Progress and Perspective of High‐Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High‐Energy and Long Cycle Life Sodium‐Ion Batteries
Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials.
Layered transition metal oxides (LTMOs) are promising candidates for sodium‐ion batteries (SIBs). However, their widespread use is hindered by complex phase transitions, slow dynamics, and low stability. This review introduces high‐entropy materials, detailing their origins, definitions, and advantages for energy storage by stabilizing the layered structure, reducing ionic transport barriers, and enhancing redox reaction stability, and then it concludes with prospectives for advancing high‐entropy materials to develop high‐performance SIBs. |
---|---|
AbstractList | Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials. Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials. Layered transition metal oxides (LTMOs) are promising candidates for sodium‐ion batteries (SIBs). However, their widespread use is hindered by complex phase transitions, slow dynamics, and low stability. This review introduces high‐entropy materials, detailing their origins, definitions, and advantages for energy storage by stabilizing the layered structure, reducing ionic transport barriers, and enhancing redox reaction stability, and then it concludes with prospectives for advancing high‐entropy materials to develop high‐performance SIBs. |
Author | Wang, Haichao Lv, Li‐Ping Wu, Feixiang Wang, Yong Sun, Weiwei Xiao, Yao Wang, Lei Yang, Chao Chen, Shuangqiang Chou, Shulei Wang, Guoxiu Wang, Leilei Dong, Hanghang Sun, Bing |
Author_xml | – sequence: 1 givenname: Lei surname: Wang fullname: Wang, Lei organization: Shanghai University – sequence: 2 givenname: Leilei surname: Wang fullname: Wang, Leilei organization: Shanghai University – sequence: 3 givenname: Haichao surname: Wang fullname: Wang, Haichao organization: Shanghai University – sequence: 4 givenname: Hanghang surname: Dong fullname: Dong, Hanghang organization: Nanjing University of Science and Technology – sequence: 5 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Shanghai University – sequence: 6 givenname: Li‐Ping surname: Lv fullname: Lv, Li‐Ping organization: Shanghai University – sequence: 7 givenname: Chao surname: Yang fullname: Yang, Chao organization: Shanghai University – sequence: 8 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Nankai University – sequence: 9 givenname: Feixiang surname: Wu fullname: Wu, Feixiang organization: Central South University – sequence: 10 givenname: Yong surname: Wang fullname: Wang, Yong organization: Shanghai University – sequence: 11 givenname: Shulei surname: Chou fullname: Chou, Shulei organization: Wenzhou University – sequence: 12 givenname: Bing surname: Sun fullname: Sun, Bing email: bing.sun@uts.edu.au organization: University of Technology Sydney – sequence: 13 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu organization: University of Technology Sydney – sequence: 14 givenname: Shuangqiang orcidid: 0000-0002-9111-1691 surname: Chen fullname: Chen, Shuangqiang email: chensq@wzu.edu.cn organization: Nankai University |
BookMark | eNqFkU1u2zAQRokiBRon3XZNoGu7JCWR0tJ1nB9Ahg0kBboTaHFoM5BJhaSTaNcj9CA9VU9SGg6cZVczGLz3zeIboTPrLCD0hZIJJYR9k0rvJoywnApWlB_QOeWUjzPCyrPTTn9-QqMQHgmhQmT5Ofqz8m7jIQQsrcIr8KGHNppnwE7jW7PZ_v31e26jd_2A76OXETYDnvZ9Z0BhY3EtB_BpffDSBhONs3gBUXZ4-WoU4JmMW5fmIoneyC5g7fx7LviUdnhcO7vBs6HtANdGA753yux3iblLgd9lPNgQLtFHnTLg89u8QD-u5w-z23G9vLmbTetxm-WsHHMGjBWkUJXkQGTFy6xQosoIbzkIIdIxrwCqtVS5FjqDcq15m1Et15Xiib5AX4-5vXdPewixeXR7b9PLJqOiKCnLeZWoyZFqvQvBg256b3bSDw0lzaGR5tBIc2okCdVReDEdDP-hm-nV9eLd_QckCJbE |
Cites_doi | 10.1039/C8TA07842D 10.1039/C9EE00368A 10.31635/ccschem.020.202000341 10.1016/j.cej.2021.128704 10.1016/j.nanoen.2023.109030 10.1002/bte2.20230022 10.1002/adma.202304440 10.1140/epjst/e2013-01862-7 10.1016/j.joule.2023.10.016 10.1021/acsami.2c05784 10.1002/adem.200300567 10.1016/j.cej.2023.144403 10.1002/aenm.202400127 10.1039/D0TA09578H 10.1002/smll.201904388 10.1016/j.erss.2023.103008 10.1016/j.jallcom.2019.04.053 10.1021/jacsau.0c00002 10.1002/adma.201806236 10.1016/j.ensm.2022.06.035 10.1039/D2TA06681E 10.3390/e26030238 10.1002/adfm.202315437 10.1002/smll.202310184 10.1002/smtd.202300893 10.1002/ente.201901504 10.1016/j.mtener.2023.101446 10.1016/j.jechem.2023.03.014 10.1002/cnl2.19 10.1002/anie.201912171 10.1016/j.ensm.2023.01.010 10.1002/adfm.201907837 10.1016/j.esci.2023.100159 10.1021/acs.chemmater.3c02115 10.1039/C5RA06275F 10.1002/adfm.202303812 10.1063/5.0206490 10.1002/adma.202101342 10.1002/adfm.202205661 10.1039/C7TA06046G 10.1016/B978-0-12-800251-3.00002-X 10.1039/D1EE00505G 10.1038/s41467-018-05774-5 10.1002/adfm.202001334 10.1038/ncomms9485 10.1016/j.ensm.2020.04.040 10.1021/acsami.3c16333 10.1016/j.esci.2023.100139 10.1021/jacs.2c02353 10.1002/anie.201915650 10.1016/j.jallcom.2023.172316 10.1002/bte2.20230057 10.1016/j.ensm.2023.03.007 10.1007/s40820-023-01232-0 10.1021/acsnano.3c02290 10.1002/aenm.202201989 10.1002/aenm.202401090 10.1016/j.cej.2023.145844 10.1002/smll.202306465 10.1021/acsami.3c06375 10.1016/j.matlet.2023.134113 10.1039/C9CS00846B 10.1080/00107510902823517 10.1002/cnl2.136 10.1039/C5CC06585B 10.1002/aenm.202302793 10.1002/smll.201900470 10.1002/adma.202312300 10.1002/cnl2.115 10.1002/smtd.202300152 10.1021/jacs.2c09725 10.1016/j.nanoen.2024.109562 10.1021/acsaem.1c03528 10.1002/adma.202110108 10.1002/bte2.20230046 10.1039/D2TA02451A 10.1021/acsnano.3c08712 10.1016/j.ensm.2020.11.037 10.1016/j.actamat.2016.08.081 10.1016/j.cej.2019.122978 10.1088/2752-5724/ac8ab9 10.1016/j.electacta.2020.136347 10.1002/celc.202300414 10.1002/inf2.12422 10.1021/acs.nanolett.4c00968 10.1002/anie.202405620 10.1002/aenm.202103461 10.1002/adfm.201705968 10.1021/jacs.3c00879 10.1016/j.esci.2021.10.003 10.1002/er.7864 10.1016/j.ensm.2023.02.005 10.1016/j.ensm.2022.02.038 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202417258 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202417258 ADFM202417258 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Wenzhou basic scientific research project funderid: G20240022 – fundername: Innovative Research Team of High‐level Local University in Shanghai – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY24E020002 – fundername: Australian Research Council funderid: FT220100561 – fundername: National Natural Science Foundation of China funderid: 22479115; 22179078; 52202254; 51804199 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3428-62e22505d9a6e0a96835d79306c6e7776e049ee9bad4f7f3e8bf6c31fab9d6683 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 21:26:42 EDT 2025 Tue Jul 01 05:25:34 EDT 2025 Tue Mar 11 09:30:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3428-62e22505d9a6e0a96835d79306c6e7776e049ee9bad4f7f3e8bf6c31fab9d6683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9111-1691 |
PQID | 3175812469 |
PQPubID | 2045204 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3175812469 crossref_primary_10_1002_adfm_202417258 wiley_primary_10_1002_adfm_202417258_ADFM202417258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2017 2023 2022 2023; 33 5 2 145 82 2020 2024 2024; 59 18 3 2022 2020; 10 30 2023; 35 2023; 340 2023; 5 2023; 7 2023; 38 2023; 145 2004; 6 2020 2020 2019; 49 30 15 2024; 34 2024 2024; 36 2022 2021; 46 35 2015 2019; 5 30 2020; 1 2023 2021; 7 14 2023 2023 2022; 57 3 1 2024 2023; 3 20 2024; 63 2022; 32 2024; 3 2024; 24 2017; 122 2024; 26 2019; 792 2021; 9 2019 2023; 16 3 2023; 98 2023; 13 2023; 57 2023 2018; 36 28 2023; 56 2019; 31 2023; 17 2020; 382 2023; 15 2015; 51 2022; 51 2023; 16 2023 2024; 11 3 2022; 47 2019 2020 2020; 7 8 349 2023; 968 2024; 124 2024; 14 2024; 16 2022; 144 2015 2018 2019 2019 2021 2021 2022 2023 2023 2024; 6 9 12 59 3 33 34 20 7 125 2009 2013 2022; 50 222 5 2023; 471 2021; 412 2023; 474 2022; 12 2022; 14 2020 2021; 59 1 2014 2022; 1 2022; 10 2023; 118 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Ikhe A. B. (e_1_2_8_27_1) 2023; 15 Ding F. (e_1_2_8_45_1) 2024 e_1_2_8_6_10 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_6_6 e_1_2_8_6_5 e_1_2_8_8_3 e_1_2_8_6_8 e_1_2_8_6_7 e_1_2_8_6_9 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_8_2 e_1_2_8_4_5 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_61_2 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 159 year: 2022 publication-title: Energy Storage Mater. – volume: 57 3 1 start-page: 69 96 year: 2023 2023 2022 publication-title: Energy Storage Mater. eScience Carbon Neutralization – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 968 year: 2023 publication-title: J. Alloys Compd. – volume: 9 start-page: 782 year: 2021 publication-title: J. Mater. Chem. A – volume: 1 start-page: 98 year: 2020 publication-title: JACS Au – volume: 340 year: 2023 publication-title: Mater. Lett. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 24 start-page: 9793 year: 2024 publication-title: Nano Lett. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 56 start-page: 132 year: 2023 publication-title: Energy Storage Mater. – volume: 122 start-page: 448 year: 2017 publication-title: Acta Mater. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – year: 2024 publication-title: Nat. Energy – volume: 59 18 3 start-page: 9299 2611 year: 2020 2024 2024 publication-title: Angew. Chem., Int. Ed. ACS Nano Battery Energy – year: 2014 – volume: 118 year: 2023 publication-title: Nano Energy – volume: 26 start-page: 238 year: 2024 publication-title: Entropy – volume: 471 year: 2023 publication-title: Chem. Eng. J. – volume: 16 start-page: 2378 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 1 year: 2022 publication-title: Mater. Futures – volume: 10 30 year: 2022 2020 publication-title: J. Mater. Chem. A Adv. Funct. Mater. – volume: 59 1 start-page: 9299 13 year: 2020 2021 publication-title: Angew. Chem., Int. Ed. eScience – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 124 year: 2024 publication-title: Appl. Phys. Lett. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 47 start-page: 500 year: 2022 publication-title: Energy Storage Mater. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 11 3 year: 2023 2024 publication-title: ChemElectroChem Battery Energy – volume: 7 start-page: 2732 year: 2023 publication-title: Joule – volume: 144 start-page: 8286 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 474 year: 2023 publication-title: Chem. Eng. J. – volume: 49 30 15 start-page: 2342 9 year: 2020 2020 2019 publication-title: Chem. Soc. Rev. Energy Storage Mater. Small – volume: 7 8 349 start-page: 657 year: 2019 2020 2020 publication-title: J. Mater. Chem. A Energy Technol. Electrochim. Acta – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 50 222 5 start-page: 495 249 3979 year: 2009 2013 2022 publication-title: Contemp. Phys. Eur. Phys. J. Spec. Top. ACS Appl. Energy Mater. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 57 start-page: 618 year: 2023 publication-title: Energy Storage Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 20 start-page: 584 year: 2024 2023 publication-title: Carbon Neutralization Small – volume: 98 year: 2023 publication-title: Energy Res. Soc. Sci. – volume: 792 start-page: 1054 year: 2019 publication-title: J. Alloys Compd. – volume: 46 35 start-page: 620 year: 2022 2021 publication-title: Int. J. Energy Res. Energy Storage Mater. – volume: 7 14 start-page: 2883 year: 2023 2021 publication-title: Small Methods Energy Environ. Sci. – volume: 33 5 2 145 82 start-page: 224 228 year: 2023 2017 2023 2022 2023 publication-title: Adv. Funct. Mater. J. Mater. Chem. A Battery Energy J. Am. Chem. Soc. J. Energy Chem. – volume: 16 start-page: 10 year: 2023 publication-title: Nano‐Micro Lett. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 6 9 12 59 3 33 34 20 7 125 start-page: 8485 3400 2433 264 1245 year: 2015 2018 2019 2019 2021 2021 2022 2023 2023 2024 publication-title: Nat. Commun. Nat. Commun. Energy Environ. Sci. Angew. Chem., Int. Ed. CCS Chemistry Adv. Mater. Adv. Mater. Small Small Methods Nano Energy – volume: 6 start-page: 299 year: 2004 publication-title: Adv. Eng. Mater. – volume: 3 start-page: 233 year: 2024 publication-title: Carbon Neutralization – volume: 38 year: 2023 publication-title: Mater. Today Energy – volume: 5 30 year: 2015 2019 publication-title: RSC Adv. Adv. Funct. Mater. – volume: 16 3 year: 2019 2023 publication-title: Small eScience – volume: 36 28 start-page: 54 year: 2023 2018 publication-title: Chem. Mater. Adv. Funct. Mater. – volume: 5 year: 2023 publication-title: InfoMat – ident: e_1_2_8_28_1 doi: 10.1039/C8TA07842D – ident: e_1_2_8_6_3 doi: 10.1039/C9EE00368A – ident: e_1_2_8_6_5 doi: 10.31635/ccschem.020.202000341 – ident: e_1_2_8_47_1 doi: 10.1016/j.cej.2021.128704 – ident: e_1_2_8_62_1 doi: 10.1016/j.nanoen.2023.109030 – ident: e_1_2_8_4_3 doi: 10.1002/bte2.20230022 – ident: e_1_2_8_58_1 doi: 10.1002/adma.202304440 – ident: e_1_2_8_8_2 doi: 10.1140/epjst/e2013-01862-7 – ident: e_1_2_8_34_1 doi: 10.1016/j.joule.2023.10.016 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.2c05784 – ident: e_1_2_8_5_1 doi: 10.1002/adem.200300567 – ident: e_1_2_8_60_1 doi: 10.1016/j.cej.2023.144403 – ident: e_1_2_8_64_1 doi: 10.1002/aenm.202400127 – ident: e_1_2_8_10_1 doi: 10.1039/D0TA09578H – ident: e_1_2_8_21_1 doi: 10.1002/smll.201904388 – ident: e_1_2_8_7_1 doi: 10.1016/j.erss.2023.103008 – ident: e_1_2_8_23_1 doi: 10.1016/j.jallcom.2019.04.053 – ident: e_1_2_8_35_1 doi: 10.1021/jacsau.0c00002 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201806236 – ident: e_1_2_8_42_1 doi: 10.1016/j.ensm.2022.06.035 – ident: e_1_2_8_61_1 doi: 10.1039/D2TA06681E – ident: e_1_2_8_11_1 doi: 10.3390/e26030238 – ident: e_1_2_8_63_1 doi: 10.1002/adfm.202315437 – ident: e_1_2_8_6_8 doi: 10.1002/smll.202310184 – ident: e_1_2_8_6_9 doi: 10.1002/smtd.202300893 – ident: e_1_2_8_28_2 doi: 10.1002/ente.201901504 – ident: e_1_2_8_38_1 doi: 10.1016/j.mtener.2023.101446 – ident: e_1_2_8_4_5 doi: 10.1016/j.jechem.2023.03.014 – ident: e_1_2_8_2_3 doi: 10.1002/cnl2.19 – ident: e_1_2_8_6_4 doi: 10.1002/anie.201912171 – ident: e_1_2_8_57_1 doi: 10.1016/j.ensm.2023.01.010 – ident: e_1_2_8_29_2 doi: 10.1002/adfm.201907837 – ident: e_1_2_8_21_2 doi: 10.1016/j.esci.2023.100159 – ident: e_1_2_8_26_1 doi: 10.1021/acs.chemmater.3c02115 – ident: e_1_2_8_29_1 doi: 10.1039/C5RA06275F – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202303812 – ident: e_1_2_8_44_1 doi: 10.1063/5.0206490 – ident: e_1_2_8_6_6 doi: 10.1002/adma.202101342 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202205661 – ident: e_1_2_8_4_2 doi: 10.1039/C7TA06046G – ident: e_1_2_8_9_1 doi: 10.1016/B978-0-12-800251-3.00002-X – ident: e_1_2_8_14_2 doi: 10.1039/D1EE00505G – ident: e_1_2_8_6_2 doi: 10.1038/s41467-018-05774-5 – ident: e_1_2_8_61_2 doi: 10.1002/adfm.202001334 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms9485 – ident: e_1_2_8_16_2 doi: 10.1016/j.ensm.2020.04.040 – ident: e_1_2_8_39_1 doi: 10.1021/acsami.3c16333 – ident: e_1_2_8_2_2 doi: 10.1016/j.esci.2023.100139 – ident: e_1_2_8_15_1 doi: 10.1021/jacs.2c02353 – ident: e_1_2_8_1_1 doi: 10.1002/anie.201915650 – ident: e_1_2_8_55_1 doi: 10.1016/j.jallcom.2023.172316 – ident: e_1_2_8_1_3 doi: 10.1002/bte2.20230057 – ident: e_1_2_8_59_1 doi: 10.1016/j.ensm.2023.03.007 – ident: e_1_2_8_48_1 doi: 10.1007/s40820-023-01232-0 – ident: e_1_2_8_53_1 doi: 10.1021/acsnano.3c02290 – ident: e_1_2_8_46_1 doi: 10.1002/aenm.202201989 – ident: e_1_2_8_50_1 doi: 10.1002/aenm.202401090 – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2023.145844 – ident: e_1_2_8_3_2 doi: 10.1002/smll.202306465 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.3c06375 – ident: e_1_2_8_41_1 doi: 10.1016/j.matlet.2023.134113 – ident: e_1_2_8_16_1 doi: 10.1039/C9CS00846B – ident: e_1_2_8_8_1 doi: 10.1080/00107510902823517 – ident: e_1_2_8_3_1 doi: 10.1002/cnl2.136 – ident: e_1_2_8_40_1 doi: 10.1039/C5CC06585B – ident: e_1_2_8_56_1 doi: 10.1002/aenm.202302793 – ident: e_1_2_8_16_3 doi: 10.1002/smll.201900470 – ident: e_1_2_8_52_1 doi: 10.1002/adma.202312300 – ident: e_1_2_8_17_1 doi: 10.1002/cnl2.115 – ident: e_1_2_8_14_1 doi: 10.1002/smtd.202300152 – ident: e_1_2_8_4_4 doi: 10.1021/jacs.2c09725 – ident: e_1_2_8_6_10 doi: 10.1016/j.nanoen.2024.109562 – ident: e_1_2_8_8_3 doi: 10.1021/acsaem.1c03528 – ident: e_1_2_8_6_7 doi: 10.1002/adma.202110108 – ident: e_1_2_8_18_2 doi: 10.1002/bte2.20230046 – ident: e_1_2_8_49_1 doi: 10.1039/D2TA02451A – ident: e_1_2_8_1_2 doi: 10.1021/acsnano.3c08712 – volume: 15 year: 2023 ident: e_1_2_8_27_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_33_2 doi: 10.1016/j.ensm.2020.11.037 – ident: e_1_2_8_12_1 doi: 10.1016/j.actamat.2016.08.081 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2019.122978 – ident: e_1_2_8_37_1 doi: 10.1088/2752-5724/ac8ab9 – ident: e_1_2_8_28_3 doi: 10.1016/j.electacta.2020.136347 – ident: e_1_2_8_18_1 doi: 10.1002/celc.202300414 – ident: e_1_2_8_20_1 doi: 10.1002/inf2.12422 – ident: e_1_2_8_51_1 doi: 10.1021/acs.nanolett.4c00968 – ident: e_1_2_8_36_1 doi: 10.1002/anie.202405620 – year: 2024 ident: e_1_2_8_45_1 publication-title: Nat. Energy – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202103461 – ident: e_1_2_8_26_2 doi: 10.1002/adfm.201705968 – ident: e_1_2_8_54_1 doi: 10.1021/jacs.3c00879 – ident: e_1_2_8_32_2 doi: 10.1016/j.esci.2021.10.003 – ident: e_1_2_8_32_1 doi: 10.1002/anie.201915650 – ident: e_1_2_8_33_1 doi: 10.1002/er.7864 – ident: e_1_2_8_2_1 doi: 10.1016/j.ensm.2023.02.005 – ident: e_1_2_8_43_1 doi: 10.1016/j.ensm.2022.02.038 |
SSID | ssj0017734 |
Score | 2.526649 |
SecondaryResourceType | review_article |
Snippet | Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Cathodes Diffusion layers Doping Electrode materials Energy storage Entropy high‐entropy doping Interface stability Ion diffusion layered oxides Metal oxides modification strategies Phase transitions Sodium-ion batteries Strategy structural stability Transition metal oxides |
Title | Progress and Perspective of High‐Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High‐Energy and Long Cycle Life Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417258 https://www.proquest.com/docview/3175812469 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbtswECWCrJJF-kfcpsUsCnQlR6Jk0loGjg23sBsjbQDvBFIkAyOoZNQ2UGeVI-QgOVVOkhlK_nUToF0JEqgRRXI4j9KbR8Y-C22MkUIEzsatIHF5ij6HjodQ1_A8tE4aWigOv4v-VfJt3BpvZfFX-hDrD27kGX6-JgdXena6EQ1VxlEmOUYgyVuU7UuELUJFl2v9qEjK6reyiIjgFY1Xqo0hP929fTcqbaDmNmD1Eaf3gqlVXSuiyU1zMdfN_PYvGcf_eZmX7KiGo3BWjZ9XbM8Wr9nhlkjhG_YwIgoXToigCgOjTXImlA6IJvJ4d98lvvt0CbXW7RJqcAuTAgZqSfuBgo-KniAGQ4uQHy7-TIwFSkEs8ThU88oZAGH0xi5lJvoHD8riGjpLrCUMJs7Cj9JMFr-wzFc0WKmE4qL_LbvqdX92-kG9x0OQx7jyCQS3nFCYSZWwoUoFIkKDc0YocmGllHgxSa1NtTKJky62be1EHkdO6dQILP2O7RdlYY8ZhLnSuZSpjgxPNBrUXuy-HZsodrIdNtiXVR9n00rKI6tEm3lG7Z-t27_BTlZDIKtdepYR0CI0JNIG474vn7GSnZ33huuz9_9y0wd2wGm_Yc95O2H7898L-xFB0Fx_8gP9CQU4A88 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V8sLeADiFPaxMnamwOHqtvVLk1KBa20txDHNooQScXuqg0nHoEH4cKr8Ag8CTP52W25ICH1wClK5Ewse8bzjTPzGeC5UFprKYRjjd93ApuFaHNoeAh1Nc9cY6WmQDE-FOOT4PW0P12DH10tTMMPsdxwI8uo12sycNqQ3lmxhqbaUik5uiDJ-4M2r_LAVGcYtc1eTYY4xS84H-0f742d9mABJ_MRbjuCG06uX4epMG4aCoQhGhXVFZkwUkp8GITGhCrVgZXWNwNlReZ7NlWhFtga5V6D63SMONH1D98uGas8KZsf2cKjlDJv2vFEunzncn8v-8EVuL0IkWsfN7oNP7vRaVJbPm4v5mo7-_IHceR_NXx3YKNF3Gy3MZG7sGaKe3DrAg_jffh-RFlquOaztNDsaFV_ykrLKBPm19dv-5TSf1qxls63Yi1-Z3nBorSiI09Z7fjrHDgWG4xq2JvzXBtGVZYlXuN03tg7w0hhJZeKL-sPR2Xxge1V2EsW5dawd6XOF5-wzQQFNkSouZk9gJMrGa6HsF6UhXkEzM1SlUkZKk_zQKFAVfP5D3zt-VYO3B687JQqOW3YSpKGl5onNN_Jcr57sNXpXNKuWrOEsCQBPhH2gNfK8xcpye5wFC_vHv_LS8_gxvg4jpJocniwCTc5Ha9cp_htwfr888I8Qcw3V09rK2Pw_qr18jfJCWGE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiE48F8RKDAHECe39trZjQ8cqqZRQ5MSAZVyM7veXWQh7IgkAnPiEXgQDrxKX6FPwqx_kpYLElIPnCxb9ni1O7PzjT3zDcAzrrTWgnPPmrDrRTaNyebI8Ajqapb6xgrtAsXxMT88iV5Nu9MN-NXWwtT8EKsPbs4yqv3aGfhM2901aajU1lWSkwcSrNtr0iqPTPmFgrb5y2GfVvg5Y4ODd_uHXtNXwEtDQtseZ4Y5z69jyY0vY04oRJOe-jzlRghBF6PYmFhJHVlhQ9NTlqdhYKWKNae7Se4VuBpxP3bNIvpvVoRVgRD1f2weuIyyYNrSRPps9-J4L7rBNbY9j5ArFze4Baft5NSZLR93lgu1k377gzfyf5q923Czwdu4VxvIHdgw-V24cY6F8R78nLgcNdrxUeYaJ-vqUywsujyYs-8_DlxC_6zEhsy3xAa9Y5bjSJau4SlWbr_KgMOxoZgGX3_NtEFXY1nQcSwXtbUjxQlrua70snrxqMg_4H5Jo8RRZg2-LXS2_ET3DElgTYOamfl9OLmU6dqCzbzIzQNAP5UqFSJWgWaRIoGqYvPvhToIrej5HXjR6lQyq7lKkpqVmiVuvZPVendgu1W5pNmz5olDkg7u8bgDrNKdv0hJ9vqD8ers4b889BSuTfqDZDQ8PnoE15nrrVzl923D5uLz0jwmwLdQTyobQ3h_2Wr5GzBsYDM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Perspective+of+High%E2%80%90Entropy+Strategy+Applied+in+Layered+Transition+Metal+Oxide+Cathode+Materials+for+High%E2%80%90Energy+and+Long+Cycle+Life+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Leilei&rft.au=Wang%2C+Haichao&rft.au=Dong%2C+Hanghang&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |