Cross‐Scale Interface Engineering for Fabricating Super‐Strong and Super‐Tough Aramid nanofiber film
Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials.
This study introduces a cross‐scale interface engineering strategy for fabricating super‐strong and super‐tough poly(p‐phenylene terephthalamide) (PPTA) composite films based on crosslinked PPTA nanofibers and a cyclic freeze–thaw and stretch‐drying method. The obtained film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has high‐temperature resistance (300 °C), showing great potential for advanced applications. |
---|---|
AbstractList | Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m − 3 ) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m − 3 ), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials. Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials. This study introduces a cross‐scale interface engineering strategy for fabricating super‐strong and super‐tough poly(p‐phenylene terephthalamide) (PPTA) composite films based on crosslinked PPTA nanofibers and a cyclic freeze–thaw and stretch‐drying method. The obtained film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has high‐temperature resistance (300 °C), showing great potential for advanced applications. Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance applications despite the challenges it presents in processing and integration with other materials. Existing top–down methods for preparing PPTA composites result in significantly reduced strength (<200 MPa) and toughness (<10 MJ·m−3) due to insufficient interfacial interactions, limiting their application. Here, a cross‐scale interface engineering strategy is reported for fabricating super‐strong and super‐tough PPTA composite films. At the microscale, a synergistic crosslinking strategy of physical entanglement and hydrogen bonding to crosslink PPTA nanofibers is employed. At the macroscale, the network using a cyclic freeze–thaw and the stretch‐drying method is reinforced. The PPTA nanofiber composite film is super‐strong (854.6 MPa), super‐tough (106.2 MJ·m−3), and has a high‐temperature resistance (300 °C). Moreover, the bottom–up approach enables the direct synthesis of PPTA nanofibers, significantly reducing the preparation time from 7 days to 0.5 h. Furthermore, it is demonstrated that the composite film can be integrated into a robust and intelligent sensing‐display device that responds to external mechanical and heat injuries for firefighter's protection. This work provides an efficient strategy for fabricating high‐performance PPTA composites, paving the way for their practical use as durable protective materials. |
Author | Liang, Huarun Wu, Xun‐En Jin, Jiongke Zhang, Yingying Wang, Yida Zou, Mei Niu, Jiali |
Author_xml | – sequence: 1 givenname: Jiongke surname: Jin fullname: Jin, Jiongke organization: Tsinghua University – sequence: 2 givenname: Xun‐En surname: Wu fullname: Wu, Xun‐En organization: Tsinghua University – sequence: 3 givenname: Yida surname: Wang fullname: Wang, Yida organization: Tsinghua University – sequence: 4 givenname: Huarun surname: Liang fullname: Liang, Huarun organization: Tsinghua University – sequence: 5 givenname: Mei surname: Zou fullname: Zou, Mei organization: Tsinghua University – sequence: 6 givenname: Jiali surname: Niu fullname: Niu, Jiali organization: Peking University – sequence: 7 givenname: Yingying orcidid: 0000-0002-8448-3059 surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkMtKAzEUhoNUsFa3rgdcT82tc1mW2mqh4qIV3IVMclJTZpKamUG68xF8Rp_EGSp16epc-L9z4LtEA-cdIHRD8JhgTO-kNtWYYspJMiHkDA1JQpKYYZoNTj15vUCXdb3DmKQp40O0mwVf19-fX2slS4iWroFgpIJo7rbWAQTrtpHxIVrIIlglm35et3sIPdME343S6dNq49vtWzQNsrI6ctJ5YwsIkbFldYXOjSxruP6tI_SymG9mj_Hq-WE5m65ixTglscJJnhVcGglU6oJkrNAqB814avJMSmBYGc0A40xNeiRTkGucK5PiiaaUjdDt8e4--PcW6kbsfBtc91IwkvKU5inlXWp8TKleQAAj9sFWMhwEwaL3KXqf4uSzA_Ij8GFLOPyTFtP7xdMf-wOkMH_j |
Cites_doi | 10.1002/adma.202206855 10.1126/science.1157996 10.1016/j.carbpol.2013.08.085 10.1039/D1TA03125B 10.1038/s41467-024-45079-4 10.1021/acsnano.1c00463 10.1002/adfm.202210901 10.1038/s41467-019-10959-7 10.1016/j.eurpolymj.2021.110974 10.1039/C2SM26763B 10.1126/science.adj3549 10.1021/acsnano.1c00749 10.1002/adfm.202316017 10.1021/acsnano.2c01323 10.1039/D3MH00866E 10.1038/s41467-018-05752-x 10.1002/adfm.202200937 10.1021/acs.nanolett.3c01497 10.1021/nn2014003 10.1038/s41467-019-11941-z 10.1021/acsnano.7b00790 10.1021/acsnano.9b07459 10.1002/adma.202101280 10.1007/s40820-022-00853-1 10.1021/acsnano.1c11301 10.1021/acsnano.1c01551 10.1126/science.aaa6502 10.1002/adma.202305479 10.1002/adfm.202008355 10.1002/app.1977.070211017 10.1002/adfm.202000186 10.1038/s41563-022-01292-4 10.1002/adfm.202010944 10.1039/c3nr00196b 10.1002/mame.201100321 10.1038/s41586-020-2161-8 10.1115/1.1857937 10.1021/acsnano.0c02401 10.1126/science.aaf8991 10.1126/sciadv.ade6973 10.1038/nmat3115 10.1021/ma9907587 10.1002/adma.202207350 10.1038/s41467-023-38701-4 10.1038/s41563-020-00892-2 10.1016/j.cej.2021.131924 10.1002/adfm.202308492 10.1007/s10570-023-05497-x 10.1016/j.carbon.2018.03.023 10.1016/j.matt.2022.02.023 10.1016/0032-3861(92)90385-A 10.1002/adfm.201903876 10.1021/acsnano.9b00434 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202416511 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202416511 ADFM202416511 |
Genre | article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation funderid: Z240025 – fundername: Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park funderid: Z221100002722015 – fundername: National Natural Science Foundation of China funderid: 52125201 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 1OB 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3421-c0698b4afae2adb183bdc9ed347f98aae30cfd3e008c5c3428ce9d09cf705d223 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 03:53:28 EDT 2025 Tue Aug 05 12:05:34 EDT 2025 Fri Mar 07 09:41:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3421-c0698b4afae2adb183bdc9ed347f98aae30cfd3e008c5c3428ce9d09cf705d223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8448-3059 |
PQID | 3174729724 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3174729724 crossref_primary_10_1002_adfm_202416511 wiley_primary_10_1002_adfm_202416511_ADFM202416511 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2023; 10 2023; 30 2023; 14 2023; 36 2021; 20 2023; 33 2020; 580 2019; 10 2019; 13 2023; 9 2021; 426 2024; 383 2020; 14 2011; 10 1977; 21 2022; 21 2015; 349 2024; 34 2008; 321 2024; 15 2013; 5 1992; 33 2011; 5 2013; 9 2018; 9 2022; 164 2018; 133 2021; 15 2012; 297 2021; 31 2021; 33 2023; 23 2023 2020; 30 2022; 5 2017; 11 2000; 33 2005; 127 2022; 34 2016; 354 2022; 14 2019; 29 2022; 32 2022; 16 2014; 101 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 Wu J. P. (e_1_2_8_9_1) 2023 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 15 start-page: 7195 year: 2021 publication-title: ACS Nano – volume: 11 start-page: 6682 year: 2017 publication-title: ACS Nano – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 7578 year: 2019 publication-title: ACS Nano – volume: 15 start-page: 8676 year: 2021 publication-title: ACS Nano – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 3040 year: 2019 publication-title: Nat. Commun. – volume: 383 start-page: 771 year: 2024 publication-title: Science – volume: 14 start-page: 111 year: 2022 publication-title: Nano‐Micro Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 354 start-page: 107 year: 2016 publication-title: Science – volume: 10 start-page: 4626 year: 2023 publication-title: Mater. Horiz. – volume: 21 start-page: 2791 year: 1977 publication-title: J. Appl. Polym. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 9 start-page: 826 year: 2013 publication-title: Soft Matter – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 15 start-page: 885 year: 2024 publication-title: Nat. Commun. – volume: 14 start-page: 8368 year: 2020 publication-title: ACS Nano – volume: 21 start-page: 1121 year: 2022 publication-title: Nat. Mater. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 688 year: 2020 publication-title: ACS Nano – volume: 297 start-page: 559 year: 2012 publication-title: Macromol. Mater. Eng. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 127 start-page: 197 year: 2005 publication-title: J. Eng. Mater. Technol. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 5984 year: 2022 publication-title: ACS Nano – volume: 20 start-page: 624 year: 2021 publication-title: Nat. Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 133 start-page: 316 year: 2018 publication-title: Carbon – volume: 5 start-page: 1563 year: 2022 publication-title: Matter – volume: 10 start-page: 817 year: 2011 publication-title: Nat. Mater. – volume: 16 start-page: 6700 year: 2022 publication-title: ACS Nano – volume: 5 start-page: 6945 year: 2011 publication-title: ACS Nano – volume: 9 start-page: 4193 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 3019 year: 2023 publication-title: Nat. Commun. – volume: 349 start-page: 1083 year: 2015 publication-title: Science – volume: 164 year: 2022 publication-title: Eur. Polym. J. – volume: 10 start-page: 4111 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 101 start-page: 272 year: 2014 publication-title: Carbohyd Polym – volume: 33 start-page: 2472 year: 2000 publication-title: Macromolecules – volume: 33 start-page: 3932 year: 1992 publication-title: Polymer – volume: 5 start-page: 3780 year: 2013 publication-title: Nanoscale – volume: 23 start-page: 8411 year: 2023 publication-title: Nano Lett. – volume: 580 start-page: 210 year: 2020 publication-title: Nature – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 30 year: 2023 publication-title: Cellulose – ident: e_1_2_8_12_1 doi: 10.1002/adma.202206855 – year: 2023 ident: e_1_2_8_9_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_32_1 doi: 10.1126/science.1157996 – ident: e_1_2_8_52_1 doi: 10.1016/j.carbpol.2013.08.085 – ident: e_1_2_8_22_1 doi: 10.1039/D1TA03125B – ident: e_1_2_8_44_1 doi: 10.1038/s41467-024-45079-4 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.1c00463 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202210901 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-019-10959-7 – ident: e_1_2_8_50_1 doi: 10.1016/j.eurpolymj.2021.110974 – ident: e_1_2_8_51_1 doi: 10.1039/C2SM26763B – ident: e_1_2_8_37_1 doi: 10.1126/science.adj3549 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.1c00749 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.202316017 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.2c01323 – ident: e_1_2_8_43_1 doi: 10.1039/D3MH00866E – ident: e_1_2_8_20_1 doi: 10.1038/s41467-018-05752-x – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202200937 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.3c01497 – ident: e_1_2_8_15_1 doi: 10.1021/nn2014003 – ident: e_1_2_8_42_1 doi: 10.1038/s41467-019-11941-z – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.7b00790 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.9b07459 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202101280 – ident: e_1_2_8_3_1 doi: 10.1007/s40820-022-00853-1 – ident: e_1_2_8_7_1 doi: 10.1021/acsnano.1c11301 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.1c01551 – ident: e_1_2_8_38_1 doi: 10.1126/science.aaa6502 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202305479 – ident: e_1_2_8_48_1 doi: 10.1002/adfm.202008355 – ident: e_1_2_8_5_1 doi: 10.1002/app.1977.070211017 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202000186 – ident: e_1_2_8_34_1 doi: 10.1038/s41563-022-01292-4 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202010944 – ident: e_1_2_8_46_1 doi: 10.1039/c3nr00196b – ident: e_1_2_8_6_1 doi: 10.1002/mame.201100321 – ident: e_1_2_8_40_1 doi: 10.1038/s41586-020-2161-8 – ident: e_1_2_8_30_1 doi: 10.1115/1.1857937 – ident: e_1_2_8_35_1 doi: 10.1126/science.adj3549 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.0c02401 – ident: e_1_2_8_39_1 doi: 10.1126/science.aaf8991 – ident: e_1_2_8_19_1 doi: 10.1126/sciadv.ade6973 – ident: e_1_2_8_41_1 doi: 10.1038/nmat3115 – ident: e_1_2_8_53_1 doi: 10.1021/ma9907587 – ident: e_1_2_8_18_1 doi: 10.1002/adma.202207350 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-023-38701-4 – ident: e_1_2_8_36_1 doi: 10.1038/s41563-020-00892-2 – ident: e_1_2_8_21_1 doi: 10.1016/j.cej.2021.131924 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202308492 – ident: e_1_2_8_4_1 doi: 10.1007/s10570-023-05497-x – ident: e_1_2_8_55_1 doi: 10.1016/j.carbon.2018.03.023 – ident: e_1_2_8_54_1 doi: 10.1016/j.matt.2022.02.023 – ident: e_1_2_8_49_1 doi: 10.1016/0032-3861(92)90385-A – ident: e_1_2_8_45_1 doi: 10.1002/adfm.201903876 – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.9b00434 |
SSID | ssj0017734 |
Score | 2.500899 |
Snippet | Poly (p‐phenylene terephthalamide) (PPTA), known for its exceptional mechanical properties under the brand name Kevlar, finds extensive use in high‐performance... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aramid fibers Brand names Composite materials Crosslinking Display devices Entanglement Freeze-thaw graphene oxide Hydrogen bonding Kevlar (trademark) Mechanical properties Nanofibers PPTA nanofibers reinforcement super‐strong super‐tough |
Title | Cross‐Scale Interface Engineering for Fabricating Super‐Strong and Super‐Tough Aramid nanofiber film |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202416511 https://www.proquest.com/docview/3174729724 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSus4TtKMVSGqkGCgrdQt8hMVaKj6WJj4CfxGfgnnpElTFiQYHeUSx3fn--zcfUboihtpYPmvHWHPSmWEB46gkjgQbIUyAJC1b-ud7x-C3pDdjfxRpYo_54coN9ysZ2TztXVwLuatNWkoV8ZWkkMECvysuNcmbFlU9FjyR7lhmP9WDlyb4OWOCtZGQlub4ptRaQ01q4A1izjxHuJFX_NEk5fmciGa8v0HjeN_PmYf7a7gKO7k9nOAtnR6iHYqJIVH6Llru_z18dkHdWqcbSEaLjWu3IUB-uKYi_zMIWj3l1M9szJ2p_0J81SVlwb2XCB4I5-MFU55CtYt9Ayb8evkGA3j20G356xOaHCkx6jrSBJEbcG44ZpyJWB6EEpGWnksNFGbc-0RaZSnAWhI34q0pY4UiaQJia8AmZygWvqW6lOEZegq6nMKxsGYgYgpiAp1YKQ2JoAlfB1dFxpKpjkRR5JTLtPEjl5Sjl4dNQoFJiuHnCcAkxisI0LK6ohmmvjlKUnnJr4vW2d_ETpH29R6QJax1kC1xWypLwDCLMRlZqbfgSntEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPagH30YUdQ8mnqrtsm3p0agEFTgIJN6afRpUKkG4ePIn-Bv9Jc60tIAXEz1u02m3OzM7307nQciJsMrC8d84EnulclcEjmTKdcDYSm0BIBsf852braDe5bcPfh5NiLkwWX2IwuGGmpHu16jg6JA-n1YNFdpiKjmYoMDH7N4lbOudnqruiwpSXhhmP5YDD0O8vIe8bqPLzufp5-3SFGzOQtbU5tTWicxnm4WaPJ-NR_JMvf8o5Pivz9kgaxNESi8yEdokCybZIqszdQq3ydMlzvnr47MNHDU09SJaoQyduYsC-qU1IbO2QzBujwdmiDTobH-kItHFpQ62BoI3in5P00QkIODSDKntvfR3SLd23bmsO5MmDY6qcOY5yg2iquTCCsOElrBDSK0ioys8tFFVCFNxldUVA1hD-UhSVSbSbqRs6PoawMkuWUxeE7NHqAo9zXzBQD44t2A0patDE1hlrA3gFF8ipzmL4kFWiyPOqi6zGFcvLlavRMo5B-OJTr7FgJQ4HCVCxkuEpaz45SnxxVWtWYz2_0J0TJbrnWYjbty07g7ICkOFSAPYymRxNBybQ0A0I3mUyuw3TgbxLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSAgG3ohCAQ9ITAHHdZJmrFqi8ihCQKVukZ-oQENV2oWJn8Bv5JdwTpqQsiDB6CiXOL4732fH9x1CR9xIA8t_7QhbK5UR7juCSuJAsBXKAEDWns137lz77S676Hm9UhZ_xg9RbLhZz0jna-vgQ2VOv0lDuTI2kxwikO_Z5N4F5pO6tevWbUEg5QZB9l_Zd-0JL7eX0zYSejorPxuWvrFmGbGmISdaRTzvbHbS5OlkMhYn8u0Hj-N_vmYNrUzxKG5kBrSO5nSygZZLLIWb6LFpu_z5_nEH-tQ43UM0XGpcugsD9sURF1nRIWjfTYZ6ZGXsVvsD5okqLt3bwkDwRj7oK5zwBMxb6BE2_efBFupGZ_fNtjMt0eDIGqOuI4kf1gXjhmvKlYD5QSgZalVjgQnrnOsakUbVNCAN6VmRutShIqE0AfEUQJNtNJ-8JHoHYRm4inqcgnUwZiBkCqIC7RupjfFhDV9Bx7mG4mHGxBFnnMs0tqMXF6NXQdVcgfHUI19jwEkMFhIBZRVEU0388pS40Yo6RWv3L0KHaPGmFcVX59eXe2iJWm9IT69V0fx4NNH7AGfG4iC12C-nU-_k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross%E2%80%90Scale+Interface+Engineering+for+Fabricating+Super%E2%80%90Strong+and+Super%E2%80%90Tough+Aramid+nanofiber+film&rft.jtitle=Advanced+functional+materials&rft.au=Jin%2C+Jiongke&rft.au=Xun%E2%80%90En+Wu&rft.au=Wang%2C+Yida&rft.au=Liang%2C+Huarun&rft.date=2025-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202416511&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |