2016.08.001 – ident: e_1_3_3_35_1 doi: 10.1038/srep36029 – ident: e_1_3_3_43_1 doi: 10.1109/TBME.2016.2590498 – ident: e_1_3_3_42_1 doi: 10.2337/dc09-1080 – start-page: 1 issue: 99 year: 2020 ident: e_1_3_3_55_1 article-title: A glucose-insulin mixture model and application to short-term hypoglycemia prediction in the night time publication-title: IEEE Trans Biomed Eng – ident: e_1_3_3_13_1 doi: 10.1016/j.conengprac.2022.105338 – ident: e_1_3_3_3_1 doi: 10.1002/oca.2178 – ident: e_1_3_3_29_1 doi: 10.1109/TRO.2021.3060335 – ident: e_1_3_3_50_1 doi: 10.2337/dci18-0002 – ident: e_1_3_3_23_1 doi: 10.1021/acs.iecr.7b01618 – ident: e_1_3_3_6_1 doi: 10.1371/journal.pcbi.1005232 – ident: e_1_3_3_37_1 doi: 10.1089/dia.2022.2504 – ident: e_1_3_3_9_1 doi: 10.1016/j.biosystems.2018.06.003 – ident: e_1_3_3_36_1 doi: 10.1109/JBHI.2019.2911701 – ident: e_1_3_3_34_1 doi: 10.1177/1932296813514502 – ident: e_1_3_3_44_1 doi: 10.1109/JBHI.2017.2677953 – ident: e_1_3_3_52_1 doi: 10.1109/TBME.2016.2535241 – ident: e_1_3_3_12_1 doi: 10.2337/dc18-1249 – ident: e_1_3_3_51_1 doi: 10.1109/TBME.2017.2746340 – ident: e_1_3_3_2_1 doi: 10.1007/s13369-013-0673-3 – ident: e_1_3_3_32_1 doi: 10.5815/ijitcs.2011.04.03 – ident: e_1_3_3_45_1 doi: 10.1109/TBME.2018.2866392 – ident: e_1_3_3_8_1 doi: 10.2337/dc10-S062 – ident: e_1_3_3_20_1 doi: 10.1016/j.bspc.2019.101627 – ident: e_1_3_3_46_1 doi: 10.1002/btm2.10119 – ident: e_1_3_3_15_1 doi: 10.1109/TBME.2014.2336772 |
SSID | ssj0008184 |
Score | 2.4065564 |
Snippet | The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 37 |
SubjectTerms | Artificial pancreas Blood Glucose - metabolism Closed loops Computer Simulation Controllers Diabetes mellitus Dynamic models Glucose Glucose metabolism Glucose transport Humans Insulin model predictive control Models, Biological Multivariable control multivariable identification Multivariate Analysis Pancreas, Artificial Parameter estimation Parameter identification particle filter Predictive control Variability |
Title | Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2023.2282952 https://www.ncbi.nlm.nih.gov/pubmed/37982220 https://www.proquest.com/docview/3141009049 https://www.proquest.com/docview/2892010834 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaWVki8IG4WCjISb1WWTZzDfqwKaIVUhMRWLbxEju2ogWpTtQnXP-JfMmM7x7JFXC_RrrOJrZlv57DnIOSp0CkXqlSBjrQIwP8ygWD2kFeakJe61AKTkw9ep4vD-NVxcjyZfB9FLbVNMVPfLs0r-ReuwhjwFbNk_4Kz_UthAD4Df-EKHIbrH_HYZs9-Am_X5j9V2kf-OJ6iftK7B2_2bSShOq3ha3Ba12e7XZj6uetDjz--aAvckEFLtBpStNyrMXp27fC36wTh20_biFqbxo9ZxF3VZ5fXbyFghpqHw_69kzFHpvpQmZ9H355Im8e1sav9rv1sqj5kyPjB6kvrMe63L1ySs4XacqOHyEgMY5NdMI2cnDZuLM7SAPxZMZbdEd_AqBPErpKMV-mutO2GsnDRlTgXTjXDRvKzCE-Wk2jQjn3Mor9zhWxH4JGADtjeWzx_f9SrfbB8bAhDt_QuXYzPn106xZohtFYm99fOjjV6ljfIde-t0D0HvZtkYla3yFXXv_TrbfJxDYB0HYDUApACAClMSkcApB6AdAAg9QCkTU0HANIRAO-Qw5cvlvuLwHfvCBSLoyYIC4619bRmWgIRsjJRJY9UWGQ8SU1RJLyQyVzFpmCagRmVpbGUIZNcpoarMmR3ydaqXpn7hMZzEYEeSbkBAzpOSmlEmCiTMLDwpFBqSmYdKfMzV6QlD33t2472OdI-97SfEjEmeN5YLJYOhjn7zbM7HXdyLwvwkTgEbwXc7Sl50t8GSY3Hb3Jl6vYij7jA0BPO4im557jar5ZlWEczmj_4j4U9JNfwD-b2B3fIVnPemkdgMTfFY4_VH9Elwgk |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS9xA9CGK1EurbdVt_RjBa5ZNJpPMHEUqW3WXHhS8DZP5KKJsRLMF_fW-N0kWFaQHTyGEGfJm3vcnwKFyhVQ22MRlTiVof_lE8RjkNT6VwQWnqDh5Mi3Gl_nplbh6UQtDaZVkQ4e2UUTk1UTc5IzuU-LwiYqwzKmOKuPDjIKBAtnwilBFSVMM-Gi64MYokGJkmca20pq-iue9bV7Jp1fdS9_XQaMsOvkCtoeiTUG5Gc6bamif3jR4_BiY6_C5U1XZUYtbG7DkZ19htR1e-fgNbmLt7j-0tan6il27Lu8oXjUj6ejY5M8xQ9CYva3xNbmt6zvWJcmze_-3Gx3GHuYVuYNYU7PrRYEYa7em3N3H73B58uvieJx0oxsSy_OsSdJKUmM157gzCEoZhA0ys2lVSlH4qhKyMmJkczTlHUcZWha5MSk30hRe2pDyTVie1TO_DQwN0AyZSCE9ak-5CMarVFgvOIp3o6wdwLC_MH3XdujQadf4tD9BTSeouxMcgHp5rbqJrpHQzjHR_D9rd3oc0B2x05I8RVUVba0BHCw-I5lS7MXMfD1_0GjXUt6B5PkAtlrcWfwtL6mJYjb68YEf24dP44vJuT7_PT37CWsZoXt0FO3AcnM_97uoOjXVXqSNZ9yWDBM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-KUvHF2qrtVVu30Nccl2w2t3kU7WFbPXyo0LdlP0WUy-HlBPvXd2azOWpBfPAphLBLdnc-d2Z-A_C1dpWsbbCZK1ydof_ls5rHIK_2uQwuuJqKk8-n1ell-eO36LMJFymtknzo0AFFRFlNzD13oc-IwyfawbKkMqqCDwuKBQqUwusVgYdTFcdouhLGqI9iYJm6ttKYvojnqWkeqadH4KVPm6BRFU3egOkX0WWg3AyXrRnaP__hO75olduwlQxVdtRR1lt45Wfv4HXXuvJhB25i5e49etpUe8WuXco6igfNSDc6dn5xzHBlzN42-JrdNs2cpRR5duevUuMwtlgaugxibcOuV-VhrJuaMncfduFy8u3X8WmWGjdklpdFm-VGEqyac9xpXMo4CBtkYXMzlqLyxghptBjZEh15x1GDjqtS65xrqSsvbcj5HqzNmpn_AAzdzwJFSCU92k6lCNrXubBecFTuurZ2AMP-vNS8w-dQeYI97XdQ0Q6qtIMDqP89VdXGi5HQdTFR_JmxBz0JqMTqNKTM0VBFT2sAX1afkUkp8qJnvlkuFHq1lHUgeTmA9x3prP6WjwlCsRh9fMGPHcLGxclEnX2f_tyHzYKIPd4SHcBae7f0n9Buas3nyBl_AYF6Crc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariable+identification+based+MPC+for+closed-loop+glucose+regulation+subject+to+individual+variability&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Wang%2C+Weijie&rft.au=Wang%2C+Shaoping&rft.au=Zhang%2C+Yuwei&rft.au=Geng%2C+Yixuan&rft.date=2025&rft.pub=Taylor+%26+Francis&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=28&rft.issue=1&rft.spage=37&rft.epage=50&rft_id=info:doi/10.1080%2F10255842.2023.2282952&rft.externalDocID=2282952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |