Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains

Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few ha...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 20; no. 4; pp. 1250 - 1268
Main Authors Zhang, Jian, Ma, Zhiqiang, Kurgan, Lukasz
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.07.2019
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
AbstractList Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
Author Zhang, Jian
Ma, Zhiqiang
Kurgan, Lukasz
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
– sequence: 2
  givenname: Zhiqiang
  surname: Ma
  fullname: Ma, Zhiqiang
– sequence: 3
  givenname: Lukasz
  orcidid: 0000-0002-7749-0314
  surname: Kurgan
  fullname: Kurgan, Lukasz
  email: lkurgan@vcu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29253082$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtPHSEUhUmjqZf2pT-gmcSYGONUYGAYHs1RWxNjk8Z3AgzTs-0MjDDj5d_L8XheTOMLsMO31oa99tCWD94h9I3gHwTL6tSAOTXmidTNJ7RLmBAlw5xtrc61KDmrqx20l9IdxhSLhnxGO1RSXuGG7qJ5EYYxuqXzCR5cEd0DuMdC-7ZwwwgRrO5zpfvnBKkIXbHUfT_o-O-1OL85K0-KP3l9VYwxTA58acC34P9mswTt7FIBfnNX2KUGn76g7U73yX192_fR7eXF7eJXef3759Xi7Lq0FSNT2bm6ayQmVhpeS0kctRWmLTNNaynTlaCmll3VamO5qa1uO2MYb4TWDGOBq310tLbN3e_zQyY1QLKu77V3YU6KSNEIwjhfoQfv0Lswx_zxpKjknNKGizpT39-o2QyuVWOEPIxntZlnBvAasDGkFF2nLEx6guCnqKFXBKtVZCpHptaRZcnxO8nG9b_w4RoO8_gR9wKuwKT9
CitedBy_id crossref_primary_10_1016_j_jmb_2024_168872
crossref_primary_10_1007_s12539_022_00543_x
crossref_primary_10_1016_j_jmb_2023_168272
crossref_primary_10_1016_j_jmb_2020_09_008
crossref_primary_10_1093_bib_bbaf016
crossref_primary_10_34133_research_0240
crossref_primary_10_1016_j_celrep_2023_112309
crossref_primary_10_1016_j_molcel_2020_03_011
crossref_primary_10_2174_1574893618666230913090436
crossref_primary_10_1080_15476286_2024_2429956
crossref_primary_10_1016_j_jmb_2023_167945
crossref_primary_10_3390_ijms23084259
crossref_primary_10_1016_j_bbadis_2021_166166
crossref_primary_10_1093_bioinformatics_btaa750
crossref_primary_10_3390_biom10060876
crossref_primary_10_1093_bib_bbae162
crossref_primary_10_3389_fmolb_2021_691694
crossref_primary_10_1093_bib_bbac538
crossref_primary_10_1186_s12859_023_05592_7
crossref_primary_10_1093_nar_gkac270
crossref_primary_10_1093_nar_gkad1131
crossref_primary_10_1093_bib_bbab521
crossref_primary_10_1016_j_knosys_2023_111354
crossref_primary_10_1007_s12551_024_01201_w
crossref_primary_10_1093_nar_gkaa931
crossref_primary_10_1093_bib_bbaa397
crossref_primary_10_1002_cpps_71
crossref_primary_10_1016_j_jmb_2024_168769
crossref_primary_10_1111_gtc_12896
crossref_primary_10_1096_fj_201901897R
crossref_primary_10_3390_ijms22020922
crossref_primary_10_3390_biom10121636
crossref_primary_10_1007_s12551_023_01067_4
crossref_primary_10_1039_D3SC03719C
crossref_primary_10_1016_j_bioorg_2022_105698
crossref_primary_10_1093_bioinformatics_btaa806
crossref_primary_10_1016_j_csbj_2024_11_015
crossref_primary_10_1155_2022_8965712
crossref_primary_10_3390_molecules23061448
crossref_primary_10_1038_s42003_024_06332_0
crossref_primary_10_3389_fgene_2019_00542
crossref_primary_10_1093_nar_gkab356
crossref_primary_10_1109_TCBB_2021_3123269
crossref_primary_10_1093_bib_bbac322
crossref_primary_10_1093_bib_bbac244
crossref_primary_10_1109_TCBB_2024_3410350
crossref_primary_10_1016_j_jmb_2022_167640
crossref_primary_10_1093_bioinformatics_btaa573
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_1016_j_jmb_2023_167963
crossref_primary_10_3390_ijms21186879
crossref_primary_10_1371_journal_pcbi_1012650
crossref_primary_10_1016_j_ymeth_2024_09_004
crossref_primary_10_3390_ijms232112814
crossref_primary_10_3390_ijms19092483
crossref_primary_10_1109_TCBB_2023_3323493
crossref_primary_10_3390_biom14101220
crossref_primary_10_1039_C9LC00367C
crossref_primary_10_1093_nar_gkad985
crossref_primary_10_1016_j_jmb_2020_02_026
crossref_primary_10_1021_acs_jproteome_9b00012
crossref_primary_10_1093_nar_gkac1253
crossref_primary_10_1093_bioinformatics_btaa580
crossref_primary_10_3389_fmolb_2022_957502
crossref_primary_10_1002_pro_4544
crossref_primary_10_1002_prot_25639
crossref_primary_10_1016_j_csbj_2022_05_003
crossref_primary_10_1371_journal_pcbi_1008951
crossref_primary_10_1093_bib_bbab336
crossref_primary_10_3389_fmicb_2022_1048478
crossref_primary_10_1093_bib_bbab411
crossref_primary_10_3390_ijms19061595
crossref_primary_10_1109_TCBB_2019_2952338
crossref_primary_10_1186_s12859_024_05964_7
Cites_doi 10.1371/journal.pone.0107676
10.1186/s13062-015-0039-8
10.1093/nar/gkm294
10.1093/nar/gkv585
10.1073/pnas.1321614111
10.1016/j.str.2009.11.012
10.1002/bip.20682
10.1186/1477-5956-9-S1-S13
10.1002/bip.360221211
10.1110/ps.03323604
10.1107/S1399004714019427
10.1016/j.ymeth.2015.07.017
10.1109/TCBB.2013.117
10.1093/nar/gkh131
10.1002/jcc.23219
10.1093/nar/gks405
10.1371/journal.pone.0097725
10.1080/03610927708827533
10.1093/nar/gku269
10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
10.1186/1471-2105-9-S12-S6
10.1038/nrm3884
10.1038/nmeth.1818
10.1186/s12859-015-0691-0
10.1093/nar/gks535
10.1186/1471-2105-12-489
10.3390/ijms16035194
10.1002/prot.21677
10.1016/j.str.2006.06.018
10.1002/prot.21211
10.1002/jmr.2410
10.1093/nar/gku989
10.1093/bfgp/elu047
10.1371/journal.pcbi.1000170
10.2174/092986613804725208
10.1038/nature11503
10.3390/ijms161226202
10.1002/jmr.2332
10.1007/s00726-007-0634-9
10.1093/bioinformatics/btq253
10.1109/TNB.2015.2394328
10.1007/s00726-010-0639-7
10.1016/j.cbpa.2014.07.015
10.1093/bioinformatics/btl672
10.1002/prot.20607
10.1049/iet-syb.2013.0048
10.1093/bioinformatics/btw280
10.1093/nar/gkw1099
10.1093/nar/gks1258
10.1038/srep27653
10.1093/nar/28.1.235
10.1371/journal.pone.0080635
10.1073/pnas.1030237100
10.1016/j.jsb.2011.10.001
10.1016/j.str.2012.01.010
10.1109/TCBB.2012.106
10.1002/prot.22527
10.1016/j.jmb.2011.04.007
10.1007/978-1-4939-2425-7_4
10.1093/nar/gkt1299
10.1186/s12859-016-1110-x
10.1016/j.pbiomolbio.2014.07.004
10.1186/1471-2105-15-297
10.1109/TCBB.2013.104
10.1093/bib/bbv023
10.1002/prot.24682
10.1371/journal.pone.0133260
10.2174/138920310794109193
10.1002/pro.2792
10.1002/prot.24330
10.1186/1752-0509-4-S1-S3
10.1016/j.str.2004.04.009
10.1016/j.patrec.2010.04.012
10.1093/nar/gkm998
10.1016/j.neucom.2016.02.022
10.1371/journal.pcbi.1004580
10.1093/nar/gkt1112
10.1039/c3mb70167k
10.1038/s41598-017-00795-4
10.1007/s00726-010-0587-2
10.1007/s00232-015-9856-z
10.1371/journal.pone.0004473
10.1186/1471-2105-14-44
10.1186/1471-2105-6-33
10.1016/S0022-2836(02)01223-8
10.1093/nar/gku681
10.1002/pro.2744
10.1021/ci1003703
10.3390/e18100379
10.1186/1471-2105-8-211
10.1093/bioinformatics/btm626
10.1093/nar/gkn102
10.1093/protein/15.4.265
10.1002/pro.2800
10.1186/1471-2105-12-S13-S7
10.1371/journal.pone.0096694
10.1021/ci500760m
10.1093/nar/gkn573
10.1109/TCBB.2016.2616469
10.1186/1471-2105-12-S13-S5
10.1093/bioinformatics/btr657
10.1016/S0022-2836(02)00571-5
10.1093/nar/gkt544
10.1021/cr4004665
10.1109/TCBB.2011.94
10.1186/1472-6807-11-9
10.1093/nar/gks966
10.1093/bioinformatics/btq302
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
– notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbx168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1268
ExternalDocumentID 29253082
10_1093_bib_bbx168
10.1093/bib/bbx168
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c341t-fe6f8901c9b56991e2c302d4b8dc24a372b69f3dabc5b6cadfbb4587aa400703
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 05:39:16 EDT 2025
Mon Jun 30 08:58:48 EDT 2025
Wed Feb 19 02:30:10 EST 2025
Tue Jul 01 03:39:26 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Wed Apr 02 06:55:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords protein–protein interactions
DNA-binding residues
RNA-binding residues
protein–nucleic acid interactions
protein–RNA interactions
protein–DNA interactions
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-fe6f8901c9b56991e2c302d4b8dc24a372b69f3dabc5b6cadfbb4587aa400703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7749-0314
PMID 29253082
PQID 2955228576
PQPubID 26846
PageCount 19
ParticipantIDs proquest_miscellaneous_1978714550
proquest_journals_2955228576
pubmed_primary_29253082
crossref_citationtrail_10_1093_bib_bbx168
crossref_primary_10_1093_bib_bbx168
oup_primary_10_1093_bib_bbx168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-19
PublicationDateYYYYMMDD 2019-07-19
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2019
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wang (2019103013414807100_bbx168-B48) 2011; 40
Singh (2019103013414807100_bbx168-B59) 2014; 2
Ofran (2019103013414807100_bbx168-B103) 2003; 325
Liu (2019103013414807100_bbx168-B28) 2013; 81
Yan (2019103013414807100_bbx168-B71) 2017; 45
Terribilini (2019103013414807100_bbx168-B40) 2007; 35(Web Server)
Bahadur (2019103013414807100_bbx168-B35) 2008; 36
Gupta (2019103013414807100_bbx168-B45) 2011; 409
Remmert (2019103013414807100_bbx168-B95) 2012; 9
Maheshwari (2019103013414807100_bbx168-B62) 2015; 28
Tien (2019103013414807100_bbx168-B93) 2013; 8
Zhao (2019103013414807100_bbx168-B32) 2014; 9
Halperin (2019103013414807100_bbx168-B105) 2004; 12
Chen (2019103013414807100_bbx168-B4) 2009; 4
Muppirala (2019103013414807100_bbx168-B53) 2011; 12
Prabakaran (2019103013414807100_bbx168-B10) 2006; 14
Wang (2019103013414807100_bbx168-B24) 2010; 4(Suppl 1)
Hu (2019103013414807100_bbx168-B33) 2017
Hu (2019103013414807100_bbx168-B69) 2014; 9
Dudev (2019103013414807100_bbx168-B5) 2014; 114
Chen (2019103013414807100_bbx168-B39) 2014; 42
Liu (2019103013414807100_bbx168-B44) 2010; 26
Murakami (2019103013414807100_bbx168-B58) 2010; 26
Luscombe (2019103013414807100_bbx168-B109) 2002; 320
Baker (2019103013414807100_bbx168-B67) 2007; 85
Berman (2019103013414807100_bbx168-B18) 2012; 20
Gromiha (2019103013414807100_bbx168-B74) 2011; 9(Suppl 1)
Apweiler (2019103013414807100_bbx168-B21) 2004; 32
Hwang (2019103013414807100_bbx168-B23) 2007; 23
Peng (2019103013414807100_bbx168-B6) 2014; 21
Panwar (2019103013414807100_bbx168-B78) 2013; 14
Gallina (2019103013414807100_bbx168-B7) 2014; 27
Huang (2019103013414807100_bbx168-B89) 2013; 20
Ren (2019103013414807100_bbx168-B49) 2015; 16
Sudha (2019103013414807100_bbx168-B3) 2014; 116
Roche (2019103013414807100_bbx168-B15) 2015; 16
Velankar (2019103013414807100_bbx168-B86) 2013; 41
Kabsch (2019103013414807100_bbx168-B92) 1983; 22
Fernandez (2019103013414807100_bbx168-B42) 2011; 12(Suppl 13)
Sudha (2019103013414807100_bbx168-B55) 2015; 24
Ellis (2019103013414807100_bbx168-B9) 2006; 66
Maheshwari (2019103013414807100_bbx168-B66) 2016; 93
Baussand (2019103013414807100_bbx168-B65) 2011; 11
Yan (2019103013414807100_bbx168-B88) 2016; 17
Faraggi (2019103013414807100_bbx168-B94) 2014; 82
Luo (2019103013414807100_bbx168-B43) 2017; 7
Si (2019103013414807100_bbx168-B13) 2015; 16
Choi (2019103013414807100_bbx168-B54) 2011; 12(Suppl 13)
Cook (2019103013414807100_bbx168-B2) 2015; 14
Wilson (2019103013414807100_bbx168-B102) 2014; 42
Mizianty (2019103013414807100_bbx168-B20) 2014; 70
Yang (2019103013414807100_bbx168-B70) 2015; 10
Chen (2019103013414807100_bbx168-B75) 2012; 28
London (2019103013414807100_bbx168-B56) 2010; 18
Ma (2019103013414807100_bbx168-B106) 2003; 100
Ahmad (2019103013414807100_bbx168-B113) 2005; 6
Peng (2019103013414807100_bbx168-B73) 2015; 43
Siggers (2019103013414807100_bbx168-B1) 2014; 42
Dang (2019103013414807100_bbx168-B34) 2016; 18
Li (2019103013414807100_bbx168-B50) 2014; 42
Dey (2019103013414807100_bbx168-B26) 2012; 40
Barik (2019103013414807100_bbx168-B36) 2012; 40
Laine (2019103013414807100_bbx168-B60) 2015; 11
Sun (2019103013414807100_bbx168-B51) 2016; 17
Kawashima (2019103013414807100_bbx168-B98) 2008; 36
Yang (2019103013414807100_bbx168-B84) 2013; 41
Cheng (2019103013414807100_bbx168-B46) 2008; 9(Suppl 12)
Hu (2019103013414807100_bbx168-B107) 2000; 39
Gromiha (2019103013414807100_bbx168-B108) 2011; 51
Ehrenberger (2019103013414807100_bbx168-B12) 2015; 1278
Puton (2019103013414807100_bbx168-B14) 2012; 179
Yu (2019103013414807100_bbx168-B81) 2013; 10
Nagarajan (2019103013414807100_bbx168-B112) 2013; 41
The UniProt Consortium (2019103013414807100_bbx168-B22) 2017; 45
Duh (2019103013414807100_bbx168-B101) 2015; 24
Brinda (2019103013414807100_bbx168-B104) 2002; 15
Meng (2019103013414807100_bbx168-B100) 2016; 32
Horst (2019103013414807100_bbx168-B79) 2010; 31
UniProt (2019103013414807100_bbx168-B85) 2015; 43
Yu (2019103013414807100_bbx168-B77) 2014; 15
Dou (2019103013414807100_bbx168-B97) 2010; 39
Holland (2019103013414807100_bbx168-B99) 1977; 6
Passerini (2019103013414807100_bbx168-B80) 2012; 9
Berman (2019103013414807100_bbx168-B17) 2000; 28
Nagarajan (2019103013414807100_bbx168-B8) 2015; 10
Zhou (2019103013414807100_bbx168-B30) 2016; 6
Munteanu (2019103013414807100_bbx168-B72) 2015; 55
Wang (2019103013414807100_bbx168-B38) 2008; 35
Lejeune (2019103013414807100_bbx168-B11) 2005; 61
Zhang (2019103013414807100_bbx168-B41) 2010; 11
Yu (2019103013414807100_bbx168-B76) 2013; 34
Singh (2019103013414807100_bbx168-B83) 2014; 1
Khafizov (2019103013414807100_bbx168-B111) 2014; 111
Fischer (2019103013414807100_bbx168-B96) 2008; 24
Zhang (2019103013414807100_bbx168-B87) 2017
Asadabadi (2019103013414807100_bbx168-B57) 2013; 5
Caffrey (2019103013414807100_bbx168-B110) 2004; 13
Sathyapriya (2019103013414807100_bbx168-B25) 2008; 4
Ahmad (2019103013414807100_bbx168-B27) 2008; 36
Perez-Cano (2019103013414807100_bbx168-B47) 2010; 78
Zhu (2019103013414807100_bbx168-B90) 2013; 10
Wei (2019103013414807100_bbx168-B64) 2016; 193
Zhang (2019103013414807100_bbx168-B19) 2012; 490
Wang (2019103013414807100_bbx168-B29) 2014; 8
Yu (2019103013414807100_bbx168-B82) 2015; 14
Zhao (2019103013414807100_bbx168-B16) 2013; 9
Ma (2019103013414807100_bbx168-B31) 2012; 9
Liu (2019103013414807100_bbx168-B63) 2016; 249
Vacic (2019103013414807100_bbx168-B91) 2007; 8
Kumar (2019103013414807100_bbx168-B37) 2008; 71
Walia (2019103013414807100_bbx168-B52) 2014; 9
Hudson (2019103013414807100_bbx168-B68) 2014; 15
Hwang (2019103013414807100_bbx168-B61) 2016; 25
References_xml – volume: 9
  start-page: e107676
  issue: 9
  year: 2014
  ident: 2019103013414807100_bbx168-B69
  article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107676
– volume: 10
  start-page: 8
  issue: 1
  year: 2015
  ident: 2019103013414807100_bbx168-B8
  article-title: Structure based approach for understanding organism specific recognition of protein-RNA complexes
  publication-title: Biol Direct
  doi: 10.1186/s13062-015-0039-8
– volume: 35(Web Server)
  start-page: W578
  year: 2007
  ident: 2019103013414807100_bbx168-B40
  article-title: RNABindR: a server for analyzing and predicting RNA-binding sites in proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm294
– volume: 43
  start-page: e121
  issue: 18
  year: 2015
  ident: 2019103013414807100_bbx168-B73
  article-title: High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv585
– volume: 111
  start-page: 3733
  issue: 10
  year: 2014
  ident: 2019103013414807100_bbx168-B111
  article-title: Trends in structural coverage of the protein universe and the impact of the protein structure initiative
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1321614111
– volume: 18
  start-page: 188
  issue: 2
  year: 2010
  ident: 2019103013414807100_bbx168-B56
  article-title: The structural basis of peptide-protein binding strategies
  publication-title: Structure
  doi: 10.1016/j.str.2009.11.012
– volume: 85
  start-page: 456
  issue: 5–6
  year: 2007
  ident: 2019103013414807100_bbx168-B67
  article-title: Role of aromatic amino acids in protein-nucleic acid recognition
  publication-title: Biopolymers
  doi: 10.1002/bip.20682
– volume: 9(Suppl 1)
  start-page: S13
  year: 2011
  ident: 2019103013414807100_bbx168-B74
  article-title: Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes
  publication-title: Proteome Sci
  doi: 10.1186/1477-5956-9-S1-S13
– volume: 22
  start-page: 2577
  issue: 12
  year: 1983
  ident: 2019103013414807100_bbx168-B92
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 13
  start-page: 190
  issue: 1
  year: 2004
  ident: 2019103013414807100_bbx168-B110
  article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface?
  publication-title: Protein Sci
  doi: 10.1110/ps.03323604
– volume: 70
  start-page: 2781
  issue: 11
  year: 2014
  ident: 2019103013414807100_bbx168-B20
  article-title: Covering complete proteomes with X-ray structures: a current snapshot
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S1399004714019427
– volume: 93
  start-page: 64
  year: 2016
  ident: 2019103013414807100_bbx168-B66
  article-title: Template-based identification of protein-protein interfaces using eFindSitePPI
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.07.017
– volume: 10
  start-page: 1017
  issue: 4
  year: 2013
  ident: 2019103013414807100_bbx168-B90
  article-title: Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2013.117
– volume: 32
  start-page: D115
  issue: 90001
  year: 2004
  ident: 2019103013414807100_bbx168-B21
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh131
– volume: 34
  start-page: 974
  issue: 11
  year: 2013
  ident: 2019103013414807100_bbx168-B76
  article-title: TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23219
– volume: 40
  start-page: 7150
  issue: 15
  year: 2012
  ident: 2019103013414807100_bbx168-B26
  article-title: Characterization and prediction of the binding site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary conservation and structural parameters
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks405
– volume: 9
  start-page: e97725
  issue: 5
  year: 2014
  ident: 2019103013414807100_bbx168-B52
  article-title: RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097725
– volume: 6
  start-page: 813
  issue: 9
  year: 1977
  ident: 2019103013414807100_bbx168-B99
  article-title: Robust regression using iteratively reweighted least-squares
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610927708827533
– volume: 42
  start-page: 6726
  issue: 10
  year: 2014
  ident: 2019103013414807100_bbx168-B102
  article-title: DNA-protein pi-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku269
– volume: 39
  start-page: 331
  issue: 4
  year: 2000
  ident: 2019103013414807100_bbx168-B107
  article-title: Conservation of polar residues as hot spots at protein interfaces
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
– volume: 9(Suppl 12)
  start-page: S6
  year: 2008
  ident: 2019103013414807100_bbx168-B46
  article-title: Predicting RNA-binding sites of proteins using support vector machines and evolutionary information
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S12-S6
– volume: 15
  start-page: 749
  issue: 11
  year: 2014
  ident: 2019103013414807100_bbx168-B68
  article-title: The structure, function and evolution of proteins that bind DNA and RNA
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3884
– volume: 9
  start-page: 173
  year: 2012
  ident: 2019103013414807100_bbx168-B95
  article-title: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1818
– volume: 16
  start-page: 249
  issue: 1
  year: 2015
  ident: 2019103013414807100_bbx168-B49
  article-title: RNA-binding residues prediction using structural features
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0691-0
– volume: 40
  start-page: W440
  issue: Web Server Issue
  year: 2012
  ident: 2019103013414807100_bbx168-B36
  article-title: PRince: a web server for structural and physicochemical analysis of protein-RNA interface
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks535
– volume: 12
  start-page: 489
  issue: 1
  year: 2011
  ident: 2019103013414807100_bbx168-B53
  article-title: Predicting RNA-protein interactions using only sequence information
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-489
– volume: 16
  start-page: 5194
  issue: 3
  year: 2015
  ident: 2019103013414807100_bbx168-B13
  article-title: An overview of the prediction of protein DNA-binding sites
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16035194
– volume: 71
  start-page: 189
  issue: 1
  year: 2008
  ident: 2019103013414807100_bbx168-B37
  article-title: Prediction of RNA binding sites in a protein using SVM and PSSM profile
  publication-title: Proteins
  doi: 10.1002/prot.21677
– volume: 14
  start-page: 1355
  issue: 9
  year: 2006
  ident: 2019103013414807100_bbx168-B10
  article-title: Classification of protein-DNA complexes based on structural descriptors
  publication-title: Structure
  doi: 10.1016/j.str.2006.06.018
– volume: 66
  start-page: 903
  issue: 4
  year: 2006
  ident: 2019103013414807100_bbx168-B9
  article-title: Protein-RNA interactions: structural analysis and functional classes
  publication-title: Proteins
  doi: 10.1002/prot.21211
– volume: 28
  start-page: 35
  issue: 1
  year: 2015
  ident: 2019103013414807100_bbx168-B62
  article-title: Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.2410
– volume: 43
  start-page: D204
  year: 2015
  ident: 2019103013414807100_bbx168-B85
  article-title: UniProt: a hub for protein information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku989
– volume: 14
  start-page: 74
  issue: 1
  year: 2015
  ident: 2019103013414807100_bbx168-B2
  article-title: High-throughput characterization of protein-RNA interactions
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elu047
– volume: 4
  start-page: e1000170
  issue: 9
  year: 2008
  ident: 2019103013414807100_bbx168-B25
  article-title: Insights into protein-DNA interactions through structure network analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000170
– volume: 20
  start-page: 218
  year: 2013
  ident: 2019103013414807100_bbx168-B89
  article-title: metaPIS: a sequence-based meta-server for protein interaction site prediction
  publication-title: Protein Pept Lett
  doi: 10.2174/092986613804725208
– volume: 490
  start-page: 556
  issue: 7421
  year: 2012
  ident: 2019103013414807100_bbx168-B19
  article-title: Structure-based prediction of protein-protein interactions on a genome-wide scale
  publication-title: Nature
  doi: 10.1038/nature11503
– volume: 16
  start-page: 29829
  issue: 12
  year: 2015
  ident: 2019103013414807100_bbx168-B15
  article-title: Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms161226202
– volume: 27
  start-page: 65
  issue: 2
  year: 2014
  ident: 2019103013414807100_bbx168-B7
  article-title: Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.2332
– volume: 35
  start-page: 295
  issue: 2
  year: 2008
  ident: 2019103013414807100_bbx168-B38
  article-title: PRINTR: prediction of RNA binding sites in proteins using SVM and profiles
  publication-title: Amino Acids
  doi: 10.1007/s00726-007-0634-9
– volume: 26
  start-page: 1616
  issue: 13
  year: 2010
  ident: 2019103013414807100_bbx168-B44
  article-title: Prediction of protein-RNA binding sites by a random forest method with combined features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq253
– volume: 14
  start-page: 45
  year: 2015
  ident: 2019103013414807100_bbx168-B82
  article-title: Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2015.2394328
– volume: 40
  start-page: 239
  issue: 1
  year: 2011
  ident: 2019103013414807100_bbx168-B48
  article-title: Identification of RNA-binding sites in proteins by integrating various sequence information
  publication-title: Amino Acids
  doi: 10.1007/s00726-010-0639-7
– volume: 21
  start-page: 144
  year: 2014
  ident: 2019103013414807100_bbx168-B6
  article-title: Turning the spotlight on protein-lipid interactions in cells
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2014.07.015
– volume: 23
  start-page: 634
  issue: 5
  year: 2007
  ident: 2019103013414807100_bbx168-B23
  article-title: DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl672
– volume: 61
  start-page: 258
  issue: 2
  year: 2005
  ident: 2019103013414807100_bbx168-B11
  article-title: Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure
  publication-title: Proteins
  doi: 10.1002/prot.20607
– volume: 2
  year: 2014
  ident: 2019103013414807100_bbx168-B59
  article-title: SPRINGS: prediction of protein-protein interaction sites using artificial neural networks
  publication-title: PeerJ PrePrints
– volume: 8
  start-page: 176
  issue: 4
  year: 2014
  ident: 2019103013414807100_bbx168-B29
  article-title: Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb.2013.0048
– volume: 32
  start-page: i341
  issue: 12
  year: 2016
  ident: 2019103013414807100_bbx168-B100
  article-title: DFLpred: high-throughput prediction of disordered flexible linker regions in protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw280
– volume: 45
  start-page: D158
  year: 2017
  ident: 2019103013414807100_bbx168-B22
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1099
– volume: 41
  start-page: D483
  year: 2013
  ident: 2019103013414807100_bbx168-B86
  article-title: SIFTS: structure integration with function, taxonomy and sequences resource
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1258
– volume: 6
  start-page: 27653
  year: 2016
  ident: 2019103013414807100_bbx168-B30
  article-title: PDNAsite: identification of DNA-binding site from protein sequence by incorporating spatial and sequence context
  publication-title: Sci Rep
  doi: 10.1038/srep27653
– volume: 28
  start-page: 235
  issue: 1
  year: 2000
  ident: 2019103013414807100_bbx168-B17
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 8
  start-page: e80635
  issue: 11
  year: 2013
  ident: 2019103013414807100_bbx168-B93
  article-title: Maximum allowed solvent accessibilites of residues in proteins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080635
– volume: 100
  start-page: 5772
  issue: 10
  year: 2003
  ident: 2019103013414807100_bbx168-B106
  article-title: Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1030237100
– volume: 179
  start-page: 261
  issue: 3
  year: 2012
  ident: 2019103013414807100_bbx168-B14
  article-title: Computational methods for prediction of protein-RNA interactions
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2011.10.001
– volume: 20
  start-page: 391
  issue: 3
  year: 2012
  ident: 2019103013414807100_bbx168-B18
  article-title: The Protein Data Bank at 40: reflecting on the past to prepare for the future
  publication-title: Structure
  doi: 10.1016/j.str.2012.01.010
– volume: 9
  start-page: 1766
  issue: 6
  year: 2012
  ident: 2019103013414807100_bbx168-B31
  article-title: Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2012.106
– volume: 78
  start-page: 25
  year: 2010
  ident: 2019103013414807100_bbx168-B47
  article-title: Optimal Protein-RNA Area, OPRA: a propensity-based method to identify RNA-binding sites on proteins
  publication-title: Proteins
  doi: 10.1002/prot.22527
– volume: 409
  start-page: 574
  issue: 4
  year: 2011
  ident: 2019103013414807100_bbx168-B45
  article-title: The role of RNA sequence and structure in RNA–protein interactions
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2011.04.007
– volume: 1278
  start-page: 57
  year: 2015
  ident: 2019103013414807100_bbx168-B12
  article-title: Computational prediction of protein-protein interactions
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-2425-7_4
– volume: 42
  start-page: e15
  issue: 3
  year: 2014
  ident: 2019103013414807100_bbx168-B39
  article-title: Identifying RNA-binding residues based on evolutionary conserved structural and energetic features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1299
– volume: 17
  start-page: 231
  issue: 1
  year: 2016
  ident: 2019103013414807100_bbx168-B51
  article-title: Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1110-x
– volume: 116
  start-page: 141
  issue: 2–3
  year: 2014
  ident: 2019103013414807100_bbx168-B3
  article-title: An overview of recent advances in structural bioinformatics of protein-protein interactions and a guide to their principles
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2014.07.004
– volume: 15
  start-page: 297
  issue: 1
  year: 2014
  ident: 2019103013414807100_bbx168-B77
  article-title: Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-297
– volume: 10
  start-page: 994
  issue: 4
  year: 2013
  ident: 2019103013414807100_bbx168-B81
  article-title: Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2013.104
– volume: 17
  start-page: 88
  issue: 1
  year: 2016
  ident: 2019103013414807100_bbx168-B88
  article-title: A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv023
– volume: 82
  start-page: 3170
  issue: 11
  year: 2014
  ident: 2019103013414807100_bbx168-B94
  article-title: Accurate single-sequence prediction of solvent accessible surface area using local and global features
  publication-title: Proteins
  doi: 10.1002/prot.24682
– volume: 10
  start-page: e0133260
  issue: 7
  year: 2015
  ident: 2019103013414807100_bbx168-B70
  article-title: SNBRFinder: a sequence-based hybrid algorithm for enhanced prediction of nucleic acid-binding residues
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133260
– volume: 11
  start-page: 609
  issue: 7
  year: 2010
  ident: 2019103013414807100_bbx168-B41
  article-title: Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/138920310794109193
– volume: 24
  start-page: 1856
  issue: 11
  year: 2015
  ident: 2019103013414807100_bbx168-B55
  article-title: Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes
  publication-title: Protein Sci
  doi: 10.1002/pro.2792
– volume: 81
  start-page: 1885
  issue: 11
  year: 2013
  ident: 2019103013414807100_bbx168-B28
  article-title: DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches
  publication-title: Proteins
  doi: 10.1002/prot.24330
– volume: 4(Suppl 1)
  start-page: S3
  year: 2010
  ident: 2019103013414807100_bbx168-B24
  article-title: BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S3
– volume: 12
  start-page: 1027
  year: 2004
  ident: 2019103013414807100_bbx168-B105
  article-title: Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking
  publication-title: Structure
  doi: 10.1016/j.str.2004.04.009
– volume: 31
  start-page: 2103
  issue: 14
  year: 2010
  ident: 2019103013414807100_bbx168-B79
  article-title: A protein sequence meta-functional signature for calcium binding residue prediction
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2010.04.012
– volume: 36
  start-page: D202
  year: 2008
  ident: 2019103013414807100_bbx168-B98
  article-title: AAindex: amino acid index database, progress report 2008
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm998
– volume: 193
  start-page: 201
  year: 2016
  ident: 2019103013414807100_bbx168-B64
  article-title: Protein–protein interaction sites prediction by ensembling SVM and sample-weighted random forests
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.022
– volume: 11
  start-page: e1004580
  issue: 12
  year: 2015
  ident: 2019103013414807100_bbx168-B60
  article-title: Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004580
– volume: 42
  start-page: 2099
  issue: 4
  year: 2014
  ident: 2019103013414807100_bbx168-B1
  article-title: Protein-DNA binding: complexities and multi-protein codes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1112
– volume: 9
  start-page: 2417
  issue: 10
  year: 2013
  ident: 2019103013414807100_bbx168-B16
  article-title: Prediction of RNA binding proteins comes of age from low resolution to high resolution
  publication-title: Mol Biosyst
  doi: 10.1039/c3mb70167k
– volume: 7
  start-page: 614
  issue: 1
  year: 2017
  ident: 2019103013414807100_bbx168-B43
  article-title: RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-00795-4
– volume: 39
  start-page: 1353
  issue: 5
  year: 2010
  ident: 2019103013414807100_bbx168-B97
  article-title: Prediction of catalytic residues based on an overlapping amino acid classification
  publication-title: Amino Acids
  doi: 10.1007/s00726-010-0587-2
– volume: 249
  start-page: 141
  issue: 1–2
  year: 2016
  ident: 2019103013414807100_bbx168-B63
  article-title: Prediction of protein-protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures
  publication-title: J Membr Biol
  doi: 10.1007/s00232-015-9856-z
– volume: 4
  start-page: e4473
  issue: 2
  year: 2009
  ident: 2019103013414807100_bbx168-B4
  article-title: Investigation of atomic level patterns in protein–small ligand interactions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004473
– volume: 14
  start-page: 44
  issue: 1
  year: 2013
  ident: 2019103013414807100_bbx168-B78
  article-title: Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-44
– volume: 5
  start-page: 148
  year: 2013
  ident: 2019103013414807100_bbx168-B57
  article-title: Predictions of protein-protein interfaces within membrane protein complexes
  publication-title: Avicenna J Med Biotechnol
– volume: 6
  start-page: 33
  year: 2005
  ident: 2019103013414807100_bbx168-B113
  article-title: PSSM-based prediction of DNA binding sites in proteins
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-33
– volume: 325
  start-page: 377
  issue: 2
  year: 2003
  ident: 2019103013414807100_bbx168-B103
  article-title: Analysing six types of protein-protein interfaces
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)01223-8
– volume: 42
  start-page: 10086
  issue: 15
  year: 2014
  ident: 2019103013414807100_bbx168-B50
  article-title: Quantifying sequence and structural features of protein-RNA interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku681
– volume: 25
  start-page: 159
  issue: 1
  year: 2016
  ident: 2019103013414807100_bbx168-B61
  article-title: A hybrid method for protein-protein interface prediction
  publication-title: Protein Sci
  doi: 10.1002/pro.2744
– volume: 51
  start-page: 721
  issue: 3
  year: 2011
  ident: 2019103013414807100_bbx168-B108
  article-title: Scoring function based approach for locating binding sites and understanding recognition mechanism of protein-DNA complexes
  publication-title: J Chem Inf Model
  doi: 10.1021/ci1003703
– volume: 18
  start-page: 379
  issue: 10
  year: 2016
  ident: 2019103013414807100_bbx168-B34
  article-title: A novel sequence-based feature for the identification of DNA-binding sites in proteins using Jensen–Shannon divergence
  publication-title: Entropy
  doi: 10.3390/e18100379
– volume: 8
  start-page: 211
  issue: 1
  year: 2007
  ident: 2019103013414807100_bbx168-B91
  article-title: Composition profiler: a tool for discovery and visualization of amino acid composition differences
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-211
– volume: 24
  start-page: 613
  issue: 5
  year: 2008
  ident: 2019103013414807100_bbx168-B96
  article-title: Prediction of protein functional residues from sequence by probability density estimation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm626
– volume: 45
  start-page: e84
  year: 2017
  ident: 2019103013414807100_bbx168-B71
  article-title: DRNApred, fast sequence-based method that accurately predicts and discriminates DNA-and RNA-binding residues
  publication-title: Nucleic Acids Res
– volume: 36
  start-page: 2705
  issue: 8
  year: 2008
  ident: 2019103013414807100_bbx168-B35
  article-title: Dissecting protein-RNA recognition sites
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn102
– volume: 15
  start-page: 265
  issue: 4
  year: 2002
  ident: 2019103013414807100_bbx168-B104
  article-title: Analysis of homodimeric protein interfaces by graph-spectral methods
  publication-title: Protein Eng
  doi: 10.1093/protein/15.4.265
– year: 2017
  ident: 2019103013414807100_bbx168-B87
  article-title: Review and comparative assessment of sequence-based predictors of protein-binding residues
  publication-title: Brief Bioinform
– volume: 1
  start-page: 7
  year: 2014
  ident: 2019103013414807100_bbx168-B83
  article-title: SPRINGS: prediction of protein-protein interaction sites using artificial neural networks
  publication-title: J Proteomics Comput Biol
– volume: 24
  start-page: 1934
  issue: 12
  year: 2015
  ident: 2019103013414807100_bbx168-B101
  article-title: Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids
  publication-title: Protein Sci
  doi: 10.1002/pro.2800
– volume: 12(Suppl 13)
  start-page: S7
  year: 2011
  ident: 2019103013414807100_bbx168-B54
  article-title: Prediction of RNA-binding amino acids from protein and RNA sequences
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-S13-S7
– volume: 9
  start-page: e96694
  issue: 5
  year: 2014
  ident: 2019103013414807100_bbx168-B32
  article-title: Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096694
– volume: 55
  start-page: 1077
  issue: 5
  year: 2015
  ident: 2019103013414807100_bbx168-B72
  article-title: Solvent accessible surface area-based hot-spot detection methods for protein–protein and protein–nucleic acid interfaces
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500760m
– volume: 36
  start-page: 5922
  issue: 18
  year: 2008
  ident: 2019103013414807100_bbx168-B27
  article-title: Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn573
– year: 2017
  ident: 2019103013414807100_bbx168-B33
  article-title: Predicting protein-DNA binding residues by weightedly combining sequence-based features and boosting multiple SVMs
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2616469
– volume: 12(Suppl 13)
  start-page: S5
  year: 2011
  ident: 2019103013414807100_bbx168-B42
  article-title: Prediction of dinucleotide-specific RNA-binding sites in proteins
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-S13-S5
– volume: 28
  start-page: 331
  issue: 3
  year: 2012
  ident: 2019103013414807100_bbx168-B75
  article-title: Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr657
– volume: 320
  start-page: 991
  issue: 5
  year: 2002
  ident: 2019103013414807100_bbx168-B109
  article-title: Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00571-5
– volume: 41
  start-page: 7606
  issue: 16
  year: 2013
  ident: 2019103013414807100_bbx168-B112
  article-title: Novel approach for selecting the best predictor for identifying the binding sites in DNA binding proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt544
– volume: 114
  start-page: 538
  issue: 1
  year: 2014
  ident: 2019103013414807100_bbx168-B5
  article-title: Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins
  publication-title: Chem Rev
  doi: 10.1021/cr4004665
– volume: 9
  start-page: 203
  issue: 1
  year: 2012
  ident: 2019103013414807100_bbx168-B80
  article-title: Predicting metal-binding sites from protein sequence
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2011.94
– volume: 11
  start-page: 9
  issue: 1
  year: 2011
  ident: 2019103013414807100_bbx168-B65
  article-title: Deciphering the shape and deformation of secondary structures through local conformation analysis
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-11-9
– volume: 41
  start-page: D1096
  year: 2013
  ident: 2019103013414807100_bbx168-B84
  article-title: BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks966
– volume: 26
  start-page: 1841
  issue: 15
  year: 2010
  ident: 2019103013414807100_bbx168-B58
  article-title: Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq302
SSID ssj0020781
Score 2.5275376
SecondaryResourceType review_article
Snippet Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that...
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1250
SubjectTerms Amino Acid Sequence
Amino acids
Amino Acids - chemistry
Binding
Binding Sites - genetics
Computational Biology - methods
Databases, Protein
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Empirical analysis
Evolutionary conservation
Humans
Internet
Ligands
Nucleic acids
Performance prediction
Protein Binding
Protein Interaction Domains and Motifs
Proteins
Residues
Ribonucleic acid
RNA
RNA - metabolism
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Software
Title Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains
URI https://www.ncbi.nlm.nih.gov/pubmed/29253082
https://www.proquest.com/docview/2955228576
https://www.proquest.com/docview/1978714550
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1dS8MwFA0yEHwRv53OEdEXwbK1TZr2cahjCE6QCXsr-WRF1411A_333jRdYTi0D4WQpCm5CedcknsuQreEcMnggS1uwEGJY-EJAALPZ4p1mUkY1TZQ-GUYDd7J85iOq0s0xZYj_CTsiEx0hPjyIxvSC-hrFfJHr-ParbJyNS6GiHlW3H0tQrrRdQN2NkLZfjHKEln6B2i_ooS452x4iHZ0foR2XZLI72O0slt2oSfupjl2sSaY5wrr6TwrFT6g5KRF8Mxgmx1lyhcfZeFx2PPu8Ru8yx6lKkOWW3fYYhZ8DBYj_BzO8nUdlhOe5cUJGvWfRg8Dr0qW4EkAoqVndGRiAHeZCBoB6dOBDLuBIiJWMiA8ZIGIEhMqLiQVkeTKCEFozDi3mdG74Slq5LNcnyMMiEUDJVikgJwAvRIKIN4Q8MSoSgwhTXS3nspUVkLiNp_FZ-oOtMMUpj11095EN3XbuZPP2NqqDRb5s0Frbay02mNFGiQUyGMMDlMTXdfVsDvskQfP9WxVpD44yazUYm-iM2fkepggCagV67n4b_RLtAc0ycZ6eX7SQo3lYqWvgIosRbtciT9-dNst
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+review+and+empirical+analysis+of+hallmarks+of+DNA-%2C+RNA-+and+protein-binding+residues+in+protein+chains&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Jian&rft.au=Ma%2C+Zhiqiang&rft.au=Kurgan%2C+Lukasz&rft.date=2019-07-19&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=20&rft.issue=4&rft.spage=1250&rft_id=info:doi/10.1093%2Fbib%2Fbbx168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon