Innovative Self‐Assembly of 15‐Mer Chimeric α‐Peptide–Oligourea Foldamers toward Cl−‐Selective Ion Channels

Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectr...

Full description

Saved in:
Bibliographic Details
Published inSmall science Vol. 4; no. 8
Main Authors Dutta, Chiranjit, Krishnamurthy, Pannaga, Su, Dandan, Li, Jianwei, Yoo, Sung Hyun, Collie, Gavin W., Pasco, Morgane, Fan, Jingsong, Luo, Min, Barboiu, Mihail, Guichard, Gilles, Kini, R. Manjunatha, Kumar, Prakash
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.08.2024
Wiley
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectrometry (MS) and transmission electron microscopy (TEM) analyses show that in an aqueous solution, two of these chimeras (HPU‐E and HPU‐N) independently form defined oligomeric structures. TEM also shows that they form fiber bundles. The third related chimera HPU‐F does not oligomerize (MS) but forms spherical nanostructures (TEM). HPU‐E and HPU‐N exhibit anion transport activity across lipid bilayers via antiport mechanism (HPU‐N > HPU‐E). The anion selectivity of HPU‐N is Cl−>NO3− > Br−>SCN− > I− > AcO−>F−, which can be due to anion binding within the channels rather than size exclusion. Patch‐clamp data support HPU‐N's Cl− selectivity (PCl−/PI− = 3.26). X‐ray crystal structure (1.77 Å) of HPU‐N reveals well‐packed α‐helices, and cryo‐electron microscopy data shows the formation of nanotubes (13.7 Å diameter pores) and transmembrane channels. The study shows that α‐peptide–oligourea‐based de novo design can yield unique bioactive molecules with defined structures and functions. Chimeric foldamers synthesized by linking an α‐peptide to the N‐terminus of an oligourea possess distinct hydrophobic and hydrophilic faces. Two such foldamers exhibit fiber‐like self‐assembly and demonstrate high anion transport activity in lipid bilayers. The quaternary structure from X‐ray crystallography revealed helical bundles and hydrophilic pores of ≈20 Å diameter. Cryo‐EM of liposome‐embedded chimera demonstrated self‐assembled channel‐like structures.
AbstractList Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectrometry (MS) and transmission electron microscopy (TEM) analyses show that in an aqueous solution, two of these chimeras (HPU‐E and HPU‐N) independently form defined oligomeric structures. TEM also shows that they form fiber bundles. The third related chimera HPU‐F does not oligomerize (MS) but forms spherical nanostructures (TEM). HPU‐E and HPU‐N exhibit anion transport activity across lipid bilayers via antiport mechanism (HPU‐N > HPU‐E). The anion selectivity of HPU‐N is Cl−>NO3− > Br−>SCN− > I− > AcO−>F−, which can be due to anion binding within the channels rather than size exclusion. Patch‐clamp data support HPU‐N's Cl− selectivity (PCl−/PI− = 3.26). X‐ray crystal structure (1.77 Å) of HPU‐N reveals well‐packed α‐helices, and cryo‐electron microscopy data shows the formation of nanotubes (13.7 Å diameter pores) and transmembrane channels. The study shows that α‐peptide–oligourea‐based de novo design can yield unique bioactive molecules with defined structures and functions.
Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectrometry (MS) and transmission electron microscopy (TEM) analyses show that in an aqueous solution, two of these chimeras (HPU‐E and HPU‐N) independently form defined oligomeric structures. TEM also shows that they form fiber bundles. The third related chimera HPU‐F does not oligomerize (MS) but forms spherical nanostructures (TEM). HPU‐E and HPU‐N exhibit anion transport activity across lipid bilayers via antiport mechanism (HPU‐N > HPU‐E). The anion selectivity of HPU‐N is Cl − >NO 3 − > Br − >SCN − > I − > AcO − >F − , which can be due to anion binding within the channels rather than size exclusion. Patch‐clamp data support HPU‐N's Cl − selectivity (PCl − /PI − = 3.26). X‐ray crystal structure (1.77 Å) of HPU‐N reveals well‐packed α‐helices, and cryo‐electron microscopy data shows the formation of nanotubes (13.7 Å diameter pores) and transmembrane channels. The study shows that α‐peptide–oligourea‐based de novo design can yield unique bioactive molecules with defined structures and functions.
Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea chimeric helices is described. They consist of an oligourea segment (7‐mer) attached to the C‐terminus of a short peptide (8‐mer). Mass spectrometry (MS) and transmission electron microscopy (TEM) analyses show that in an aqueous solution, two of these chimeras (HPU‐E and HPU‐N) independently form defined oligomeric structures. TEM also shows that they form fiber bundles. The third related chimera HPU‐F does not oligomerize (MS) but forms spherical nanostructures (TEM). HPU‐E and HPU‐N exhibit anion transport activity across lipid bilayers via antiport mechanism (HPU‐N > HPU‐E). The anion selectivity of HPU‐N is Cl−>NO3− > Br−>SCN− > I− > AcO−>F−, which can be due to anion binding within the channels rather than size exclusion. Patch‐clamp data support HPU‐N's Cl− selectivity (PCl−/PI− = 3.26). X‐ray crystal structure (1.77 Å) of HPU‐N reveals well‐packed α‐helices, and cryo‐electron microscopy data shows the formation of nanotubes (13.7 Å diameter pores) and transmembrane channels. The study shows that α‐peptide–oligourea‐based de novo design can yield unique bioactive molecules with defined structures and functions. Chimeric foldamers synthesized by linking an α‐peptide to the N‐terminus of an oligourea possess distinct hydrophobic and hydrophilic faces. Two such foldamers exhibit fiber‐like self‐assembly and demonstrate high anion transport activity in lipid bilayers. The quaternary structure from X‐ray crystallography revealed helical bundles and hydrophilic pores of ≈20 Å diameter. Cryo‐EM of liposome‐embedded chimera demonstrated self‐assembled channel‐like structures.
Author Collie, Gavin W.
Luo, Min
Dutta, Chiranjit
Fan, Jingsong
Barboiu, Mihail
Guichard, Gilles
Kumar, Prakash
Pasco, Morgane
Krishnamurthy, Pannaga
Li, Jianwei
Su, Dandan
Kini, R. Manjunatha
Yoo, Sung Hyun
Author_xml – sequence: 1
  givenname: Chiranjit
  orcidid: 0000-0002-4206-207X
  surname: Dutta
  fullname: Dutta, Chiranjit
  organization: National University of Singapore
– sequence: 2
  givenname: Pannaga
  surname: Krishnamurthy
  fullname: Krishnamurthy, Pannaga
  organization: National University of Singapore
– sequence: 3
  givenname: Dandan
  surname: Su
  fullname: Su, Dandan
  organization: University of Montpellier ENSCM, CNRS
– sequence: 4
  givenname: Jianwei
  surname: Li
  fullname: Li, Jianwei
  organization: National University of Singapore
– sequence: 5
  givenname: Sung Hyun
  orcidid: 0000-0002-9247-0434
  surname: Yoo
  fullname: Yoo, Sung Hyun
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248
– sequence: 6
  givenname: Gavin W.
  orcidid: 0000-0002-0406-922X
  surname: Collie
  fullname: Collie, Gavin W.
  organization: R&D, AstraZeneca
– sequence: 7
  givenname: Morgane
  orcidid: 0000-0002-1556-2802
  surname: Pasco
  fullname: Pasco, Morgane
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248
– sequence: 8
  givenname: Jingsong
  surname: Fan
  fullname: Fan, Jingsong
  organization: National University of Singapore
– sequence: 9
  givenname: Min
  surname: Luo
  fullname: Luo, Min
  organization: National University of Singapore
– sequence: 10
  givenname: Mihail
  orcidid: 0000-0003-0042-9483
  surname: Barboiu
  fullname: Barboiu, Mihail
  email: mihail-dumitru.barboiu@umontpellier.fr
  organization: University of Montpellier ENSCM, CNRS
– sequence: 11
  givenname: Gilles
  orcidid: 0000-0002-2584-7502
  surname: Guichard
  fullname: Guichard, Gilles
  email: g.guichard@iecb.u-bordeaux.fr
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248
– sequence: 12
  givenname: R. Manjunatha
  surname: Kini
  fullname: Kini, R. Manjunatha
  email: dbskinim@nus.edu.sg
  organization: National University of Singapore
– sequence: 13
  givenname: Prakash
  orcidid: 0000-0002-0963-1664
  surname: Kumar
  fullname: Kumar, Prakash
  email: prakash.kumar@nus.edu.sg
  organization: National University of Singapore
BackLink https://hal.science/hal-04699549$$DView record in HAL
BookMark eNqFkc1uEzEURkeolSilW9YjsWKR4N-JvYxGlEZKVaTA2vLY1-1EzjjY05Tsuuyyap-EF-Eh8iQ4narAipWtT-c7lu99Uxx0oYOieIfRGCNEPqZVMmOCCEWIcvKqOCKVECOGWHXw1_11cZLSEuUCx3giyVHxY9Z1YaP7dgPlArzb3d5PU4JV47dlcCXmOTiHWNZX7Qpia8pfP3PyBdZ9a2F3-3jh28twHUGXp8FbnZlU9uFGR1vWfnf3kOGsBfP0wCx0WaS7Dnx6Wxw67ROcPJ_HxbfTT1_rs9H84vOsns5HhjJCRpZzChxzToByYVhFDedcuIbiyjpEwGAjtQMrHKHcCg6CVEg0FSPNRFeIHhezwWuDXqp1bFc6blXQrXoKQrxUOvat8aCo4FZaAs3EWmYbq2WTDwFYUudc02TXh8F1pf0_qrPpXO2zPGIpOZMbnNn3A7uO4fs1pF4t85y6_FVFkURYMkZYpsYDZWJIKYJ70WKk9otV-8Wql8XmghwKN62H7X9otThf1H-6vwEB1K82
Cites_doi 10.1021/ja01051a006
10.1021/acs.accounts.6b00545
10.1021/jacs.8b04657
10.1107/S0907444909047337
10.1002/anie.201500901
10.1038/415287a
10.1021/jacs.7b00181
10.1038/nchem.2353
10.1038/s41586-020-2646-5
10.1038/nchem.2647
10.1039/C6CC01546H
10.1038/nchembio.692
10.1021/acs.accounts.6b00051
10.1016/bs.mie.2021.04.019
10.1021/jacs.6b10379
10.1021/ja070396f
10.1039/c1cc11137j
10.1126/science.2453923
10.1002/anie.201901833
10.1016/j.crci.2015.07.003
10.1021/ja9537383
10.1039/D1SC00460C
10.1107/S0907444911001314
10.1016/S0006-3495(93)81293-1
10.1038/s41557-021-00688-0
10.1021/ar400019p
10.1021/ar960298r
10.1039/D1CC03604A
10.1038/ncomms5142
10.1021/ar700229r
10.1021/jacs.6b12094
10.1021/ja0665747
10.1002/anie.201915287
10.1039/b708337h
10.1038/nrd2780
10.1016/S0006-3495(96)79835-1
10.1016/j.chempr.2023.04.007
10.1098/rstb.2016.0213
10.1002/anie.202008992
10.1038/s41467-022-33155-6
10.1002/anie.201303175
10.1021/jacs.7b04335
10.1021/ja9067518
10.1107/S0907444904011679
10.1038/s41557-020-0420-9
10.1073/pnas.1513616113
10.1021/ja506278z
10.1002/anie.201504884
10.1002/cplu.202000373
10.1107/S0907444904019158
10.1107/S0907444910045749
10.1021/ol3012106
10.1021/jacs.5b12057
10.1038/nature20812
10.1021/jacs.6b01811
ContentType Journal Article
Copyright 2024 The Authors. Small Science published by Wiley‐VCH GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2024 The Authors. Small Science published by Wiley‐VCH GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID 24P
WIN
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOA
DOI 10.1002/smsc.202300352
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2688-4046
EndPage n/a
ExternalDocumentID oai_doaj_org_article_385d9d2eb7dd4dbda9b4db8e193fffbb
oai_HAL_hal_04699549v1
10_1002_smsc_202300352
SMSC202300352
Genre article
GrantInformation_xml – fundername: Centre National de la Recherche Scientifique
– fundername: Singapore's National Water Agency
  funderid: 1601‐CRPW‐T21
– fundername: Agence Nationale de la Recherche
  funderid: ANR‐23‐CE06‐0030; ANR‐10‐IDEX‐03‐02
GroupedDBID 0R~
1OC
24P
88I
AAFWJ
AAHHS
ABDBF
ABUWG
ACCFJ
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AZQEC
BENPR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IGS
M2P
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
3V.
7XB
8FK
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c3422-d553e51552e358c463c5558fb316df02ec1c9afed8f235d85e82608b642b7a603
IEDL.DBID 24P
ISSN 2688-4046
IngestDate Fri Oct 04 13:15:46 EDT 2024
Sat Sep 21 06:29:54 EDT 2024
Thu Oct 10 22:22:20 EDT 2024
Thu Sep 26 20:37:14 EDT 2024
Sat Aug 24 00:55:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords self-assembly
lipid membranes
helices
ion channels
structure
foldamers
Language English
License Attribution
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3422-d553e51552e358c463c5558fb316df02ec1c9afed8f235d85e82608b642b7a603
ORCID 0000-0002-2584-7502
0000-0002-4206-207X
0000-0002-0406-922X
0000-0002-1556-2802
0000-0002-9247-0434
0000-0003-0042-9483
0000-0002-0963-1664
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmsc.202300352
PQID 3090194424
PQPubID 5068498
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_385d9d2eb7dd4dbda9b4db8e193fffbb
hal_primary_oai_HAL_hal_04699549v1
proquest_journals_3090194424
crossref_primary_10_1002_smsc_202300352
wiley_primary_10_1002_smsc_202300352_SMSC202300352
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
– name: Wiley-VCH
References 2007; 129
2018; 140
2016; 19
2004; 60
2020; 85
1969; 91
2013; 46
2023; 9
1993; 65
2015; 54
2019; 58
2002; 415
2016; 52
2020; 585
2020; 12
2017; 372
1988; 240
1996; 70
2009; 131
2012; 14
2015; 7
2017; 9
2014; 136
2011; 7
2017; 139
2018; 7
2021; 13
2017; 50
2021; 57
2010; 66
2014; 5
2021; 12
2021; 656
2013; 52
2016; 113
2022; 13
2009; 8
2016; 138
2007; 5
2011; 67
2008; 41
2011; 47
2017; 541
2021; 60
2016; 49
1998; 31
2006; 128
1996; 118
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Park E. (e_1_2_9_3_1) 2018; 7
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 541
  start-page: 500
  year: 2017
  publication-title: Nature
– volume: 656
  start-page: 59
  year: 2021
  publication-title: Methods Enzymol.
– volume: 139
  start-page: 12338
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 832
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 1
  year: 2018
  publication-title: Elife
– volume: 54
  start-page: 11133
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 131
  start-page: 16889
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 235
  year: 2011
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 240
  start-page: 1177
  year: 1988
  publication-title: Science
– volume: 139
  start-page: 6128
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8266
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 41
  start-page: 1354
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 60
  start-page: 1355
  year: 2004
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 12
  start-page: 6923
  year: 2021
  publication-title: Chem. Sci.
– volume: 8
  start-page: 153
  year: 2009
  publication-title: Nat. Rev. Drug Discovery
– volume: 7
  start-page: 935
  year: 2011
  publication-title: Nat. Chem. Biol.
– volume: 54
  start-page: 9816
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 123
  year: 2016
  publication-title: C. R. Chim.
– volume: 14
  start-page: 3130
  year: 2012
  publication-title: Org. Lett.
– volume: 138
  start-page: 688
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7420
  year: 2016
  publication-title: Chem. Commun.
– volume: 138
  start-page: 5403
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 14788
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 3721
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3000
  year: 2007
  publication-title: Org. Biomol. Chem.
– volume: 372
  start-page: 20160213
  year: 2017
  publication-title: Philos. Trans. R. Soc., B
– volume: 85
  start-page: 2243
  year: 2020
  publication-title: ChemPlusChem
– volume: 138
  start-page: 16443
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 331
  year: 2020
  publication-title: Nat. Chem.
– volume: 46
  start-page: 2801
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 5377
  year: 2022
  publication-title: Nat. Commun.
– volume: 136
  start-page: 14128
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 8034
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 415
  start-page: 287
  year: 2002
  publication-title: Nature
– volume: 91
  start-page: 6235
  year: 1969
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 2296
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 411
  year: 2017
  publication-title: Nat. Chem.
– volume: 129
  start-page: 4178
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2
  year: 2014
  publication-title: Nat. Commun.
– volume: 113
  start-page: E6955
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 70
  start-page: 2659
  year: 1996
  publication-title: Biophys. J.
– volume: 67
  start-page: 355
  year: 2011
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 585
  start-page: 129
  year: 2020
  publication-title: Nature
– volume: 66
  start-page: 125
  year: 2010
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 60
  start-page: 566
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 65
  start-page: 2455
  year: 1993
  publication-title: Biophys. J.
– volume: 47
  start-page: 5933
  year: 2011
  publication-title: Chem. Commun.
– volume: 31
  start-page: 173
  year: 1998
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 871
  year: 2015
  publication-title: Nat. Chem.
– volume: 57
  start-page: 9514
  year: 2021
  publication-title: Chem. Commun.
– volume: 60
  start-page: 2126
  year: 2004
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 140
  start-page: 8817
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 2744
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 922
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 643
  year: 2021
  publication-title: Nat. Chem.
– volume: 9
  start-page: 2237
  year: 2023
  publication-title: Chem
– ident: e_1_2_9_46_1
  doi: 10.1021/ja01051a006
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.accounts.6b00545
– ident: e_1_2_9_44_1
  doi: 10.1021/jacs.8b04657
– ident: e_1_2_9_53_1
  doi: 10.1107/S0907444909047337
– ident: e_1_2_9_25_1
  doi: 10.1002/anie.201500901
– ident: e_1_2_9_5_1
  doi: 10.1038/415287a
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.7b00181
– ident: e_1_2_9_23_1
  doi: 10.1038/nchem.2353
– ident: e_1_2_9_11_1
  doi: 10.1038/s41586-020-2646-5
– ident: e_1_2_9_28_1
  doi: 10.1038/nchem.2647
– ident: e_1_2_9_17_1
  doi: 10.1039/C6CC01546H
– ident: e_1_2_9_30_1
  doi: 10.1038/nchembio.692
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.accounts.6b00051
– ident: e_1_2_9_33_1
  doi: 10.1016/bs.mie.2021.04.019
– ident: e_1_2_9_39_1
  doi: 10.1021/jacs.6b10379
– ident: e_1_2_9_18_1
  doi: 10.1021/ja070396f
– ident: e_1_2_9_14_1
  doi: 10.1039/c1cc11137j
– ident: e_1_2_9_31_1
  doi: 10.1126/science.2453923
– ident: e_1_2_9_41_1
  doi: 10.1002/anie.201901833
– ident: e_1_2_9_27_1
  doi: 10.1016/j.crci.2015.07.003
– ident: e_1_2_9_36_1
  doi: 10.1021/ja9537383
– ident: e_1_2_9_13_1
  doi: 10.1039/D1SC00460C
– ident: e_1_2_9_57_1
  doi: 10.1107/S0907444911001314
– ident: e_1_2_9_52_1
  doi: 10.1016/S0006-3495(93)81293-1
– ident: e_1_2_9_12_1
  doi: 10.1038/s41557-021-00688-0
– ident: e_1_2_9_6_1
  doi: 10.1021/ar400019p
– ident: e_1_2_9_15_1
  doi: 10.1021/ar960298r
– ident: e_1_2_9_50_1
  doi: 10.1039/D1CC03604A
– ident: e_1_2_9_49_1
  doi: 10.1038/ncomms5142
– ident: e_1_2_9_7_1
  doi: 10.1021/ar700229r
– ident: e_1_2_9_47_1
  doi: 10.1021/jacs.6b12094
– volume: 7
  start-page: 1
  year: 2018
  ident: e_1_2_9_3_1
  publication-title: Elife
  contributor:
    fullname: Park E.
– ident: e_1_2_9_42_1
  doi: 10.1021/ja0665747
– ident: e_1_2_9_8_1
  doi: 10.1002/anie.201915287
– ident: e_1_2_9_43_1
  doi: 10.1039/b708337h
– ident: e_1_2_9_4_1
  doi: 10.1038/nrd2780
– ident: e_1_2_9_51_1
  doi: 10.1016/S0006-3495(96)79835-1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.chempr.2023.04.007
– ident: e_1_2_9_29_1
  doi: 10.1098/rstb.2016.0213
– ident: e_1_2_9_26_1
  doi: 10.1002/anie.202008992
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-022-33155-6
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201303175
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.7b04335
– ident: e_1_2_9_45_1
  doi: 10.1021/ja9067518
– ident: e_1_2_9_55_1
  doi: 10.1107/S0907444904011679
– ident: e_1_2_9_19_1
  doi: 10.1038/s41557-020-0420-9
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1513616113
– ident: e_1_2_9_38_1
  doi: 10.1021/ja506278z
– ident: e_1_2_9_35_1
  doi: 10.1002/anie.201504884
– ident: e_1_2_9_37_1
  doi: 10.1002/cplu.202000373
– ident: e_1_2_9_56_1
  doi: 10.1107/S0907444904019158
– ident: e_1_2_9_54_1
  doi: 10.1107/S0907444910045749
– ident: e_1_2_9_34_1
  doi: 10.1021/ol3012106
– ident: e_1_2_9_9_1
  doi: 10.1021/jacs.5b12057
– ident: e_1_2_9_2_1
  doi: 10.1038/nature20812
– ident: e_1_2_9_48_1
  doi: 10.1021/jacs.6b01811
SSID ssj0002511792
Score 2.3180056
Snippet Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea...
Constructing artificial ion channels is a challenging task. Herein, the de novo design of transmembrane ion channels made up of amphiphilic peptide–oligourea...
SourceID doaj
hal
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
SubjectTerms Aqueous solutions
Chemical Sciences
Chloride
Design
foldamers
helices
ion channels
lipid membranes
Lipids
Mass spectrometry
Membranes
Microscopy
Peptides
Scientific imaging
self‐assembly
structure
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQpUpcEBQQgYIshMQpauLY-TmWFastYgFpqdSbZcdjWilNUHep4NYjRwRP0hfpQ-yTMONkV-HUC6coI8uxZmLPN_b4G8Ze5VTlLYU8lgqnmywkxIQyYukSMN4iYFB0wXn-IZ8dy3cn6mRU6otywnp64F5xB1mpXOUE2MI56awzlcVHCQg8vPfWhtU3VaNgitZgAs5FJTYsjYk4WJ4vibEQEXcSbhmNvFAg60ffckqpkCOcOUarwd1M77N7A07kh_34HrA70O6x3ZCvWS8fsu9HQzXTS-ALaPz66hcd357b5gfvPE8VCuZwwSenZ-FIht9co-QTpbA4WF_9-dicfekoIZ1Pu8YZ2rzmq5BByyfN-udvbLwIFXLoA0ddy-kWQot-9BE7nr79PJnFQxGFuM4kBppOqQyojouATJW1zLOaKL7QDGnufCKgTuvKeHClF5lypQIMOJLSYlxiC5Mn2WO203YtPGE8MbUUUElXWyMLnxlR5Yb4041NoLJlxF5vlKq_9lwZumdFFprUr7fqj9gb0vm2FXFcBwFaXg-W17dZPmIv0WL_9DE7fK9JRkE_nV9ephHb3xhUD7NzqbMEUVAlpZARE8HIt4xXL-aLyfbt6f8Y_TN2FzuUfS7hPttZXXyD54hvVvZF-JX_AhgO_jQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagFRIXxK8IFGQhJE5RHcfOz6lqV11tEVsqlkq9WXY8biulSdlsK7j1yBHBk_AiPMQ-CR5vdlkucIoyspxoxvZ88-MZQl5n2OUtgSwW0m83kQuIEWXEwjLQznjAIPGC8_gwGx2LtyfypHe4dX1a5fJMDAe1bSv0kW-nzGuuUggudi4_xdg1CqOrfQuN22STJwLDtJt7-4dHH1ZeFgTQecmX1RoZ3-4uOqxc6JE3C7eN1rRRKNrvdcwZpkSu4c111BrUzvA-udfjRbq7EPADcguah-ROyNusukfk80Hf1fQa6ARqN7_5hmHcC1N_oa2jifSEMUzp4Ow8hGbor5-ecoSpLBbmNz_e1-enLSam02FbW41ObDoLmbR0UM-_fveDJ6FTDn7goG0o3kZovD59TI6H-x8Ho7hvphBXqfAGp5UyBeznwiGVRSWytMJSX14cSWYd41AlVakd2MLxVNpCgjc8WGG8fWJynbH0Cdlo2gaeEsp0JTiUwlZGi9ylmpeZxjrq2jAoTRGRN0umqstFzQy1qI7MFbJfrdgfkT3k-WoU1roOhHZ6qvqto9JC2tJyMLm1whqrS-MfBXjo6ZwzJiKvvMT-mmO0-04hDY1_jGNeJxHZWgpU9bu0U3_WVER4EPJ__ldNxpPB6u3Zv-d8Tu76oWKRLbhFNmbTK3jhEczMvOyX6W-wR_Q8
  priority: 102
  providerName: ProQuest
Title Innovative Self‐Assembly of 15‐Mer Chimeric α‐Peptide–Oligourea Foldamers toward Cl−‐Selective Ion Channels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmsc.202300352
https://www.proquest.com/docview/3090194424
https://hal.science/hal-04699549
https://doaj.org/article/385d9d2eb7dd4dbda9b4db8e193fffbb
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagFRIXxK8ILSsLIXGKmnXs_Bzb1a62iC0rlkq9WXZst5XSDdosVbmgHjkieBJehIfYJ2HGyYbdExKX_FiOE8144s_j8TeEvE4wy1vfJiEXYG485TZElBFyE1nlNAAGgRucJyfJ-JS_PRNnG7v4G36IzuGGluH_12jgStcHf0lD66saKQgBQiOl512yC9gmw37N-LTzsiCATn1mZJZAl-AwG1wzN0bsYLuJrZHJE_jDeHOB4ZEb2HMTwfohaPSQPGixIz1slP2I3LHzx-Sej-Es6ifk5rjNcHpt6cyWbnX7HZd0r3T5hVaO9gUUTOyCDi4u_TIN_f0LSqYY1mLs6vbn-_LyvMIgdTqqSqPQoU2XPqqWDsrVtx9Qeeaz5uALjqs5xZ0JIMX6KTkdDT8OxmGbWCEsYg6TTyNEbDG3C7OxyAqexAXSfoFq-olxEbNFv8iVsyZzLBYmExYmIVGmYa6iU5VE8TOyM6_m9jmhkSo4szk3hVY8dbFieaKQU13pyOY6C8ibtVDlp4Y_QzZMyUyi-GUn_oAcocy7Wsh77QuqxblszUjGmTC5YVanxnCjjco1nDILMNQ5p3VAXoHGttoYH76TWIaOAFzTvO4HZH-tUNlabC3jCJBRzjnjAWFeyf_4XjmbzAbd3Yv_eWiP3Idr3sQT7pOd5eKzfQkYZ6l7vhv3yO7R8GT6oec9BXCcfB3-AR1M_C4
link.rule.ids 230,315,786,790,870,891,2115,11589,21416,27955,27956,33777,43838,46085,46509,74657
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbhMxELYgFYIL4lddKGAhJE6rbrz2_pxQGzVKIAkVaaXeLHs9bittd0s2VHDrkSOCJ-FFeIg8CR5nE8IFTqsdeX_ksT3fjMffEPIqwSpvXUhCLtx04ymHEFFGyE0EymoHGAQecB5PksExf3siTtqAW9OmVa7WRL9Qm7rAGPluHDnLlXPO-JvLjyFWjcLd1baExk2yhZSbWYds7R9MDj-soywIoNOcrdgaI7bbXDTIXOiQd-RPG21YI0_a72zMGaZEbuDNTdTqzU7_Hrnb4kW6t1TwfXIDqgfkls_bLJqH5POwrWp6BXQKpV1cf8Nt3AtdfqG1pV3hBGOY0d7Zud-aob9-OskhprIYWFz_eF-en9aYmE77dWkUBrHp3GfS0l65-PrdNZ76Sjn4gWFdUTyNUDl7-ogc9w-OeoOwLaYQFjF3DqcRIgas58IgFlnBk7hAqi-njm5ibMSg6Ba5smAyy2JhMgHO8Ygy7fwTnaokih-TTlVXsE1opArOIOem0IqnNlYsTxTyqCsdQa6zgLxedaq8XHJmyCU7MpPY_XLd_QHZxz5ft0Kuay-oZ6eynToyzoTJDQOdGsONNirX7pKBg57WWq0D8tJp7K93DPZGEmXo_OM-5lU3IDsrhcp2ljbyz5gKCPNK_s__yul42lvfPfn3O1-Q24Oj8UiOhpN3T8kd9xhfZg7ukM589gmeOTQz18_bIfsbY_H3Mg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbhMxELagFYgL4lddKGAhJE6rbLz2_pxQGxol0ISIUKk3y17bbaXtbsmGCm49ckTwJLwID5EnYcbZhHCB02pH3h95bM83488zhLxIsMpb1yYhFzDdeMptiCgj5CayymkADAIPOI_GyeCIvzkWxy3_qWlplas10S_Upi4wRt6JI7BcOeeMd1xLi5i87r-6-BhiBSncaW3LaVwn2ylPBDhi2_sH48n7dcQFwXSas1Xmxoh1mvMGsxgCCo_8yaMNy-QT-IO9OUV65Ab23ESw3gT175DbLXake0tl3yXXbHWP3PAczqK5Tz4P2wqnl5ZObekWV99wS_dcl19o7WhXgGBkZ7R3eua3aeivnyCZIK3F2MXVj3fl2UmNJHXar0ujMKBN555VS3vl4ut3aDz1VXPwA8O6ongyoQLb-oAc9Q8-9AZhW1ghLGIOzqcRIrZY24XZWGQFT-IC036BarqJcRGzRbfIlbMmcywWJhMWnJAo0-Cr6FQlUfyQbFV1ZXcIjVTBmc25KbTiqYsVyxOFOdWVjmyus4C8XHWqvFjmz5DLTMlMYvfLdfcHZB_7fN0K8157QT07ke00knEmTG6Y1akx3Gijcg2XzAIMdc5pHZDnoLG_3jHYO5Qow0AA7mledgOyu1KobGdsI_-Mr4Awr-T__K-cjqa99d2jf7_zGbkJo1UeDsdvH5Nb8BRfkgh3ydZ89sk-AWAz10_bEfsbsxj7Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Self%E2%80%90Assembly+of+15%E2%80%90Mer+Chimeric+%CE%B1%E2%80%90Peptide%E2%80%93Oligourea+Foldamers+toward+Cl%E2%88%92%E2%80%90Selective+Ion+Channels&rft.jtitle=Small+science&rft.au=Dutta%2C+Chiranjit&rft.au=Krishnamurthy%2C+Pannaga&rft.au=Su%2C+Dandan&rft.au=Li%2C+Jianwei&rft.date=2024-08-01&rft.pub=Wiley&rft.issn=2688-4046&rft.eissn=2688-4046&rft.volume=4&rft_id=info:doi/10.1002%2Fsmsc.202300352&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04699549v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4046&client=summon