Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools
Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informati...
Saved in:
Published in | Journal of statistical software Vol. 100; no. 19; pp. 1 - 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Foundation for Open Access Statistics
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informative prior from historical data. In this paper, we introduce the package RBesT (R Bayesian evidence synthesis tools) which implements the MAP approach with normal (known sampling standard deviation), binomial and Poisson endpoints. The hierarchical MAP model is evaluated by Markov chain Monte Carlo (MCMC). The MCMC samples representing the MAP prior are approximated with parametric mixture densities which are obtained with the expectation maximization algorithm. The parametric mixture density representation facilitates easy communication of the MAP prior and enables fast and accurate analytical procedures to evaluate properties of trial designs with informative MAP priors. The paper first introduces the framework of robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates the derivation and evaluation of an informative MAP prior from historical control data. In addition we describe how the meta-analytic framework relates to further applications including probability of success calculations. |
---|---|
AbstractList | Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power. The metaanalytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informative prior from historical data. In this paper, we introduce the package RBesT (R Bayesian evidence synthesis tools) which implements the MAP approach with normal (known sampling standard deviation), binomial and Poisson endpoints. The hierarchical MAP model is evaluated by Markov chain Monte Carlo (MCMC). The MCMC samples representing the MAP prior are approximated with parametric mixture densities which are obtained with the expectation maximization algorithm. The parametric mixture density representation facilitates easy communication of the MAP prior and enables fast and accurate analytical procedures to evaluate properties of trial designs with informative MAP priors. The paper first introduces the framework of robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates the derivation and evaluation of an informative MAP prior from historical control data. In addition we describe how the meta-analytic framework relates to further applications including probability of success calculations. |
Author | Weber, Sebastian Kakizume, Tomoyuki Li, Yue III, John W. Seaman Schmidli, Heinz |
Author_xml | – sequence: 1 givenname: Sebastian surname: Weber fullname: Weber, Sebastian – sequence: 2 givenname: Yue surname: Li fullname: Li, Yue – sequence: 3 givenname: John W. Seaman surname: III fullname: III, John W. Seaman – sequence: 4 givenname: Tomoyuki surname: Kakizume fullname: Kakizume, Tomoyuki – sequence: 5 givenname: Heinz surname: Schmidli fullname: Schmidli, Heinz |
BookMark | eNptUMFOAjEQbQwmAnr03h9YbHe37e4RCSoJRqJwbrrdWShZt6RtMPv3VtDEGC8zk3nzXt68ERp0tgOEbimZ0IJn4m7v_eRICZkYWl6gIWV5kQjOyeDXfIVG3u8JSUlesiHaTA-HtjfdFj9DUMm0U20fjE5WDmqjgzkCXjljnccfJuxw2AF-xfeqB29Uh-dHU0OnAb_1XYS88Xhtbeuv0WWjWg83332MNg_z9ewpWb48LmbTZaKzPA0JVZpC0wih0yoTJa2p4KSg0VoDSnNWaMWBMtYUZZULkRMmqkzFEhFSpSIbo8VZt7ZqLw_OvCvXS6uMPC2s20rl4jstSF5qwmpKq1qxPKNQFVBxzvKKkxRKTqNWdtbSznrvoJHaBBWM7YJTppWUyFPKMqYsv1KWMeXISv6wflz8f_8J-ayCSA |
CitedBy_id | crossref_primary_10_1080_10543406_2023_2170405 crossref_primary_10_1080_10543406_2022_2152833 crossref_primary_10_3390_stats7040068 crossref_primary_10_1002_pst_2282 crossref_primary_10_1016_j_cmpb_2022_107303 crossref_primary_10_1186_s12874_024_02306_2 crossref_primary_10_1214_24_BJPS598 crossref_primary_10_1177_09622802221090752 crossref_primary_10_1002_pst_2384 crossref_primary_10_1080_19466315_2023_2292815 crossref_primary_10_1080_19466315_2025_2455178 crossref_primary_10_1016_j_softx_2023_101437 crossref_primary_10_1002_sta4_70054 crossref_primary_10_1007_s43441_023_00515_3 crossref_primary_10_1007_s43441_024_00723_5 crossref_primary_10_1002_psp4_13035 crossref_primary_10_1002_pst_2376 crossref_primary_10_1002_pst_2453 crossref_primary_10_1002_sim_9731 crossref_primary_10_1002_sim_9971 crossref_primary_10_1002_pst_2296 crossref_primary_10_5691_jjb_43_63 crossref_primary_10_1002_jrsm_1618 crossref_primary_10_1002_pst_2315 crossref_primary_10_1515_mr_2023_0026 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.18637/jss.v100.i19 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1548-7660 |
EndPage | 32 |
ExternalDocumentID | oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961 10_18637_jss_v100_i19 |
GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB |
ID | FETCH-LOGICAL-c342t-1ac1eff77c2b3791d176081204feac658ca6e155f89b4774057b3a57b58c0b273 |
IEDL.DBID | DOA |
ISSN | 1548-7660 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Tue Jul 01 03:06:30 EDT 2025 Thu Apr 24 23:07:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-1ac1eff77c2b3791d176081204feac658ca6e155f89b4774057b3a57b58c0b273 |
ORCID | 0000-0003-0934-1066 |
OpenAccessLink | https://doaj.org/article/69c05d11bda5431eb8eb6654b602e961 |
PageCount | 32 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961 crossref_citationtrail_10_18637_jss_v100_i19 crossref_primary_10_18637_jss_v100_i19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of statistical software |
PublicationYear | 2021 |
Publisher | Foundation for Open Access Statistics |
Publisher_xml | – name: Foundation for Open Access Statistics |
SSID | ssj0020495 |
Score | 2.5015178 |
Snippet | Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of number of subjects and increase of study power.... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | bayesian inference clinical trial extrapolation historical control operating characteristics prior probability of success robust analysis |
Title | Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools |
URI | https://doaj.org/article/69c05d11bda5431eb8eb6654b602e961 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_2IN4ctvdfOdoRS1CpWgLvYWdzQYqpZEkCv33ziRp6UW8eMkhuwnhTdh5L9l5w9hNrJHESlInNgXhaS0F8uZYuC4gXQcHQkNCcfQaDKfey8yfbbX6oj1hjT1wA1w_iI30U6Ug1VS2bSGyQB1zIZCOjRvhgzlvLaZaqYW8128dNaPADfsfZdn7VlL25mSps5WBtoz664zydMD2WyrI75tHOGQ7dnnE9kYbH9XymE2JJFIhEh_ZSovaQQRHxLig_yu0UvFxMc-LktP3VI5X8jc-0CtLpZF83TGUv6-WOFTOSz7J80V5wqZPj5OHoWgbIQjjek4llDbKZlkYGgfcMFapQnwxM0svw3UTOYTRgUVikEUxeMjnkIOBi0EAHJGABOWUdZb50p4xHmI-t-QCp-LIsyYA1_hIelA1ZCY1Wdhld2twEtO6hFOzikVCaoGwTBDLhLBMEMsuu91M_2zsMX6bOCCkN5PI1bo-gbFO2lgnf8X6_D9ucsF2HdqXUtcTXrJOVXzZKyQWFVzX7xAen2fqB3GWzNY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Meta-Analytic-Predictive+Priors+with+the+R+Bayesian+Evidence+Synthesis+Tools&rft.jtitle=Journal+of+statistical+software&rft.au=Sebastian+Weber&rft.au=Yue+Li&rft.au=John+W.+Seaman+III&rft.au=Tomoyuki+Kakizume&rft.date=2021-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=100&rft.spage=1&rft.epage=32&rft_id=info:doi/10.18637%2Fjss.v100.i19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69c05d11bda5431eb8eb6654b602e961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |