Effect of missing values in multi‐environmental trials on variance component estimates
A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or...
Saved in:
Published in | Crop science Vol. 61; no. 6; pp. 4087 - 4097 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.11.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or missing not at random. If the missing‐data pattern in MET was caused by selection, it is usually MAR. In this case, likelihood‐based methods are the preferred methods for analysis as they can account for a MAR data pattern. Likelihood‐based methods used to estimate VCs in LMM have the property that all VC estimates are constrained to be non‐negative; thus, the estimators are generally biased. Therefore, there are two potential causes of bias in MET analysis: a data pattern not being MCAR, and the bias of likelihood‐based VC estimators. The current study tries to dissect and quantify both possible sources of bias. A simulation study with MET data typical of cultivar evaluation trials was conducted in which the missing data pattern and the size of VCs were varied. The results showed that for the simulated MET, bias in VC estimates was similar under MCAR and MAR. Thus, the bias is solely due to the likelihood‐based estimation. Bias increases when increasing the ratio of genotype variance to error variance is small. Bias was similar for MAR and MCAR data patterns. Thus, it may be concluded that selection does not increase bias in VC estimation.
Core Ideas
Variance component (VC) estimates can be biased due to the use of likelihood‐based methods.
Missing data patterns created by selection in multi‐environmental trials (MET) do not increase bias in VC estimation.
Evaluation of MET with larger number of years decreases bias in VC estimation.
Evaluation of MET with larger yearly dropout rate of genotypes increases bias in VC estimation.
Smaller genotype‐to‐error variance ratio increases bias in variance component estimation. |
---|---|
AbstractList | A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET data are imbalanced (e.g., due to selection). The imbalance mechanism can be missing completely at random (MCAR), missing at random (MAR), or missing not at random. If the missing‐data pattern in MET was caused by selection, it is usually MAR. In this case, likelihood‐based methods are the preferred methods for analysis as they can account for a MAR data pattern. Likelihood‐based methods used to estimate VCs in LMM have the property that all VC estimates are constrained to be non‐negative; thus, the estimators are generally biased. Therefore, there are two potential causes of bias in MET analysis: a data pattern not being MCAR, and the bias of likelihood‐based VC estimators. The current study tries to dissect and quantify both possible sources of bias. A simulation study with MET data typical of cultivar evaluation trials was conducted in which the missing data pattern and the size of VCs were varied. The results showed that for the simulated MET, bias in VC estimates was similar under MCAR and MAR. Thus, the bias is solely due to the likelihood‐based estimation. Bias increases when increasing the ratio of genotype variance to error variance is small. Bias was similar for MAR and MCAR data patterns. Thus, it may be concluded that selection does not increase bias in VC estimation.
Core Ideas
Variance component (VC) estimates can be biased due to the use of likelihood‐based methods.
Missing data patterns created by selection in multi‐environmental trials (MET) do not increase bias in VC estimation.
Evaluation of MET with larger number of years decreases bias in VC estimation.
Evaluation of MET with larger yearly dropout rate of genotypes increases bias in VC estimation.
Smaller genotype‐to‐error variance ratio increases bias in variance component estimation. |
Author | Hartung, Jens Piepho, Hans‐Peter |
Author_xml | – sequence: 1 givenname: Jens orcidid: 0000-0001-7054-9232 surname: Hartung fullname: Hartung, Jens email: jens.hartung@uni-hohenheim.de organization: Univ. of Hohenheim – sequence: 2 givenname: Hans‐Peter orcidid: 0000-0001-7813-2992 surname: Piepho fullname: Piepho, Hans‐Peter organization: Univ. of Hohenheim |
BookMark | eNotkE1OwzAQhS1UJNrChhP4Aikzdhw3SxSVH6kSC0DqLnLcCTJKnCo2Rd1xBM7ISXALmsV7izdvRt-MTfzgibFrhAUCiBsbrFgIKASesSnmUmVQKDlhUwDEDJdyc8FmIbwDgC61mrLNqm3JRj60vHchOP_G96b7oMCd5_1HF93P1zf5vRsH35OPpuNxdKYLfPApmay3xO3Q79IjPnIK0fUmUrhk522K0dW_ztnr3eqlesjWT_eP1e06szIXmG3BoEVlixKQjGpzKkwuURcl5bSUBFtTNjKXAjTppS6UgqZR2qS1NI2Uc4Z_vZ-uo0O9G9P58VAj1Ecg9RFIfQJSV8-VODn5C7xMWaw |
CitedBy_id | crossref_primary_10_1002_agj2_21570 crossref_primary_10_31742_ISGPB_84_2_10 crossref_primary_10_1002_agj2_70023 crossref_primary_10_1071_CP23126 crossref_primary_10_1007_s00122_022_04157_1 crossref_primary_10_1002_jpln_202300362 crossref_primary_10_1002_csc2_21184 crossref_primary_10_1002_csc2_21262 crossref_primary_10_1007_s10705_023_10306_9 crossref_primary_10_1007_s00122_023_04470_3 crossref_primary_10_1016_j_compag_2023_108046 crossref_primary_10_1007_s00122_024_04579_z crossref_primary_10_1002_csc2_21029 crossref_primary_10_1007_s00122_023_04266_5 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of Crop Science Society of America |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Crop Science Society of America |
DBID | 24P |
DOI | 10.1002/csc2.20621 |
DatabaseName | Wiley-Blackwell Open Access Titles |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0653 |
EndPage | 4097 |
ExternalDocumentID | CSC220621 |
Genre | article |
GroupedDBID | -~X .86 .~0 0R~ 186 18M 1OB 1OC 24P 29F 2A4 2WC 33P 3V. 53G 5GY 6J9 6KN 7X2 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABUWG ACAWQ ACCFJ ACCZN ACGOD ACIWK ACPOU ACXQS ADFRT ADKYN ADNWM ADYHW ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BENPR BES BFHJK BGLVJ BGNMA BHPHI BKOMP BPHCQ C1A CCPQU CS3 D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW IAG IAO ICU IEA IEP IGG IOF ITC L6V L7B LAS LATKE LEEKS M0K M2O M2P M2Q M4Y M7S MEWTI MV1 NHAZY NHB NU0 O9- PATMY PQQKQ PRG PROAC PTHSS PYCSY Q2X R05 RAK ROL RPX RXW S0X SAMSI SUPJJ TAE TR2 TWZ U2A U5U VH1 VQA WOQ WXSBR XOL Y6R ~02 ~KM |
ID | FETCH-LOGICAL-c3421-d0a1c15c6901ea5f4e6a431769e4e83e0da9b343207e7876550bb57a0a1a1ab33 |
IEDL.DBID | 24P |
ISSN | 0011-183X |
IngestDate | Wed Jan 22 16:26:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3421-d0a1c15c6901ea5f4e6a431769e4e83e0da9b343207e7876550bb57a0a1a1ab33 |
Notes | Assigned to Associate Editor Paulino Pérez‐Rodríguez. |
ORCID | 0000-0001-7813-2992 0000-0001-7054-9232 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcsc2.20621 |
PageCount | 11 |
ParticipantIDs | wiley_primary_10_1002_csc2_20621_CSC220621 |
PublicationCentury | 2000 |
PublicationDate | November/December 2021 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November/December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Crop science |
PublicationYear | 2021 |
References | 1976; 63 1987; 74 1989; 21 2002; 273 2002; 34 1995; 78 2019; 59 1947; 3 1997 2007 2011; 33 1975; 31 2008; 127 2003 1992 2020; 125 2002 2009; 49 2012; 54 1961; 17 1994; 43 2008; 161 2015; 24 1982; 24 1990; 65 2001 1991; 23 2005; 143 2006; 46 1984; 59 2000; 78 1971; 58 2019; 212 2019; 136 2001; 1 2020; 21 1996; 46 1998; 76 2001; 79 2011; 122 |
References_xml | – volume: 78 start-page: 678 year: 1995 end-page: 692 article-title: Effects of selection on estimates of variance components using Gibbs sampling and restricted maximum likelihood publication-title: Journal of Dairy Science – volume: 34 start-page: 41 year: 2002 end-page: 59 article-title: Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information publication-title: Genetics Selection Evolution – volume: 59 start-page: 1213 year: 1984 end-page: 1223 article-title: Estimation of genetic variance from selected and unselected populations publication-title: Journal of Animal Science – volume: 1 start-page: 235 year: 2001 end-page: 269 article-title: A review on linear mixed models for longitudinal data, possibly subject to dropout publication-title: Statistical Modelling – volume: 49 start-page: 1977 year: 2009 end-page: 1988 article-title: Comparison of weighting in two‐stage analysis of plant breeding trials publication-title: Crop Science – volume: 76 start-page: 1794 year: 1998 end-page: 1802 article-title: Adjusting for missing data due to culling before testing in genetic evaluations of swine publication-title: Journal of Animal Science – volume: 125 start-page: 375 year: 2020 end-page: 385 article-title: Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE publication-title: Heredity – volume: 122 start-page: 225 year: 2011 end-page: 238 article-title: Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time publication-title: Theoretical Applied Genetics – start-page: 136 year: 1997 end-page: 161 – volume: 136 start-page: 390 year: 2019 end-page: 407 article-title: Effect of selection on bias and accuracy in genomic prediction of breeding values publication-title: Journal of Animal Breeding and Genetics – year: 2001 – year: 2007 – volume: 3 start-page: 1 year: 1947 end-page: 21 article-title: The assumptions underlying the analysis of variance publication-title: Biometrics – volume: 21 start-page: 399 year: 1989 end-page: 414 article-title: Likelihood inferences in animal breeding under selection: A missing‐data theory view point publication-title: Genetics Selection Evolution – year: 2003 – volume: 31 start-page: 423 year: 1975 end-page: 447 article-title: Best linear unbiased estimation and prediction under a selection model publication-title: Biometrics – volume: 24 start-page: 12 year: 2015 end-page: 27 article-title: Different methods for handling incomplete longitudinal binary outcome due to missing at random dropout publication-title: Statistical Methodology – volume: 17 start-page: 553 year: 1961 end-page: 566 article-title: The estimation of repeatability and heritability from records subjects to culling publication-title: Biometrics – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 143 start-page: 449 year: 2005 end-page: 462 article-title: The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches publication-title: Journal of Agricultural Science – volume: 65 start-page: 3124 year: 1990 end-page: 3132 article-title: Estimation of additive genetic variance when base populations are selected publication-title: Journal of Animal Science – volume: 33 start-page: 7 year: 2011 end-page: 20 article-title: A stage‐wise approach for the analysis of multi‐environment trials publication-title: Biuletyn Oceny Odmian – volume: 78 start-page: 2554 year: 2000 end-page: 2560 article-title: Comparison of restricted maximum likelihood and method R for estimating heritability and predicting breeding value under selection publication-title: Journal of Animal Science – volume: 46 start-page: 192 year: 2006 end-page: 201 article-title: Selection in cultivar trials: Is it ignorable? publication-title: Crop Science – year: 1992 – volume: 23 start-page: 67 year: 1991 end-page: 83 article-title: Estimating variances and covariances for multivariate animal models by restricted maximum likelihood publication-title: Genetics Selection Evolution – volume: 127 start-page: 541 year: 2008 end-page: 547 article-title: Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials publication-title: Plant Breeding – volume: 79 start-page: 2991 year: 2001 end-page: 2996 article-title: The empirical bias of estimates by restricted maximum likelihood, Bayesian method, and Method R under selection for additive, maternal, and dominance models publication-title: Journal of Animal Science – volume: 54 start-page: 844 year: 2012 end-page: 860 article-title: A stage‐wise approach for the analysis of multi‐environment trials publication-title: Biometrical Journal – volume: 24 start-page: 339 year: 1982 end-page: 360 article-title: How large is the probability for the estimate of a variance component to be negative? publication-title: Biometrical Journal – volume: 21 start-page: 148 year: 2020 article-title: The mixed model for repeated measures for cluster randomized trials: A simulation study investigating bias and type I error with missing continuous data publication-title: Trials – volume: 273 start-page: 89 year: 2002 end-page: 95 article-title: How to cope with negative estimates of components of variance in ecological field studies publication-title: Journal of Experimental Marine Biology and Ecology – year: 2002 – volume: 49 year: 2009 article-title: A comparison of mixed‐model analyses of the Iowa crop performance test for corn publication-title: Crop Science – volume: 59 start-page: 508 year: 2019 end-page: 517 article-title: Effect of missing values on variance component estimates of multi‐environmental trails publication-title: Crop Science – volume: 46 start-page: 201 year: 1996 end-page: 209 article-title: Missing data due to culling of pigs before testing and the effects on the estimation of (co)variance components publication-title: Acta Agriculturae Scandinavica, Section A–Animal Sciences – volume: 74 start-page: 269 year: 1987 end-page: 274 article-title: Probabilities of negative estimates of genetic variance publication-title: Theoretical and Applied Genetics – volume: 212 start-page: 991 year: 2019 end-page: 1008 article-title: Heritability in plant breeding on a genotype‐difference basis publication-title: Genetics – volume: 161 start-page: 209 year: 2008 end-page: 228 article-title: BLUP for phenotypic selection in plant breeding and variety testing publication-title: Euphytica – volume: 58 start-page: 545 year: 1971 end-page: 554 article-title: Recovery of inter‐bloc information when block size are unequal publication-title: Biometrica – volume: 43 start-page: 49 year: 1994 end-page: 93 article-title: Informative drop‐out in longitudinal data analysis publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) |
SSID | ssj0007975 |
Score | 2.4293733 |
Snippet | A common task in the analysis of multi‐environmental trials (MET) by linear mixed models (LMM) is the estimation of variance components (VCs). Most often, MET... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 4087 |
Title | Effect of missing values in multi‐environmental trials on variance component estimates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcsc2.20621 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LetGD-MQ3OXgSwjZpmjbgZVlcFkERdKG3kqSpeLAr2_XuT_A3-kucSWtXj9JLoUkLM53Mg_m-IeRSZrp0pRIsKuEIlJxXLJNeM-chZ3bgj1KHpYG7ezWby9s8yQfk-gcL0_JD9AU3tIxwXqOBG9uM1qShrnEIpFKIIt9AbC0y5wv50J_DqU67-QWcwY-b9-SkYrTe-zcmDU5lukO2u2iQjlv17ZKBr_fI1vh52TFi-H2St_zCdFFRUAlm9hQJun1DX2oa2gG_Pj5_wdXgdWESR0MXNaxcYtHCU-wcX9TwmCKrxisGmAdkPr15msxYNw6BuVgKzsrIcMcThyOkvEkq6ZVB96-0lz6LfVQabREnGqUezFBB7mFtkhrYBpeN40MyrOFTR4TakhupMi2UhQjCgCJ5JXXqEgH5i0nMMbkKUineWsqLoiU3FgUKrgiCKyaPExHuTv6z-JRsCuwKCWi-MzJcLd_9Obj1lb0I2vsGsh6eiw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGYAB8RRvPDAhRY0dx47HqqIq0FZItFK2yHEcxECC2rLzE_iN_BLunKiFEWWJFDuR7nK-h-77jpAbkejCFpIHYQFHoGCsDBLhdGAd5MwW_JGyWBoYT-RwJh7SOG17cxAL0_BDrApuaBn-vEYDx4J0d80aahcWkVQSYeSbQnKFdsnF0-ogVlq1AwxYAH9uumIn5d313r9Bqfcqgz2y24aDtNfob59suOqA7PRe5i0lhjskaUMwTOuSgk4wtafI0O0W9LWivh_w-_PrF14NXudHcSxoXcHKOVYtHMXW8bqCxxRpNd4wwjwis8HdtD8M2nkIgY0EZ0ERGmZZbHGGlDNxKZw06P-ldsIlkQsLo3MEiobKgR1KSD7yPFYGtsGVR9Ex6VTwqRNC84IZIRPNZQ4hhAFNslJoZWMOCYyJzSm59VLJ3hvOi6xhN-YZCi7zgsv6z33u787-s_iabA2n41E2up88npNtji0iHtp3QTrL-Ye7BB-_zK-8Jn8AWi2h9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KguhBfOLbPXgSlmY3m00CXkq11FcpaCG3sLvZiAfT0ta7P8Hf6C9xZhNbPUougewmMJN57sw3hFzIJC1soQQLClCBkvOSJdKlzDqImS3Yo9hiauBxoPojeZdFWYtc_fTC1PgQi4QbSobX1yjgk6JsL0FD7cxiI5XCLvJVf9qHuM5yuNDDcRo38ws4gx83W4CTivZy71-f1BuV3hbZbLxB2qnZt01artohG52XaYOI4XZJVuML03FJgSUY2VME6HYz-lpRXw749fH5q10NXucncczouIKVU0xaOIqV4-MKHlNE1XhDB3OPjHo3z90-a8YhMBtKwVkRaG55ZHGElNNRKZ3SaP5V6qRLQhcUOjXYJxrEDsRQQexhTBRr2AaXCcN9slLBpw4INQXXUiWpUAY8CA2M5KVMYxsJiF90pA_JpadKPqkhL_Ia3FjkSLjcEy7vPnWFvzv6z-Jzsja87uUPt4P7Y7IusEDEN_adkJX59N2dgoWfmzPPyG-6maEp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+missing+values+in+multi%E2%80%90environmental+trials+on+variance+component+estimates&rft.jtitle=Crop+science&rft.au=Hartung%2C+Jens&rft.au=Piepho%2C+Hans%E2%80%90Peter&rft.date=2021-11-01&rft.issn=0011-183X&rft.eissn=1435-0653&rft.volume=61&rft.issue=6&rft.spage=4087&rft.epage=4097&rft_id=info:doi/10.1002%2Fcsc2.20621&rft.externalDBID=10.1002%252Fcsc2.20621&rft.externalDocID=CSC220621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-183X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-183X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-183X&client=summon |