Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools

Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informati...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical software Vol. 100; no. 19; pp. 1 - 32
Main Authors Weber, Sebastian, Li, Yue, III, John W. Seaman, Kakizume, Tomoyuki, Schmidli, Heinz
Format Journal Article
LanguageEnglish
Published Foundation for Open Access Statistics 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informative prior from historical data. In this paper, we introduce the package RBesT (R Bayesian evidence synthesis tools) which implements the MAP approach with normal (known sampling standard deviation), binomial and Poisson endpoints. The hierarchical MAP model is evaluated by Markov chain Monte Carlo (MCMC). The MCMC samples representing the MAP prior are approximated with parametric mixture densities which are obtained with the expectation maximization algorithm. The parametric mixture density representation facilitates easy communication of the MAP prior and enables fast and accurate analytical procedures to evaluate properties of trial designs with informative MAP priors. The paper first introduces the framework of robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates the derivation and evaluation of an informative MAP prior from historical control data. In addition we describe how the meta-analytic framework relates to further applications including probability of success calculations.
AbstractList Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informative prior from historical data. In this paper, we introduce the package RBesT (R Bayesian evidence synthesis tools) which implements the MAP approach with normal (known sampling standard deviation), binomial and Poisson endpoints. The hierarchical MAP model is evaluated by Markov chain Monte Carlo (MCMC). The MCMC samples representing the MAP prior are approximated with parametric mixture densities which are obtained with the expectation maximization algorithm. The parametric mixture density representation facilitates easy communication of the MAP prior and enables fast and accurate analytical procedures to evaluate properties of trial designs with informative MAP priors. The paper first introduces the framework of robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates the derivation and evaluation of an informative MAP prior from historical control data. In addition we describe how the meta-analytic framework relates to further applications including probability of success calculations.
Author Weber, Sebastian
Kakizume, Tomoyuki
Li, Yue
III, John W. Seaman
Schmidli, Heinz
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Weber
  fullname: Weber, Sebastian
– sequence: 2
  givenname: Yue
  surname: Li
  fullname: Li, Yue
– sequence: 3
  givenname: John W. Seaman
  surname: III
  fullname: III, John W. Seaman
– sequence: 4
  givenname: Tomoyuki
  surname: Kakizume
  fullname: Kakizume, Tomoyuki
– sequence: 5
  givenname: Heinz
  surname: Schmidli
  fullname: Schmidli, Heinz
BookMark eNptUMFOAjEQbQwmAnr03h9YbHe37e4RCSoJRqJwbrrdWShZt6RtMPv3VtDEGC8zk3nzXt68ERp0tgOEbimZ0IJn4m7v_eRICZkYWl6gIWV5kQjOyeDXfIVG3u8JSUlesiHaTA-HtjfdFj9DUMm0U20fjE5WDmqjgzkCXjljnccfJuxw2AF-xfeqB29Uh-dHU0OnAb_1XYS88Xhtbeuv0WWjWg83332MNg_z9ewpWb48LmbTZaKzPA0JVZpC0wih0yoTJa2p4KSg0VoDSnNWaMWBMtYUZZULkRMmqkzFEhFSpSIbo8VZt7ZqLw_OvCvXS6uMPC2s20rl4jstSF5qwmpKq1qxPKNQFVBxzvKKkxRKTqNWdtbSznrvoJHaBBWM7YJTppWUyFPKMqYsv1KWMeXISv6wflz8f_8J-ayCSA
CitedBy_id crossref_primary_10_1080_10543406_2023_2170405
crossref_primary_10_1080_10543406_2022_2152833
crossref_primary_10_3390_stats7040068
crossref_primary_10_1002_pst_2282
crossref_primary_10_1016_j_cmpb_2022_107303
crossref_primary_10_1186_s12874_024_02306_2
crossref_primary_10_1214_24_BJPS598
crossref_primary_10_1177_09622802221090752
crossref_primary_10_1002_pst_2384
crossref_primary_10_1080_19466315_2023_2292815
crossref_primary_10_1080_19466315_2025_2455178
crossref_primary_10_1016_j_softx_2023_101437
crossref_primary_10_1002_sta4_70054
crossref_primary_10_1007_s43441_023_00515_3
crossref_primary_10_1007_s43441_024_00723_5
crossref_primary_10_1002_psp4_13035
crossref_primary_10_1002_pst_2376
crossref_primary_10_1002_pst_2453
crossref_primary_10_1002_sim_9731
crossref_primary_10_1002_sim_9971
crossref_primary_10_1002_pst_2296
crossref_primary_10_5691_jjb_43_63
crossref_primary_10_1002_jrsm_1618
crossref_primary_10_1002_pst_2315
crossref_primary_10_1515_mr_2023_0026
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18637/jss.v100.i19
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
EndPage 32
ExternalDocumentID oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961
10_18637_jss_v100_i19
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
ID FETCH-LOGICAL-c342t-1ac1eff77c2b3791d176081204feac658ca6e155f89b4774057b3a57b58c0b273
IEDL.DBID DOA
ISSN 1548-7660
IngestDate Wed Aug 27 01:32:05 EDT 2025
Tue Jul 01 03:06:30 EDT 2025
Thu Apr 24 23:07:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-1ac1eff77c2b3791d176081204feac658ca6e155f89b4774057b3a57b58c0b273
ORCID 0000-0003-0934-1066
OpenAccessLink https://doaj.org/article/69c05d11bda5431eb8eb6654b602e961
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961
crossref_citationtrail_10_18637_jss_v100_i19
crossref_primary_10_18637_jss_v100_i19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of statistical software
PublicationYear 2021
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
SSID ssj0020495
Score 2.5015178
Snippet Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
SubjectTerms bayesian inference
clinical trial
extrapolation
historical control
operating characteristics
prior
probability of success
robust analysis
Title Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools
URI https://doaj.org/article/69c05d11bda5431eb8eb6654b602e961
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_2IN4ctvdfOdoRS1CpWgLvYWdzQYqpZEkCv33ziRp6UW8eMkhuwnhTdh5L9l5w9hNrJHESlInNgXhaS0F8uZYuC4gXQcHQkNCcfQaDKfey8yfbbX6oj1hjT1wA1w_iI30U6Ug1VS2bSGyQB1zIZCOjRvhgzlvLaZaqYW8128dNaPADfsfZdn7VlL25mSps5WBtoz664zydMD2WyrI75tHOGQ7dnnE9kYbH9XymE2JJFIhEh_ZSovaQQRHxLig_yu0UvFxMc-LktP3VI5X8jc-0CtLpZF83TGUv6-WOFTOSz7J80V5wqZPj5OHoWgbIQjjek4llDbKZlkYGgfcMFapQnwxM0svw3UTOYTRgUVikEUxeMjnkIOBi0EAHJGABOWUdZb50p4xHmI-t-QCp-LIsyYA1_hIelA1ZCY1Wdhld2twEtO6hFOzikVCaoGwTBDLhLBMEMsuu91M_2zsMX6bOCCkN5PI1bo-gbFO2lgnf8X6_D9ucsF2HdqXUtcTXrJOVXzZKyQWFVzX7xAen2fqB3GWzNY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Meta-Analytic-Predictive+Priors+with+the+R+Bayesian+Evidence+Synthesis+Tools&rft.jtitle=Journal+of+statistical+software&rft.au=Sebastian+Weber&rft.au=Yue+Li&rft.au=John+W.+Seaman+III&rft.au=Tomoyuki+Kakizume&rft.date=2021-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=100&rft.spage=1&rft.epage=32&rft_id=info:doi/10.18637%2Fjss.v100.i19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon