Effect of missing values in multi‐environmental trials on variance component estimates

A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or...

Full description

Saved in:
Bibliographic Details
Published inCrop science Vol. 61; no. 6; pp. 4087 - 4097
Main Authors Hartung, Jens, Piepho, Hans‐Peter
Format Journal Article
LanguageEnglish
Published 01.11.2021
Online AccessGet full text

Cover

Loading…
Abstract A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or missing not at random. If the missing‐data pattern in MET was caused by selection, it is usually MAR. In this case, likelihood‐based methods are the preferred methods for analysis as they can account for a MAR data pattern. Likelihood‐based methods used to estimate VCs in LMM have the property that all VC estimates are constrained to be non‐negative; thus, the estimators are generally biased. Therefore, there are two potential causes of bias in MET analysis: a data pattern not being MCAR, and the bias of likelihood‐based VC estimators. The current study tries to dissect and quantify both possible sources of bias. A simulation study with MET data typical of cultivar evaluation trials was conducted in which the missing data pattern and the size of VCs were varied. The results showed that for the simulated MET, bias in VC estimates was similar under MCAR and MAR. Thus, the bias is solely due to the likelihood‐based estimation. Bias increases when increasing the ratio of genotype variance to error variance is small. Bias was similar for MAR and MCAR data patterns. Thus, it may be concluded that selection does not increase bias in VC estimation. Core Ideas Variance component (VC) estimates can be biased due to the use of likelihood‐based methods. Missing data patterns created by selection in multi‐environmental trials (MET) do not increase bias in VC estimation. Evaluation of MET with larger number of years decreases bias in VC estimation. Evaluation of MET with larger yearly dropout rate of genotypes increases bias in VC estimation. Smaller genotype‐to‐error variance ratio increases bias in variance component estimation.
AbstractList A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or missing not at random. If the missing‐data pattern in MET was caused by selection, it is usually MAR. In this case, likelihood‐based methods are the preferred methods for analysis as they can account for a MAR data pattern. Likelihood‐based methods used to estimate VCs in LMM have the property that all VC estimates are constrained to be non‐negative; thus, the estimators are generally biased. Therefore, there are two potential causes of bias in MET analysis: a data pattern not being MCAR, and the bias of likelihood‐based VC estimators. The current study tries to dissect and quantify both possible sources of bias. A simulation study with MET data typical of cultivar evaluation trials was conducted in which the missing data pattern and the size of VCs were varied. The results showed that for the simulated MET, bias in VC estimates was similar under MCAR and MAR. Thus, the bias is solely due to the likelihood‐based estimation. Bias increases when increasing the ratio of genotype variance to error variance is small. Bias was similar for MAR and MCAR data patterns. Thus, it may be concluded that selection does not increase bias in VC estimation. Core Ideas Variance component (VC) estimates can be biased due to the use of likelihood‐based methods. Missing data patterns created by selection in multi‐environmental trials (MET) do not increase bias in VC estimation. Evaluation of MET with larger number of years decreases bias in VC estimation. Evaluation of MET with larger yearly dropout rate of genotypes increases bias in VC estimation. Smaller genotype‐to‐error variance ratio increases bias in variance component estimation.
Author Hartung, Jens
Piepho, Hans‐Peter
Author_xml – sequence: 1
  givenname: Jens
  orcidid: 0000-0001-7054-9232
  surname: Hartung
  fullname: Hartung, Jens
  email: jens.hartung@uni-hohenheim.de
  organization: Univ. of Hohenheim
– sequence: 2
  givenname: Hans‐Peter
  orcidid: 0000-0001-7813-2992
  surname: Piepho
  fullname: Piepho, Hans‐Peter
  organization: Univ. of Hohenheim
BookMark eNotkE1OwzAQhS1UJNrChhP4Aikzdhw3SxSVH6kSC0DqLnLcCTJKnCo2Rd1xBM7ISXALmsV7izdvRt-MTfzgibFrhAUCiBsbrFgIKASesSnmUmVQKDlhUwDEDJdyc8FmIbwDgC61mrLNqm3JRj60vHchOP_G96b7oMCd5_1HF93P1zf5vRsH35OPpuNxdKYLfPApmay3xO3Q79IjPnIK0fUmUrhk522K0dW_ztnr3eqlesjWT_eP1e06szIXmG3BoEVlixKQjGpzKkwuURcl5bSUBFtTNjKXAjTppS6UgqZR2qS1NI2Uc4Z_vZ-uo0O9G9P58VAj1Ecg9RFIfQJSV8-VODn5C7xMWaw
CitedBy_id crossref_primary_10_1002_agj2_21570
crossref_primary_10_31742_ISGPB_84_2_10
crossref_primary_10_1002_agj2_70023
crossref_primary_10_1071_CP23126
crossref_primary_10_1007_s00122_022_04157_1
crossref_primary_10_1002_jpln_202300362
crossref_primary_10_1002_csc2_21184
crossref_primary_10_1002_csc2_21262
crossref_primary_10_1007_s10705_023_10306_9
crossref_primary_10_1007_s00122_023_04470_3
crossref_primary_10_1016_j_compag_2023_108046
crossref_primary_10_1007_s00122_024_04579_z
crossref_primary_10_1002_csc2_21029
crossref_primary_10_1007_s00122_023_04266_5
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of Crop Science Society of America
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Crop Science Society of America
DBID 24P
DOI 10.1002/csc2.20621
DatabaseName Wiley-Blackwell Open Access Titles
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0653
EndPage 4097
ExternalDocumentID CSC220621
Genre article
GroupedDBID -~X
.86
.~0
0R~
186
18M
1OB
1OC
24P
29F
2A4
2WC
33P
3V.
53G
5GY
6J9
6KN
7X2
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGOD
ACIWK
ACPOU
ACXQS
ADFRT
ADKYN
ADNWM
ADYHW
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BENPR
BES
BFHJK
BGLVJ
BGNMA
BHPHI
BKOMP
BPHCQ
C1A
CCPQU
CS3
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
IAG
IAO
ICU
IEA
IEP
IGG
IOF
ITC
L6V
L7B
LAS
LATKE
LEEKS
M0K
M2O
M2P
M2Q
M4Y
M7S
MEWTI
MV1
NHAZY
NHB
NU0
O9-
PATMY
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q2X
R05
RAK
ROL
RPX
RXW
S0X
SAMSI
SUPJJ
TAE
TR2
TWZ
U2A
U5U
VH1
VQA
WOQ
WXSBR
XOL
Y6R
~02
~KM
ID FETCH-LOGICAL-c3421-d0a1c15c6901ea5f4e6a431769e4e83e0da9b343207e7876550bb57a0a1a1ab33
IEDL.DBID 24P
ISSN 0011-183X
IngestDate Wed Jan 22 16:26:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3421-d0a1c15c6901ea5f4e6a431769e4e83e0da9b343207e7876550bb57a0a1a1ab33
Notes Assigned to Associate Editor Paulino Pérez‐Rodríguez.
ORCID 0000-0001-7813-2992
0000-0001-7054-9232
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcsc2.20621
PageCount 11
ParticipantIDs wiley_primary_10_1002_csc2_20621_CSC220621
PublicationCentury 2000
PublicationDate November/December 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November/December 2021
PublicationDecade 2020
PublicationTitle Crop science
PublicationYear 2021
References 1976; 63
1987; 74
1989; 21
2002; 273
2002; 34
1995; 78
2019; 59
1947; 3
1997
2007
2011; 33
1975; 31
2008; 127
2003
1992
2020; 125
2002
2009; 49
2012; 54
1961; 17
1994; 43
2008; 161
2015; 24
1982; 24
1990; 65
2001
1991; 23
2005; 143
2006; 46
1984; 59
2000; 78
1971; 58
2019; 212
2019; 136
2001; 1
2020; 21
1996; 46
1998; 76
2001; 79
2011; 122
References_xml – volume: 78
  start-page: 678
  year: 1995
  end-page: 692
  article-title: Effects of selection on estimates of variance components using Gibbs sampling and restricted maximum likelihood
  publication-title: Journal of Dairy Science
– volume: 34
  start-page: 41
  year: 2002
  end-page: 59
  article-title: Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information
  publication-title: Genetics Selection Evolution
– volume: 59
  start-page: 1213
  year: 1984
  end-page: 1223
  article-title: Estimation of genetic variance from selected and unselected populations
  publication-title: Journal of Animal Science
– volume: 1
  start-page: 235
  year: 2001
  end-page: 269
  article-title: A review on linear mixed models for longitudinal data, possibly subject to dropout
  publication-title: Statistical Modelling
– volume: 49
  start-page: 1977
  year: 2009
  end-page: 1988
  article-title: Comparison of weighting in two‐stage analysis of plant breeding trials
  publication-title: Crop Science
– volume: 76
  start-page: 1794
  year: 1998
  end-page: 1802
  article-title: Adjusting for missing data due to culling before testing in genetic evaluations of swine
  publication-title: Journal of Animal Science
– volume: 125
  start-page: 375
  year: 2020
  end-page: 385
  article-title: Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE
  publication-title: Heredity
– volume: 122
  start-page: 225
  year: 2011
  end-page: 238
  article-title: Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time
  publication-title: Theoretical Applied Genetics
– start-page: 136
  year: 1997
  end-page: 161
– volume: 136
  start-page: 390
  year: 2019
  end-page: 407
  article-title: Effect of selection on bias and accuracy in genomic prediction of breeding values
  publication-title: Journal of Animal Breeding and Genetics
– year: 2001
– year: 2007
– volume: 3
  start-page: 1
  year: 1947
  end-page: 21
  article-title: The assumptions underlying the analysis of variance
  publication-title: Biometrics
– volume: 21
  start-page: 399
  year: 1989
  end-page: 414
  article-title: Likelihood inferences in animal breeding under selection: A missing‐data theory view point
  publication-title: Genetics Selection Evolution
– year: 2003
– volume: 31
  start-page: 423
  year: 1975
  end-page: 447
  article-title: Best linear unbiased estimation and prediction under a selection model
  publication-title: Biometrics
– volume: 24
  start-page: 12
  year: 2015
  end-page: 27
  article-title: Different methods for handling incomplete longitudinal binary outcome due to missing at random dropout
  publication-title: Statistical Methodology
– volume: 17
  start-page: 553
  year: 1961
  end-page: 566
  article-title: The estimation of repeatability and heritability from records subjects to culling
  publication-title: Biometrics
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 143
  start-page: 449
  year: 2005
  end-page: 462
  article-title: The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches
  publication-title: Journal of Agricultural Science
– volume: 65
  start-page: 3124
  year: 1990
  end-page: 3132
  article-title: Estimation of additive genetic variance when base populations are selected
  publication-title: Journal of Animal Science
– volume: 33
  start-page: 7
  year: 2011
  end-page: 20
  article-title: A stage‐wise approach for the analysis of multi‐environment trials
  publication-title: Biuletyn Oceny Odmian
– volume: 78
  start-page: 2554
  year: 2000
  end-page: 2560
  article-title: Comparison of restricted maximum likelihood and method R for estimating heritability and predicting breeding value under selection
  publication-title: Journal of Animal Science
– volume: 46
  start-page: 192
  year: 2006
  end-page: 201
  article-title: Selection in cultivar trials: Is it ignorable?
  publication-title: Crop Science
– year: 1992
– volume: 23
  start-page: 67
  year: 1991
  end-page: 83
  article-title: Estimating variances and covariances for multivariate animal models by restricted maximum likelihood
  publication-title: Genetics Selection Evolution
– volume: 127
  start-page: 541
  year: 2008
  end-page: 547
  article-title: Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials
  publication-title: Plant Breeding
– volume: 79
  start-page: 2991
  year: 2001
  end-page: 2996
  article-title: The empirical bias of estimates by restricted maximum likelihood, Bayesian method, and Method R under selection for additive, maternal, and dominance models
  publication-title: Journal of Animal Science
– volume: 54
  start-page: 844
  year: 2012
  end-page: 860
  article-title: A stage‐wise approach for the analysis of multi‐environment trials
  publication-title: Biometrical Journal
– volume: 24
  start-page: 339
  year: 1982
  end-page: 360
  article-title: How large is the probability for the estimate of a variance component to be negative?
  publication-title: Biometrical Journal
– volume: 21
  start-page: 148
  year: 2020
  article-title: The mixed model for repeated measures for cluster randomized trials: A simulation study investigating bias and type I error with missing continuous data
  publication-title: Trials
– volume: 273
  start-page: 89
  year: 2002
  end-page: 95
  article-title: How to cope with negative estimates of components of variance in ecological field studies
  publication-title: Journal of Experimental Marine Biology and Ecology
– year: 2002
– volume: 49
  year: 2009
  article-title: A comparison of mixed‐model analyses of the Iowa crop performance test for corn
  publication-title: Crop Science
– volume: 59
  start-page: 508
  year: 2019
  end-page: 517
  article-title: Effect of missing values on variance component estimates of multi‐environmental trails
  publication-title: Crop Science
– volume: 46
  start-page: 201
  year: 1996
  end-page: 209
  article-title: Missing data due to culling of pigs before testing and the effects on the estimation of (co)variance components
  publication-title: Acta Agriculturae Scandinavica, Section A–Animal Sciences
– volume: 74
  start-page: 269
  year: 1987
  end-page: 274
  article-title: Probabilities of negative estimates of genetic variance
  publication-title: Theoretical and Applied Genetics
– volume: 212
  start-page: 991
  year: 2019
  end-page: 1008
  article-title: Heritability in plant breeding on a genotype‐difference basis
  publication-title: Genetics
– volume: 161
  start-page: 209
  year: 2008
  end-page: 228
  article-title: BLUP for phenotypic selection in plant breeding and variety testing
  publication-title: Euphytica
– volume: 58
  start-page: 545
  year: 1971
  end-page: 554
  article-title: Recovery of inter‐bloc information when block size are unequal
  publication-title: Biometrica
– volume: 43
  start-page: 49
  year: 1994
  end-page: 93
  article-title: Informative drop‐out in longitudinal data analysis
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
SSID ssj0007975
Score 2.4293733
Snippet A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET...
SourceID wiley
SourceType Publisher
StartPage 4087
Title Effect of missing values in multi‐environmental trials on variance component estimates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcsc2.20621
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LetGD-MQ3OXgSwjZpmjbgZVlcFkERdKG3kqSpeLAr2_XuT_A3-kucSWtXj9JLoUkLM53Mg_m-IeRSZrp0pRIsKuEIlJxXLJNeM-chZ3bgj1KHpYG7ezWby9s8yQfk-gcL0_JD9AU3tIxwXqOBG9uM1qShrnEIpFKIIt9AbC0y5wv50J_DqU67-QWcwY-b9-SkYrTe-zcmDU5lukO2u2iQjlv17ZKBr_fI1vh52TFi-H2St_zCdFFRUAlm9hQJun1DX2oa2gG_Pj5_wdXgdWESR0MXNaxcYtHCU-wcX9TwmCKrxisGmAdkPr15msxYNw6BuVgKzsrIcMcThyOkvEkq6ZVB96-0lz6LfVQabREnGqUezFBB7mFtkhrYBpeN40MyrOFTR4TakhupMi2UhQjCgCJ5JXXqEgH5i0nMMbkKUineWsqLoiU3FgUKrgiCKyaPExHuTv6z-JRsCuwKCWi-MzJcLd_9Obj1lb0I2vsGsh6eiw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGYAB8RRvPDAhRY0dx47HqqIq0FZItFK2yHEcxECC2rLzE_iN_BLunKiFEWWJFDuR7nK-h-77jpAbkejCFpIHYQFHoGCsDBLhdGAd5MwW_JGyWBoYT-RwJh7SOG17cxAL0_BDrApuaBn-vEYDx4J0d80aahcWkVQSYeSbQnKFdsnF0-ogVlq1AwxYAH9uumIn5d313r9Bqfcqgz2y24aDtNfob59suOqA7PRe5i0lhjskaUMwTOuSgk4wtafI0O0W9LWivh_w-_PrF14NXudHcSxoXcHKOVYtHMXW8bqCxxRpNd4wwjwis8HdtD8M2nkIgY0EZ0ERGmZZbHGGlDNxKZw06P-ldsIlkQsLo3MEiobKgR1KSD7yPFYGtsGVR9Ex6VTwqRNC84IZIRPNZQ4hhAFNslJoZWMOCYyJzSm59VLJ3hvOi6xhN-YZCi7zgsv6z33u787-s_iabA2n41E2up88npNtji0iHtp3QTrL-Ye7BB-_zK-8Jn8AWi2h9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KguhBfOLbPXgSlmY3m00CXkq11FcpaCG3sLvZiAfT0ta7P8Hf6C9xZhNbPUougewmMJN57sw3hFzIJC1soQQLClCBkvOSJdKlzDqImS3Yo9hiauBxoPojeZdFWYtc_fTC1PgQi4QbSobX1yjgk6JsL0FD7cxiI5XCLvJVf9qHuM5yuNDDcRo38ws4gx83W4CTivZy71-f1BuV3hbZbLxB2qnZt01artohG52XaYOI4XZJVuML03FJgSUY2VME6HYz-lpRXw749fH5q10NXucncczouIKVU0xaOIqV4-MKHlNE1XhDB3OPjHo3z90-a8YhMBtKwVkRaG55ZHGElNNRKZ3SaP5V6qRLQhcUOjXYJxrEDsRQQexhTBRr2AaXCcN9slLBpw4INQXXUiWpUAY8CA2M5KVMYxsJiF90pA_JpadKPqkhL_Ia3FjkSLjcEy7vPnWFvzv6z-Jzsja87uUPt4P7Y7IusEDEN_adkJX59N2dgoWfmzPPyG-6maEp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+missing+values+in+multi%E2%80%90environmental+trials+on+variance+component+estimates&rft.jtitle=Crop+science&rft.au=Hartung%2C+Jens&rft.au=Piepho%2C+Hans%E2%80%90Peter&rft.date=2021-11-01&rft.issn=0011-183X&rft.eissn=1435-0653&rft.volume=61&rft.issue=6&rft.spage=4087&rft.epage=4097&rft_id=info:doi/10.1002%2Fcsc2.20621&rft.externalDBID=10.1002%252Fcsc2.20621&rft.externalDocID=CSC220621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-183X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-183X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-183X&client=summon