Progress and Perspective of High‐Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High‐Energy and Long Cycle Life Sodium‐Ion Batteries

Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 11
Main Authors Wang, Lei, Wang, Leilei, Wang, Haichao, Dong, Hanghang, Sun, Weiwei, Lv, Li‐Ping, Yang, Chao, Xiao, Yao, Wu, Feixiang, Wang, Yong, Chou, Shulei, Sun, Bing, Wang, Guoxiu, Chen, Shuangqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials. Layered transition metal oxides (LTMOs) are promising candidates for sodium‐ion batteries (SIBs). However, their widespread use is hindered by complex phase transitions, slow dynamics, and low stability. This review introduces high‐entropy materials, detailing their origins, definitions, and advantages for energy storage by stabilizing the layered structure, reducing ionic transport barriers, and enhancing redox reaction stability, and then it concludes with prospectives for advancing high‐entropy materials to develop high‐performance SIBs.
AbstractList Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials.
Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications owing to their distinctive periodic layered structure and 2D ion diffusion channels. However, several challenges have hindered their widespread application, including phase transition complexities, interface instability, and susceptibility to air exposure. Fortunately, an impactful solution has emerged in the form of a high‐entropy doping strategy employed in energy storage research. Through the implementation of high‐entropy doping, LTMOs can overcome the aforementioned limitations, thereby elevating LTMO materials to a highly competitive and attractive option for next‐generation cathodes of SIBs. Thus, a comprehensive overview of the origins, definition, and characteristics of high‐entropy doping is provided. Additionally, the challenges associated with LTMOs in SIBs are explored, and discussed various modification methods to address these challenges. This review places significant emphasis on conducting a thorough analysis of the research advancements about high‐entropy LTMOs utilized in SIBs. Furthermore, a meticulous assessment of the future development trajectory is undertaken, heralding valuable research insights for the design and synthesis of advanced energy storage materials. Layered transition metal oxides (LTMOs) are promising candidates for sodium‐ion batteries (SIBs). However, their widespread use is hindered by complex phase transitions, slow dynamics, and low stability. This review introduces high‐entropy materials, detailing their origins, definitions, and advantages for energy storage by stabilizing the layered structure, reducing ionic transport barriers, and enhancing redox reaction stability, and then it concludes with prospectives for advancing high‐entropy materials to develop high‐performance SIBs.
Author Wang, Haichao
Lv, Li‐Ping
Wu, Feixiang
Wang, Yong
Sun, Weiwei
Xiao, Yao
Wang, Lei
Yang, Chao
Chen, Shuangqiang
Chou, Shulei
Wang, Guoxiu
Wang, Leilei
Dong, Hanghang
Sun, Bing
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Shanghai University
– sequence: 2
  givenname: Leilei
  surname: Wang
  fullname: Wang, Leilei
  organization: Shanghai University
– sequence: 3
  givenname: Haichao
  surname: Wang
  fullname: Wang, Haichao
  organization: Shanghai University
– sequence: 4
  givenname: Hanghang
  surname: Dong
  fullname: Dong, Hanghang
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Shanghai University
– sequence: 6
  givenname: Li‐Ping
  surname: Lv
  fullname: Lv, Li‐Ping
  organization: Shanghai University
– sequence: 7
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  organization: Shanghai University
– sequence: 8
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Nankai University
– sequence: 9
  givenname: Feixiang
  surname: Wu
  fullname: Wu, Feixiang
  organization: Central South University
– sequence: 10
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Shanghai University
– sequence: 11
  givenname: Shulei
  surname: Chou
  fullname: Chou, Shulei
  organization: Wenzhou University
– sequence: 12
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  email: bing.sun@uts.edu.au
  organization: University of Technology Sydney
– sequence: 13
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  organization: University of Technology Sydney
– sequence: 14
  givenname: Shuangqiang
  orcidid: 0000-0002-9111-1691
  surname: Chen
  fullname: Chen, Shuangqiang
  email: chensq@wzu.edu.cn
  organization: Nankai University
BookMark eNqFkU1u2zAQRokiBRon3XZNoGu7JCWR0tJ1nB9Ahg0kBboTaHFoM5BJhaSTaNcj9CA9VU9SGg6cZVczGLz3zeIboTPrLCD0hZIJJYR9k0rvJoywnApWlB_QOeWUjzPCyrPTTn9-QqMQHgmhQmT5Ofqz8m7jIQQsrcIr8KGHNppnwE7jW7PZ_v31e26jd_2A76OXETYDnvZ9Z0BhY3EtB_BpffDSBhONs3gBUXZ4-WoU4JmMW5fmIoneyC5g7fx7LviUdnhcO7vBs6HtANdGA753yux3iblLgd9lPNgQLtFHnTLg89u8QD-u5w-z23G9vLmbTetxm-WsHHMGjBWkUJXkQGTFy6xQosoIbzkIIdIxrwCqtVS5FjqDcq15m1Et15Xiib5AX4-5vXdPewixeXR7b9PLJqOiKCnLeZWoyZFqvQvBg256b3bSDw0lzaGR5tBIc2okCdVReDEdDP-hm-nV9eLd_QckCJbE
Cites_doi 10.1039/C8TA07842D
10.1039/C9EE00368A
10.31635/ccschem.020.202000341
10.1016/j.cej.2021.128704
10.1016/j.nanoen.2023.109030
10.1002/bte2.20230022
10.1002/adma.202304440
10.1140/epjst/e2013-01862-7
10.1016/j.joule.2023.10.016
10.1021/acsami.2c05784
10.1002/adem.200300567
10.1016/j.cej.2023.144403
10.1002/aenm.202400127
10.1039/D0TA09578H
10.1002/smll.201904388
10.1016/j.erss.2023.103008
10.1016/j.jallcom.2019.04.053
10.1021/jacsau.0c00002
10.1002/adma.201806236
10.1016/j.ensm.2022.06.035
10.1039/D2TA06681E
10.3390/e26030238
10.1002/adfm.202315437
10.1002/smll.202310184
10.1002/smtd.202300893
10.1002/ente.201901504
10.1016/j.mtener.2023.101446
10.1016/j.jechem.2023.03.014
10.1002/cnl2.19
10.1002/anie.201912171
10.1016/j.ensm.2023.01.010
10.1002/adfm.201907837
10.1016/j.esci.2023.100159
10.1021/acs.chemmater.3c02115
10.1039/C5RA06275F
10.1002/adfm.202303812
10.1063/5.0206490
10.1002/adma.202101342
10.1002/adfm.202205661
10.1039/C7TA06046G
10.1016/B978-0-12-800251-3.00002-X
10.1039/D1EE00505G
10.1038/s41467-018-05774-5
10.1002/adfm.202001334
10.1038/ncomms9485
10.1016/j.ensm.2020.04.040
10.1021/acsami.3c16333
10.1016/j.esci.2023.100139
10.1021/jacs.2c02353
10.1002/anie.201915650
10.1016/j.jallcom.2023.172316
10.1002/bte2.20230057
10.1016/j.ensm.2023.03.007
10.1007/s40820-023-01232-0
10.1021/acsnano.3c02290
10.1002/aenm.202201989
10.1002/aenm.202401090
10.1016/j.cej.2023.145844
10.1002/smll.202306465
10.1021/acsami.3c06375
10.1016/j.matlet.2023.134113
10.1039/C9CS00846B
10.1080/00107510902823517
10.1002/cnl2.136
10.1039/C5CC06585B
10.1002/aenm.202302793
10.1002/smll.201900470
10.1002/adma.202312300
10.1002/cnl2.115
10.1002/smtd.202300152
10.1021/jacs.2c09725
10.1016/j.nanoen.2024.109562
10.1021/acsaem.1c03528
10.1002/adma.202110108
10.1002/bte2.20230046
10.1039/D2TA02451A
10.1021/acsnano.3c08712
10.1016/j.ensm.2020.11.037
10.1016/j.actamat.2016.08.081
10.1016/j.cej.2019.122978
10.1088/2752-5724/ac8ab9
10.1016/j.electacta.2020.136347
10.1002/celc.202300414
10.1002/inf2.12422
10.1021/acs.nanolett.4c00968
10.1002/anie.202405620
10.1002/aenm.202103461
10.1002/adfm.201705968
10.1021/jacs.3c00879
10.1016/j.esci.2021.10.003
10.1002/er.7864
10.1016/j.ensm.2023.02.005
10.1016/j.ensm.2022.02.038
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202417258
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202417258
ADFM202417258
Genre reviewArticle
GrantInformation_xml – fundername: Wenzhou basic scientific research project
  funderid: G20240022
– fundername: Innovative Research Team of High‐level Local University in Shanghai
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY24E020002
– fundername: Australian Research Council
  funderid: FT220100561
– fundername: National Natural Science Foundation of China
  funderid: 22479115; 22179078; 52202254; 51804199
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3428-62e22505d9a6e0a96835d79306c6e7776e049ee9bad4f7f3e8bf6c31fab9d6683
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 21:26:42 EDT 2025
Tue Jul 01 05:25:34 EDT 2025
Tue Mar 11 09:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3428-62e22505d9a6e0a96835d79306c6e7776e049ee9bad4f7f3e8bf6c31fab9d6683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9111-1691
PQID 3175812469
PQPubID 2045204
PageCount 22
ParticipantIDs proquest_journals_3175812469
crossref_primary_10_1002_adfm_202417258
wiley_primary_10_1002_adfm_202417258_ADFM202417258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2017 2023 2022 2023; 33 5 2 145 82
2020 2024 2024; 59 18 3
2022 2020; 10 30
2023; 35
2023; 340
2023; 5
2023; 7
2023; 38
2023; 145
2004; 6
2020 2020 2019; 49 30 15
2024; 34
2024
2024; 36
2022 2021; 46 35
2015 2019; 5 30
2020; 1
2023 2021; 7 14
2023 2023 2022; 57 3 1
2024 2023; 3 20
2024; 63
2022; 32
2024; 3
2024; 24
2017; 122
2024; 26
2019; 792
2021; 9
2019 2023; 16 3
2023; 98
2023; 13
2023; 57
2023 2018; 36 28
2023; 56
2019; 31
2023; 17
2020; 382
2023; 15
2015; 51
2022; 51
2023; 16
2023 2024; 11 3
2022; 47
2019 2020 2020; 7 8 349
2023; 968
2024; 124
2024; 14
2024; 16
2022; 144
2015 2018 2019 2019 2021 2021 2022 2023 2023 2024; 6 9 12 59 3 33 34 20 7 125
2009 2013 2022; 50 222 5
2023; 471
2021; 412
2023; 474
2022; 12
2022; 14
2020 2021; 59 1
2014
2022; 1
2022; 10
2023; 118
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Ikhe A. B. (e_1_2_8_27_1) 2023; 15
Ding F. (e_1_2_8_45_1) 2024
e_1_2_8_6_10
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_6_6
e_1_2_8_6_5
e_1_2_8_8_3
e_1_2_8_6_8
e_1_2_8_6_7
e_1_2_8_6_9
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_8_2
e_1_2_8_4_5
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_61_2
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 159
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 57 3 1
  start-page: 69 96
  year: 2023 2023 2022
  publication-title: Energy Storage Mater. eScience Carbon Neutralization
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 968
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 782
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 98
  year: 2020
  publication-title: JACS Au
– volume: 340
  year: 2023
  publication-title: Mater. Lett.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 9793
  year: 2024
  publication-title: Nano Lett.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 56
  start-page: 132
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 122
  start-page: 448
  year: 2017
  publication-title: Acta Mater.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– year: 2024
  publication-title: Nat. Energy
– volume: 59 18 3
  start-page: 9299 2611
  year: 2020 2024 2024
  publication-title: Angew. Chem., Int. Ed. ACS Nano Battery Energy
– year: 2014
– volume: 118
  year: 2023
  publication-title: Nano Energy
– volume: 26
  start-page: 238
  year: 2024
  publication-title: Entropy
– volume: 471
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 2378
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  year: 2022
  publication-title: Mater. Futures
– volume: 10 30
  year: 2022 2020
  publication-title: J. Mater. Chem. A Adv. Funct. Mater.
– volume: 59 1
  start-page: 9299 13
  year: 2020 2021
  publication-title: Angew. Chem., Int. Ed. eScience
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 124
  year: 2024
  publication-title: Appl. Phys. Lett.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 47
  start-page: 500
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 11 3
  year: 2023 2024
  publication-title: ChemElectroChem Battery Energy
– volume: 7
  start-page: 2732
  year: 2023
  publication-title: Joule
– volume: 144
  start-page: 8286
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 474
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 49 30 15
  start-page: 2342 9
  year: 2020 2020 2019
  publication-title: Chem. Soc. Rev. Energy Storage Mater. Small
– volume: 7 8 349
  start-page: 657
  year: 2019 2020 2020
  publication-title: J. Mater. Chem. A Energy Technol. Electrochim. Acta
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 50 222 5
  start-page: 495 249 3979
  year: 2009 2013 2022
  publication-title: Contemp. Phys. Eur. Phys. J. Spec. Top. ACS Appl. Energy Mater.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 618
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3 20
  start-page: 584
  year: 2024 2023
  publication-title: Carbon Neutralization Small
– volume: 98
  year: 2023
  publication-title: Energy Res. Soc. Sci.
– volume: 792
  start-page: 1054
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 46 35
  start-page: 620
  year: 2022 2021
  publication-title: Int. J. Energy Res. Energy Storage Mater.
– volume: 7 14
  start-page: 2883
  year: 2023 2021
  publication-title: Small Methods Energy Environ. Sci.
– volume: 33 5 2 145 82
  start-page: 224 228
  year: 2023 2017 2023 2022 2023
  publication-title: Adv. Funct. Mater. J. Mater. Chem. A Battery Energy J. Am. Chem. Soc. J. Energy Chem.
– volume: 16
  start-page: 10
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 6 9 12 59 3 33 34 20 7 125
  start-page: 8485 3400 2433 264 1245
  year: 2015 2018 2019 2019 2021 2021 2022 2023 2023 2024
  publication-title: Nat. Commun. Nat. Commun. Energy Environ. Sci. Angew. Chem., Int. Ed. CCS Chemistry Adv. Mater. Adv. Mater. Small Small Methods Nano Energy
– volume: 6
  start-page: 299
  year: 2004
  publication-title: Adv. Eng. Mater.
– volume: 3
  start-page: 233
  year: 2024
  publication-title: Carbon Neutralization
– volume: 38
  year: 2023
  publication-title: Mater. Today Energy
– volume: 5 30
  year: 2015 2019
  publication-title: RSC Adv. Adv. Funct. Mater.
– volume: 16 3
  year: 2019 2023
  publication-title: Small eScience
– volume: 36 28
  start-page: 54
  year: 2023 2018
  publication-title: Chem. Mater. Adv. Funct. Mater.
– volume: 5
  year: 2023
  publication-title: InfoMat
– ident: e_1_2_8_28_1
  doi: 10.1039/C8TA07842D
– ident: e_1_2_8_6_3
  doi: 10.1039/C9EE00368A
– ident: e_1_2_8_6_5
  doi: 10.31635/ccschem.020.202000341
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cej.2021.128704
– ident: e_1_2_8_62_1
  doi: 10.1016/j.nanoen.2023.109030
– ident: e_1_2_8_4_3
  doi: 10.1002/bte2.20230022
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.202304440
– ident: e_1_2_8_8_2
  doi: 10.1140/epjst/e2013-01862-7
– ident: e_1_2_8_34_1
  doi: 10.1016/j.joule.2023.10.016
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.2c05784
– ident: e_1_2_8_5_1
  doi: 10.1002/adem.200300567
– ident: e_1_2_8_60_1
  doi: 10.1016/j.cej.2023.144403
– ident: e_1_2_8_64_1
  doi: 10.1002/aenm.202400127
– ident: e_1_2_8_10_1
  doi: 10.1039/D0TA09578H
– ident: e_1_2_8_21_1
  doi: 10.1002/smll.201904388
– ident: e_1_2_8_7_1
  doi: 10.1016/j.erss.2023.103008
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jallcom.2019.04.053
– ident: e_1_2_8_35_1
  doi: 10.1021/jacsau.0c00002
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201806236
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ensm.2022.06.035
– ident: e_1_2_8_61_1
  doi: 10.1039/D2TA06681E
– ident: e_1_2_8_11_1
  doi: 10.3390/e26030238
– ident: e_1_2_8_63_1
  doi: 10.1002/adfm.202315437
– ident: e_1_2_8_6_8
  doi: 10.1002/smll.202310184
– ident: e_1_2_8_6_9
  doi: 10.1002/smtd.202300893
– ident: e_1_2_8_28_2
  doi: 10.1002/ente.201901504
– ident: e_1_2_8_38_1
  doi: 10.1016/j.mtener.2023.101446
– ident: e_1_2_8_4_5
  doi: 10.1016/j.jechem.2023.03.014
– ident: e_1_2_8_2_3
  doi: 10.1002/cnl2.19
– ident: e_1_2_8_6_4
  doi: 10.1002/anie.201912171
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ensm.2023.01.010
– ident: e_1_2_8_29_2
  doi: 10.1002/adfm.201907837
– ident: e_1_2_8_21_2
  doi: 10.1016/j.esci.2023.100159
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.chemmater.3c02115
– ident: e_1_2_8_29_1
  doi: 10.1039/C5RA06275F
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202303812
– ident: e_1_2_8_44_1
  doi: 10.1063/5.0206490
– ident: e_1_2_8_6_6
  doi: 10.1002/adma.202101342
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202205661
– ident: e_1_2_8_4_2
  doi: 10.1039/C7TA06046G
– ident: e_1_2_8_9_1
  doi: 10.1016/B978-0-12-800251-3.00002-X
– ident: e_1_2_8_14_2
  doi: 10.1039/D1EE00505G
– ident: e_1_2_8_6_2
  doi: 10.1038/s41467-018-05774-5
– ident: e_1_2_8_61_2
  doi: 10.1002/adfm.202001334
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms9485
– ident: e_1_2_8_16_2
  doi: 10.1016/j.ensm.2020.04.040
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.3c16333
– ident: e_1_2_8_2_2
  doi: 10.1016/j.esci.2023.100139
– ident: e_1_2_8_15_1
  doi: 10.1021/jacs.2c02353
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.201915650
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jallcom.2023.172316
– ident: e_1_2_8_1_3
  doi: 10.1002/bte2.20230057
– ident: e_1_2_8_59_1
  doi: 10.1016/j.ensm.2023.03.007
– ident: e_1_2_8_48_1
  doi: 10.1007/s40820-023-01232-0
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.3c02290
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.202201989
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.202401090
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2023.145844
– ident: e_1_2_8_3_2
  doi: 10.1002/smll.202306465
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.3c06375
– ident: e_1_2_8_41_1
  doi: 10.1016/j.matlet.2023.134113
– ident: e_1_2_8_16_1
  doi: 10.1039/C9CS00846B
– ident: e_1_2_8_8_1
  doi: 10.1080/00107510902823517
– ident: e_1_2_8_3_1
  doi: 10.1002/cnl2.136
– ident: e_1_2_8_40_1
  doi: 10.1039/C5CC06585B
– ident: e_1_2_8_56_1
  doi: 10.1002/aenm.202302793
– ident: e_1_2_8_16_3
  doi: 10.1002/smll.201900470
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.202312300
– ident: e_1_2_8_17_1
  doi: 10.1002/cnl2.115
– ident: e_1_2_8_14_1
  doi: 10.1002/smtd.202300152
– ident: e_1_2_8_4_4
  doi: 10.1021/jacs.2c09725
– ident: e_1_2_8_6_10
  doi: 10.1016/j.nanoen.2024.109562
– ident: e_1_2_8_8_3
  doi: 10.1021/acsaem.1c03528
– ident: e_1_2_8_6_7
  doi: 10.1002/adma.202110108
– ident: e_1_2_8_18_2
  doi: 10.1002/bte2.20230046
– ident: e_1_2_8_49_1
  doi: 10.1039/D2TA02451A
– ident: e_1_2_8_1_2
  doi: 10.1021/acsnano.3c08712
– volume: 15
  year: 2023
  ident: e_1_2_8_27_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_33_2
  doi: 10.1016/j.ensm.2020.11.037
– ident: e_1_2_8_12_1
  doi: 10.1016/j.actamat.2016.08.081
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2019.122978
– ident: e_1_2_8_37_1
  doi: 10.1088/2752-5724/ac8ab9
– ident: e_1_2_8_28_3
  doi: 10.1016/j.electacta.2020.136347
– ident: e_1_2_8_18_1
  doi: 10.1002/celc.202300414
– ident: e_1_2_8_20_1
  doi: 10.1002/inf2.12422
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.nanolett.4c00968
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.202405620
– year: 2024
  ident: e_1_2_8_45_1
  publication-title: Nat. Energy
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202103461
– ident: e_1_2_8_26_2
  doi: 10.1002/adfm.201705968
– ident: e_1_2_8_54_1
  doi: 10.1021/jacs.3c00879
– ident: e_1_2_8_32_2
  doi: 10.1016/j.esci.2021.10.003
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.201915650
– ident: e_1_2_8_33_1
  doi: 10.1002/er.7864
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ensm.2023.02.005
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ensm.2022.02.038
SSID ssj0017734
Score 2.526649
SecondaryResourceType review_article
Snippet Layered transition metal oxide (LTMO) cathode materials of sodium‐ion batteries (SIBs) have shown great potential in large‐scale energy storage applications...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Cathodes
Diffusion layers
Doping
Electrode materials
Energy storage
Entropy
high‐entropy doping
Interface stability
Ion diffusion
layered oxides
Metal oxides
modification strategies
Phase transitions
Sodium-ion batteries
Strategy
structural stability
Transition metal oxides
Title Progress and Perspective of High‐Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High‐Energy and Long Cycle Life Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417258
https://www.proquest.com/docview/3175812469
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbtswECWCrJJF-kfcpsUsCnQlR6Jk0loGjg23sBsjbQDvBFIkAyOoZNQ2UGeVI-QgOVVOkhlK_nUToF0JEqgRRXI4j9KbR8Y-C22MkUIEzsatIHF5ij6HjodQ1_A8tE4aWigOv4v-VfJt3BpvZfFX-hDrD27kGX6-JgdXena6EQ1VxlEmOUYgyVuU7UuELUJFl2v9qEjK6reyiIjgFY1Xqo0hP929fTcqbaDmNmD1Eaf3gqlVXSuiyU1zMdfN_PYvGcf_eZmX7KiGo3BWjZ9XbM8Wr9nhlkjhG_YwIgoXToigCgOjTXImlA6IJvJ4d98lvvt0CbXW7RJqcAuTAgZqSfuBgo-KniAGQ4uQHy7-TIwFSkEs8ThU88oZAGH0xi5lJvoHD8riGjpLrCUMJs7Cj9JMFr-wzFc0WKmE4qL_LbvqdX92-kG9x0OQx7jyCQS3nFCYSZWwoUoFIkKDc0YocmGllHgxSa1NtTKJky62be1EHkdO6dQILP2O7RdlYY8ZhLnSuZSpjgxPNBrUXuy-HZsodrIdNtiXVR9n00rKI6tEm3lG7Z-t27_BTlZDIKtdepYR0CI0JNIG474vn7GSnZ33huuz9_9y0wd2wGm_Yc95O2H7898L-xFB0Fx_8gP9CQU4A88
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V8sLeADiFPaxMnamwOHqtvVLk1KBa20txDHNooQScXuqg0nHoEH4cKr8Ag8CTP52W25ICH1wClK5Ewse8bzjTPzGeC5UFprKYRjjd93ApuFaHNoeAh1Nc9cY6WmQDE-FOOT4PW0P12DH10tTMMPsdxwI8uo12sycNqQ3lmxhqbaUik5uiDJ-4M2r_LAVGcYtc1eTYY4xS84H-0f742d9mABJ_MRbjuCG06uX4epMG4aCoQhGhXVFZkwUkp8GITGhCrVgZXWNwNlReZ7NlWhFtga5V6D63SMONH1D98uGas8KZsf2cKjlDJv2vFEunzncn8v-8EVuL0IkWsfN7oNP7vRaVJbPm4v5mo7-_IHceR_NXx3YKNF3Gy3MZG7sGaKe3DrAg_jffh-RFlquOaztNDsaFV_ykrLKBPm19dv-5TSf1qxls63Yi1-Z3nBorSiI09Z7fjrHDgWG4xq2JvzXBtGVZYlXuN03tg7w0hhJZeKL-sPR2Xxge1V2EsW5dawd6XOF5-wzQQFNkSouZk9gJMrGa6HsF6UhXkEzM1SlUkZKk_zQKFAVfP5D3zt-VYO3B687JQqOW3YSpKGl5onNN_Jcr57sNXpXNKuWrOEsCQBPhH2gNfK8xcpye5wFC_vHv_LS8_gxvg4jpJocniwCTc5Ha9cp_htwfr888I8Qcw3V09rK2Pw_qr18jfJCWGE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiE48F8RKDAHECe39trZjQ8cqqZRQ5MSAZVyM7veXWQh7IgkAnPiEXgQDrxKX6FPwqx_kpYLElIPnCxb9ni1O7PzjT3zDcAzrrTWgnPPmrDrRTaNyebI8Ajqapb6xgrtAsXxMT88iV5Nu9MN-NXWwtT8EKsPbs4yqv3aGfhM2901aajU1lWSkwcSrNtr0iqPTPmFgrb5y2GfVvg5Y4ODd_uHXtNXwEtDQtseZ4Y5z69jyY0vY04oRJOe-jzlRghBF6PYmFhJHVlhQ9NTlqdhYKWKNae7Se4VuBpxP3bNIvpvVoRVgRD1f2weuIyyYNrSRPps9-J4L7rBNbY9j5ArFze4Baft5NSZLR93lgu1k377gzfyf5q923Czwdu4VxvIHdgw-V24cY6F8R78nLgcNdrxUeYaJ-vqUywsujyYs-8_DlxC_6zEhsy3xAa9Y5bjSJau4SlWbr_KgMOxoZgGX3_NtEFXY1nQcSwXtbUjxQlrua70snrxqMg_4H5Jo8RRZg2-LXS2_ET3DElgTYOamfl9OLmU6dqCzbzIzQNAP5UqFSJWgWaRIoGqYvPvhToIrej5HXjR6lQyq7lKkpqVmiVuvZPVendgu1W5pNmz5olDkg7u8bgDrNKdv0hJ9vqD8ers4b889BSuTfqDZDQ8PnoE15nrrVzl923D5uLz0jwmwLdQTyobQ3h_2Wr5GzBsYDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Perspective+of+High%E2%80%90Entropy+Strategy+Applied+in+Layered+Transition+Metal+Oxide+Cathode+Materials+for+High%E2%80%90Energy+and+Long+Cycle+Life+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Leilei&rft.au=Wang%2C+Haichao&rft.au=Dong%2C+Hanghang&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon