Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability

The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification ba...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 28; no. 1; pp. 37 - 50
Main Authors Wang, Weijie, Wang, Shaoping, Zhang, Yuwei, Geng, Yixuan, Li, Deng'ao, Liu, Shiwei
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.
AbstractList The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.
The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and time delay of glucose metabolism bring challenges to control glucose within a normal range. In this study, a multivariable identification based model predictive control (mi-MPC) is developed to overcome the above challenges. Firstly, an integrated glucose-insulin model is established to describe insulin absorption, glucose-insulin interaction under meal disturbance, and glucose transport. On this basis, an observable glucose-insulin dynamic model is formed, in which the individual parameters and disturbances can be identified by designing a particle filtering estimator. Next, embedded with the identified glucose-insulin dynamic model, a mi-MPC method is proposed. In this controller, plasma glucose concentration (PGC), an important variable and indicator of glucose regulation, is estimated and controlled directly. Finally, the method was tested on 30 in-silico subjects produced by the UVa/Padova simulator. The results show that the mi-MPC method including the model, individual identification, and the controller can regulate glucose with the mean value of 7.45 mmol/L without meal announcement.
Author Liu, Shiwei
Li, Deng'ao
Zhang, Yuwei
Geng, Yixuan
Wang, Weijie
Wang, Shaoping
Author_xml – sequence: 1
  givenname: Weijie
  surname: Wang
  fullname: Wang, Weijie
  organization: Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences
– sequence: 2
  givenname: Shaoping
  surname: Wang
  fullname: Wang, Shaoping
  organization: Beijing Advanced Innovation Center for Big Data-based Precision Medicine
– sequence: 3
  givenname: Yuwei
  surname: Zhang
  fullname: Zhang, Yuwei
  organization: School of Automation Science and Electrical Engineering, Beihang University
– sequence: 4
  givenname: Yixuan
  surname: Geng
  fullname: Geng, Yixuan
  organization: School of Automation Science and Electrical Engineering, Beihang University
– sequence: 5
  givenname: Deng'ao
  surname: Li
  fullname: Li, Deng'ao
  organization: College of Data Science, Taiyuan University of Technology
– sequence: 6
  givenname: Shiwei
  surname: Liu
  fullname: Liu, Shiwei
  organization: Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37982220$$D View this record in MEDLINE/PubMed
BookMark eNp9kTmPFDEQhS20iD3gJ4AskZD04LPbnYFGXNKuIIDY8tUrDx578LFo_j0e9SwBAVFVSV89Vb13DS5iig6AlxhtMBLoLUaEc8HIhiBCN4QIMnPyBFxhNo2DIHy-6H1nhhN0Ca5L2SGEBBbsGbik0ywIIegK_LxrofoHlb3SwUFvXax-8UZVnyLUqjgL775t4ZIyNCH1cQgpHeB9aKZPMLv7Fla4NL1zpsKaoI_WP3jbVICrtA--Hp-Dp4sKxb041xvw4-OH79vPw-3XT1-2728HQxmpA9aCcoGtpVb1T6eFm0UQg_Uk-Oi05kIrjgxzmlpKRzKNTClMlVCjE2bB9Aa8WXUPOf1qrlS598W4EFR0qRVJxExQN5Gyjr7-B92llmO_TlLMMEIzYnOnXp2ppvfOykP2e5WP8tHGDvAVMDmVkt3yF8FInuKSj3HJU1zyHFffe7fu-dgN3qvfKQcrqzqGlJesovGnO_4r8Qd6Jpvl
Cites_doi 10.2337/dc18-1150
10.2337/dc15-2344
10.3390/bioengineering9110664
10.3934/mbe.2021420
10.2337/dc15-0168
10.1007/s13410-016-0475-8
10.1155/2015/281589
10.1016/j.jprocont.2019.03.009
10.2337/db05-1346
10.1109/JBHI.2015.2446413
10.1016/j.jprocont.2018.05.003
10.1111/dme.13793
10.1007/s002850050007
10.1109/TBME.2015.2394239
10.1016/j.automatica.2018.01.025
10.1016/j.bspc.2021.103166
10.1007/s13369-020-05263-2
10.1109/TBME.2012.2188893
10.1007/s13369-021-05945-5
10.1210/er.2018-00174
10.1109/MCS.2017.2766326
10.1109/91.481841
10.1109/tcst.2019.2939122
10.1172/jci110398
10.1088/0967-3334/25/4/010
10.1109/MSP.2014.2330626
10.1038/nrendo.2011.32
10.1016/j.jprocont.2020.06.009
10.1080/10255842.2015.1077234
10.1016/j.conengprac.2016.08.001
10.1038/srep36029
10.1109/TBME.2016.2590498
10.2337/dc09-1080
10.1016/j.conengprac.2022.105338
10.1002/oca.2178
10.1109/TRO.2021.3060335
10.2337/dci18-0002
10.1021/acs.iecr.7b01618
10.1371/journal.pcbi.1005232
10.1089/dia.2022.2504
10.1016/j.biosystems.2018.06.003
10.1109/JBHI.2019.2911701
10.1177/1932296813514502
10.1109/JBHI.2017.2677953
10.1109/TBME.2016.2535241
10.2337/dc18-1249
10.1109/TBME.2017.2746340
10.1007/s13369-013-0673-3
10.5815/ijitcs.2011.04.03
10.1109/TBME.2018.2866392
10.2337/dc10-S062
10.1016/j.bspc.2019.101627
10.1002/btm2.10119
10.1109/TBME.2014.2336772
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1080/10255842.2023.2282952
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 50
ExternalDocumentID 37982220
10_1080_10255842_2023_2282952
2282952
Genre Research Article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 05
– fundername: National Natural Science Foundation of China
– fundername: Beijing Advanced Innovation Center for Big Data-based Precision Medicine
– fundername: Key Medical Scientific Research Program of Shanxi Province
  grantid: XM23
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
EMOBN
1TA
ACTTO
ADUMR
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
CGR
COF
CUY
CVF
CYRSC
DAOYK
ECM
EIF
EJD
NPM
OPCYK
TASJS
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c342t-1b83581dd3da0807f5cf82c1b7856ebb58ba50c4eb3d3362764aa13a8a6e8cf13
ISSN 1025-5842
1476-8259
IngestDate Fri Jul 11 07:45:26 EDT 2025
Wed Aug 13 08:16:58 EDT 2025
Mon Jul 21 06:07:37 EDT 2025
Tue Jul 01 03:32:17 EDT 2025
Wed Dec 25 09:04:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial pancreas
model predictive control
multivariable identification
particle filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-1b83581dd3da0807f5cf82c1b7856ebb58ba50c4eb3d3362764aa13a8a6e8cf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37982220
PQID 3141009049
PQPubID 2045306
PageCount 14
ParticipantIDs crossref_primary_10_1080_10255842_2023_2282952
informaworld_taylorfrancis_310_1080_10255842_2023_2282952
proquest_miscellaneous_2892010834
pubmed_primary_37982220
proquest_journals_3141009049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
Wang W (e_1_3_3_55_1) 2020
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_19_1
  doi: 10.2337/dc18-1150
– ident: e_1_3_3_40_1
  doi: 10.2337/dc15-2344
– ident: e_1_3_3_16_1
  doi: 10.3390/bioengineering9110664
– ident: e_1_3_3_54_1
  doi: 10.3934/mbe.2021420
– ident: e_1_3_3_24_1
  doi: 10.2337/dc15-0168
– ident: e_1_3_3_41_1
  doi: 10.1007/s13410-016-0475-8
– ident: e_1_3_3_27_1
  doi: 10.1155/2015/281589
– ident: e_1_3_3_22_1
  doi: 10.1016/j.jprocont.2019.03.009
– ident: e_1_3_3_38_1
  doi: 10.2337/db05-1346
– ident: e_1_3_3_49_1
  doi: 10.1109/JBHI.2015.2446413
– ident: e_1_3_3_11_1
  doi: 10.1016/j.jprocont.2018.05.003
– ident: e_1_3_3_39_1
  doi: 10.1111/dme.13793
– ident: e_1_3_3_17_1
  doi: 10.1007/s002850050007
– ident: e_1_3_3_33_1
  doi: 10.1109/TBME.2015.2394239
– ident: e_1_3_3_21_1
  doi: 10.1016/j.automatica.2018.01.025
– ident: e_1_3_3_5_1
  doi: 10.1016/j.bspc.2021.103166
– ident: e_1_3_3_7_1
  doi: 10.1007/s13369-020-05263-2
– ident: e_1_3_3_56_1
  doi: 10.1109/TBME.2012.2188893
– ident: e_1_3_3_28_1
  doi: 10.1007/s13369-021-05945-5
– ident: e_1_3_3_30_1
  doi: 10.1210/er.2018-00174
– ident: e_1_3_3_48_1
  doi: 10.1109/MCS.2017.2766326
– ident: e_1_3_3_53_1
  doi: 10.1109/91.481841
– ident: e_1_3_3_14_1
  doi: 10.1109/tcst.2019.2939122
– ident: e_1_3_3_10_1
  doi: 10.1172/jci110398
– ident: e_1_3_3_26_1
  doi: 10.1088/0967-3334/25/4/010
– ident: e_1_3_3_31_1
  doi: 10.1109/MSP.2014.2330626
– ident: e_1_3_3_25_1
  doi: 10.1038/nrendo.2011.32
– ident: e_1_3_3_4_1
  doi: 10.1016/j.jprocont.2020.06.009
– ident: e_1_3_3_18_1
  doi: 10.1080/10255842.2015.1077234
– ident: e_1_3_3_47_1
  doi: 10.1016/j.conengprac.2016.08.001
– ident: e_1_3_3_35_1
  doi: 10.1038/srep36029
– ident: e_1_3_3_43_1
  doi: 10.1109/TBME.2016.2590498
– ident: e_1_3_3_42_1
  doi: 10.2337/dc09-1080
– start-page: 1
  issue: 99
  year: 2020
  ident: e_1_3_3_55_1
  article-title: A glucose-insulin mixture model and application to short-term hypoglycemia prediction in the night time
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_3_3_13_1
  doi: 10.1016/j.conengprac.2022.105338
– ident: e_1_3_3_3_1
  doi: 10.1002/oca.2178
– ident: e_1_3_3_29_1
  doi: 10.1109/TRO.2021.3060335
– ident: e_1_3_3_50_1
  doi: 10.2337/dci18-0002
– ident: e_1_3_3_23_1
  doi: 10.1021/acs.iecr.7b01618
– ident: e_1_3_3_6_1
  doi: 10.1371/journal.pcbi.1005232
– ident: e_1_3_3_37_1
  doi: 10.1089/dia.2022.2504
– ident: e_1_3_3_9_1
  doi: 10.1016/j.biosystems.2018.06.003
– ident: e_1_3_3_36_1
  doi: 10.1109/JBHI.2019.2911701
– ident: e_1_3_3_34_1
  doi: 10.1177/1932296813514502
– ident: e_1_3_3_44_1
  doi: 10.1109/JBHI.2017.2677953
– ident: e_1_3_3_52_1
  doi: 10.1109/TBME.2016.2535241
– ident: e_1_3_3_12_1
  doi: 10.2337/dc18-1249
– ident: e_1_3_3_51_1
  doi: 10.1109/TBME.2017.2746340
– ident: e_1_3_3_2_1
  doi: 10.1007/s13369-013-0673-3
– ident: e_1_3_3_32_1
  doi: 10.5815/ijitcs.2011.04.03
– ident: e_1_3_3_45_1
  doi: 10.1109/TBME.2018.2866392
– ident: e_1_3_3_8_1
  doi: 10.2337/dc10-S062
– ident: e_1_3_3_20_1
  doi: 10.1016/j.bspc.2019.101627
– ident: e_1_3_3_46_1
  doi: 10.1002/btm2.10119
– ident: e_1_3_3_15_1
  doi: 10.1109/TBME.2014.2336772
SSID ssj0008184
Score 2.4065564
Snippet The controller is important for the artificial pancreas to guide insulin infusion in diabetic therapy. However, the inter- and intra-individual variability and...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Artificial pancreas
Blood Glucose - metabolism
Closed loops
Computer Simulation
Controllers
Diabetes mellitus
Dynamic models
Glucose
Glucose metabolism
Glucose transport
Humans
Insulin
model predictive control
Models, Biological
Multivariable control
multivariable identification
Multivariate Analysis
Pancreas, Artificial
Parameter estimation
Parameter identification
particle filter
Predictive control
Variability
Title Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2023.2282952
https://www.ncbi.nlm.nih.gov/pubmed/37982220
https://www.proquest.com/docview/3141009049
https://www.proquest.com/docview/2892010834
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaWVki8IG4WCjISb1WWTZzDfqwKaIVUhMRWLbxEju2ogWpTtQnXP-JfMmM7x7JFXC_RrrOJrZlv57DnIOSp0CkXqlSBjrQIwP8ygWD2kFeakJe61AKTkw9ep4vD-NVxcjyZfB9FLbVNMVPfLs0r-ReuwhjwFbNk_4Kz_UthAD4Df-EKHIbrH_HYZs9-Am_X5j9V2kf-OJ6iftK7B2_2bSShOq3ha3Ba12e7XZj6uetDjz--aAvckEFLtBpStNyrMXp27fC36wTh20_biFqbxo9ZxF3VZ5fXbyFghpqHw_69kzFHpvpQmZ9H355Im8e1sav9rv1sqj5kyPjB6kvrMe63L1ySs4XacqOHyEgMY5NdMI2cnDZuLM7SAPxZMZbdEd_AqBPErpKMV-mutO2GsnDRlTgXTjXDRvKzCE-Wk2jQjn3Mor9zhWxH4JGADtjeWzx_f9SrfbB8bAhDt_QuXYzPn106xZohtFYm99fOjjV6ljfIde-t0D0HvZtkYla3yFXXv_TrbfJxDYB0HYDUApACAClMSkcApB6AdAAg9QCkTU0HANIRAO-Qw5cvlvuLwHfvCBSLoyYIC4619bRmWgIRsjJRJY9UWGQ8SU1RJLyQyVzFpmCagRmVpbGUIZNcpoarMmR3ydaqXpn7hMZzEYEeSbkBAzpOSmlEmCiTMLDwpFBqSmYdKfMzV6QlD33t2472OdI-97SfEjEmeN5YLJYOhjn7zbM7HXdyLwvwkTgEbwXc7Sl50t8GSY3Hb3Jl6vYij7jA0BPO4im557jar5ZlWEczmj_4j4U9JNfwD-b2B3fIVnPemkdgMTfFY4_VH9Elwgk
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS9xA9CGK1EurbdVt_RjBa5ZNJpPMHEUqW3WXHhS8DZP5KKJsRLMF_fW-N0kWFaQHTyGEGfJm3vcnwKFyhVQ22MRlTiVof_lE8RjkNT6VwQWnqDh5Mi3Gl_nplbh6UQtDaZVkQ4e2UUTk1UTc5IzuU-LwiYqwzKmOKuPDjIKBAtnwilBFSVMM-Gi64MYokGJkmca20pq-iue9bV7Jp1fdS9_XQaMsOvkCtoeiTUG5Gc6bamif3jR4_BiY6_C5U1XZUYtbG7DkZ19htR1e-fgNbmLt7j-0tan6il27Lu8oXjUj6ejY5M8xQ9CYva3xNbmt6zvWJcmze_-3Gx3GHuYVuYNYU7PrRYEYa7em3N3H73B58uvieJx0oxsSy_OsSdJKUmM157gzCEoZhA0ys2lVSlH4qhKyMmJkczTlHUcZWha5MSk30hRe2pDyTVie1TO_DQwN0AyZSCE9ak-5CMarVFgvOIp3o6wdwLC_MH3XdujQadf4tD9BTSeouxMcgHp5rbqJrpHQzjHR_D9rd3oc0B2x05I8RVUVba0BHCw-I5lS7MXMfD1_0GjXUt6B5PkAtlrcWfwtL6mJYjb68YEf24dP44vJuT7_PT37CWsZoXt0FO3AcnM_97uoOjXVXqSNZ9yWDBM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-KUvHF2qrtVVu30Nccl2w2t3kU7WFbPXyo0LdlP0WUy-HlBPvXd2azOWpBfPAphLBLdnc-d2Z-A_C1dpWsbbCZK1ydof_ls5rHIK_2uQwuuJqKk8-n1ell-eO36LMJFymtknzo0AFFRFlNzD13oc-IwyfawbKkMqqCDwuKBQqUwusVgYdTFcdouhLGqI9iYJm6ttKYvojnqWkeqadH4KVPm6BRFU3egOkX0WWg3AyXrRnaP__hO75olduwlQxVdtRR1lt45Wfv4HXXuvJhB25i5e49etpUe8WuXco6igfNSDc6dn5xzHBlzN42-JrdNs2cpRR5duevUuMwtlgaugxibcOuV-VhrJuaMncfduFy8u3X8WmWGjdklpdFm-VGEqyac9xpXMo4CBtkYXMzlqLyxghptBjZEh15x1GDjqtS65xrqSsvbcj5HqzNmpn_AAzdzwJFSCU92k6lCNrXubBecFTuurZ2AMP-vNS8w-dQeYI97XdQ0Q6qtIMDqP89VdXGi5HQdTFR_JmxBz0JqMTqNKTM0VBFT2sAX1afkUkp8qJnvlkuFHq1lHUgeTmA9x3prP6WjwlCsRh9fMGPHcLGxclEnX2f_tyHzYKIPd4SHcBae7f0n9Buas3nyBl_AYF6Crc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariable+identification+based+MPC+for+closed-loop+glucose+regulation+subject+to+individual+variability&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Wang%2C+Weijie&rft.au=Wang%2C+Shaoping&rft.au=Zhang%2C+Yuwei&rft.au=Geng%2C+Yixuan&rft.date=2025&rft.pub=Taylor+%26+Francis&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=28&rft.issue=1&rft.spage=37&rft.epage=50&rft_id=info:doi/10.1080%2F10255842.2023.2282952&rft.externalDocID=2282952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon