Black Hole Quenchers for SERRS Imaging of CXCR4 Expression at Single‐Cell Level During Treatment
CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging becaus...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging.
Black hole quenchers (BHQs) based nonfluorescent resonant Raman reporters are presented for the first time. BHQ‐based Raman nanoprobes exhibit excellent SERRS performance and unparalleled photostability. When conjugated with a CXCR4 antagonist, these nonfluorescent SERRS nanoprobes allow for photostable imaging of CXCR4 expression of triple‐negative breast cancer cells at the single‐cell level during single‐drug and multi‐drug treatment. |
---|---|
AbstractList | CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging. CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging. Black hole quenchers (BHQs) based nonfluorescent resonant Raman reporters are presented for the first time. BHQ‐based Raman nanoprobes exhibit excellent SERRS performance and unparalleled photostability. When conjugated with a CXCR4 antagonist, these nonfluorescent SERRS nanoprobes allow for photostable imaging of CXCR4 expression of triple‐negative breast cancer cells at the single‐cell level during single‐drug and multi‐drug treatment. CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 10 6 ), the femtomolar‐level limit of detection as well as unrivaled photostability (τ s = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging. |
Author | Zhu, Congzheng Fu, Longwen Chen, Xinru Wang, Yunqing Chen, Lingxin Zhang, Zhiyang Li, Jin Wang, Xiaoyan |
Author_xml | – sequence: 1 givenname: Congzheng surname: Zhu fullname: Zhu, Congzheng organization: Chinese Academy of Sciences – sequence: 2 givenname: Jin surname: Li fullname: Li, Jin email: jinli@yic.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Xinru surname: Chen fullname: Chen, Xinru organization: Chinese Academy of Sciences – sequence: 4 givenname: Longwen surname: Fu fullname: Fu, Longwen organization: Chinese Academy of Sciences – sequence: 5 givenname: Zhiyang surname: Zhang fullname: Zhang, Zhiyang organization: Chinese Academy of Sciences – sequence: 6 givenname: Yunqing surname: Wang fullname: Wang, Yunqing organization: Chinese Academy of Sciences – sequence: 7 givenname: Xiaoyan surname: Wang fullname: Wang, Xiaoyan email: wangxy@yic.ac.cn organization: Binzhou Medical University – sequence: 8 givenname: Lingxin orcidid: 0000-0002-3764-3515 surname: Chen fullname: Chen, Lingxin email: lxchen@yic.ac.cn organization: Shaoxing University |
BookMark | eNqFkEFPwjAUgBuDiYhePTfxPOxru40dcYCQYIyACbel295wWDZsN5WbP8Hf6C9xBINHT31Jv--95DsnraIskJArYF1gjN-oNNt0OeMSfCHhhLTBA88RjPdaxxmWZ-Tc2jVj4DdUm8S3WiUvdFxqpI81FskzGkuz0tD5cDab08lGrfJiRcuMhstwJunwY2vQ2rwsqKrovPnT-P35FaLWdIpvqOmgNntjYVBVGyyqC3KaKW3x8vftkKfRcBGOnenD3STsT51ESA6OTJMMAp8FoJKUx5glfhArznzmcSmZkq4rAEWcppIHIEDFystiDJjsCfCZKzrk-rB3a8rXGm0VrcvaFM3JqAHcHogmTkN1D1RiSmsNZtHW5BtldhGwaN8x2neMjh0bITgI77nG3T901B-M7v_cH1w0d7Q |
Cites_doi | 10.1021/acsnano.9b06208 10.1021/ja2119964 10.1186/s13550-021-00875-7 10.1021/bi5011927 10.1021/cr0782426 10.1016/j.biomaterials.2024.122538 10.1158/0008-5472.CAN-09-4396 10.1038/s41467-024-46853-0 10.1002/adma.202102950 10.1021/ja9037593 10.1039/b708841h 10.1039/C8NR00564H 10.1021/acs.jpcc.7b01504 10.1021/acs.jpclett.2c01741 10.1016/j.biomaterials.2023.122327 10.1038/s41419-021-03730-8 10.1007/s10585-011-9403-y 10.1021/ac00095a008 10.1002/jbio.201960126 10.1016/j.pacs.2021.100239 10.1016/j.ab.2009.02.024 10.1146/annurev-pathol-042420-093238 10.1158/1078-0432.CCR-06-3045 10.1007/s00259-022-05849-y 10.1021/acs.analchem.6b03521 10.1021/acsnano.7b01536 10.1016/j.biomaterials.2023.122211 10.1038/s41467-018-03725-8 10.1021/ja110964d 10.1021/acscentsci.1c00117 10.1021/acs.analchem.1c03277 10.1021/acsami.6b01908 10.1021/acs.jpcc.6b01895 10.3390/cancers14092314 10.2174/0929867324666170830111531 10.1038/s41467-024-47044-7 10.1016/j.apsb.2023.03.024 10.1021/acs.analchem.2c02398 10.1515/nanoph-2021-0689 10.1039/D1TC05938F 10.1021/jacs.2c06275 10.1038/sj.onc.1206004 10.1158/2159-8290.CD-18-1177 10.1126/sciadv.aau3494 10.1021/acsnano.2c11240 10.7150/thno.48620 10.1016/j.chempr.2021.09.001 10.1038/ncomms7570 10.1016/j.envres.2023.116335 10.1080/05704928.2014.999936 10.1039/D2CC06178C 10.1002/agt2.277 10.7150/thno.31032 10.1038/s41467-021-23700-0 10.1016/S0140-6736(16)00561-4 10.1126/science.abe0722 10.7150/thno.4835 10.1002/adfm.201800732 10.1158/1541-7786.MCR-13-0029-T 10.7150/thno.5376 10.1021/acsnano.5b07200 10.1039/c8pp00173a 10.1002/anie.201702415 10.1063/5.0161238 10.1016/j.bios.2015.03.029 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202417341 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202417341 ADFM202417341 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82102108; 22376216; 21804010; 42076199; 42476186; 22006162 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 1OB 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3421-4dcf197091acd2befc79ba207062440a45531e3bdd429131aba6fbe9048317053 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 21:26:37 EDT 2025 Tue Aug 05 12:05:20 EDT 2025 Tue Mar 11 09:30:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3421-4dcf197091acd2befc79ba207062440a45531e3bdd429131aba6fbe9048317053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3764-3515 |
PQID | 3175813202 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3175813202 crossref_primary_10_1002_adfm_202417341 wiley_primary_10_1002_adfm_202417341_ADFM202417341 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 320 2013; 3 2021; 21 2015; 70 2023; 300 2019; 13 2024; 308 2017; 89 2016; 387 2008; 108 2008; 37 1994; 66 2023; 302 2019; 18 2020; 13 2018; 9 2012; 134 2018; 4 2021; 33 2013; 11 2019; 26 2017; 121 2010; 70 2011; 28 2014; 53 2021; 7 2019; 9 2018; 28 2023; 13 2015; 6 2023; 17 2023; 59 2022; 94 2015; 50 2016; 10 2009; 131 2021; 93 2024; 15 2007; 13 2022; 49 2016; 120 2011; 133 2022; 144 2021; 12 2021; 11 2022; 4 2017; 11 2002; 21 2023; 232 2017; 56 2022; 12 2022; 13 2022; 14 2023; 159 2021; 371 2009; 388 2022; 10 2022; 11 2018; 10 2016; 8 2022; 17 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 Slomski A. (e_1_2_8_4_1) 2018; 320 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 15 start-page: 3049 year: 2024 publication-title: Nat. Commun. – volume: 108 start-page: 1501 year: 2008 publication-title: Chem. Rev. – volume: 232 year: 2023 publication-title: Environ. Res. – volume: 94 year: 2022 publication-title: Anal. Chem. – volume: 6 start-page: 6570 year: 2015 publication-title: Nat. Commun. – volume: 134 start-page: 5734 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 159 year: 2023 publication-title: J. Chem. Phys. – volume: 11 start-page: 1088 year: 2013 publication-title: Mol. Cancer Res. – volume: 9 start-page: 3653 year: 2019 publication-title: Theranostics – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 7 start-page: 768 year: 2021 publication-title: ACS Cent. Sci. – volume: 13 start-page: 6496 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 70 start-page: 145 year: 2015 publication-title: Biosens. Bioelectron. – volume: 388 start-page: 220 year: 2009 publication-title: Anal. Biochem. – volume: 13 start-page: 4429 year: 2007 publication-title: Clin. Cancer Res. – volume: 59 start-page: 2352 year: 2023 publication-title: Chem. Commun. – volume: 53 start-page: 7562 year: 2014 publication-title: Biochemistry – volume: 56 start-page: 4802 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 302 year: 2023 publication-title: Biomaterials – volume: 12 start-page: 3405 year: 2021 publication-title: Nat. Commun. – volume: 89 start-page: 1551 year: 2017 publication-title: Anal. Chem. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 18 start-page: 64 year: 2019 publication-title: Photochem. Photobiol. Sci. – volume: 12 start-page: 464 year: 2021 publication-title: Cell Death Dis. – volume: 3 start-page: 76 year: 2013 publication-title: Theranostics – volume: 14 start-page: 2314 year: 2022 publication-title: Cancers – volume: 7 start-page: 3359 year: 2021 publication-title: Chem – volume: 12 start-page: 2 year: 2022 publication-title: Ejnmmi Res – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 4800 year: 2023 publication-title: ACS Nano – volume: 133 start-page: 4115 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 7611 year: 2002 publication-title: Oncogene – volume: 11 start-page: 567 year: 2021 publication-title: Theranostics – volume: 387 start-page: 1909 year: 2016 publication-title: Lancet – volume: 50 start-page: 387 year: 2015 publication-title: Appl. Spectrosc. Rev. – volume: 13 start-page: 3849 year: 2023 publication-title: Acta Pharm. Sin. B – volume: 37 start-page: 955 year: 2008 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 181 year: 2022 publication-title: Ann. Review Paleopathol. Mech. Disease – volume: 49 start-page: 4133 year: 2022 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 371 year: 2021 publication-title: Science – volume: 10 start-page: 5015 year: 2016 publication-title: ACS Nano – volume: 15 start-page: 2593 year: 2024 publication-title: Nat. Commun. – volume: 93 year: 2021 publication-title: Anal. Chem. – volume: 11 start-page: 4926 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 7273 year: 2022 publication-title: J. Mater. Chem. C – volume: 13 year: 2019 publication-title: ACS Nano – volume: 26 start-page: 3026 year: 2019 publication-title: Curr. Med. Chem. – volume: 3 start-page: 47 year: 2013 publication-title: Theranostics – volume: 13 year: 2020 publication-title: J. Biophotonics – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 28 start-page: 713 year: 2011 publication-title: Clin. Exp. Metastasis – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2018 publication-title: Sci. Adv – volume: 320 start-page: 2521 year: 2018 publication-title: JAMA, J. Am. Med. Assoc. – volume: 66 start-page: 4159 year: 1994 publication-title: Anal. Chem. – volume: 70 start-page: 3935 year: 2010 publication-title: Cancer Res. – volume: 9 start-page: 1482 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 1549 year: 2022 publication-title: Nanophotonics – volume: 308 year: 2024 publication-title: Biomaterials – volume: 300 year: 2023 publication-title: Biomaterials – volume: 4 year: 2022 publication-title: Aggregate – volume: 131 start-page: 9890 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8292 year: 2018 publication-title: Nanoscale – volume: 9 start-page: 176 year: 2019 publication-title: Cancer Discov – volume: 21 year: 2021 publication-title: Photoacoustics – ident: e_1_2_8_47_1 doi: 10.1021/acsnano.9b06208 – ident: e_1_2_8_39_1 doi: 10.1021/ja2119964 – ident: e_1_2_8_60_1 doi: 10.1186/s13550-021-00875-7 – ident: e_1_2_8_56_1 doi: 10.1021/bi5011927 – ident: e_1_2_8_14_1 doi: 10.1021/cr0782426 – ident: e_1_2_8_65_1 doi: 10.1016/j.biomaterials.2024.122538 – ident: e_1_2_8_11_1 doi: 10.1158/0008-5472.CAN-09-4396 – ident: e_1_2_8_44_1 doi: 10.1038/s41467-024-46853-0 – ident: e_1_2_8_62_1 doi: 10.1002/adma.202102950 – ident: e_1_2_8_27_1 doi: 10.1021/ja9037593 – ident: e_1_2_8_22_1 doi: 10.1039/b708841h – ident: e_1_2_8_48_1 doi: 10.1039/C8NR00564H – ident: e_1_2_8_26_1 doi: 10.1021/acs.jpcc.7b01504 – ident: e_1_2_8_49_1 doi: 10.1021/acs.jpclett.2c01741 – ident: e_1_2_8_50_1 doi: 10.1016/j.biomaterials.2023.122327 – ident: e_1_2_8_57_1 doi: 10.1038/s41419-021-03730-8 – ident: e_1_2_8_16_1 doi: 10.1007/s10585-011-9403-y – ident: e_1_2_8_28_1 doi: 10.1021/ac00095a008 – ident: e_1_2_8_30_1 doi: 10.1002/jbio.201960126 – ident: e_1_2_8_52_1 doi: 10.1016/j.pacs.2021.100239 – ident: e_1_2_8_53_1 doi: 10.1016/j.ab.2009.02.024 – ident: e_1_2_8_1_1 doi: 10.1146/annurev-pathol-042420-093238 – ident: e_1_2_8_2_1 doi: 10.1158/1078-0432.CCR-06-3045 – volume: 320 start-page: 2521 year: 2018 ident: e_1_2_8_4_1 publication-title: JAMA, J. Am. Med. Assoc. – ident: e_1_2_8_8_1 doi: 10.1007/s00259-022-05849-y – ident: e_1_2_8_32_1 doi: 10.1021/acs.analchem.6b03521 – ident: e_1_2_8_67_1 doi: 10.1021/acsnano.7b01536 – ident: e_1_2_8_21_1 doi: 10.1016/j.biomaterials.2023.122211 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-018-03725-8 – ident: e_1_2_8_35_1 doi: 10.1021/ja110964d – ident: e_1_2_8_41_1 doi: 10.1021/acscentsci.1c00117 – ident: e_1_2_8_40_1 doi: 10.1021/acs.analchem.1c03277 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.6b01908 – ident: e_1_2_8_31_1 doi: 10.1021/acs.jpcc.6b01895 – ident: e_1_2_8_6_1 doi: 10.3390/cancers14092314 – ident: e_1_2_8_7_1 doi: 10.2174/0929867324666170830111531 – ident: e_1_2_8_63_1 doi: 10.1038/s41467-024-47044-7 – ident: e_1_2_8_61_1 doi: 10.1016/j.apsb.2023.03.024 – ident: e_1_2_8_54_1 doi: 10.1021/acs.analchem.2c02398 – ident: e_1_2_8_24_1 doi: 10.1515/nanoph-2021-0689 – ident: e_1_2_8_25_1 doi: 10.1039/D1TC05938F – ident: e_1_2_8_37_1 doi: 10.1021/jacs.2c06275 – ident: e_1_2_8_3_1 doi: 10.1038/sj.onc.1206004 – ident: e_1_2_8_55_1 doi: 10.1158/2159-8290.CD-18-1177 – ident: e_1_2_8_18_1 doi: 10.1126/sciadv.aau3494 – ident: e_1_2_8_34_1 doi: 10.1021/acsnano.2c11240 – ident: e_1_2_8_12_1 doi: 10.7150/thno.48620 – ident: e_1_2_8_43_1 doi: 10.1016/j.chempr.2021.09.001 – ident: e_1_2_8_66_1 doi: 10.1038/ncomms7570 – ident: e_1_2_8_9_1 doi: 10.1016/j.envres.2023.116335 – ident: e_1_2_8_38_1 doi: 10.1080/05704928.2014.999936 – ident: e_1_2_8_23_1 doi: 10.1039/D2CC06178C – ident: e_1_2_8_42_1 doi: 10.1002/agt2.277 – ident: e_1_2_8_10_1 doi: 10.7150/thno.31032 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-021-23700-0 – ident: e_1_2_8_5_1 doi: 10.1016/S0140-6736(16)00561-4 – ident: e_1_2_8_64_1 doi: 10.1126/science.abe0722 – ident: e_1_2_8_15_1 doi: 10.7150/thno.4835 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.201800732 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-021-23700-0 – ident: e_1_2_8_58_1 doi: 10.1158/1541-7786.MCR-13-0029-T – ident: e_1_2_8_13_1 doi: 10.7150/thno.5376 – ident: e_1_2_8_29_1 doi: 10.1021/acsnano.5b07200 – ident: e_1_2_8_46_1 doi: 10.1039/c8pp00173a – ident: e_1_2_8_17_1 doi: 10.1002/anie.201702415 – ident: e_1_2_8_45_1 doi: 10.1063/5.0161238 – ident: e_1_2_8_36_1 doi: 10.1016/j.bios.2015.03.029 |
SSID | ssj0017734 |
Score | 2.4759123 |
Snippet | CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Biomarkers black hole quenchers Chemokine receptors Conjugation CXCR4 Fluorescence Imaging Internal conversion Raman reporters Raman spectra Reagents Resonance Resonance scattering SERRS triple‐negative breast cancer cells |
Title | Black Hole Quenchers for SERRS Imaging of CXCR4 Expression at Single‐Cell Level During Treatment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417341 https://www.proquest.com/docview/3175813202 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwIwoF-YDEKW1jO0lzrLqoIIpEFym3yFsulBTRVkKc-AS-kS_B4yxtuSDBMYomSjwez4v95g1C1wlhvEF504H847DQ-IKHnnR8GfhMhD6Xdh9y8OD3J-wu8qK1Kv5MH6LccIPIsOs1BDgX8_pKNJSrBCrJTQYKqK1cB8IWoKJhqR_lBkF2rOy7QPByo0K1sUHqm-abWWkFNdcBq804vX3Ei3fNiCZPteVC1OT7DxnH_3zMAdrL4ShuZfPnEG3p9AjtrokUHiNh9_hwfzbV-BFo14AYscG6eNQdDkf49tk2OsKzBLej9pDh7ltOrk0xX-CRuTfVXx-fbT2d4nvgKOGOrY3E44LkfoImve643XfyzgyOpIyYn04lEzcMDNbgUhGhExmEghOzfPgGLjQ480xoayqUMunOpS4X3E-EDkG_HvR76CnaTmepPkM4NOZEKYCtklFKuWyKxFMel6ErlGQVdFN4Jn7JBDjiTGqZxDBqcTlqFVQtHBfngTiPAR41oUycVBCxHvjlKXGr0xuUV-d_MbpAOwS6BFumWhVtL16X-tJAl4W4stPzGzy15FE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkb20maY9VFLbSV6CL1FnnLhdAiaCXEiU_gG_kSPE7ThQsSHKPIUeLxeF7Gb94gdBMTxkuUlx2IPw4LjS146EnHl4HPROhzafOQna7fHLK7kZexCaEWJtWHWCTcwDPsfg0ODgnp4lI1lKsYSslNCAoolK5vQVtvkM-v9RYKUm4QpAfLvgsUL3eU6TaWSHF9_HpcWoLNVchqY05jH4nsbVOqyWNhNhUF-f5DyPFfn3OA9uaIFFfSJXSINvT4CO2u6BQeI2HTfLg5STR-AOY1gEZs4C7u13u9Pm492V5HeBLj6qjaY7j-NufXjjGf4r65l-ivj8-qThLcBpoSrtnySDzIeO4naNioD6pNZ96cwZGUEfPfqWTshoGBG1wqInQsg1BwYnYQ3yCGEmee8W5NhVIm4rnU5YL7sdAhSNiDhA89RZvjyVifIRya4UQpQK6SUUq5LIvYUx6XoSuUZDl0m5kmek41OKJUbZlEMGvRYtZyKJ9ZLpr74msECKkMleIkh4g1wS9PiSq1Rmdxdf6XQddouznotKN2q3t_gXYINA22xLU82py-zPSlQTJTcWXX6jeXL-ht |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR-QOAUa20nqY9VFLbQVdJF6i7zlQmkRFAlx4hP4Rr4Ej9N04YIExyiaKPF4PC_2mzcIXSSEiQIVRQ_yj8e49YXggfJCFYVM8lAotw_Zaof1PrsZBIOFKv5UH2K24QaR4dZrCPAnnVzPRUOFTqCS3GagiELl-hoLCxyaN1Q6MwEpP4rSc-XQB4aXP8hkGwvketl-OS3NseYiYnUpp7aNRPayKdPk4ep1Iq_U-w8dx_98zQ7amuJRXEon0C5aMaM9tLmgUriPpNvkw_Xx0OB74F0DZMQW7OJutdPp4saj63SExwkuD8odhqtvU3btCIsJ7tp7Q_P18Vk2wyFuAkkJV1xxJO5lLPcD1K9Ve-W6N23N4CnKiP3r1CrxeWTBhlCaSJOoiEtB7PoRWrxQECywsW2o1NrmO5_6QoowkYaDgD0I-NBDtDoaj8wRwtyaE60BtypGKRWqKJNAB0JxX2rFcugy80z8lCpwxKnWMolh1OLZqOVQPnNcPI3ElxjwURHqxEkOEeeBX54Slyq11uzq-C9G52j9rlKLm4327QnaINAx2LHW8mh18vxqTi2MmcgzN1O_AeoM5xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Black+Hole+Quenchers+for+SERRS+Imaging+of+CXCR4+Expression+at+Single%E2%80%90Cell+Level+During+Treatment&rft.jtitle=Advanced+functional+materials&rft.au=Zhu%2C+Congzheng&rft.au=Li%2C+Jin&rft.au=Chen%2C+Xinru&rft.au=Fu%2C+Longwen&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |