Correlation between insulin resistance and intramyocellular lipid levels in rats

Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this st...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 53; no. 6; pp. 1275 - 1282
Main Authors Kuhlmann, J., Neumann-Haefelin, C., Belz, U., Kramer, W., Juretschke, H.-P., Herling, A. W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this study was to investigate the interrelation between IS indices determined by the glucose clamp technique (glucose disposal (GD), exogenous glucose infusion rates (GIR)) and IMCL content in the tibialis (TIB) and the soleus (SOL) muscle obtained by magnetic resonance spectroscopy in different rat models of IR. Diet‐induced insulin‐resistant Wistar rats as well as genetic disease models (ZDF rats) were used. In both muscles, elevated IMCL correlated with an impaired IS in all models of IR. The correlation of IMCL with both parameters for IS was comparable in TIB and SOL. The best fit between IMCL and IS was obtained using TIB and GIR data (r = −0.69, P < 0.001). Diabetic male ZDF rats exhibited comparatively low IMCL levels due to their catabolic state: exclusion of this group improved r. In summary, IMCL, especially in TIB, is a valid biomarker for IS in various rat models of IR with the advantage of a fast repeatable noninvasive measurement in individual animals. Magn Reson Med 53:1275–1282, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this study was to investigate the interrelation between IS indices determined by the glucose clamp technique (glucose disposal (GD), exogenous glucose infusion rates (GIR)) and IMCL content in the tibialis (TIB) and the soleus (SOL) muscle obtained by magnetic resonance spectroscopy in different rat models of IR. Diet‐induced insulin‐resistant Wistar rats as well as genetic disease models (ZDF rats) were used. In both muscles, elevated IMCL correlated with an impaired IS in all models of IR. The correlation of IMCL with both parameters for IS was comparable in TIB and SOL. The best fit between IMCL and IS was obtained using TIB and GIR data (r = −0.69, P < 0.001). Diabetic male ZDF rats exhibited comparatively low IMCL levels due to their catabolic state: exclusion of this group improved r. In summary, IMCL, especially in TIB, is a valid biomarker for IS in various rat models of IR with the advantage of a fast repeatable noninvasive measurement in individual animals. Magn Reson Med 53:1275–1282, 2005. © 2005 Wiley‐Liss, Inc.
Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this study was to investigate the interrelation between IS indices determined by the glucose clamp technique (glucose disposal (GD), exogenous glucose infusion rates (GIR)) and IMCL content in the tibialis (TIB) and the soleus (SOL) muscle obtained by magnetic resonance spectroscopy in different rat models of IR. Diet-induced insulin-resistant Wistar rats as well as genetic disease models (ZDF rats) were used. In both muscles, elevated IMCL correlated with an impaired IS in all models of IR. The correlation of IMCL with both parameters for IS was comparable in TIB and SOL. The best fit between IMCL and IS was obtained using TIB and GIR data (r = -0.69, P < 0.001). Diabetic male ZDF rats exhibited comparatively low IMCL levels due to their catabolic state: exclusion of this group improved r. In summary, IMCL, especially in TIB, is a valid biomarker for IS in various rat models of IR with the advantage of a fast repeatable noninvasive measurement in individual animals.
Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this study was to investigate the interrelation between IS indices determined by the glucose clamp technique (glucose disposal (GD), exogenous glucose infusion rates (GIR)) and IMCL content in the tibialis (TIB) and the soleus (SOL) muscle obtained by magnetic resonance spectroscopy in different rat models of IR. Diet-induced insulin-resistant Wistar rats as well as genetic disease models (ZDF rats) were used. In both muscles, elevated IMCL correlated with an impaired IS in all models of IR. The correlation of IMCL with both parameters for IS was comparable in TIB and SOL. The best fit between IMCL and IS was obtained using TIB and GIR data (r = -0.69, P &lt; 0.001). Diabetic male ZDF rats exhibited comparatively low IMCL levels due to their catabolic state: exclusion of this group improved r. In summary, IMCL, especially in TIB, is a valid biomarker for IS in various rat models of IR with the advantage of a fast repeatable noninvasive measurement in individual animals.
Abstract Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin sensitivity (IS) was found in nonathletic humans, whereas in animal models only a few validation studies have been performed. The aim of this study was to investigate the interrelation between IS indices determined by the glucose clamp technique (glucose disposal (GD), exogenous glucose infusion rates (GIR)) and IMCL content in the tibialis (TIB) and the soleus (SOL) muscle obtained by magnetic resonance spectroscopy in different rat models of IR. Diet‐induced insulin‐resistant Wistar rats as well as genetic disease models (ZDF rats) were used. In both muscles, elevated IMCL correlated with an impaired IS in all models of IR. The correlation of IMCL with both parameters for IS was comparable in TIB and SOL. The best fit between IMCL and IS was obtained using TIB and GIR data (r = −0.69, P < 0.001). Diabetic male ZDF rats exhibited comparatively low IMCL levels due to their catabolic state: exclusion of this group improved r . In summary, IMCL, especially in TIB, is a valid biomarker for IS in various rat models of IR with the advantage of a fast repeatable noninvasive measurement in individual animals. Magn Reson Med 53:1275–1282, 2005. © 2005 Wiley‐Liss, Inc.
Author Kuhlmann, J.
Kramer, W.
Herling, A. W.
Belz, U.
Neumann-Haefelin, C.
Juretschke, H.-P.
Author_xml – sequence: 1
  givenname: J.
  surname: Kuhlmann
  fullname: Kuhlmann, J.
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
– sequence: 2
  givenname: C.
  surname: Neumann-Haefelin
  fullname: Neumann-Haefelin, C.
  email: claudia.neumann-haefelin@sanofi-aventis.com
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
– sequence: 3
  givenname: U.
  surname: Belz
  fullname: Belz, U.
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
– sequence: 4
  givenname: W.
  surname: Kramer
  fullname: Kramer, W.
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
– sequence: 5
  givenname: H.-P.
  surname: Juretschke
  fullname: Juretschke, H.-P.
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
– sequence: 6
  givenname: A. W.
  surname: Herling
  fullname: Herling, A. W.
  organization: Aventis Pharma Deutschland GmbH, 65926 Frankfurt a.M., Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15906287$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQhi1U1G4_DvwBlBNSD2nHjp3YR7SCtqKlVVXK0XLiiWRwnMVO2u6_x8sucEKcRho9887Mc0j2whiQkDcUzigAOx_icMZAAH1FFlQwVjKh-B5ZQMOhrKjiB-QwpW8AoFTD98kBFQpqJpsFuVuOMaI3kxtD0eL0jBgKF9LsXSgiJpcmEzosTLC5PUUzrMcOvZ-9iYV3K2cLj0_oU7HhzZSOyeve-IQnu3pEvnz88LC8LK9vL66W76_LruKMlh2A7I1qOVPSWNnX1HQNs7YTqkYjQaKkoqnaXglLeVUb01q0VFZKdbwRdXVE3m1zV3H8MWOa9ODS5jITcJyTrhtZc1b_H8x68ibgGTzdgl0cU4rY61V0g4lrTUFvPOvsWf_ynNm3u9C5HdD-JXdiM3C-BZ6dx_W_k_TN_c3vyHI7kZXjy58JE7_nX6pG6K-fL7S6VHD_6fFRq-onsIWY3A
CitedBy_id crossref_primary_10_1093_ajcn_86_5_1316
crossref_primary_10_1210_en_2007_1214
crossref_primary_10_3390_nu16101467
crossref_primary_10_5897_AJPP2014_4175
crossref_primary_10_1152_ajpendo_00459_2005
crossref_primary_10_3748_wjg_v12_i36_5813
crossref_primary_10_1096_fj_08_112318
crossref_primary_10_1155_2012_981896
crossref_primary_10_1016_j_acra_2008_12_007
crossref_primary_10_1002_ptr_5230
crossref_primary_10_1152_ajpendo_00337_2017
crossref_primary_10_1002_mrm_22149
crossref_primary_10_1159_000360289
crossref_primary_10_1002_mrm_20924
crossref_primary_10_1016_j_rvsc_2010_05_023
crossref_primary_10_1177_135965350801300309
crossref_primary_10_1210_jc_2009_0352
crossref_primary_10_1002_nbm_1096
crossref_primary_10_1186_s12906_016_1176_z
crossref_primary_10_1002_nbm_1691
crossref_primary_10_1002_mrm_23321
crossref_primary_10_1002_mrm_23121
crossref_primary_10_1152_ajpendo_00178_2007
crossref_primary_10_1142_S0192415X10008470
crossref_primary_10_1371_journal_pone_0074528
crossref_primary_10_1016_j_ddtec_2011_11_009
crossref_primary_10_1038_oby_2008_268
crossref_primary_10_4137_MRI_S19362
Cites_doi 10.2337/diabetes.52.1.138
10.1046/j.1463-1326.2003.00268.x
10.1006/abio.1993.1363
10.2337/diabetes.51.4.1022
10.1056/NEJM199312303292703
10.1002/mrm.1910290203
10.1210/edrv-6-1-45
10.2337/diacare.46.10.1579
10.2337/diabetes.50.2.411
10.1016/S1097-2765(05)00015-8
10.1210/jcem.86.12.8075
10.1152/jappl.2001.90.4.1267
10.1172/JCI5001
10.2337/diabetes.49.5.677
10.1046/j.1463-1326.2000.00099.x
10.1053/meta.2003.50040
10.2337/diab.45.12.1661
10.2337/diabetes.43.10.1203
10.1007/s001250051123
10.2337/diab.43.8.1066
10.2337/diacare.14.3.173
10.1002/mrm.1910380107
10.1152/ajpendo.1979.237.3.E214
10.2337/diabetes.51.1.7
10.2337/diabetes.48.5.1113
10.1210/endo-118-2-674
10.1210/jc.2002-021674
10.2337/diabetes.51.10.3025
10.1002/mrm.1910370403
10.1006/jmre.1997.1244
10.2337/diabetes.51.3.797
10.1152/ajpendo.1999.276.5.E977
10.2337/diabetes.48.6.1270
10.1016/S0002-9149(02)02554-7
10.1002/mrm.10518
10.2337/diab.30.12.1000
10.1152/ajpendo.2000.278.3.E535
10.2337/diabetes.48.8.1600
10.1096/fasebj.9.2.7781930
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.20501
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1282
ExternalDocumentID 10_1002_mrm_20501
15906287
MRM20501
ark_67375_WNG_9H90RKVV_9
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZA5
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3421-c008fa9b4298ad8f61ac72ddc596ea808e81573bf95d1436aabded18399c47563
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Sat Aug 17 01:53:39 EDT 2024
Sat Aug 17 01:28:46 EDT 2024
Fri Aug 23 00:56:09 EDT 2024
Sat Sep 28 07:43:57 EDT 2024
Sat Aug 24 00:57:37 EDT 2024
Wed Jan 17 05:08:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3421-c008fa9b4298ad8f61ac72ddc596ea808e81573bf95d1436aabded18399c47563
Notes ArticleID:MRM20501
istex:802976D1B737F91AF8CA95B2F631C28B5965E314
ark:/67375/WNG-9H90RKVV-9
J. Kuhlmann and C. Neumann‐Haefelin contributed equally to this study
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20501
PMID 15906287
PQID 19415704
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67864266
proquest_miscellaneous_19415704
crossref_primary_10_1002_mrm_20501
pubmed_primary_15906287
wiley_primary_10_1002_mrm_20501_MRM20501
istex_primary_ark_67375_WNG_9H90RKVV_9
PublicationCentury 2000
PublicationDate June 2005
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: June 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600-1606.
Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999; 42: 113-116.
Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43: 1066-1084.
Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661-1669.
Kuhlmann J, Neumann-Haefelin C, Belz U, Kalisch J, Juretschke HP, Stein M, Kleinschmidt E, Kramer W, Herling AW. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes 2003; 52: 138-144.
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43.
Bergman RN, Finegood DT, Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev 1985; 6: 45-86.
DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30: 1000-1007.
Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993; 29: 158-167.
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6: 87-97.
Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen CD, Haring HU. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999; 48: 1113-1119.
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214-E223.
Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999; 276: E977-E989.
Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 2001; 50: 411-417.
Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103: 253-259.
Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 2002; 90: 11G-18G.
Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46: 1579-1585.
McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7-18.
Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, Savoye M, Rothman DL, Shulman GI, Caprio S. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002; 51: 1022-1027.
Beylot M, Previs SF, David F, Brunengraber H. Determination of the 13C-labeling pattern of glucose by gas chromatography-mass spectrometry. Anal Biochem 1993; 212: 526-531.
Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, Tschritter O, Niess A, Brechtel K, Fritsche A, Claussen C, Jacob S, Schick F, Haring HU, Stumvoll M. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 2003; 88: 1785-1791.
Simoneau JA, Colberg SR, Thaete FL, Kelley DE. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 1995; 9: 273-278.
Neumann-Haefelin C, Kuhlmann J, Belz U, Kalisch J, Quint M, Gerl M, Juretschke HP, Herling AW. Determinants of intramyocellular lipid concentrations in rat hindleg muscle. Magn Reson Med 2003; 50: 242-248.
Terrettaz J, Assimacopoulos-Jeannet F, Jeanrenaud B. Severe hepatic and peripheral insulin resistance as evidenced by euglycemic clamps in genetically obese fa/fa rats. Endocrinology 1986; 118: 674-678.
Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270-1274.
Scheen AJ, Paquot N, Letiexhe MR, Castillo MJ, Lefebvre PJ. [ How to explore insulin sensitivity in man?]. Ann Endocrinol (Paris) 1995; 56: 523-530.
Hockings PD, Changani KK, Saeed N, Reid DG, Birmingham J, O'Brien P, Osborne J, Toseland CN, Buckingham RE. Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats. Diabetes Obes Metab 2003; 5: 234-243.
Oakes ND, Kennedy CJ, Jenkins AB, Laybutt DR, Chisholm DJ, Kraegen EW. A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 1994; 43: 1203-1210.
Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997; 37: 484-493.
Ntziachristos V, Kreis R, Boesch C, Quistorff B. Dipolar resonance frequency shifts in 1H MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes postmortem. Magn Reson Med 1997; 38: 33-39.
Jucker BM, Schaeffer TR, Haimbach RE, Mayer ME, Ohlstein DH, Smith SA, Cobitz AR, Sarkar SK. Reduction of intramyocellular lipid following short-term rosiglitazone treatment in Zucker fatty rats: an in vivo nuclear magnetic resonance study. Metabolism 2003; 52: 218-225.
Nawano M, Oku A, Ueta K, Umebayashi I, Ishirahara T, Arakawa K, Saito A, Anai M, Kikuchi M, Asano T. Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 2000; 278: E535-E543.
Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51: 797-802.
Hwang JH, Pan JW, Heydari S, Hetherington HP, Stein DT. Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 2001; 90: 1267-1274.
Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993; 329: 1988-1992.
Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755-5761.
Anderwald C, Bernroider E, Krssak M, Stingl H, Brehm A, Bischof MG, Nowotny P, Roden M, Waldhausl W. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes 2002; 51: 3025-3032.
Smith SA, Lister CA, Toseland CD, Buckingham RE. Rosiglitazone prevents the onset of hyperglycaemia and proteinuria in the Zucker diabetic fatty rat. Diabetes Obes Metab 2000; 2: 363-372.
DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-194.
Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677-683.
1986; 118
1995; 9
2001; 50
1993; 29
1991; 14
1993; 329
2000; 49
2001; 90
2000; 6
2000; 278
2002; 51
1995; 56
1999; 48
1997; 46
1985; 6
1999; 42
2000; 2
1999; 103
2003; 50
2003; 52
1994; 43
2001; 86
1979; 237
1997; 129
1997; 37
1997; 38
2003; 5
1999; 276
2002; 90
1993; 212
1981; 30
2003; 88
1996; 45
e_1_2_6_31_2
e_1_2_6_30_2
Scheen AJ (e_1_2_6_7_2) 1995; 56
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 329
  start-page: 1988
  year: 1993
  end-page: 1992
  article-title: Insulin resistance and insulin secretory dysfunction as precursors of non‐insulin‐dependent diabetes mellitus. Prospective studies of Pima Indians
  publication-title: N Engl J Med
– volume: 42
  start-page: 113
  year: 1999
  end-page: 116
  article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study
  publication-title: Diabetologia
– volume: 43
  start-page: 1203
  year: 1994
  end-page: 1210
  article-title: A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat
  publication-title: Diabetes
– volume: 43
  start-page: 1066
  year: 1994
  end-page: 1084
  article-title: Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes
  publication-title: Diabetes
– volume: 86
  start-page: 5755
  year: 2001
  end-page: 5761
  article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance‐trained athletes
  publication-title: J Clin Endocrinol Metab
– volume: 14
  start-page: 173
  year: 1991
  end-page: 194
  article-title: Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease
  publication-title: Diabetes Care
– volume: 90
  start-page: 1267
  year: 2001
  end-page: 1274
  article-title: Regional differences in intramyocellular lipids in humans observed by in vivo H‐MR spectroscopic imaging
  publication-title: J Appl Physiol
– volume: 30
  start-page: 1000
  year: 1981
  end-page: 1007
  article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization
  publication-title: Diabetes
– volume: 6
  start-page: 87
  year: 2000
  end-page: 97
  article-title: Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
  publication-title: Mol Cell
– volume: 37
  start-page: 484
  year: 1997
  end-page: 493
  article-title: In vivo determination of intra‐myocellular lipids in human muscle by means of localized H‐MR‐spectroscopy
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1022
  year: 2002
  end-page: 1027
  article-title: Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity
  publication-title: Diabetes
– volume: 88
  start-page: 1785
  year: 2003
  end-page: 1791
  article-title: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity
  publication-title: J Clin Endocrinol Metab
– volume: 103
  start-page: 253
  year: 1999
  end-page: 259
  article-title: Effects of free fatty acids on glucose transport and IRS‐1‐associated phosphatidylinositol 3‐kinase activity
  publication-title: J Clin Invest
– volume: 5
  start-page: 234
  year: 2003
  end-page: 243
  article-title: Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats
  publication-title: Diabetes Obes Metab
– volume: 49
  start-page: 677
  year: 2000
  end-page: 683
  article-title: Fuel selection in human skeletal muscle in insulin resistance: a reexamination
  publication-title: Diabetes
– volume: 48
  start-page: 1600
  year: 1999
  end-page: 1606
  article-title: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents
  publication-title: Diabetes
– volume: 29
  start-page: 158
  year: 1993
  end-page: 167
  article-title: Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue
  publication-title: Magn Reson Med
– volume: 38
  start-page: 33
  year: 1997
  end-page: 39
  article-title: Dipolar resonance frequency shifts in 1H MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes postmortem
  publication-title: Magn Reson Med
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 278
  start-page: E535
  year: 2000
  end-page: E543
  article-title: Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats
  publication-title: Am J Physiol Endocrinol Metab
– volume: 46
  start-page: 1579
  year: 1997
  end-page: 1585
  article-title: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat
  publication-title: Diabetes
– volume: 51
  start-page: 3025
  year: 2002
  end-page: 3032
  article-title: Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle
  publication-title: Diabetes
– volume: 118
  start-page: 674
  year: 1986
  end-page: 678
  article-title: Severe hepatic and peripheral insulin resistance as evidenced by euglycemic clamps in genetically obese fa/fa rats
  publication-title: Endocrinology
– volume: 52
  start-page: 138
  year: 2003
  end-page: 144
  article-title: Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H‐spectroscopic study in Zucker diabetic fatty rats
  publication-title: Diabetes
– volume: 90
  start-page: 11G
  year: 2002
  end-page: 18G
  article-title: Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus
  publication-title: Am J Cardiol
– volume: 6
  start-page: 45
  year: 1985
  end-page: 86
  article-title: Assessment of insulin sensitivity in vivo
  publication-title: Endocr Rev
– volume: 52
  start-page: 218
  year: 2003
  end-page: 225
  article-title: Reduction of intramyocellular lipid following short‐term rosiglitazone treatment in Zucker fatty rats: an in vivo nuclear magnetic resonance study
  publication-title: Metabolism
– volume: 212
  start-page: 526
  year: 1993
  end-page: 531
  article-title: Determination of the 13C‐labeling pattern of glucose by gas chromatography‐mass spectrometry
  publication-title: Anal Biochem
– volume: 51
  start-page: 7
  year: 2002
  end-page: 18
  article-title: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes
  publication-title: Diabetes
– volume: 48
  start-page: 1113
  year: 1999
  end-page: 1119
  article-title: Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects
  publication-title: Diabetes
– volume: 48
  start-page: 1270
  year: 1999
  end-page: 1274
  article-title: Free fatty acid‐induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
  publication-title: Diabetes
– volume: 50
  start-page: 411
  year: 2001
  end-page: 417
  article-title: Peroxisome proliferator‐activated receptor (PPAR)‐alpha activation lowers muscle lipids and improves insulin sensitivity in high fat‐fed rats: comparison with PPAR‐gamma activation
  publication-title: Diabetes
– volume: 276
  start-page: E977
  year: 1999
  end-page: E989
  article-title: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo
  publication-title: Am J Physiol
– volume: 9
  start-page: 273
  year: 1995
  end-page: 278
  article-title: Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women
  publication-title: FASEB J
– volume: 51
  start-page: 797
  year: 2002
  end-page: 802
  article-title: The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes
  publication-title: Diabetes
– volume: 45
  start-page: 1661
  year: 1996
  end-page: 1669
  article-title: Thiazolidinediones in the treatment of insulin resistance and type II diabetes
  publication-title: Diabetes
– volume: 2
  start-page: 363
  year: 2000
  end-page: 372
  article-title: Rosiglitazone prevents the onset of hyperglycaemia and proteinuria in the Zucker diabetic fatty rat
  publication-title: Diabetes Obes Metab
– volume: 50
  start-page: 242
  year: 2003
  end-page: 248
  article-title: Determinants of intramyocellular lipid concentrations in rat hindleg muscle
  publication-title: Magn Reson Med
– volume: 237
  start-page: E214
  year: 1979
  end-page: E223
  article-title: Glucose clamp technique: a method for quantifying insulin secretion and resistance
  publication-title: Am J Physiol
– volume: 56
  start-page: 523
  year: 1995
  end-page: 530
  article-title: How to explore insulin sensitivity in man?
  publication-title: Ann Endocrinol (Paris)
– ident: e_1_2_6_17_2
  doi: 10.2337/diabetes.52.1.138
– ident: e_1_2_6_40_2
  doi: 10.1046/j.1463-1326.2003.00268.x
– ident: e_1_2_6_24_2
  doi: 10.1006/abio.1993.1363
– ident: e_1_2_6_15_2
  doi: 10.2337/diabetes.51.4.1022
– ident: e_1_2_6_4_2
  doi: 10.1056/NEJM199312303292703
– ident: e_1_2_6_9_2
  doi: 10.1002/mrm.1910290203
– ident: e_1_2_6_6_2
  doi: 10.1210/edrv-6-1-45
– ident: e_1_2_6_30_2
  doi: 10.2337/diacare.46.10.1579
– volume: 56
  start-page: 523
  year: 1995
  ident: e_1_2_6_7_2
  article-title: How to explore insulin sensitivity in man?
  publication-title: Ann Endocrinol (Paris)
  contributor:
    fullname: Scheen AJ
– ident: e_1_2_6_31_2
  doi: 10.2337/diabetes.50.2.411
– ident: e_1_2_6_23_2
  doi: 10.1016/S1097-2765(05)00015-8
– ident: e_1_2_6_13_2
  doi: 10.1210/jcem.86.12.8075
– ident: e_1_2_6_19_2
  doi: 10.1152/jappl.2001.90.4.1267
– ident: e_1_2_6_32_2
  doi: 10.1172/JCI5001
– ident: e_1_2_6_41_2
  doi: 10.2337/diabetes.49.5.677
– ident: e_1_2_6_38_2
  doi: 10.1046/j.1463-1326.2000.00099.x
– ident: e_1_2_6_18_2
  doi: 10.1053/meta.2003.50040
– ident: e_1_2_6_35_2
  doi: 10.2337/diab.45.12.1661
– ident: e_1_2_6_37_2
  doi: 10.2337/diabetes.43.10.1203
– ident: e_1_2_6_11_2
  doi: 10.1007/s001250051123
– ident: e_1_2_6_5_2
  doi: 10.2337/diab.43.8.1066
– ident: e_1_2_6_3_2
  doi: 10.2337/diacare.14.3.173
– ident: e_1_2_6_21_2
  doi: 10.1002/mrm.1910380107
– ident: e_1_2_6_2_2
  doi: 10.1152/ajpendo.1979.237.3.E214
– ident: e_1_2_6_8_2
  doi: 10.2337/diabetes.51.1.7
– ident: e_1_2_6_12_2
  doi: 10.2337/diabetes.48.5.1113
– ident: e_1_2_6_25_2
  doi: 10.1210/endo-118-2-674
– ident: e_1_2_6_28_2
  doi: 10.1210/jc.2002-021674
– ident: e_1_2_6_14_2
  doi: 10.2337/diabetes.51.10.3025
– ident: e_1_2_6_10_2
  doi: 10.1002/mrm.1910370403
– ident: e_1_2_6_22_2
  doi: 10.1006/jmre.1997.1244
– ident: e_1_2_6_39_2
  doi: 10.2337/diabetes.51.3.797
– ident: e_1_2_6_16_2
  doi: 10.1152/ajpendo.1999.276.5.E977
– ident: e_1_2_6_33_2
  doi: 10.2337/diabetes.48.6.1270
– ident: e_1_2_6_36_2
  doi: 10.1016/S0002-9149(02)02554-7
– ident: e_1_2_6_20_2
  doi: 10.1002/mrm.10518
– ident: e_1_2_6_34_2
  doi: 10.2337/diab.30.12.1000
– ident: e_1_2_6_26_2
  doi: 10.1152/ajpendo.2000.278.3.E535
– ident: e_1_2_6_27_2
  doi: 10.2337/diabetes.48.8.1600
– ident: e_1_2_6_29_2
  doi: 10.1096/fasebj.9.2.7781930
SSID ssj0009974
Score 1.9878739
Snippet Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and insulin...
Abstract Increased intramyocellular lipid (IMCL) content has been proposed as biomarker for insulin resistance (IR). An inverse correlation between IMCL and...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1275
SubjectTerms Adipose Tissue
Analysis of Variance
Animals
Biomarkers - analysis
Female
glucose clamp
Glucose Clamp Technique
Insulin Resistance
insulin sensitivity indices
intramyocellular lipids
Lipids - analysis
Magnetic Resonance Spectroscopy - methods
Male
Muscle, Skeletal - chemistry
Obesity - physiopathology
rat models
Rats
Rats, Wistar
Statistics, Nonparametric
Title Correlation between insulin resistance and intramyocellular lipid levels in rats
URI https://api.istex.fr/ark:/67375/WNG-9H90RKVV-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20501
https://www.ncbi.nlm.nih.gov/pubmed/15906287
https://search.proquest.com/docview/19415704
https://search.proquest.com/docview/67864266
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFsUXL1VrvAYR8SVtLjPJDD5JsS7KFlls7YMwnMwFStts2WSh-uudM0l2qVgQ30I4gTNzzsz5JvPNNwBvUutBcl1lSWlLkTBpMBEetyauNMb5kmKNDmqfh-XkiH0-4Scb8H48C9PrQ6x-uNHICPM1DXCs2721aOjFgg6S83B2i4T0CBDN1tJRUvYKzBWjeUayUVUozfdWX16rRVvUrVd_A5rXcWsoPAf34Mfocs83OdtddvWu_vWHmuN_tuk-3B0Aafyhz6AHsGGbbbg9Hbbct-FW4Ijq9iF83aebPHruXDzwu-KByx77VTshUZ9CMTbGv-4WePFzTvsCRHSNz08vT018ThSlNiZ77NpHcHTw8dv-JBkuZEh0wfIs0R4wOJS1r2ECjXBlhrrKjdFclhZFKqzIeFXUTnLjcViJWBtrCINJzSpeFo9hs5k39gl4L5nIXZFZv0JmGaLAXOeYFZi5yjmeRvB6DI267HU3VK-wnCvfSyr0UgRvQ9BWFrg4I6JaxdX3w09KTmQ6-3J8rGQEr8aoKj98qO3Y2PmyVT4zvMspu9nCV_OSYEwEO306rP3hJPIsqgjehaDe7Kiazqbh4em_mz6DO0EmNvzxeQ6b3WJpX3gA1NUvQ6b_BvUlANo
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UFi8vVutttNpBRHyZdi5JJoG-lGpdbXeRpa19kZDJBUrb2bI7C-qvNyczs0vFgvg2DBk4yTkn55vkyxeAt6n1ILkqs4RZxhMijEq4x62JY8Y4X1Ks0UHtc8QGJ-TLGT1bgd3-LEyrD7FYcMPMCPM1JjguSO8sVUOvpniSnOLhrTWf7hTT8sN4KR4lRKvBXBKcaQTpdYXSfGfx6Y1qtIYD--NvUPMmcg2l52AdvvdGt4yTi-15U23rX3_oOf5vrx7Cgw6TxnttED2CFVtvwN1ht-u-AXcCTVTPHsPXfbzMo6XPxR3FK-7o7LH_cUcw6qMoVrXxr5upuvo5wa0B5LrGl-fX5ya-RJbSLMb2qpk9gZODj8f7g6S7kyHRBcmzRHvM4JSofBnjynDHMqXL3BhNBbOKp9zyjJZF5QQ1HooxpSpjDcIwoUlJWfEUVutJbZ-Dt5Lw3BWZ9T_JJFOKq1znKitU5krnaBrBm9438rqV3pCtyHIu_SjJMEoRvAteW7RQ0wvkqpVUfht9kmIg0vHh6akUEWz1bpU-g7DvqraT-Uz60PAmp-T2Fr6gM0QyETxr42FpD0WdZ15G8D549XZD5XA8DA8v_r3pFtwbHA-P5NHn0eFLuB9UY8MC0CasNtO5feXxUFO9DmH_GwXYBPo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5CQkNfeqSXe8WUUvrixIckS_SpJN1um-4SlibNQ0HIOiAk8S67Xmj766uR7V1SGih9M2YMI81I88n69AngdWo9SK7KLGGW8YQIoxLucWvimDHOlxRrdFD7HLPhCfl8Rs824F1_FqbVh1j9cMOREeZrHOAz4_bXoqFXczxITvHs1hZhRY4rr8PJWjtKiFaCuSQ40QjSywql-f7q02vFaAv79cffkOZ14Boqz-AufO99bgknF3vLptrTv_6Qc_zPRt2DOx0ijd-3KXQfNmy9A9ujbs99B24FkqhePIDjA7zKoyXPxR3BK-7I7LFftiMU9TkUq9r4181cXf2c4sYAMl3jy_PZuYkvkaO0iNFeNYuHcDL48PVgmHQ3MiS6IHmWaI8YnBKVL2JcGe5YpnSZG6OpYFbxlFue0bKonKDGAzGmVGWsQRAmNCkpKx7BZj2t7RPwXhKeuyKzfolMMqW4ynWuskJlrnSOphG86kMjZ63whmwllnPpe0mGXorgTQjaykLNL5CpVlL5bfxRiqFIJ0enp1JEsNtHVfrxg21XtZ0uF9Jnhnc5JTdb-HLOEMdE8LhNh7U_FFWeeRnB2xDUmx2Vo8koPDz9d9Nd2D4-HMgvn8ZHz-B2kIwNf3-ew2YzX9oXHgw11cuQ9L8B-NADqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+insulin+resistance+and+intramyocellular+lipid+levels+in+rats&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kuhlmann%2C+J.&rft.au=Neumann%E2%80%90Haefelin%2C+C.&rft.au=Belz%2C+U.&rft.au=Kramer%2C+W.&rft.date=2005-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=53&rft.issue=6&rft.spage=1275&rft.epage=1282&rft_id=info:doi/10.1002%2Fmrm.20501&rft.externalDBID=10.1002%252Fmrm.20501&rft.externalDocID=MRM20501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon