Black Hole Quenchers for SERRS Imaging of CXCR4 Expression at Single‐Cell Level During Treatment

CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging becaus...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 11
Main Authors Zhu, Congzheng, Li, Jin, Chen, Xinru, Fu, Longwen, Zhang, Zhiyang, Wang, Yunqing, Wang, Xiaoyan, Chen, Lingxin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging. Black hole quenchers (BHQs) based nonfluorescent resonant Raman reporters are presented for the first time. BHQ‐based Raman nanoprobes exhibit excellent SERRS performance and unparalleled photostability. When conjugated with a CXCR4 antagonist, these nonfluorescent SERRS nanoprobes allow for photostable imaging of CXCR4 expression of triple‐negative breast cancer cells at the single‐cell level during single‐drug and multi‐drug treatment.
AbstractList CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging.
CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 106), the femtomolar‐level limit of detection as well as unrivaled photostability (τs = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging. Black hole quenchers (BHQs) based nonfluorescent resonant Raman reporters are presented for the first time. BHQ‐based Raman nanoprobes exhibit excellent SERRS performance and unparalleled photostability. When conjugated with a CXCR4 antagonist, these nonfluorescent SERRS nanoprobes allow for photostable imaging of CXCR4 expression of triple‐negative breast cancer cells at the single‐cell level during single‐drug and multi‐drug treatment.
CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging reagents. Surface‐enhanced resonance Raman scattering (SERRS) with resonant dyes has emerged as a powerful tool for single‐cell imaging because of the electronically enhanced vibrational fingerprint signals. However, resonant Raman signals are often overwhelmed by accompanying fluorescence backgrounds. To address this, two black hole quenchers (BHQs) are designed as visible resonance Raman reporters with absolutely nonfluorescent readouts. Ultrafast spectroscopy elucidates that the nonfluorescent mechanism of the reporters originates from the ultrafast internal conversion at the subpicosecond scale that quenches the excited states of fluorescence. SERRS nanoprobes (NPs) decorated with such reporters exhibit strong Raman enhancement (5.82 × 10 6 ), the femtomolar‐level limit of detection as well as unrivaled photostability (τ s = 26516 s), outperforming that of crystal violet‐decorated counterparts. When conjugation of a CXCR4 antagonist, these fluorescence‐free SERRS NPs allow for photostable imaging of CXCR4 on TNBC cells at the single‐cell level, and for monitoring the expression variation during combined drug treatment. To the best of the available knowledge, this is the first example of absolutely nonfluorescent Raman reporters for single‐cell SERRS imaging.
Author Zhu, Congzheng
Fu, Longwen
Chen, Xinru
Wang, Yunqing
Chen, Lingxin
Zhang, Zhiyang
Li, Jin
Wang, Xiaoyan
Author_xml – sequence: 1
  givenname: Congzheng
  surname: Zhu
  fullname: Zhu, Congzheng
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jin
  surname: Li
  fullname: Li, Jin
  email: jinli@yic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xinru
  surname: Chen
  fullname: Chen, Xinru
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Longwen
  surname: Fu
  fullname: Fu, Longwen
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Zhiyang
  surname: Zhang
  fullname: Zhang, Zhiyang
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yunqing
  surname: Wang
  fullname: Wang, Yunqing
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Xiaoyan
  surname: Wang
  fullname: Wang, Xiaoyan
  email: wangxy@yic.ac.cn
  organization: Binzhou Medical University
– sequence: 8
  givenname: Lingxin
  orcidid: 0000-0002-3764-3515
  surname: Chen
  fullname: Chen, Lingxin
  email: lxchen@yic.ac.cn
  organization: Shaoxing University
BookMark eNqFkEFPwjAUgBuDiYhePTfxPOxru40dcYCQYIyACbel295wWDZsN5WbP8Hf6C9xBINHT31Jv--95DsnraIskJArYF1gjN-oNNt0OeMSfCHhhLTBA88RjPdaxxmWZ-Tc2jVj4DdUm8S3WiUvdFxqpI81FskzGkuz0tD5cDab08lGrfJiRcuMhstwJunwY2vQ2rwsqKrovPnT-P35FaLWdIpvqOmgNntjYVBVGyyqC3KaKW3x8vftkKfRcBGOnenD3STsT51ESA6OTJMMAp8FoJKUx5glfhArznzmcSmZkq4rAEWcppIHIEDFystiDJjsCfCZKzrk-rB3a8rXGm0VrcvaFM3JqAHcHogmTkN1D1RiSmsNZtHW5BtldhGwaN8x2neMjh0bITgI77nG3T901B-M7v_cH1w0d7Q
Cites_doi 10.1021/acsnano.9b06208
10.1021/ja2119964
10.1186/s13550-021-00875-7
10.1021/bi5011927
10.1021/cr0782426
10.1016/j.biomaterials.2024.122538
10.1158/0008-5472.CAN-09-4396
10.1038/s41467-024-46853-0
10.1002/adma.202102950
10.1021/ja9037593
10.1039/b708841h
10.1039/C8NR00564H
10.1021/acs.jpcc.7b01504
10.1021/acs.jpclett.2c01741
10.1016/j.biomaterials.2023.122327
10.1038/s41419-021-03730-8
10.1007/s10585-011-9403-y
10.1021/ac00095a008
10.1002/jbio.201960126
10.1016/j.pacs.2021.100239
10.1016/j.ab.2009.02.024
10.1146/annurev-pathol-042420-093238
10.1158/1078-0432.CCR-06-3045
10.1007/s00259-022-05849-y
10.1021/acs.analchem.6b03521
10.1021/acsnano.7b01536
10.1016/j.biomaterials.2023.122211
10.1038/s41467-018-03725-8
10.1021/ja110964d
10.1021/acscentsci.1c00117
10.1021/acs.analchem.1c03277
10.1021/acsami.6b01908
10.1021/acs.jpcc.6b01895
10.3390/cancers14092314
10.2174/0929867324666170830111531
10.1038/s41467-024-47044-7
10.1016/j.apsb.2023.03.024
10.1021/acs.analchem.2c02398
10.1515/nanoph-2021-0689
10.1039/D1TC05938F
10.1021/jacs.2c06275
10.1038/sj.onc.1206004
10.1158/2159-8290.CD-18-1177
10.1126/sciadv.aau3494
10.1021/acsnano.2c11240
10.7150/thno.48620
10.1016/j.chempr.2021.09.001
10.1038/ncomms7570
10.1016/j.envres.2023.116335
10.1080/05704928.2014.999936
10.1039/D2CC06178C
10.1002/agt2.277
10.7150/thno.31032
10.1038/s41467-021-23700-0
10.1016/S0140-6736(16)00561-4
10.1126/science.abe0722
10.7150/thno.4835
10.1002/adfm.201800732
10.1158/1541-7786.MCR-13-0029-T
10.7150/thno.5376
10.1021/acsnano.5b07200
10.1039/c8pp00173a
10.1002/anie.201702415
10.1063/5.0161238
10.1016/j.bios.2015.03.029
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202417341
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202417341
ADFM202417341
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82102108; 22376216; 21804010; 42076199; 42476186; 22006162
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
1OB
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3421-4dcf197091acd2befc79ba207062440a45531e3bdd429131aba6fbe9048317053
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 21:26:37 EDT 2025
Tue Aug 05 12:05:20 EDT 2025
Tue Mar 11 09:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3421-4dcf197091acd2befc79ba207062440a45531e3bdd429131aba6fbe9048317053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3764-3515
PQID 3175813202
PQPubID 2045204
PageCount 14
ParticipantIDs proquest_journals_3175813202
crossref_primary_10_1002_adfm_202417341
wiley_primary_10_1002_adfm_202417341_ADFM202417341
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 320
2013; 3
2021; 21
2015; 70
2023; 300
2019; 13
2024; 308
2017; 89
2016; 387
2008; 108
2008; 37
1994; 66
2023; 302
2019; 18
2020; 13
2018; 9
2012; 134
2018; 4
2021; 33
2013; 11
2019; 26
2017; 121
2010; 70
2011; 28
2014; 53
2021; 7
2019; 9
2018; 28
2023; 13
2015; 6
2023; 17
2023; 59
2022; 94
2015; 50
2016; 10
2009; 131
2021; 93
2024; 15
2007; 13
2022; 49
2016; 120
2011; 133
2022; 144
2021; 12
2021; 11
2022; 4
2017; 11
2002; 21
2023; 232
2017; 56
2022; 12
2022; 13
2022; 14
2023; 159
2021; 371
2009; 388
2022; 10
2022; 11
2018; 10
2016; 8
2022; 17
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Slomski A. (e_1_2_8_4_1) 2018; 320
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 15
  start-page: 3049
  year: 2024
  publication-title: Nat. Commun.
– volume: 108
  start-page: 1501
  year: 2008
  publication-title: Chem. Rev.
– volume: 232
  year: 2023
  publication-title: Environ. Res.
– volume: 94
  year: 2022
  publication-title: Anal. Chem.
– volume: 6
  start-page: 6570
  year: 2015
  publication-title: Nat. Commun.
– volume: 134
  start-page: 5734
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 159
  year: 2023
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 1088
  year: 2013
  publication-title: Mol. Cancer Res.
– volume: 9
  start-page: 3653
  year: 2019
  publication-title: Theranostics
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 768
  year: 2021
  publication-title: ACS Cent. Sci.
– volume: 13
  start-page: 6496
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 70
  start-page: 145
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 388
  start-page: 220
  year: 2009
  publication-title: Anal. Biochem.
– volume: 13
  start-page: 4429
  year: 2007
  publication-title: Clin. Cancer Res.
– volume: 59
  start-page: 2352
  year: 2023
  publication-title: Chem. Commun.
– volume: 53
  start-page: 7562
  year: 2014
  publication-title: Biochemistry
– volume: 56
  start-page: 4802
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 302
  year: 2023
  publication-title: Biomaterials
– volume: 12
  start-page: 3405
  year: 2021
  publication-title: Nat. Commun.
– volume: 89
  start-page: 1551
  year: 2017
  publication-title: Anal. Chem.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 18
  start-page: 64
  year: 2019
  publication-title: Photochem. Photobiol. Sci.
– volume: 12
  start-page: 464
  year: 2021
  publication-title: Cell Death Dis.
– volume: 3
  start-page: 76
  year: 2013
  publication-title: Theranostics
– volume: 14
  start-page: 2314
  year: 2022
  publication-title: Cancers
– volume: 7
  start-page: 3359
  year: 2021
  publication-title: Chem
– volume: 12
  start-page: 2
  year: 2022
  publication-title: Ejnmmi Res
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 4800
  year: 2023
  publication-title: ACS Nano
– volume: 133
  start-page: 4115
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 7611
  year: 2002
  publication-title: Oncogene
– volume: 11
  start-page: 567
  year: 2021
  publication-title: Theranostics
– volume: 387
  start-page: 1909
  year: 2016
  publication-title: Lancet
– volume: 50
  start-page: 387
  year: 2015
  publication-title: Appl. Spectrosc. Rev.
– volume: 13
  start-page: 3849
  year: 2023
  publication-title: Acta Pharm. Sin. B
– volume: 37
  start-page: 955
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 181
  year: 2022
  publication-title: Ann. Review Paleopathol. Mech. Disease
– volume: 49
  start-page: 4133
  year: 2022
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 371
  year: 2021
  publication-title: Science
– volume: 10
  start-page: 5015
  year: 2016
  publication-title: ACS Nano
– volume: 15
  start-page: 2593
  year: 2024
  publication-title: Nat. Commun.
– volume: 93
  year: 2021
  publication-title: Anal. Chem.
– volume: 11
  start-page: 4926
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 7273
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 26
  start-page: 3026
  year: 2019
  publication-title: Curr. Med. Chem.
– volume: 3
  start-page: 47
  year: 2013
  publication-title: Theranostics
– volume: 13
  year: 2020
  publication-title: J. Biophotonics
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 713
  year: 2011
  publication-title: Clin. Exp. Metastasis
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2018
  publication-title: Sci. Adv
– volume: 320
  start-page: 2521
  year: 2018
  publication-title: JAMA, J. Am. Med. Assoc.
– volume: 66
  start-page: 4159
  year: 1994
  publication-title: Anal. Chem.
– volume: 70
  start-page: 3935
  year: 2010
  publication-title: Cancer Res.
– volume: 9
  start-page: 1482
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1549
  year: 2022
  publication-title: Nanophotonics
– volume: 308
  year: 2024
  publication-title: Biomaterials
– volume: 300
  year: 2023
  publication-title: Biomaterials
– volume: 4
  year: 2022
  publication-title: Aggregate
– volume: 131
  start-page: 9890
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8292
  year: 2018
  publication-title: Nanoscale
– volume: 9
  start-page: 176
  year: 2019
  publication-title: Cancer Discov
– volume: 21
  year: 2021
  publication-title: Photoacoustics
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.9b06208
– ident: e_1_2_8_39_1
  doi: 10.1021/ja2119964
– ident: e_1_2_8_60_1
  doi: 10.1186/s13550-021-00875-7
– ident: e_1_2_8_56_1
  doi: 10.1021/bi5011927
– ident: e_1_2_8_14_1
  doi: 10.1021/cr0782426
– ident: e_1_2_8_65_1
  doi: 10.1016/j.biomaterials.2024.122538
– ident: e_1_2_8_11_1
  doi: 10.1158/0008-5472.CAN-09-4396
– ident: e_1_2_8_44_1
  doi: 10.1038/s41467-024-46853-0
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.202102950
– ident: e_1_2_8_27_1
  doi: 10.1021/ja9037593
– ident: e_1_2_8_22_1
  doi: 10.1039/b708841h
– ident: e_1_2_8_48_1
  doi: 10.1039/C8NR00564H
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.jpcc.7b01504
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.jpclett.2c01741
– ident: e_1_2_8_50_1
  doi: 10.1016/j.biomaterials.2023.122327
– ident: e_1_2_8_57_1
  doi: 10.1038/s41419-021-03730-8
– ident: e_1_2_8_16_1
  doi: 10.1007/s10585-011-9403-y
– ident: e_1_2_8_28_1
  doi: 10.1021/ac00095a008
– ident: e_1_2_8_30_1
  doi: 10.1002/jbio.201960126
– ident: e_1_2_8_52_1
  doi: 10.1016/j.pacs.2021.100239
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ab.2009.02.024
– ident: e_1_2_8_1_1
  doi: 10.1146/annurev-pathol-042420-093238
– ident: e_1_2_8_2_1
  doi: 10.1158/1078-0432.CCR-06-3045
– volume: 320
  start-page: 2521
  year: 2018
  ident: e_1_2_8_4_1
  publication-title: JAMA, J. Am. Med. Assoc.
– ident: e_1_2_8_8_1
  doi: 10.1007/s00259-022-05849-y
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.analchem.6b03521
– ident: e_1_2_8_67_1
  doi: 10.1021/acsnano.7b01536
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biomaterials.2023.122211
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-018-03725-8
– ident: e_1_2_8_35_1
  doi: 10.1021/ja110964d
– ident: e_1_2_8_41_1
  doi: 10.1021/acscentsci.1c00117
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.analchem.1c03277
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.6b01908
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.jpcc.6b01895
– ident: e_1_2_8_6_1
  doi: 10.3390/cancers14092314
– ident: e_1_2_8_7_1
  doi: 10.2174/0929867324666170830111531
– ident: e_1_2_8_63_1
  doi: 10.1038/s41467-024-47044-7
– ident: e_1_2_8_61_1
  doi: 10.1016/j.apsb.2023.03.024
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.analchem.2c02398
– ident: e_1_2_8_24_1
  doi: 10.1515/nanoph-2021-0689
– ident: e_1_2_8_25_1
  doi: 10.1039/D1TC05938F
– ident: e_1_2_8_37_1
  doi: 10.1021/jacs.2c06275
– ident: e_1_2_8_3_1
  doi: 10.1038/sj.onc.1206004
– ident: e_1_2_8_55_1
  doi: 10.1158/2159-8290.CD-18-1177
– ident: e_1_2_8_18_1
  doi: 10.1126/sciadv.aau3494
– ident: e_1_2_8_34_1
  doi: 10.1021/acsnano.2c11240
– ident: e_1_2_8_12_1
  doi: 10.7150/thno.48620
– ident: e_1_2_8_43_1
  doi: 10.1016/j.chempr.2021.09.001
– ident: e_1_2_8_66_1
  doi: 10.1038/ncomms7570
– ident: e_1_2_8_9_1
  doi: 10.1016/j.envres.2023.116335
– ident: e_1_2_8_38_1
  doi: 10.1080/05704928.2014.999936
– ident: e_1_2_8_23_1
  doi: 10.1039/D2CC06178C
– ident: e_1_2_8_42_1
  doi: 10.1002/agt2.277
– ident: e_1_2_8_10_1
  doi: 10.7150/thno.31032
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-021-23700-0
– ident: e_1_2_8_5_1
  doi: 10.1016/S0140-6736(16)00561-4
– ident: e_1_2_8_64_1
  doi: 10.1126/science.abe0722
– ident: e_1_2_8_15_1
  doi: 10.7150/thno.4835
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.201800732
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-021-23700-0
– ident: e_1_2_8_58_1
  doi: 10.1158/1541-7786.MCR-13-0029-T
– ident: e_1_2_8_13_1
  doi: 10.7150/thno.5376
– ident: e_1_2_8_29_1
  doi: 10.1021/acsnano.5b07200
– ident: e_1_2_8_46_1
  doi: 10.1039/c8pp00173a
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201702415
– ident: e_1_2_8_45_1
  doi: 10.1063/5.0161238
– ident: e_1_2_8_36_1
  doi: 10.1016/j.bios.2015.03.029
SSID ssj0017734
Score 2.4759123
Snippet CXC chemokine receptor 4 (CXCR4) is recently regarded as a valuable biomarker for triple‐negative breast cancer (TNBC) metastasis but lacks available imaging...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Biomarkers
black hole quenchers
Chemokine receptors
Conjugation
CXCR4
Fluorescence
Imaging
Internal conversion
Raman reporters
Raman spectra
Reagents
Resonance
Resonance scattering
SERRS
triple‐negative breast cancer cells
Title Black Hole Quenchers for SERRS Imaging of CXCR4 Expression at Single‐Cell Level During Treatment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417341
https://www.proquest.com/docview/3175813202
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwIwoF-YDEKW1jO0lzrLqoIIpEFym3yFsulBTRVkKc-AS-kS_B4yxtuSDBMYomSjwez4v95g1C1wlhvEF504H847DQ-IKHnnR8GfhMhD6Xdh9y8OD3J-wu8qK1Kv5MH6LccIPIsOs1BDgX8_pKNJSrBCrJTQYKqK1cB8IWoKJhqR_lBkF2rOy7QPByo0K1sUHqm-abWWkFNdcBq804vX3Ei3fNiCZPteVC1OT7DxnH_3zMAdrL4ShuZfPnEG3p9AjtrokUHiNh9_hwfzbV-BFo14AYscG6eNQdDkf49tk2OsKzBLej9pDh7ltOrk0xX-CRuTfVXx-fbT2d4nvgKOGOrY3E44LkfoImve643XfyzgyOpIyYn04lEzcMDNbgUhGhExmEghOzfPgGLjQ480xoayqUMunOpS4X3E-EDkG_HvR76CnaTmepPkM4NOZEKYCtklFKuWyKxFMel6ErlGQVdFN4Jn7JBDjiTGqZxDBqcTlqFVQtHBfngTiPAR41oUycVBCxHvjlKXGr0xuUV-d_MbpAOwS6BFumWhVtL16X-tJAl4W4stPzGzy15FE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckTmkb20maY9VFLbSV6CL1FnnLhdAiaCXEiU_gG_kSPE7ThQsSHKPIUeLxeF7Gb94gdBMTxkuUlx2IPw4LjS146EnHl4HPROhzafOQna7fHLK7kZexCaEWJtWHWCTcwDPsfg0ODgnp4lI1lKsYSslNCAoolK5vQVtvkM-v9RYKUm4QpAfLvgsUL3eU6TaWSHF9_HpcWoLNVchqY05jH4nsbVOqyWNhNhUF-f5DyPFfn3OA9uaIFFfSJXSINvT4CO2u6BQeI2HTfLg5STR-AOY1gEZs4C7u13u9Pm492V5HeBLj6qjaY7j-NufXjjGf4r65l-ivj8-qThLcBpoSrtnySDzIeO4naNioD6pNZ96cwZGUEfPfqWTshoGBG1wqInQsg1BwYnYQ3yCGEmee8W5NhVIm4rnU5YL7sdAhSNiDhA89RZvjyVifIRya4UQpQK6SUUq5LIvYUx6XoSuUZDl0m5kmek41OKJUbZlEMGvRYtZyKJ9ZLpr74msECKkMleIkh4g1wS9PiSq1Rmdxdf6XQddouznotKN2q3t_gXYINA22xLU82py-zPSlQTJTcWXX6jeXL-ht
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR-QOAUa20nqY9VFLbQVdJF6i7zlQmkRFAlx4hP4Rr4Ej9N04YIExyiaKPF4PC_2mzcIXSSEiQIVRQ_yj8e49YXggfJCFYVM8lAotw_Zaof1PrsZBIOFKv5UH2K24QaR4dZrCPAnnVzPRUOFTqCS3GagiELl-hoLCxyaN1Q6MwEpP4rSc-XQB4aXP8hkGwvketl-OS3NseYiYnUpp7aNRPayKdPk4ep1Iq_U-w8dx_98zQ7amuJRXEon0C5aMaM9tLmgUriPpNvkw_Xx0OB74F0DZMQW7OJutdPp4saj63SExwkuD8odhqtvU3btCIsJ7tp7Q_P18Vk2wyFuAkkJV1xxJO5lLPcD1K9Ve-W6N23N4CnKiP3r1CrxeWTBhlCaSJOoiEtB7PoRWrxQECywsW2o1NrmO5_6QoowkYaDgD0I-NBDtDoaj8wRwtyaE60BtypGKRWqKJNAB0JxX2rFcugy80z8lCpwxKnWMolh1OLZqOVQPnNcPI3ElxjwURHqxEkOEeeBX54Slyq11uzq-C9G52j9rlKLm4327QnaINAx2LHW8mh18vxqTi2MmcgzN1O_AeoM5xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Black+Hole+Quenchers+for+SERRS+Imaging+of+CXCR4+Expression+at+Single%E2%80%90Cell+Level+During+Treatment&rft.jtitle=Advanced+functional+materials&rft.au=Zhu%2C+Congzheng&rft.au=Li%2C+Jin&rft.au=Chen%2C+Xinru&rft.au=Fu%2C+Longwen&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon