Cross‐Scale Interface Engineering for Fabricating Super‐Strong and Super‐Tough Aramid nanofiber film

Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 10
Main Authors Jin, Jiongke, Wu, Xun‐En, Wang, Yida, Liang, Huarun, Zou, Mei, Niu, Jiali, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials. This study introduces a cross‐scale interface engineering strategy for fabricating super‐strong and super‐tough poly(p‐phenylene terephthalamide) (PPTA) composite films based on crosslinked PPTA nanofibers and a cyclic freeze–thaw and stretch‐drying method. The obtained film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has high‐temperature resistance (300 °C), showing great potential for advanced applications.
AbstractList Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m − 3 ) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m − 3 ), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials.
Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials. This study introduces a cross‐scale interface engineering strategy for fabricating super‐strong and super‐tough poly(p‐phenylene terephthalamide) (PPTA) composite films based on crosslinked PPTA nanofibers and a cyclic freeze–thaw and stretch‐drying method. The obtained film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has high‐temperature resistance (300 °C), showing great potential for advanced applications.
Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials.
Author Liang, Huarun
Wu, Xun‐En
Jin, Jiongke
Zhang, Yingying
Wang, Yida
Zou, Mei
Niu, Jiali
Author_xml – sequence: 1
  givenname: Jiongke
  surname: Jin
  fullname: Jin, Jiongke
  organization: Tsinghua University
– sequence: 2
  givenname: Xun‐En
  surname: Wu
  fullname: Wu, Xun‐En
  organization: Tsinghua University
– sequence: 3
  givenname: Yida
  surname: Wang
  fullname: Wang, Yida
  organization: Tsinghua University
– sequence: 4
  givenname: Huarun
  surname: Liang
  fullname: Liang, Huarun
  organization: Tsinghua University
– sequence: 5
  givenname: Mei
  surname: Zou
  fullname: Zou, Mei
  organization: Tsinghua University
– sequence: 6
  givenname: Jiali
  surname: Niu
  fullname: Niu, Jiali
  organization: Peking University
– sequence: 7
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkMtKAzEUhoNUsFa3rgdcT82tc1mW2mqh4qIV3IVMclJTZpKamUG68xF8Rp_EGSp16epc-L9z4LtEA-cdIHRD8JhgTO-kNtWYYspJMiHkDA1JQpKYYZoNTj15vUCXdb3DmKQp40O0mwVf19-fX2slS4iWroFgpIJo7rbWAQTrtpHxIVrIIlglm35et3sIPdME343S6dNq49vtWzQNsrI6ctJ5YwsIkbFldYXOjSxruP6tI_SymG9mj_Hq-WE5m65ixTglscJJnhVcGglU6oJkrNAqB814avJMSmBYGc0A40xNeiRTkGucK5PiiaaUjdDt8e4--PcW6kbsfBtc91IwkvKU5inlXWp8TKleQAAj9sFWMhwEwaL3KXqf4uSzA_Ij8GFLOPyTFtP7xdMf-wOkMH_j
Cites_doi 10.1002/adma.202206855
10.1126/science.1157996
10.1016/j.carbpol.2013.08.085
10.1039/D1TA03125B
10.1038/s41467-024-45079-4
10.1021/acsnano.1c00463
10.1002/adfm.202210901
10.1038/s41467-019-10959-7
10.1016/j.eurpolymj.2021.110974
10.1039/C2SM26763B
10.1126/science.adj3549
10.1021/acsnano.1c00749
10.1002/adfm.202316017
10.1021/acsnano.2c01323
10.1039/D3MH00866E
10.1038/s41467-018-05752-x
10.1002/adfm.202200937
10.1021/acs.nanolett.3c01497
10.1021/nn2014003
10.1038/s41467-019-11941-z
10.1021/acsnano.7b00790
10.1021/acsnano.9b07459
10.1002/adma.202101280
10.1007/s40820-022-00853-1
10.1021/acsnano.1c11301
10.1021/acsnano.1c01551
10.1126/science.aaa6502
10.1002/adma.202305479
10.1002/adfm.202008355
10.1002/app.1977.070211017
10.1002/adfm.202000186
10.1038/s41563-022-01292-4
10.1002/adfm.202010944
10.1039/c3nr00196b
10.1002/mame.201100321
10.1038/s41586-020-2161-8
10.1115/1.1857937
10.1021/acsnano.0c02401
10.1126/science.aaf8991
10.1126/sciadv.ade6973
10.1038/nmat3115
10.1021/ma9907587
10.1002/adma.202207350
10.1038/s41467-023-38701-4
10.1038/s41563-020-00892-2
10.1016/j.cej.2021.131924
10.1002/adfm.202308492
10.1007/s10570-023-05497-x
10.1016/j.carbon.2018.03.023
10.1016/j.matt.2022.02.023
10.1016/0032-3861(92)90385-A
10.1002/adfm.201903876
10.1021/acsnano.9b00434
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202416511
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202416511
ADFM202416511
Genre article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  funderid: Z240025
– fundername: Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
  funderid: Z221100002722015
– fundername: National Natural Science Foundation of China
  funderid: 52125201
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
1OB
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3421-c0698b4afae2adb183bdc9ed347f98aae30cfd3e008c5c3428ce9d09cf705d223
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 03:53:28 EDT 2025
Tue Aug 05 12:05:34 EDT 2025
Fri Mar 07 09:41:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3421-c0698b4afae2adb183bdc9ed347f98aae30cfd3e008c5c3428ce9d09cf705d223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8448-3059
PQID 3174729724
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3174729724
crossref_primary_10_1002_adfm_202416511
wiley_primary_10_1002_adfm_202416511_ADFM202416511
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2023; 10
2023; 30
2023; 14
2023; 36
2021; 20
2023; 33
2020; 580
2019; 10
2019; 13
2023; 9
2021; 426
2024; 383
2020; 14
2011; 10
1977; 21
2022; 21
2015; 349
2024; 34
2008; 321
2024; 15
2013; 5
1992; 33
2011; 5
2013; 9
2018; 9
2022; 164
2018; 133
2021; 15
2012; 297
2021; 31
2021; 33
2023; 23
2023
2020; 30
2022; 5
2017; 11
2000; 33
2005; 127
2022; 34
2016; 354
2022; 14
2019; 29
2022; 32
2022; 16
2014; 101
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
Wu J. P. (e_1_2_8_9_1) 2023
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 15
  start-page: 7195
  year: 2021
  publication-title: ACS Nano
– volume: 11
  start-page: 6682
  year: 2017
  publication-title: ACS Nano
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 7578
  year: 2019
  publication-title: ACS Nano
– volume: 15
  start-page: 8676
  year: 2021
  publication-title: ACS Nano
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3040
  year: 2019
  publication-title: Nat. Commun.
– volume: 383
  start-page: 771
  year: 2024
  publication-title: Science
– volume: 14
  start-page: 111
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 354
  start-page: 107
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 4626
  year: 2023
  publication-title: Mater. Horiz.
– volume: 21
  start-page: 2791
  year: 1977
  publication-title: J. Appl. Polym. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 9
  start-page: 826
  year: 2013
  publication-title: Soft Matter
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 15
  start-page: 885
  year: 2024
  publication-title: Nat. Commun.
– volume: 14
  start-page: 8368
  year: 2020
  publication-title: ACS Nano
– volume: 21
  start-page: 1121
  year: 2022
  publication-title: Nat. Mater.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 688
  year: 2020
  publication-title: ACS Nano
– volume: 297
  start-page: 559
  year: 2012
  publication-title: Macromol. Mater. Eng.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 127
  start-page: 197
  year: 2005
  publication-title: J. Eng. Mater. Technol.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 5984
  year: 2022
  publication-title: ACS Nano
– volume: 20
  start-page: 624
  year: 2021
  publication-title: Nat. Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 133
  start-page: 316
  year: 2018
  publication-title: Carbon
– volume: 5
  start-page: 1563
  year: 2022
  publication-title: Matter
– volume: 10
  start-page: 817
  year: 2011
  publication-title: Nat. Mater.
– volume: 16
  start-page: 6700
  year: 2022
  publication-title: ACS Nano
– volume: 5
  start-page: 6945
  year: 2011
  publication-title: ACS Nano
– volume: 9
  start-page: 4193
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3019
  year: 2023
  publication-title: Nat. Commun.
– volume: 349
  start-page: 1083
  year: 2015
  publication-title: Science
– volume: 164
  year: 2022
  publication-title: Eur. Polym. J.
– volume: 10
  start-page: 4111
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 101
  start-page: 272
  year: 2014
  publication-title: Carbohyd Polym
– volume: 33
  start-page: 2472
  year: 2000
  publication-title: Macromolecules
– volume: 33
  start-page: 3932
  year: 1992
  publication-title: Polymer
– volume: 5
  start-page: 3780
  year: 2013
  publication-title: Nanoscale
– volume: 23
  start-page: 8411
  year: 2023
  publication-title: Nano Lett.
– volume: 580
  start-page: 210
  year: 2020
  publication-title: Nature
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 30
  year: 2023
  publication-title: Cellulose
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202206855
– year: 2023
  ident: e_1_2_8_9_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_32_1
  doi: 10.1126/science.1157996
– ident: e_1_2_8_52_1
  doi: 10.1016/j.carbpol.2013.08.085
– ident: e_1_2_8_22_1
  doi: 10.1039/D1TA03125B
– ident: e_1_2_8_44_1
  doi: 10.1038/s41467-024-45079-4
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.1c00463
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202210901
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-019-10959-7
– ident: e_1_2_8_50_1
  doi: 10.1016/j.eurpolymj.2021.110974
– ident: e_1_2_8_51_1
  doi: 10.1039/C2SM26763B
– ident: e_1_2_8_37_1
  doi: 10.1126/science.adj3549
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.1c00749
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.202316017
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.2c01323
– ident: e_1_2_8_43_1
  doi: 10.1039/D3MH00866E
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-018-05752-x
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202200937
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.3c01497
– ident: e_1_2_8_15_1
  doi: 10.1021/nn2014003
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-019-11941-z
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.7b00790
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.9b07459
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202101280
– ident: e_1_2_8_3_1
  doi: 10.1007/s40820-022-00853-1
– ident: e_1_2_8_7_1
  doi: 10.1021/acsnano.1c11301
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.1c01551
– ident: e_1_2_8_38_1
  doi: 10.1126/science.aaa6502
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202305479
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.202008355
– ident: e_1_2_8_5_1
  doi: 10.1002/app.1977.070211017
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202000186
– ident: e_1_2_8_34_1
  doi: 10.1038/s41563-022-01292-4
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202010944
– ident: e_1_2_8_46_1
  doi: 10.1039/c3nr00196b
– ident: e_1_2_8_6_1
  doi: 10.1002/mame.201100321
– ident: e_1_2_8_40_1
  doi: 10.1038/s41586-020-2161-8
– ident: e_1_2_8_30_1
  doi: 10.1115/1.1857937
– ident: e_1_2_8_35_1
  doi: 10.1126/science.adj3549
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.0c02401
– ident: e_1_2_8_39_1
  doi: 10.1126/science.aaf8991
– ident: e_1_2_8_19_1
  doi: 10.1126/sciadv.ade6973
– ident: e_1_2_8_41_1
  doi: 10.1038/nmat3115
– ident: e_1_2_8_53_1
  doi: 10.1021/ma9907587
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.202207350
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-023-38701-4
– ident: e_1_2_8_36_1
  doi: 10.1038/s41563-020-00892-2
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cej.2021.131924
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202308492
– ident: e_1_2_8_4_1
  doi: 10.1007/s10570-023-05497-x
– ident: e_1_2_8_55_1
  doi: 10.1016/j.carbon.2018.03.023
– ident: e_1_2_8_54_1
  doi: 10.1016/j.matt.2022.02.023
– ident: e_1_2_8_49_1
  doi: 10.1016/0032-3861(92)90385-A
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.201903876
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.9b00434
SSID ssj0017734
Score 2.500899
Snippet Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aramid fibers
Brand names
Composite materials
Crosslinking
Display devices
Entanglement
Freeze-thaw
graphene oxide
Hydrogen bonding
Kevlar (trademark)
Mechanical properties
Nanofibers
PPTA nanofibers
reinforcement
super‐strong
super‐tough
Title Cross‐Scale Interface Engineering for Fabricating Super‐Strong and Super‐Tough Aramid nanofiber film
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202416511
https://www.proquest.com/docview/3174729724
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSus4TtKMVSGqkGCgrdQt8hMVaKj6WJj4CfxGfgnnpElTFiQYHeUSx3fn--zcfUboihtpYPmvHWHPSmWEB46gkjgQbIUyAJC1b-ud7x-C3pDdjfxRpYo_54coN9ysZ2TztXVwLuatNWkoV8ZWkkMECvysuNcmbFlU9FjyR7lhmP9WDlyb4OWOCtZGQlub4ptRaQ01q4A1izjxHuJFX_NEk5fmciGa8v0HjeN_PmYf7a7gKO7k9nOAtnR6iHYqJIVH6Llru_z18dkHdWqcbSEaLjWu3IUB-uKYi_zMIWj3l1M9szJ2p_0J81SVlwb2XCB4I5-MFU55CtYt9Ayb8evkGA3j20G356xOaHCkx6jrSBJEbcG44ZpyJWB6EEpGWnksNFGbc-0RaZSnAWhI34q0pY4UiaQJia8AmZygWvqW6lOEZegq6nMKxsGYgYgpiAp1YKQ2JoAlfB1dFxpKpjkRR5JTLtPEjl5Sjl4dNQoFJiuHnCcAkxisI0LK6ohmmvjlKUnnJr4vW2d_ETpH29R6QJax1kC1xWypLwDCLMRlZqbfgSntEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPagH30YUdQ8mnqrtsm3p0agEFTgIJN6afRpUKkG4ePIn-Bv9Jc60tIAXEz1u02m3OzM7307nQciJsMrC8d84EnulclcEjmTKdcDYSm0BIBsf852braDe5bcPfh5NiLkwWX2IwuGGmpHu16jg6JA-n1YNFdpiKjmYoMDH7N4lbOudnqruiwpSXhhmP5YDD0O8vIe8bqPLzufp5-3SFGzOQtbU5tTWicxnm4WaPJ-NR_JMvf8o5Pivz9kgaxNESi8yEdokCybZIqszdQq3ydMlzvnr47MNHDU09SJaoQyduYsC-qU1IbO2QzBujwdmiDTobH-kItHFpQ62BoI3in5P00QkIODSDKntvfR3SLd23bmsO5MmDY6qcOY5yg2iquTCCsOElrBDSK0ioys8tFFVCFNxldUVA1hD-UhSVSbSbqRs6PoawMkuWUxeE7NHqAo9zXzBQD44t2A0patDE1hlrA3gFF8ipzmL4kFWiyPOqi6zGFcvLlavRMo5B-OJTr7FgJQ4HCVCxkuEpaz45SnxxVWtWYz2_0J0TJbrnWYjbty07g7ICkOFSAPYymRxNBybQ0A0I3mUyuw3TgbxLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSAgG3ohCAQ9ITAHHdZJmrFqi8ihCQKVukZ-oQENV2oWJn8Bv5JdwTpqQsiDB6CiXOL4732fH9x1CR9xIA8t_7QhbK5UR7juCSuJAsBXKAEDWns137lz77S676Hm9UhZ_xg9RbLhZz0jna-vgQ2VOv0lDuTI2kxwikO_Z5N4F5pO6tevWbUEg5QZB9l_Zd-0JL7eX0zYSejorPxuWvrFmGbGmISdaRTzvbHbS5OlkMhYn8u0Hj-N_vmYNrUzxKG5kBrSO5nSygZZLLIWb6LFpu_z5_nEH-tQ43UM0XGpcugsD9sURF1nRIWjfTYZ6ZGXsVvsD5okqLt3bwkDwRj7oK5zwBMxb6BE2_efBFupGZ_fNtjMt0eDIGqOuI4kf1gXjhmvKlYD5QSgZalVjgQnrnOsakUbVNCAN6VmRutShIqE0AfEUQJNtNJ-8JHoHYRm4inqcgnUwZiBkCqIC7RupjfFhDV9Bx7mG4mHGxBFnnMs0tqMXF6NXQdVcgfHUI19jwEkMFhIBZRVEU0388pS40Yo6RWv3L0KHaPGmFcVX59eXe2iJWm9IT69V0fx4NNH7AGfG4iC12C-nU-_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross%E2%80%90Scale+Interface+Engineering+for+Fabricating+Super%E2%80%90Strong+and+Super%E2%80%90Tough+Aramid+nanofiber+film&rft.jtitle=Advanced+functional+materials&rft.au=Jin%2C+Jiongke&rft.au=Xun%E2%80%90En+Wu&rft.au=Wang%2C+Yida&rft.au=Liang%2C+Huarun&rft.date=2025-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202416511&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon