Blocking CXCR4+ CD4+ T cells reprograms Treg-mediated immunosuppression via modulating the Rho-GTPase/NF-κB signaling axis
BackgroundWhile clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes i...
Saved in:
Published in | Genome medicine Vol. 17; no. 1; pp. 1 - 23 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
04.08.2025
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BackgroundWhile clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes in cancer. Here, we investigate its role in orchestrating regulatory T (Treg) cell-mediated immunosuppression within tumors.MethodsWe conducted meta-analyses of single-cell RNA-seq datasets from pan-cancer tissues to characterize CXCR4 expression patterns in CD4+ T cells. Using CXCR4 antagonists and conditional knockout mice (Cxcr4flox/flox, LckCre), we inhibited Treg phenotypes in vivo. Through single-cell transcriptomics and single-cell ATAC-seq of the cervical cancer mouse model, phosphoproteomics, and ChIP-seq analyses, we elucidated how CXCR4 blockade in CD4+ T cells suppresses activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. We further integrated RNA-seq data, clinical trial datasets (NCT02826486 and NCT04516616), and human organoid models to validate the therapeutic potential of CXCR4 inhibition in enhancing antitumor immunotherapy.ResultsSingle-cell transcriptomics of CD4+ T cells across multiple cancers revealed CXCR4 expression was associated with Treg cell developmental trajectories. Pharmacological and genetic inhibition of CXCR4 inhibited Treg phenotypes in cervical cancer and breast cancer. Mechanistically, phosphoproteomics and ChIP-seq analyses unveiled that blocking CXCR4+ CD4+ T cells reduced activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. Single-cell transcriptomic and multi-omic analyses demonstrated that blocking CXCR4+ CD4+ T cells promoted immunotherapy via reprogramming Treg-mediated immunosuppression. Furthermore, clinical trial data and human cervical cancer organoids confirmed that blocking CXCR4 enhances antitumor immunotherapy by reducing Treg phenotypes.ConclusionsOur study highlights the crucial role of CXCR4 in deriving Treg-mediated immunosuppression via regulating the Rho-GTPase/NF-κB signaling axis, informing the potential of combining CXCR4 blockades with T cell-targeted immunotherapies. |
---|---|
AbstractList | While clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes in cancer. Here, we investigate its role in orchestrating regulatory T (Treg) cell-mediated immunosuppression within tumors.BACKGROUNDWhile clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes in cancer. Here, we investigate its role in orchestrating regulatory T (Treg) cell-mediated immunosuppression within tumors.We conducted meta-analyses of single-cell RNA-seq datasets from pan-cancer tissues to characterize CXCR4 expression patterns in CD4+ T cells. Using CXCR4 antagonists and conditional knockout mice (Cxcr4flox/flox, LckCre), we inhibited Treg phenotypes in vivo. Through single-cell transcriptomics and single-cell ATAC-seq of the cervical cancer mouse model, phosphoproteomics, and ChIP-seq analyses, we elucidated how CXCR4 blockade in CD4+ T cells suppresses activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. We further integrated RNA-seq data, clinical trial datasets (NCT02826486 and NCT04516616), and human organoid models to validate the therapeutic potential of CXCR4 inhibition in enhancing antitumor immunotherapy.METHODSWe conducted meta-analyses of single-cell RNA-seq datasets from pan-cancer tissues to characterize CXCR4 expression patterns in CD4+ T cells. Using CXCR4 antagonists and conditional knockout mice (Cxcr4flox/flox, LckCre), we inhibited Treg phenotypes in vivo. Through single-cell transcriptomics and single-cell ATAC-seq of the cervical cancer mouse model, phosphoproteomics, and ChIP-seq analyses, we elucidated how CXCR4 blockade in CD4+ T cells suppresses activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. We further integrated RNA-seq data, clinical trial datasets (NCT02826486 and NCT04516616), and human organoid models to validate the therapeutic potential of CXCR4 inhibition in enhancing antitumor immunotherapy.Single-cell transcriptomics of CD4+ T cells across multiple cancers revealed CXCR4 expression was associated with Treg cell developmental trajectories. Pharmacological and genetic inhibition of CXCR4 inhibited Treg phenotypes in cervical cancer and breast cancer. Mechanistically, phosphoproteomics and ChIP-seq analyses unveiled that blocking CXCR4+ CD4+ T cells reduced activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. Single-cell transcriptomic and multi-omic analyses demonstrated that blocking CXCR4+ CD4+ T cells promoted immunotherapy via reprogramming Treg-mediated immunosuppression. Furthermore, clinical trial data and human cervical cancer organoids confirmed that blocking CXCR4 enhances antitumor immunotherapy by reducing Treg phenotypes.RESULTSSingle-cell transcriptomics of CD4+ T cells across multiple cancers revealed CXCR4 expression was associated with Treg cell developmental trajectories. Pharmacological and genetic inhibition of CXCR4 inhibited Treg phenotypes in cervical cancer and breast cancer. Mechanistically, phosphoproteomics and ChIP-seq analyses unveiled that blocking CXCR4+ CD4+ T cells reduced activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. Single-cell transcriptomic and multi-omic analyses demonstrated that blocking CXCR4+ CD4+ T cells promoted immunotherapy via reprogramming Treg-mediated immunosuppression. Furthermore, clinical trial data and human cervical cancer organoids confirmed that blocking CXCR4 enhances antitumor immunotherapy by reducing Treg phenotypes.Our study highlights the crucial role of CXCR4 in deriving Treg-mediated immunosuppression via regulating the Rho-GTPase/NF-κB signaling axis, informing the potential of combining CXCR4 blockades with T cell-targeted immunotherapies.CONCLUSIONSOur study highlights the crucial role of CXCR4 in deriving Treg-mediated immunosuppression via regulating the Rho-GTPase/NF-κB signaling axis, informing the potential of combining CXCR4 blockades with T cell-targeted immunotherapies. BackgroundWhile clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes in cancer. Here, we investigate its role in orchestrating regulatory T (Treg) cell-mediated immunosuppression within tumors.MethodsWe conducted meta-analyses of single-cell RNA-seq datasets from pan-cancer tissues to characterize CXCR4 expression patterns in CD4+ T cells. Using CXCR4 antagonists and conditional knockout mice (Cxcr4flox/flox, LckCre), we inhibited Treg phenotypes in vivo. Through single-cell transcriptomics and single-cell ATAC-seq of the cervical cancer mouse model, phosphoproteomics, and ChIP-seq analyses, we elucidated how CXCR4 blockade in CD4+ T cells suppresses activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. We further integrated RNA-seq data, clinical trial datasets (NCT02826486 and NCT04516616), and human organoid models to validate the therapeutic potential of CXCR4 inhibition in enhancing antitumor immunotherapy.ResultsSingle-cell transcriptomics of CD4+ T cells across multiple cancers revealed CXCR4 expression was associated with Treg cell developmental trajectories. Pharmacological and genetic inhibition of CXCR4 inhibited Treg phenotypes in cervical cancer and breast cancer. Mechanistically, phosphoproteomics and ChIP-seq analyses unveiled that blocking CXCR4+ CD4+ T cells reduced activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. Single-cell transcriptomic and multi-omic analyses demonstrated that blocking CXCR4+ CD4+ T cells promoted immunotherapy via reprogramming Treg-mediated immunosuppression. Furthermore, clinical trial data and human cervical cancer organoids confirmed that blocking CXCR4 enhances antitumor immunotherapy by reducing Treg phenotypes.ConclusionsOur study highlights the crucial role of CXCR4 in deriving Treg-mediated immunosuppression via regulating the Rho-GTPase/NF-κB signaling axis, informing the potential of combining CXCR4 blockades with T cell-targeted immunotherapies. Abstract Background While clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the tumor microenvironment remain poorly understood. We recently identified CXCR4 as a regulator of exhausted CD8+ T cell phenotypes in cancer. Here, we investigate its role in orchestrating regulatory T (Treg) cell-mediated immunosuppression within tumors. Methods We conducted meta-analyses of single-cell RNA-seq datasets from pan-cancer tissues to characterize CXCR4 expression patterns in CD4+ T cells. Using CXCR4 antagonists and conditional knockout mice (Cxcr4 flox/flox , Lck Cre ), we inhibited Treg phenotypes in vivo. Through single-cell transcriptomics and single-cell ATAC-seq of the cervical cancer mouse model, phosphoproteomics, and ChIP-seq analyses, we elucidated how CXCR4 blockade in CD4+ T cells suppresses activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. We further integrated RNA-seq data, clinical trial datasets (NCT02826486 and NCT04516616), and human organoid models to validate the therapeutic potential of CXCR4 inhibition in enhancing antitumor immunotherapy. Results Single-cell transcriptomics of CD4+ T cells across multiple cancers revealed CXCR4 expression was associated with Treg cell developmental trajectories. Pharmacological and genetic inhibition of CXCR4 inhibited Treg phenotypes in cervical cancer and breast cancer. Mechanistically, phosphoproteomics and ChIP-seq analyses unveiled that blocking CXCR4+ CD4+ T cells reduced activated Treg phenotypes by modulating the Rho-GTPase/NF-κB signaling axis. Single-cell transcriptomic and multi-omic analyses demonstrated that blocking CXCR4+ CD4+ T cells promoted immunotherapy via reprogramming Treg-mediated immunosuppression. Furthermore, clinical trial data and human cervical cancer organoids confirmed that blocking CXCR4 enhances antitumor immunotherapy by reducing Treg phenotypes. Conclusions Our study highlights the crucial role of CXCR4 in deriving Treg-mediated immunosuppression via regulating the Rho-GTPase/NF-κB signaling axis, informing the potential of combining CXCR4 blockades with T cell-targeted immunotherapies. |
ArticleNumber | 85 |
Author | Liu, Shiyi Li, Li Cao, Canhui Xu, Miaochun Liu, Xiaojie Peng, Ting Ding, Wencheng Ma, Ding Hu, Bai Xu, Yashi Wu, Ping Chu, Tian Wu, Peng Lin, Shitong |
Author_xml | – sequence: 1 givenname: Canhui surname: Cao fullname: Cao, Canhui – sequence: 2 givenname: Miaochun surname: Xu fullname: Xu, Miaochun – sequence: 3 givenname: Ting surname: Peng fullname: Peng, Ting – sequence: 4 givenname: Xiaojie surname: Liu fullname: Liu, Xiaojie – sequence: 5 givenname: Shitong surname: Lin fullname: Lin, Shitong – sequence: 6 givenname: Yashi surname: Xu fullname: Xu, Yashi – sequence: 7 givenname: Tian surname: Chu fullname: Chu, Tian – sequence: 8 givenname: Shiyi surname: Liu fullname: Liu, Shiyi – sequence: 9 givenname: Ping surname: Wu fullname: Wu, Ping – sequence: 10 givenname: Bai surname: Hu fullname: Hu, Bai – sequence: 11 givenname: Wencheng surname: Ding fullname: Ding, Wencheng – sequence: 12 givenname: Li surname: Li fullname: Li, Li – sequence: 13 givenname: Ding surname: Ma fullname: Ma, Ding – sequence: 14 givenname: Peng surname: Wu fullname: Wu, Peng |
BookMark | eNpdkstu1DAYhSNURC_wAqwisUFCob7bWSEa2lKpAlQNUneW4_yT8ZDEwU4qKt6Mh-CZcGYqRNn4do6-3zo6x9nB4AfIspcYvcVYidOIKZK0QIQXCHPMC_UkO8KSi6Is2e3BP-fD7DjGLUKCESafZYcMSYEYR0fZz7PO229uaPPqtrphb_LqQ1pWuYWui3mAMfg2mD7mqwBt0UPjzARN7vp-HnycxzFAjM4P-Z0zee-buTPTQps2kN9sfHG5-mIinH66KH7_OsujawfTLbr54eLz7OnadBFePOwn2deL81X1sbj-fHlVvb8uLGVEFXZNQHBcg7AMlRjVjMs1E8RKWfPS1pLWZboAQNIFU8aKEklghgICioGeZFd7buPNVo_B9Sbca2-c3j340GoTJmc70JZDCtISY4AzRJsEYlIxTBhBpTI4sd7tWeNcpzQsDFMw3SPoY2VwG936O40JJRTzMhFePxCC_z5DnHTv4hK3GcDPUSebEFIpuQx79Z916-eQEty5JMJESZVcZO-ywccYYP33NxjppSh6XxSdiqJ3RdGK_gHC-7DR |
Cites_doi | 10.1186/s13059-017-1349-1 10.1126/scitranslmed.aaq1093 10.1038/s41571-024-00870-6 10.1038/s41586-021-03326-4 10.1038/s43018-023-00570-7 10.1126/sciimmunol.aav3937 10.1093/bioinformatics/btu638 10.1038/s41586-020-2056-8 10.1016/j.immuni.2018.07.008 10.1186/s13045-024-01596-9 10.1038/s41416-024-02702-x 10.1038/s41596-019-0232-9 10.1007/978-1-0716-3886-6_5 10.1038/s41590-021-01125-7 10.1016/j.cell.2024.07.016 10.1038/s41467-019-09234-6 10.1158/1078-0432.CCR-21-0206 10.1136/jitc-2020-001749 10.1016/j.isci.2024.110830 10.1093/bioinformatics/btt656 10.1038/s41577-023-00893-7 10.1101/gr.209601.116 10.1016/j.omtn.2022.11.020 10.1038/s43018-021-00292-8 10.1016/j.celrep.2021.109699 10.1016/j.immuni.2019.03.009 10.1016/j.immuni.2021.03.007 10.1038/nbt.2859 10.1016/j.annonc.2020.01.013 10.1016/j.cell.2019.05.031 10.1038/s41596-020-0292-x 10.1126/science.aav7062 10.3389/fimmu.2018.03018 10.1002/cac2.12629 10.1158/2767-9764.CRC-22-0090 10.1038/s41401-023-01079-6 10.1038/s41375-024-02326-3 10.1186/s40425-018-0403-1 10.1038/s41588-023-01570-0 10.1038/s41590-018-0276-y 10.1038/s41590-020-0801-7 10.1126/science.1079490 10.1042/BSR20140021 10.1016/j.stem.2021.03.012 10.1089/cmb.2017.0096 10.1126/sciimmunol.adg1487 10.1016/j.immuni.2014.01.005 10.1016/j.immuni.2021.08.029 10.18632/oncotarget.20363 10.1038/s41591-020-0880-x 10.1084/jem.20230893 10.1038/s41467-022-29930-0 10.1038/s41467-023-44391-9 10.1038/s41571-019-0175-7 10.1016/j.annonc.2022.10.039 10.1158/2326-6066.CIR-20-1026 10.1007/s10637-020-01058-2 10.1126/science.abe6474 10.1186/s13045-019-0743-4 10.1038/s41580-023-00682-z 10.1186/s13045-025-01722-1 10.1038/s41592-018-0018-y 10.1016/j.xgen.2024.100659 10.1182/blood-2021-147142 10.1038/s41467-020-16164-1 10.1093/bib/bbac261 10.1038/s41467-021-21246-9 10.1016/j.heliyon.2024.e37185 10.1016/j.cell.2020.03.048 10.1038/s41467-024-46358-w 10.1126/sciimmunol.aao4310 10.1186/s13059-014-0550-8 10.1084/jem.20220047 10.1038/s41598-019-50454-z 10.1158/0008-5472.CAN-12-2325 10.1016/j.cell.2024.06.013 10.1007/s00109-022-02215-1 |
ContentType | Journal Article |
Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1186/s13073-025-01515-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-994X |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_c5e515c2aae5403d90747841242098a1 PMC12323159 10_1186_s13073_025_01515_8 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACJQM ACUHS ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIAM BBNVY BENPR BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK E3Z EBD EBLON EBS ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR IHW INH INR ITC KQ8 LK8 M1P M7P MK0 M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RBZ ROL RPM RSV SBL SOJ TUS UKHRP 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3428-cf2e651be6c40910b457f462c77b59cb73b92c7eeec40648ac6907e4a3e0e31e3 |
IEDL.DBID | DOA |
ISSN | 1756-994X |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:30:32 EDT 2025 Wed Aug 06 16:24:28 EDT 2025 Wed Aug 06 19:28:40 EDT 2025 Thu Aug 14 00:21:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3428-cf2e651be6c40910b457f462c77b59cb73b92c7eeec40648ac6907e4a3e0e31e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/c5e515c2aae5403d90747841242098a1 |
PMID | 40760450 |
PQID | 3237012878 |
PQPubID | 2040231 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5e515c2aae5403d90747841242098a1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12323159 proquest_miscellaneous_3236678871 proquest_journals_3237012878 crossref_primary_10_1186_s13073_025_01515_8 |
PublicationCentury | 2000 |
PublicationDate | 20250804 |
PublicationDateYYYYMMDD | 2025-08-04 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250804 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Genome medicine |
PublicationYear | 2025 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | S Lin (1515_CR40) 2023; 97 S Santagata (1515_CR65) 2017; 8 S Elias (1515_CR7) 2022; 219 SA Kovacs (1515_CR28) 2023; 44 T Smith (1515_CR36) 2017; 27 S Kumagai (1515_CR10) 2024; 21 D Sugiura (1515_CR78) 2022; 23 S Jin (1515_CR46) 2021; 12 B Bockorny (1515_CR1) 2020; 26 L Zhang (1515_CR24) 2020; 181 M Xu (1515_CR14) 2024; 45 1515_CR63 C Trapnell (1515_CR43) 2014; 32 M Efremova (1515_CR45) 2020; 15 M Terme (1515_CR76) 2013; 73 D Aran (1515_CR33) 2017; 18 Y Yasumizu (1515_CR12) 2024; 4 HI Aksoylar (1515_CR15) 2020; 21 M Abraham (1515_CR67) 2021; 138 Y Hou (1515_CR59) 2018; 49 D Sugiura (1515_CR61) 2019; 364 GR Oxnard (1515_CR73) 2020; 31 F Eckert (1515_CR66) 2018; 9 AM Miggelbrink (1515_CR68) 2021; 27 E Sugiyama (1515_CR8) 2020; 5 X Liu (1515_CR60) 2024; 17 C Cao (1515_CR22) 2024; 588 R Zappasodi (1515_CR16) 2021; 591 V Thakur (1515_CR30) 2024; 2812 1515_CR71 A Dhar (1515_CR56) 2019; 9 1515_CR72 Y Togashi (1515_CR5) 2019; 16 J Fan (1515_CR29) 2023; 55 CM Cattaneo (1515_CR21) 2020; 15 Y Colino-Sanguino (1515_CR85) 2024; 10 X Cheng (1515_CR82) 2025; 18 F Hong (1515_CR23) 2021; 9 AG Dykema (1515_CR49) 2023; 8 J Fan (1515_CR53) 2023; 3 N Kim (1515_CR25) 2020; 11 RHI Andtbacka (1515_CR3) 2022; 2 N Hovelmeyer (1515_CR57) 2022; 100 1515_CR86 X Liu (1515_CR84) 2024; 15 1515_CR44 S Perdomo (1515_CR74) 2024; 4 S Santagata (1515_CR64) 2024; 130 O Kauko (1515_CR58) 2018; 10 P Gao (1515_CR13) 2019; 12 Y Tada (1515_CR75) 2018; 6 P Sidaway (1515_CR81) 2017; 14 1515_CR4 K Lohmussaar (1515_CR19) 2021; 28 C Guo (1515_CR20) 2022; 41 P Sinitcyn (1515_CR48) 2018; 15 A Crawford (1515_CR51) 2014; 40 C Cao (1515_CR70) 2022; 33 X Yang (1515_CR47) 2024; 15 M Boulch (1515_CR52) 2023; 4 JL Trujillo-Ochoa (1515_CR79) 2023; 23 M Delacher (1515_CR18) 2021; 54 A Kechin (1515_CR37) 2017; 24 D Aran (1515_CR39) 2019; 20 Y Luo (1515_CR11) 2024; 187 W Piao (1515_CR62) 2022; 13 Y Zhou (1515_CR34) 2019; 10 B Liu (1515_CR50) 2022; 3 FP Canale (1515_CR77) 2023; 3 R Zilionis (1515_CR26) 2019; 50 MI Love (1515_CR32) 2014; 15 H Banerjee (1515_CR80) 2021; 36 TK Choueiri (1515_CR2) 2021; 39 1515_CR55 LP Andrews (1515_CR69) 2024; 187 S Hori (1515_CR9) 2003; 299 1515_CR17 TD Wu (1515_CR27) 2020; 579 T Stuart (1515_CR42) 2019; 177 Y Liao (1515_CR38) 2014; 30 LP Andrews (1515_CR83) 2021; 54 S Anders (1515_CR31) 2015; 31 Y Wei (1515_CR35) 2023; 31 WM Bement (1515_CR54) 2024; 25 L Zheng (1515_CR41) 2021; 374 M Huang (1515_CR6) 2024; 27 |
References_xml | – volume: 18 start-page: 220 issue: 1 year: 2017 ident: 1515_CR33 publication-title: Genome Biol doi: 10.1186/s13059-017-1349-1 – volume: 10 start-page: eaaq1093 issue: 450 year: 2018 ident: 1515_CR58 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaq1093 – volume: 21 start-page: 337 issue: 5 year: 2024 ident: 1515_CR10 publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-024-00870-6 – volume: 591 start-page: 652 issue: 7851 year: 2021 ident: 1515_CR16 publication-title: Nature doi: 10.1038/s41586-021-03326-4 – volume: 4 start-page: 968 issue: 7 year: 2023 ident: 1515_CR52 publication-title: Nat Cancer doi: 10.1038/s43018-023-00570-7 – volume: 5 start-page: eaav3937 issue: 43 year: 2020 ident: 1515_CR8 publication-title: Sci Immunol doi: 10.1126/sciimmunol.aav3937 – volume: 31 start-page: 166 issue: 2 year: 2015 ident: 1515_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 579 start-page: 274 issue: 7798 year: 2020 ident: 1515_CR27 publication-title: Nature doi: 10.1038/s41586-020-2056-8 – volume: 49 start-page: 490 issue: 3 year: 2018 ident: 1515_CR59 publication-title: Immunity. doi: 10.1016/j.immuni.2018.07.008 – volume: 17 start-page: 72 issue: 1 year: 2024 ident: 1515_CR60 publication-title: J Hematol Oncol doi: 10.1186/s13045-024-01596-9 – volume: 130 start-page: 2016 issue: 12 year: 2024 ident: 1515_CR64 publication-title: Br J Cancer doi: 10.1038/s41416-024-02702-x – volume: 15 start-page: 15 issue: 1 year: 2020 ident: 1515_CR21 publication-title: Nat Protoc doi: 10.1038/s41596-019-0232-9 – volume: 2812 start-page: 101 year: 2024 ident: 1515_CR30 publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-3886-6_5 – volume: 23 start-page: 399 issue: 3 year: 2022 ident: 1515_CR78 publication-title: Nat Immunol doi: 10.1038/s41590-021-01125-7 – volume: 187 start-page: 4355 issue: 16 year: 2024 ident: 1515_CR69 publication-title: Cell doi: 10.1016/j.cell.2024.07.016 – volume: 41 issue: 6 year: 2022 ident: 1515_CR20 publication-title: Cell Rep – volume: 10 start-page: 1523 issue: 1 year: 2019 ident: 1515_CR34 publication-title: Nat Commun doi: 10.1038/s41467-019-09234-6 – volume: 27 start-page: 5742 issue: 21 year: 2021 ident: 1515_CR68 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-21-0206 – ident: 1515_CR17 doi: 10.1136/jitc-2020-001749 – volume: 27 start-page: 110830 issue: 9 year: 2024 ident: 1515_CR6 publication-title: iScience doi: 10.1016/j.isci.2024.110830 – volume: 30 start-page: 923 issue: 7 year: 2014 ident: 1515_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 23 start-page: 842 issue: 12 year: 2023 ident: 1515_CR79 publication-title: Nat Rev Immunol doi: 10.1038/s41577-023-00893-7 – volume: 27 start-page: 491 issue: 3 year: 2017 ident: 1515_CR36 publication-title: Genome Res doi: 10.1101/gr.209601.116 – volume: 3 issue: 1 year: 2023 ident: 1515_CR53 publication-title: Cell Genom – volume: 4 issue: 2 year: 2024 ident: 1515_CR12 publication-title: Cell Genom – volume: 31 start-page: 1 year: 2023 ident: 1515_CR35 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2022.11.020 – volume: 3 issue: 6 year: 2023 ident: 1515_CR77 publication-title: Cell Genom – volume: 3 start-page: 108 issue: 1 year: 2022 ident: 1515_CR50 publication-title: Nat Cancer doi: 10.1038/s43018-021-00292-8 – volume: 36 issue: 11 year: 2021 ident: 1515_CR80 publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109699 – volume: 50 start-page: 1317 issue: 5 year: 2019 ident: 1515_CR26 publication-title: Immunity doi: 10.1016/j.immuni.2019.03.009 – volume: 588 year: 2024 ident: 1515_CR22 publication-title: Cancer Lett – volume: 97 year: 2023 ident: 1515_CR40 publication-title: EBioMedicine – volume: 54 start-page: 702 issue: 4 year: 2021 ident: 1515_CR18 publication-title: Immunity doi: 10.1016/j.immuni.2021.03.007 – ident: 1515_CR86 – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 1515_CR43 publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – volume: 31 start-page: 507 issue: 4 year: 2020 ident: 1515_CR73 publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.01.013 – volume: 177 start-page: 1888 issue: 7 year: 2019 ident: 1515_CR42 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 15 start-page: 1484 issue: 4 year: 2020 ident: 1515_CR45 publication-title: Nat Protoc doi: 10.1038/s41596-020-0292-x – volume: 364 start-page: 558 issue: 6440 year: 2019 ident: 1515_CR61 publication-title: Science doi: 10.1126/science.aav7062 – volume: 9 year: 2018 ident: 1515_CR66 publication-title: Front Immunol doi: 10.3389/fimmu.2018.03018 – volume: 45 start-page: 77 issue: 2 year: 2024 ident: 1515_CR14 publication-title: Cancer Commun (Lond) doi: 10.1002/cac2.12629 – volume: 14 start-page: 458 issue: 8 year: 2017 ident: 1515_CR81 publication-title: Nat Rev Clin Oncol – volume: 2 start-page: 904 issue: 8 year: 2022 ident: 1515_CR3 publication-title: Cancer Res Commun doi: 10.1158/2767-9764.CRC-22-0090 – volume: 44 start-page: 1879 issue: 9 year: 2023 ident: 1515_CR28 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-023-01079-6 – ident: 1515_CR63 doi: 10.1038/s41375-024-02326-3 – volume: 4 issue: 3 year: 2024 ident: 1515_CR74 publication-title: Cell Genom – volume: 6 start-page: 106 issue: 1 year: 2018 ident: 1515_CR75 publication-title: J Immunother Cancer doi: 10.1186/s40425-018-0403-1 – volume: 55 start-page: 2175 issue: 12 year: 2023 ident: 1515_CR29 publication-title: Nat Genet doi: 10.1038/s41588-023-01570-0 – volume: 20 start-page: 163 issue: 2 year: 2019 ident: 1515_CR39 publication-title: Nat Immunol doi: 10.1038/s41590-018-0276-y – volume: 21 start-page: 1311 issue: 11 year: 2020 ident: 1515_CR15 publication-title: Nat Immunol doi: 10.1038/s41590-020-0801-7 – volume: 299 start-page: 1057 issue: 5609 year: 2003 ident: 1515_CR9 publication-title: Science doi: 10.1126/science.1079490 – ident: 1515_CR55 doi: 10.1042/BSR20140021 – volume: 28 start-page: 1380 issue: 8 year: 2021 ident: 1515_CR19 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.03.012 – volume: 24 start-page: 1138 issue: 11 year: 2017 ident: 1515_CR37 publication-title: J Comput Biol doi: 10.1089/cmb.2017.0096 – volume: 8 start-page: eadg1487 issue: 87 year: 2023 ident: 1515_CR49 publication-title: Sci Immunol doi: 10.1126/sciimmunol.adg1487 – volume: 40 start-page: 289 issue: 2 year: 2014 ident: 1515_CR51 publication-title: Immunity doi: 10.1016/j.immuni.2014.01.005 – volume: 54 start-page: 2209 issue: 10 year: 2021 ident: 1515_CR83 publication-title: Immunity doi: 10.1016/j.immuni.2021.08.029 – volume: 8 start-page: 77110 issue: 44 year: 2017 ident: 1515_CR65 publication-title: Oncotarget doi: 10.18632/oncotarget.20363 – volume: 26 start-page: 878 issue: 6 year: 2020 ident: 1515_CR1 publication-title: Nat Med doi: 10.1038/s41591-020-0880-x – ident: 1515_CR71 doi: 10.1084/jem.20230893 – volume: 13 start-page: 2176 issue: 1 year: 2022 ident: 1515_CR62 publication-title: Nat Commun doi: 10.1038/s41467-022-29930-0 – volume: 15 start-page: 122 issue: 1 year: 2024 ident: 1515_CR84 publication-title: Nat Commun doi: 10.1038/s41467-023-44391-9 – volume: 16 start-page: 356 issue: 6 year: 2019 ident: 1515_CR5 publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-019-0175-7 – volume: 33 start-page: S1441 year: 2022 ident: 1515_CR70 publication-title: Ann Oncol doi: 10.1016/j.annonc.2022.10.039 – volume: 9 start-page: 939 issue: 8 year: 2021 ident: 1515_CR23 publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-20-1026 – volume: 39 start-page: 1019 issue: 4 year: 2021 ident: 1515_CR2 publication-title: Invest New Drugs doi: 10.1007/s10637-020-01058-2 – volume: 374 start-page: abe6474 issue: 6574 year: 2021 ident: 1515_CR41 publication-title: Science doi: 10.1126/science.abe6474 – volume: 12 start-page: 58 issue: 1 year: 2019 ident: 1515_CR13 publication-title: J Hematol Oncol doi: 10.1186/s13045-019-0743-4 – volume: 25 start-page: 290 issue: 4 year: 2024 ident: 1515_CR54 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-023-00682-z – volume: 18 start-page: 70 issue: 1 year: 2025 ident: 1515_CR82 publication-title: J Hematol Oncol doi: 10.1186/s13045-025-01722-1 – volume: 15 start-page: 401 issue: 6 year: 2018 ident: 1515_CR48 publication-title: Nat Methods doi: 10.1038/s41592-018-0018-y – ident: 1515_CR4 doi: 10.1016/j.xgen.2024.100659 – volume: 138 start-page: 2804 year: 2021 ident: 1515_CR67 publication-title: Blood doi: 10.1182/blood-2021-147142 – volume: 11 start-page: 2285 issue: 1 year: 2020 ident: 1515_CR25 publication-title: Nat Commun doi: 10.1038/s41467-020-16164-1 – ident: 1515_CR44 doi: 10.1093/bib/bbac261 – volume: 12 start-page: 1088 issue: 1 year: 2021 ident: 1515_CR46 publication-title: Nat Commun doi: 10.1038/s41467-021-21246-9 – volume: 10 issue: 17 year: 2024 ident: 1515_CR85 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e37185 – volume: 181 start-page: 442 issue: 2 year: 2020 ident: 1515_CR24 publication-title: Cell doi: 10.1016/j.cell.2020.03.048 – volume: 15 start-page: 2089 issue: 1 year: 2024 ident: 1515_CR47 publication-title: Nat Commun doi: 10.1038/s41467-024-46358-w – ident: 1515_CR72 doi: 10.1126/sciimmunol.aao4310 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 1515_CR32 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 219 start-page: e20220047 issue: 7 year: 2022 ident: 1515_CR7 publication-title: J Exp Med doi: 10.1084/jem.20220047 – volume: 9 start-page: 13867 issue: 1 year: 2019 ident: 1515_CR56 publication-title: Sci Rep doi: 10.1038/s41598-019-50454-z – volume: 73 start-page: 539 issue: 2 year: 2013 ident: 1515_CR76 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2325 – volume: 187 start-page: 4905 issue: 18 year: 2024 ident: 1515_CR11 publication-title: Cell doi: 10.1016/j.cell.2024.06.013 – volume: 100 start-page: 985 issue: 7 year: 2022 ident: 1515_CR57 publication-title: J Mol Med (Berl) doi: 10.1007/s00109-022-02215-1 |
SSID | ssj0064247 |
Score | 2.3962293 |
Snippet | BackgroundWhile clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4... While clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which CXCR4 modulates the... Abstract Background While clinical trials have shown that CXCR4 antagonists can enhance the efficacy of cancer immunotherapy, the molecular mechanisms by which... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1 |
SubjectTerms | Animal models Antagonists Breast cancer Cancer immunotherapy CD4 antigen CD8 antigen Cells Cervical cancer Chemokines Clinical trials CXCR4 CXCR4 protein Genotype & phenotype Guanine nucleotide-binding protein Guanosine triphosphatases Hospitals Immunosuppression Immunotherapy Laboratory animals Lymphocytes Lymphocytes T Molecular modelling NF-κB protein NF-κB2 Organoids Ovarian cancer Patients Penicillin Phenotypes Regulatory T (Treg) cells Review boards Rho GTPase pathway Squamous cell carcinoma Transcriptomics Tumor microenvironment Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgERIXxK8oLMhI3FZWm9ixnROihbJCYoVWXak3y3Ymuz1sUpotAvFmPATPxIybFnLhEiWxZUeeseebyfww9sbGzOdBopJThEKoWNXClwbvEC1XqkQeiqQofj7Tpxfq07JY9ga3rner3J-J6aCu2kg28rHMpaHD1Ni366-CqkbR39W-hMZtdodSl5FLl1keFC6E1srsA2WsHncZMbSgAq4TkuPCDoRRytk_AJpDN8l_5M78AbvfA0b-bkfhh-wWNI_Y3V0JyR-P2c8pSiMyd_PZcnauTvjsPV4WnAzyHaeUlcn_quOLDVyKFCeCGJOvKCyk7bbr3g-24d9Wnl-3VarmhaMhLuTnV634uPiCcm58Nhe_f005eXt4CmDn_vuqe8Iu5h8Ws1PRF1QQUaKaIWKdgy6yADoqwglBFaZWOo_GhKKMwchQ4gMAYLtW1kfSnUF5CROQGcin7KhpG3jGuIHaqlpXVShBqaIOkFUI1Sz4XFcqCyN2sl9Zt97lzXBJ37Da7ejgkA4u0cHZEZvS4h96Us7r9KLdXLp-C7lYAHaOufeAMFNWZcr9T9Wz80lpfTZix3vSuX4jdu4v24zY60MzbiEig2-g3aY-WpNXJQ5hByQffNCwpVldpWTcBEklYsLn_5_9BbuXJ8azYqKO2dHNZgsvEc7chFeJZ_8Al3H1Ig priority: 102 providerName: ProQuest |
Title | Blocking CXCR4+ CD4+ T cells reprograms Treg-mediated immunosuppression via modulating the Rho-GTPase/NF-κB signaling axis |
URI | https://www.proquest.com/docview/3237012878 https://www.proquest.com/docview/3236678871 https://pubmed.ncbi.nlm.nih.gov/PMC12323159 https://doaj.org/article/c5e515c2aae5403d90747841242098a1 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZtSqGX0l-6bbqo0FsQu7ZlST52t9mEQpewbGBvQpLHzR5ihzgbUvpmfYg-U2dkb4hPvfQibEvIsmbk7xsxmmHsswmJS32GRk7ucyFDWQlXaLxCtlzKAnUokKH4falOz-W3Tb55kOqLfMK68MDdxE1CDgi5IXUOkFxkZREjvlPO5HRaGBcNH8S8vTHV_YORVEu9PyJj1KRNSJUFpW6dEoILM4ChGK1_QDGHDpIPEGfxgj3vqSL_0g3xJXsE9Sv2tEse-fM1-zVDHKKNbj7fzFfyiM-_YrHmtBXfcgpWGT2vWr6-hh8inhBBdsm3dCCkaXdXvQdszW-3jl82Zczjhb0hI-Sri0acrM8Q4SbLhfjze8bJz8PR0XXu7rbtG3a-OF7PT0WfSkGEDA0MEaoUVJ54UEESQ_Ay15VUadDa50XwOvMF3gAA1itpXCCrGaTLYApZAtlbdlA3NbxjXENlZKXK0hcgZV55SEokaQZcqkqZ-BE72s-sveoiZthoaRhlOzlYlIONcrBmxGY0-fctKdp1fIA6YHsdsP_SgRE73IvO9kuwtVmaaUJfje_4dF-Ni4fE4GpodrGNUuRPiV2YgcgHAxrW1NuLGIabyGiGbPD9__iED-xZGtXTiKk8ZAc31zv4iHTnxo_ZY73RY_Zkdrw8W42jnmN5skn-AjXB_5U |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwQviL9aYYCR4Gmy2sSO4zwgRLuVjm3VVHVS34LtOFsfSEqzAhPfiQ_Ah-Azcecmg7zwtpcoiS0n8t35fpfc-UfIa2UDHRoOQU5kIiZsljOdxHAGaDkTCeiQxUDxZCLHZ-LjPJpvkZ9NLQymVTZrol-os9LiN_IeD3mMi2ms3i2_MGSNwr-rDYXGRi2O3NU3CNmqt4f7IN83YTg6mA3HrGYVYJYD1mY2D52MAuOkFegsjYjiXMjQxrGJEmtibhK4cM5BuxRKWwwgndDc9R0PHIdxb5FtwSGU6ZDtwcHkdNqs_QDmRdyU5ijZqwI0IYaUsX1EDky13J9nCWhB23Zi5j-ebnSf3KshKn2_0akHZMsVD8ntDWnl1SPyYwD-Dz-w0-F8OBV7dLgPhxnFXwAVxU0yfcZXRWcrd858ZQqgWrrAQpSyWi_rzNuCfl1o-rnMPH8YjAZIlE4vSvZhdgqetTcZsd-_BhTzSzSWzFP9fVE9Jmc3MtlPSKcoC7dDaOxyJXKZZSZxQkS5cUEG4FA5HcpMBKZL9pqZTZebnTpSH-EomW7kkIIcUi-HVHXJACf_uifusu1vlKvztDba1EYOOttQawfAlmeJZxtAvu6wnygddMluI7q0Nv0q_auoXfLquhmMFsWgC1eufR8pMY8ThlAtkbdeqN1SLC789t8Igjmg0Kf_f_pLcmc8OzlOjw8nR8_I3dAroWJ9sUs6l6u1ew5g6tK8qDWYkk83bTR_AJjIMxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blocking+CXCR4%2B+CD4%2B+T+cells+reprograms+Treg-mediated+immunosuppression+via+modulating+the+Rho-GTPase%2FNF-%CE%BAB+signaling+axis&rft.jtitle=Genome+medicine&rft.au=Cao%2C+Canhui&rft.au=Xu%2C+Miaochun&rft.au=Peng%2C+Ting&rft.au=Liu%2C+Xiaojie&rft.date=2025-08-04&rft.pub=BioMed+Central&rft.eissn=1756-994X&rft.volume=17&rft_id=info:doi/10.1186%2Fs13073-025-01515-8&rft_id=info%3Apmid%2F40760450&rft.externalDocID=PMC12323159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon |