Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains
Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few ha...
Saved in:
Published in | Briefings in bioinformatics Vol. 20; no. 4; pp. 1250 - 1268 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
19.07.2019
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. |
---|---|
AbstractList | Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. Abstract Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. |
Author | Zhang, Jian Ma, Zhiqiang Kurgan, Lukasz |
Author_xml | – sequence: 1 givenname: Jian surname: Zhang fullname: Zhang, Jian – sequence: 2 givenname: Zhiqiang surname: Ma fullname: Ma, Zhiqiang – sequence: 3 givenname: Lukasz orcidid: 0000-0002-7749-0314 surname: Kurgan fullname: Kurgan, Lukasz email: lkurgan@vcu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29253082$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtPHSEUhUmjqZf2pT-gmcSYGONUYGAYHs1RWxNjk8Z3AgzTs-0MjDDj5d_L8XheTOMLsMO31oa99tCWD94h9I3gHwTL6tSAOTXmidTNJ7RLmBAlw5xtrc61KDmrqx20l9IdxhSLhnxGO1RSXuGG7qJ5EYYxuqXzCR5cEd0DuMdC-7ZwwwgRrO5zpfvnBKkIXbHUfT_o-O-1OL85K0-KP3l9VYwxTA58acC34P9mswTt7FIBfnNX2KUGn76g7U73yX192_fR7eXF7eJXef3759Xi7Lq0FSNT2bm6ayQmVhpeS0kctRWmLTNNaynTlaCmll3VamO5qa1uO2MYb4TWDGOBq310tLbN3e_zQyY1QLKu77V3YU6KSNEIwjhfoQfv0Lswx_zxpKjknNKGizpT39-o2QyuVWOEPIxntZlnBvAasDGkFF2nLEx6guCnqKFXBKtVZCpHptaRZcnxO8nG9b_w4RoO8_gR9wKuwKT9 |
CitedBy_id | crossref_primary_10_1016_j_jmb_2024_168872 crossref_primary_10_1007_s12539_022_00543_x crossref_primary_10_1016_j_jmb_2023_168272 crossref_primary_10_1016_j_jmb_2020_09_008 crossref_primary_10_1093_bib_bbaf016 crossref_primary_10_34133_research_0240 crossref_primary_10_1016_j_celrep_2023_112309 crossref_primary_10_1016_j_molcel_2020_03_011 crossref_primary_10_2174_1574893618666230913090436 crossref_primary_10_1080_15476286_2024_2429956 crossref_primary_10_1016_j_jmb_2023_167945 crossref_primary_10_3390_ijms23084259 crossref_primary_10_1016_j_bbadis_2021_166166 crossref_primary_10_1093_bioinformatics_btaa750 crossref_primary_10_3390_biom10060876 crossref_primary_10_1093_bib_bbae162 crossref_primary_10_3389_fmolb_2021_691694 crossref_primary_10_1093_bib_bbac538 crossref_primary_10_1186_s12859_023_05592_7 crossref_primary_10_1093_nar_gkac270 crossref_primary_10_1093_nar_gkad1131 crossref_primary_10_1093_bib_bbab521 crossref_primary_10_1016_j_knosys_2023_111354 crossref_primary_10_1007_s12551_024_01201_w crossref_primary_10_1093_nar_gkaa931 crossref_primary_10_1093_bib_bbaa397 crossref_primary_10_1002_cpps_71 crossref_primary_10_1016_j_jmb_2024_168769 crossref_primary_10_1111_gtc_12896 crossref_primary_10_1096_fj_201901897R crossref_primary_10_3390_ijms22020922 crossref_primary_10_3390_biom10121636 crossref_primary_10_1007_s12551_023_01067_4 crossref_primary_10_1039_D3SC03719C crossref_primary_10_1016_j_bioorg_2022_105698 crossref_primary_10_1093_bioinformatics_btaa806 crossref_primary_10_1016_j_csbj_2024_11_015 crossref_primary_10_1155_2022_8965712 crossref_primary_10_3390_molecules23061448 crossref_primary_10_1038_s42003_024_06332_0 crossref_primary_10_3389_fgene_2019_00542 crossref_primary_10_1093_nar_gkab356 crossref_primary_10_1109_TCBB_2021_3123269 crossref_primary_10_1093_bib_bbac322 crossref_primary_10_1093_bib_bbac244 crossref_primary_10_1109_TCBB_2024_3410350 crossref_primary_10_1016_j_jmb_2022_167640 crossref_primary_10_1093_bioinformatics_btaa573 crossref_primary_10_1515_sagmb_2021_0087 crossref_primary_10_1016_j_jmb_2023_167963 crossref_primary_10_3390_ijms21186879 crossref_primary_10_1371_journal_pcbi_1012650 crossref_primary_10_1016_j_ymeth_2024_09_004 crossref_primary_10_3390_ijms232112814 crossref_primary_10_3390_ijms19092483 crossref_primary_10_1109_TCBB_2023_3323493 crossref_primary_10_3390_biom14101220 crossref_primary_10_1039_C9LC00367C crossref_primary_10_1093_nar_gkad985 crossref_primary_10_1016_j_jmb_2020_02_026 crossref_primary_10_1021_acs_jproteome_9b00012 crossref_primary_10_1093_nar_gkac1253 crossref_primary_10_1093_bioinformatics_btaa580 crossref_primary_10_3389_fmolb_2022_957502 crossref_primary_10_1002_pro_4544 crossref_primary_10_1002_prot_25639 crossref_primary_10_1016_j_csbj_2022_05_003 crossref_primary_10_1371_journal_pcbi_1008951 crossref_primary_10_1093_bib_bbab336 crossref_primary_10_3389_fmicb_2022_1048478 crossref_primary_10_1093_bib_bbab411 crossref_primary_10_3390_ijms19061595 crossref_primary_10_1109_TCBB_2019_2952338 crossref_primary_10_1186_s12859_024_05964_7 |
Cites_doi | 10.1371/journal.pone.0107676 10.1186/s13062-015-0039-8 10.1093/nar/gkm294 10.1093/nar/gkv585 10.1073/pnas.1321614111 10.1016/j.str.2009.11.012 10.1002/bip.20682 10.1186/1477-5956-9-S1-S13 10.1002/bip.360221211 10.1110/ps.03323604 10.1107/S1399004714019427 10.1016/j.ymeth.2015.07.017 10.1109/TCBB.2013.117 10.1093/nar/gkh131 10.1002/jcc.23219 10.1093/nar/gks405 10.1371/journal.pone.0097725 10.1080/03610927708827533 10.1093/nar/gku269 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A 10.1186/1471-2105-9-S12-S6 10.1038/nrm3884 10.1038/nmeth.1818 10.1186/s12859-015-0691-0 10.1093/nar/gks535 10.1186/1471-2105-12-489 10.3390/ijms16035194 10.1002/prot.21677 10.1016/j.str.2006.06.018 10.1002/prot.21211 10.1002/jmr.2410 10.1093/nar/gku989 10.1093/bfgp/elu047 10.1371/journal.pcbi.1000170 10.2174/092986613804725208 10.1038/nature11503 10.3390/ijms161226202 10.1002/jmr.2332 10.1007/s00726-007-0634-9 10.1093/bioinformatics/btq253 10.1109/TNB.2015.2394328 10.1007/s00726-010-0639-7 10.1016/j.cbpa.2014.07.015 10.1093/bioinformatics/btl672 10.1002/prot.20607 10.1049/iet-syb.2013.0048 10.1093/bioinformatics/btw280 10.1093/nar/gkw1099 10.1093/nar/gks1258 10.1038/srep27653 10.1093/nar/28.1.235 10.1371/journal.pone.0080635 10.1073/pnas.1030237100 10.1016/j.jsb.2011.10.001 10.1016/j.str.2012.01.010 10.1109/TCBB.2012.106 10.1002/prot.22527 10.1016/j.jmb.2011.04.007 10.1007/978-1-4939-2425-7_4 10.1093/nar/gkt1299 10.1186/s12859-016-1110-x 10.1016/j.pbiomolbio.2014.07.004 10.1186/1471-2105-15-297 10.1109/TCBB.2013.104 10.1093/bib/bbv023 10.1002/prot.24682 10.1371/journal.pone.0133260 10.2174/138920310794109193 10.1002/pro.2792 10.1002/prot.24330 10.1186/1752-0509-4-S1-S3 10.1016/j.str.2004.04.009 10.1016/j.patrec.2010.04.012 10.1093/nar/gkm998 10.1016/j.neucom.2016.02.022 10.1371/journal.pcbi.1004580 10.1093/nar/gkt1112 10.1039/c3mb70167k 10.1038/s41598-017-00795-4 10.1007/s00726-010-0587-2 10.1007/s00232-015-9856-z 10.1371/journal.pone.0004473 10.1186/1471-2105-14-44 10.1186/1471-2105-6-33 10.1016/S0022-2836(02)01223-8 10.1093/nar/gku681 10.1002/pro.2744 10.1021/ci1003703 10.3390/e18100379 10.1186/1471-2105-8-211 10.1093/bioinformatics/btm626 10.1093/nar/gkn102 10.1093/protein/15.4.265 10.1002/pro.2800 10.1186/1471-2105-12-S13-S7 10.1371/journal.pone.0096694 10.1021/ci500760m 10.1093/nar/gkn573 10.1109/TCBB.2016.2616469 10.1186/1471-2105-12-S13-S5 10.1093/bioinformatics/btr657 10.1016/S0022-2836(02)00571-5 10.1093/nar/gkt544 10.1021/cr4004665 10.1109/TCBB.2011.94 10.1186/1472-6807-11-9 10.1093/nar/gks966 10.1093/bioinformatics/btq302 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbx168 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1268 |
ExternalDocumentID | 29253082 10_1093_bib_bbx168 10.1093/bib/bbx168 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c341t-fe6f8901c9b56991e2c302d4b8dc24a372b69f3dabc5b6cadfbb4587aa400703 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 05:39:16 EDT 2025 Mon Jun 30 08:58:48 EDT 2025 Wed Feb 19 02:30:10 EST 2025 Tue Jul 01 03:39:26 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Wed Apr 02 06:55:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | protein–protein interactions DNA-binding residues RNA-binding residues protein–nucleic acid interactions protein–RNA interactions protein–DNA interactions |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-fe6f8901c9b56991e2c302d4b8dc24a372b69f3dabc5b6cadfbb4587aa400703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7749-0314 |
PMID | 29253082 |
PQID | 2955228576 |
PQPubID | 26846 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1978714550 proquest_journals_2955228576 pubmed_primary_29253082 crossref_citationtrail_10_1093_bib_bbx168 crossref_primary_10_1093_bib_bbx168 oup_primary_10_1093_bib_bbx168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-19 |
PublicationDateYYYYMMDD | 2019-07-19 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2019 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Wang (2019103013414807100_bbx168-B48) 2011; 40 Singh (2019103013414807100_bbx168-B59) 2014; 2 Ofran (2019103013414807100_bbx168-B103) 2003; 325 Liu (2019103013414807100_bbx168-B28) 2013; 81 Yan (2019103013414807100_bbx168-B71) 2017; 45 Terribilini (2019103013414807100_bbx168-B40) 2007; 35(Web Server) Bahadur (2019103013414807100_bbx168-B35) 2008; 36 Gupta (2019103013414807100_bbx168-B45) 2011; 409 Remmert (2019103013414807100_bbx168-B95) 2012; 9 Maheshwari (2019103013414807100_bbx168-B62) 2015; 28 Tien (2019103013414807100_bbx168-B93) 2013; 8 Zhao (2019103013414807100_bbx168-B32) 2014; 9 Halperin (2019103013414807100_bbx168-B105) 2004; 12 Chen (2019103013414807100_bbx168-B4) 2009; 4 Muppirala (2019103013414807100_bbx168-B53) 2011; 12 Prabakaran (2019103013414807100_bbx168-B10) 2006; 14 Wang (2019103013414807100_bbx168-B24) 2010; 4(Suppl 1) Hu (2019103013414807100_bbx168-B33) 2017 Hu (2019103013414807100_bbx168-B69) 2014; 9 Dudev (2019103013414807100_bbx168-B5) 2014; 114 Chen (2019103013414807100_bbx168-B39) 2014; 42 Liu (2019103013414807100_bbx168-B44) 2010; 26 Murakami (2019103013414807100_bbx168-B58) 2010; 26 Luscombe (2019103013414807100_bbx168-B109) 2002; 320 Baker (2019103013414807100_bbx168-B67) 2007; 85 Berman (2019103013414807100_bbx168-B18) 2012; 20 Gromiha (2019103013414807100_bbx168-B74) 2011; 9(Suppl 1) Apweiler (2019103013414807100_bbx168-B21) 2004; 32 Hwang (2019103013414807100_bbx168-B23) 2007; 23 Peng (2019103013414807100_bbx168-B6) 2014; 21 Panwar (2019103013414807100_bbx168-B78) 2013; 14 Gallina (2019103013414807100_bbx168-B7) 2014; 27 Huang (2019103013414807100_bbx168-B89) 2013; 20 Ren (2019103013414807100_bbx168-B49) 2015; 16 Sudha (2019103013414807100_bbx168-B3) 2014; 116 Roche (2019103013414807100_bbx168-B15) 2015; 16 Velankar (2019103013414807100_bbx168-B86) 2013; 41 Kabsch (2019103013414807100_bbx168-B92) 1983; 22 Fernandez (2019103013414807100_bbx168-B42) 2011; 12(Suppl 13) Sudha (2019103013414807100_bbx168-B55) 2015; 24 Ellis (2019103013414807100_bbx168-B9) 2006; 66 Maheshwari (2019103013414807100_bbx168-B66) 2016; 93 Baussand (2019103013414807100_bbx168-B65) 2011; 11 Yan (2019103013414807100_bbx168-B88) 2016; 17 Faraggi (2019103013414807100_bbx168-B94) 2014; 82 Luo (2019103013414807100_bbx168-B43) 2017; 7 Si (2019103013414807100_bbx168-B13) 2015; 16 Choi (2019103013414807100_bbx168-B54) 2011; 12(Suppl 13) Cook (2019103013414807100_bbx168-B2) 2015; 14 Wilson (2019103013414807100_bbx168-B102) 2014; 42 Mizianty (2019103013414807100_bbx168-B20) 2014; 70 Yang (2019103013414807100_bbx168-B70) 2015; 10 Chen (2019103013414807100_bbx168-B75) 2012; 28 London (2019103013414807100_bbx168-B56) 2010; 18 Ma (2019103013414807100_bbx168-B106) 2003; 100 Ahmad (2019103013414807100_bbx168-B113) 2005; 6 Peng (2019103013414807100_bbx168-B73) 2015; 43 Siggers (2019103013414807100_bbx168-B1) 2014; 42 Dang (2019103013414807100_bbx168-B34) 2016; 18 Li (2019103013414807100_bbx168-B50) 2014; 42 Dey (2019103013414807100_bbx168-B26) 2012; 40 Barik (2019103013414807100_bbx168-B36) 2012; 40 Laine (2019103013414807100_bbx168-B60) 2015; 11 Sun (2019103013414807100_bbx168-B51) 2016; 17 Kawashima (2019103013414807100_bbx168-B98) 2008; 36 Yang (2019103013414807100_bbx168-B84) 2013; 41 Cheng (2019103013414807100_bbx168-B46) 2008; 9(Suppl 12) Hu (2019103013414807100_bbx168-B107) 2000; 39 Gromiha (2019103013414807100_bbx168-B108) 2011; 51 Ehrenberger (2019103013414807100_bbx168-B12) 2015; 1278 Puton (2019103013414807100_bbx168-B14) 2012; 179 Yu (2019103013414807100_bbx168-B81) 2013; 10 Nagarajan (2019103013414807100_bbx168-B112) 2013; 41 The UniProt Consortium (2019103013414807100_bbx168-B22) 2017; 45 Duh (2019103013414807100_bbx168-B101) 2015; 24 Brinda (2019103013414807100_bbx168-B104) 2002; 15 Meng (2019103013414807100_bbx168-B100) 2016; 32 Horst (2019103013414807100_bbx168-B79) 2010; 31 UniProt (2019103013414807100_bbx168-B85) 2015; 43 Yu (2019103013414807100_bbx168-B77) 2014; 15 Dou (2019103013414807100_bbx168-B97) 2010; 39 Holland (2019103013414807100_bbx168-B99) 1977; 6 Passerini (2019103013414807100_bbx168-B80) 2012; 9 Berman (2019103013414807100_bbx168-B17) 2000; 28 Nagarajan (2019103013414807100_bbx168-B8) 2015; 10 Zhou (2019103013414807100_bbx168-B30) 2016; 6 Munteanu (2019103013414807100_bbx168-B72) 2015; 55 Wang (2019103013414807100_bbx168-B38) 2008; 35 Lejeune (2019103013414807100_bbx168-B11) 2005; 61 Zhang (2019103013414807100_bbx168-B41) 2010; 11 Yu (2019103013414807100_bbx168-B76) 2013; 34 Singh (2019103013414807100_bbx168-B83) 2014; 1 Khafizov (2019103013414807100_bbx168-B111) 2014; 111 Fischer (2019103013414807100_bbx168-B96) 2008; 24 Zhang (2019103013414807100_bbx168-B87) 2017 Asadabadi (2019103013414807100_bbx168-B57) 2013; 5 Caffrey (2019103013414807100_bbx168-B110) 2004; 13 Sathyapriya (2019103013414807100_bbx168-B25) 2008; 4 Ahmad (2019103013414807100_bbx168-B27) 2008; 36 Perez-Cano (2019103013414807100_bbx168-B47) 2010; 78 Zhu (2019103013414807100_bbx168-B90) 2013; 10 Wei (2019103013414807100_bbx168-B64) 2016; 193 Zhang (2019103013414807100_bbx168-B19) 2012; 490 Wang (2019103013414807100_bbx168-B29) 2014; 8 Yu (2019103013414807100_bbx168-B82) 2015; 14 Zhao (2019103013414807100_bbx168-B16) 2013; 9 Ma (2019103013414807100_bbx168-B31) 2012; 9 Liu (2019103013414807100_bbx168-B63) 2016; 249 Vacic (2019103013414807100_bbx168-B91) 2007; 8 Kumar (2019103013414807100_bbx168-B37) 2008; 71 Walia (2019103013414807100_bbx168-B52) 2014; 9 Hudson (2019103013414807100_bbx168-B68) 2014; 15 Hwang (2019103013414807100_bbx168-B61) 2016; 25 |
References_xml | – volume: 9 start-page: e107676 issue: 9 year: 2014 ident: 2019103013414807100_bbx168-B69 article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction publication-title: PLoS One doi: 10.1371/journal.pone.0107676 – volume: 10 start-page: 8 issue: 1 year: 2015 ident: 2019103013414807100_bbx168-B8 article-title: Structure based approach for understanding organism specific recognition of protein-RNA complexes publication-title: Biol Direct doi: 10.1186/s13062-015-0039-8 – volume: 35(Web Server) start-page: W578 year: 2007 ident: 2019103013414807100_bbx168-B40 article-title: RNABindR: a server for analyzing and predicting RNA-binding sites in proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm294 – volume: 43 start-page: e121 issue: 18 year: 2015 ident: 2019103013414807100_bbx168-B73 article-title: High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv585 – volume: 111 start-page: 3733 issue: 10 year: 2014 ident: 2019103013414807100_bbx168-B111 article-title: Trends in structural coverage of the protein universe and the impact of the protein structure initiative publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1321614111 – volume: 18 start-page: 188 issue: 2 year: 2010 ident: 2019103013414807100_bbx168-B56 article-title: The structural basis of peptide-protein binding strategies publication-title: Structure doi: 10.1016/j.str.2009.11.012 – volume: 85 start-page: 456 issue: 5–6 year: 2007 ident: 2019103013414807100_bbx168-B67 article-title: Role of aromatic amino acids in protein-nucleic acid recognition publication-title: Biopolymers doi: 10.1002/bip.20682 – volume: 9(Suppl 1) start-page: S13 year: 2011 ident: 2019103013414807100_bbx168-B74 article-title: Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes publication-title: Proteome Sci doi: 10.1186/1477-5956-9-S1-S13 – volume: 22 start-page: 2577 issue: 12 year: 1983 ident: 2019103013414807100_bbx168-B92 article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 13 start-page: 190 issue: 1 year: 2004 ident: 2019103013414807100_bbx168-B110 article-title: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? publication-title: Protein Sci doi: 10.1110/ps.03323604 – volume: 70 start-page: 2781 issue: 11 year: 2014 ident: 2019103013414807100_bbx168-B20 article-title: Covering complete proteomes with X-ray structures: a current snapshot publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S1399004714019427 – volume: 93 start-page: 64 year: 2016 ident: 2019103013414807100_bbx168-B66 article-title: Template-based identification of protein-protein interfaces using eFindSitePPI publication-title: Methods doi: 10.1016/j.ymeth.2015.07.017 – volume: 10 start-page: 1017 issue: 4 year: 2013 ident: 2019103013414807100_bbx168-B90 article-title: Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2013.117 – volume: 32 start-page: D115 issue: 90001 year: 2004 ident: 2019103013414807100_bbx168-B21 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh131 – volume: 34 start-page: 974 issue: 11 year: 2013 ident: 2019103013414807100_bbx168-B76 article-title: TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble publication-title: J Comput Chem doi: 10.1002/jcc.23219 – volume: 40 start-page: 7150 issue: 15 year: 2012 ident: 2019103013414807100_bbx168-B26 article-title: Characterization and prediction of the binding site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary conservation and structural parameters publication-title: Nucleic Acids Res doi: 10.1093/nar/gks405 – volume: 9 start-page: e97725 issue: 5 year: 2014 ident: 2019103013414807100_bbx168-B52 article-title: RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins publication-title: PLoS One doi: 10.1371/journal.pone.0097725 – volume: 6 start-page: 813 issue: 9 year: 1977 ident: 2019103013414807100_bbx168-B99 article-title: Robust regression using iteratively reweighted least-squares publication-title: Commun Stat Theory Methods doi: 10.1080/03610927708827533 – volume: 42 start-page: 6726 issue: 10 year: 2014 ident: 2019103013414807100_bbx168-B102 article-title: DNA-protein pi-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar publication-title: Nucleic Acids Res doi: 10.1093/nar/gku269 – volume: 39 start-page: 331 issue: 4 year: 2000 ident: 2019103013414807100_bbx168-B107 article-title: Conservation of polar residues as hot spots at protein interfaces publication-title: Proteins doi: 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A – volume: 9(Suppl 12) start-page: S6 year: 2008 ident: 2019103013414807100_bbx168-B46 article-title: Predicting RNA-binding sites of proteins using support vector machines and evolutionary information publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S12-S6 – volume: 15 start-page: 749 issue: 11 year: 2014 ident: 2019103013414807100_bbx168-B68 article-title: The structure, function and evolution of proteins that bind DNA and RNA publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3884 – volume: 9 start-page: 173 year: 2012 ident: 2019103013414807100_bbx168-B95 article-title: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment publication-title: Nat Methods doi: 10.1038/nmeth.1818 – volume: 16 start-page: 249 issue: 1 year: 2015 ident: 2019103013414807100_bbx168-B49 article-title: RNA-binding residues prediction using structural features publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0691-0 – volume: 40 start-page: W440 issue: Web Server Issue year: 2012 ident: 2019103013414807100_bbx168-B36 article-title: PRince: a web server for structural and physicochemical analysis of protein-RNA interface publication-title: Nucleic Acids Res doi: 10.1093/nar/gks535 – volume: 12 start-page: 489 issue: 1 year: 2011 ident: 2019103013414807100_bbx168-B53 article-title: Predicting RNA-protein interactions using only sequence information publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-489 – volume: 16 start-page: 5194 issue: 3 year: 2015 ident: 2019103013414807100_bbx168-B13 article-title: An overview of the prediction of protein DNA-binding sites publication-title: Int J Mol Sci doi: 10.3390/ijms16035194 – volume: 71 start-page: 189 issue: 1 year: 2008 ident: 2019103013414807100_bbx168-B37 article-title: Prediction of RNA binding sites in a protein using SVM and PSSM profile publication-title: Proteins doi: 10.1002/prot.21677 – volume: 14 start-page: 1355 issue: 9 year: 2006 ident: 2019103013414807100_bbx168-B10 article-title: Classification of protein-DNA complexes based on structural descriptors publication-title: Structure doi: 10.1016/j.str.2006.06.018 – volume: 66 start-page: 903 issue: 4 year: 2006 ident: 2019103013414807100_bbx168-B9 article-title: Protein-RNA interactions: structural analysis and functional classes publication-title: Proteins doi: 10.1002/prot.21211 – volume: 28 start-page: 35 issue: 1 year: 2015 ident: 2019103013414807100_bbx168-B62 article-title: Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning publication-title: J Mol Recognit doi: 10.1002/jmr.2410 – volume: 43 start-page: D204 year: 2015 ident: 2019103013414807100_bbx168-B85 article-title: UniProt: a hub for protein information publication-title: Nucleic Acids Res doi: 10.1093/nar/gku989 – volume: 14 start-page: 74 issue: 1 year: 2015 ident: 2019103013414807100_bbx168-B2 article-title: High-throughput characterization of protein-RNA interactions publication-title: Brief Funct Genomics doi: 10.1093/bfgp/elu047 – volume: 4 start-page: e1000170 issue: 9 year: 2008 ident: 2019103013414807100_bbx168-B25 article-title: Insights into protein-DNA interactions through structure network analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000170 – volume: 20 start-page: 218 year: 2013 ident: 2019103013414807100_bbx168-B89 article-title: metaPIS: a sequence-based meta-server for protein interaction site prediction publication-title: Protein Pept Lett doi: 10.2174/092986613804725208 – volume: 490 start-page: 556 issue: 7421 year: 2012 ident: 2019103013414807100_bbx168-B19 article-title: Structure-based prediction of protein-protein interactions on a genome-wide scale publication-title: Nature doi: 10.1038/nature11503 – volume: 16 start-page: 29829 issue: 12 year: 2015 ident: 2019103013414807100_bbx168-B15 article-title: Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods publication-title: Int J Mol Sci doi: 10.3390/ijms161226202 – volume: 27 start-page: 65 issue: 2 year: 2014 ident: 2019103013414807100_bbx168-B7 article-title: Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs publication-title: J Mol Recognit doi: 10.1002/jmr.2332 – volume: 35 start-page: 295 issue: 2 year: 2008 ident: 2019103013414807100_bbx168-B38 article-title: PRINTR: prediction of RNA binding sites in proteins using SVM and profiles publication-title: Amino Acids doi: 10.1007/s00726-007-0634-9 – volume: 26 start-page: 1616 issue: 13 year: 2010 ident: 2019103013414807100_bbx168-B44 article-title: Prediction of protein-RNA binding sites by a random forest method with combined features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq253 – volume: 14 start-page: 45 year: 2015 ident: 2019103013414807100_bbx168-B82 article-title: Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2015.2394328 – volume: 40 start-page: 239 issue: 1 year: 2011 ident: 2019103013414807100_bbx168-B48 article-title: Identification of RNA-binding sites in proteins by integrating various sequence information publication-title: Amino Acids doi: 10.1007/s00726-010-0639-7 – volume: 21 start-page: 144 year: 2014 ident: 2019103013414807100_bbx168-B6 article-title: Turning the spotlight on protein-lipid interactions in cells publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2014.07.015 – volume: 23 start-page: 634 issue: 5 year: 2007 ident: 2019103013414807100_bbx168-B23 article-title: DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl672 – volume: 61 start-page: 258 issue: 2 year: 2005 ident: 2019103013414807100_bbx168-B11 article-title: Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure publication-title: Proteins doi: 10.1002/prot.20607 – volume: 2 year: 2014 ident: 2019103013414807100_bbx168-B59 article-title: SPRINGS: prediction of protein-protein interaction sites using artificial neural networks publication-title: PeerJ PrePrints – volume: 8 start-page: 176 issue: 4 year: 2014 ident: 2019103013414807100_bbx168-B29 article-title: Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information publication-title: IET Syst Biol doi: 10.1049/iet-syb.2013.0048 – volume: 32 start-page: i341 issue: 12 year: 2016 ident: 2019103013414807100_bbx168-B100 article-title: DFLpred: high-throughput prediction of disordered flexible linker regions in protein sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw280 – volume: 45 start-page: D158 year: 2017 ident: 2019103013414807100_bbx168-B22 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1099 – volume: 41 start-page: D483 year: 2013 ident: 2019103013414807100_bbx168-B86 article-title: SIFTS: structure integration with function, taxonomy and sequences resource publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1258 – volume: 6 start-page: 27653 year: 2016 ident: 2019103013414807100_bbx168-B30 article-title: PDNAsite: identification of DNA-binding site from protein sequence by incorporating spatial and sequence context publication-title: Sci Rep doi: 10.1038/srep27653 – volume: 28 start-page: 235 issue: 1 year: 2000 ident: 2019103013414807100_bbx168-B17 article-title: The Protein Data Bank publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.235 – volume: 8 start-page: e80635 issue: 11 year: 2013 ident: 2019103013414807100_bbx168-B93 article-title: Maximum allowed solvent accessibilites of residues in proteins publication-title: PLoS One doi: 10.1371/journal.pone.0080635 – volume: 100 start-page: 5772 issue: 10 year: 2003 ident: 2019103013414807100_bbx168-B106 article-title: Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1030237100 – volume: 179 start-page: 261 issue: 3 year: 2012 ident: 2019103013414807100_bbx168-B14 article-title: Computational methods for prediction of protein-RNA interactions publication-title: J Struct Biol doi: 10.1016/j.jsb.2011.10.001 – volume: 20 start-page: 391 issue: 3 year: 2012 ident: 2019103013414807100_bbx168-B18 article-title: The Protein Data Bank at 40: reflecting on the past to prepare for the future publication-title: Structure doi: 10.1016/j.str.2012.01.010 – volume: 9 start-page: 1766 issue: 6 year: 2012 ident: 2019103013414807100_bbx168-B31 article-title: Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2012.106 – volume: 78 start-page: 25 year: 2010 ident: 2019103013414807100_bbx168-B47 article-title: Optimal Protein-RNA Area, OPRA: a propensity-based method to identify RNA-binding sites on proteins publication-title: Proteins doi: 10.1002/prot.22527 – volume: 409 start-page: 574 issue: 4 year: 2011 ident: 2019103013414807100_bbx168-B45 article-title: The role of RNA sequence and structure in RNA–protein interactions publication-title: J Mol Biol doi: 10.1016/j.jmb.2011.04.007 – volume: 1278 start-page: 57 year: 2015 ident: 2019103013414807100_bbx168-B12 article-title: Computational prediction of protein-protein interactions publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2425-7_4 – volume: 42 start-page: e15 issue: 3 year: 2014 ident: 2019103013414807100_bbx168-B39 article-title: Identifying RNA-binding residues based on evolutionary conserved structural and energetic features publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1299 – volume: 17 start-page: 231 issue: 1 year: 2016 ident: 2019103013414807100_bbx168-B51 article-title: Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1110-x – volume: 116 start-page: 141 issue: 2–3 year: 2014 ident: 2019103013414807100_bbx168-B3 article-title: An overview of recent advances in structural bioinformatics of protein-protein interactions and a guide to their principles publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2014.07.004 – volume: 15 start-page: 297 issue: 1 year: 2014 ident: 2019103013414807100_bbx168-B77 article-title: Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-297 – volume: 10 start-page: 994 issue: 4 year: 2013 ident: 2019103013414807100_bbx168-B81 article-title: Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2013.104 – volume: 17 start-page: 88 issue: 1 year: 2016 ident: 2019103013414807100_bbx168-B88 article-title: A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues publication-title: Brief Bioinform doi: 10.1093/bib/bbv023 – volume: 82 start-page: 3170 issue: 11 year: 2014 ident: 2019103013414807100_bbx168-B94 article-title: Accurate single-sequence prediction of solvent accessible surface area using local and global features publication-title: Proteins doi: 10.1002/prot.24682 – volume: 10 start-page: e0133260 issue: 7 year: 2015 ident: 2019103013414807100_bbx168-B70 article-title: SNBRFinder: a sequence-based hybrid algorithm for enhanced prediction of nucleic acid-binding residues publication-title: PLoS One doi: 10.1371/journal.pone.0133260 – volume: 11 start-page: 609 issue: 7 year: 2010 ident: 2019103013414807100_bbx168-B41 article-title: Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility publication-title: Curr Protein Pept Sci doi: 10.2174/138920310794109193 – volume: 24 start-page: 1856 issue: 11 year: 2015 ident: 2019103013414807100_bbx168-B55 article-title: Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes publication-title: Protein Sci doi: 10.1002/pro.2792 – volume: 81 start-page: 1885 issue: 11 year: 2013 ident: 2019103013414807100_bbx168-B28 article-title: DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches publication-title: Proteins doi: 10.1002/prot.24330 – volume: 4(Suppl 1) start-page: S3 year: 2010 ident: 2019103013414807100_bbx168-B24 article-title: BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S3 – volume: 12 start-page: 1027 year: 2004 ident: 2019103013414807100_bbx168-B105 article-title: Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking publication-title: Structure doi: 10.1016/j.str.2004.04.009 – volume: 31 start-page: 2103 issue: 14 year: 2010 ident: 2019103013414807100_bbx168-B79 article-title: A protein sequence meta-functional signature for calcium binding residue prediction publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2010.04.012 – volume: 36 start-page: D202 year: 2008 ident: 2019103013414807100_bbx168-B98 article-title: AAindex: amino acid index database, progress report 2008 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm998 – volume: 193 start-page: 201 year: 2016 ident: 2019103013414807100_bbx168-B64 article-title: Protein–protein interaction sites prediction by ensembling SVM and sample-weighted random forests publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.022 – volume: 11 start-page: e1004580 issue: 12 year: 2015 ident: 2019103013414807100_bbx168-B60 article-title: Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004580 – volume: 42 start-page: 2099 issue: 4 year: 2014 ident: 2019103013414807100_bbx168-B1 article-title: Protein-DNA binding: complexities and multi-protein codes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1112 – volume: 9 start-page: 2417 issue: 10 year: 2013 ident: 2019103013414807100_bbx168-B16 article-title: Prediction of RNA binding proteins comes of age from low resolution to high resolution publication-title: Mol Biosyst doi: 10.1039/c3mb70167k – volume: 7 start-page: 614 issue: 1 year: 2017 ident: 2019103013414807100_bbx168-B43 article-title: RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites publication-title: Sci Rep doi: 10.1038/s41598-017-00795-4 – volume: 39 start-page: 1353 issue: 5 year: 2010 ident: 2019103013414807100_bbx168-B97 article-title: Prediction of catalytic residues based on an overlapping amino acid classification publication-title: Amino Acids doi: 10.1007/s00726-010-0587-2 – volume: 249 start-page: 141 issue: 1–2 year: 2016 ident: 2019103013414807100_bbx168-B63 article-title: Prediction of protein-protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures publication-title: J Membr Biol doi: 10.1007/s00232-015-9856-z – volume: 4 start-page: e4473 issue: 2 year: 2009 ident: 2019103013414807100_bbx168-B4 article-title: Investigation of atomic level patterns in protein–small ligand interactions publication-title: PLoS One doi: 10.1371/journal.pone.0004473 – volume: 14 start-page: 44 issue: 1 year: 2013 ident: 2019103013414807100_bbx168-B78 article-title: Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-44 – volume: 5 start-page: 148 year: 2013 ident: 2019103013414807100_bbx168-B57 article-title: Predictions of protein-protein interfaces within membrane protein complexes publication-title: Avicenna J Med Biotechnol – volume: 6 start-page: 33 year: 2005 ident: 2019103013414807100_bbx168-B113 article-title: PSSM-based prediction of DNA binding sites in proteins publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-33 – volume: 325 start-page: 377 issue: 2 year: 2003 ident: 2019103013414807100_bbx168-B103 article-title: Analysing six types of protein-protein interfaces publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)01223-8 – volume: 42 start-page: 10086 issue: 15 year: 2014 ident: 2019103013414807100_bbx168-B50 article-title: Quantifying sequence and structural features of protein-RNA interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gku681 – volume: 25 start-page: 159 issue: 1 year: 2016 ident: 2019103013414807100_bbx168-B61 article-title: A hybrid method for protein-protein interface prediction publication-title: Protein Sci doi: 10.1002/pro.2744 – volume: 51 start-page: 721 issue: 3 year: 2011 ident: 2019103013414807100_bbx168-B108 article-title: Scoring function based approach for locating binding sites and understanding recognition mechanism of protein-DNA complexes publication-title: J Chem Inf Model doi: 10.1021/ci1003703 – volume: 18 start-page: 379 issue: 10 year: 2016 ident: 2019103013414807100_bbx168-B34 article-title: A novel sequence-based feature for the identification of DNA-binding sites in proteins using Jensen–Shannon divergence publication-title: Entropy doi: 10.3390/e18100379 – volume: 8 start-page: 211 issue: 1 year: 2007 ident: 2019103013414807100_bbx168-B91 article-title: Composition profiler: a tool for discovery and visualization of amino acid composition differences publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-211 – volume: 24 start-page: 613 issue: 5 year: 2008 ident: 2019103013414807100_bbx168-B96 article-title: Prediction of protein functional residues from sequence by probability density estimation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm626 – volume: 45 start-page: e84 year: 2017 ident: 2019103013414807100_bbx168-B71 article-title: DRNApred, fast sequence-based method that accurately predicts and discriminates DNA-and RNA-binding residues publication-title: Nucleic Acids Res – volume: 36 start-page: 2705 issue: 8 year: 2008 ident: 2019103013414807100_bbx168-B35 article-title: Dissecting protein-RNA recognition sites publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn102 – volume: 15 start-page: 265 issue: 4 year: 2002 ident: 2019103013414807100_bbx168-B104 article-title: Analysis of homodimeric protein interfaces by graph-spectral methods publication-title: Protein Eng doi: 10.1093/protein/15.4.265 – year: 2017 ident: 2019103013414807100_bbx168-B87 article-title: Review and comparative assessment of sequence-based predictors of protein-binding residues publication-title: Brief Bioinform – volume: 1 start-page: 7 year: 2014 ident: 2019103013414807100_bbx168-B83 article-title: SPRINGS: prediction of protein-protein interaction sites using artificial neural networks publication-title: J Proteomics Comput Biol – volume: 24 start-page: 1934 issue: 12 year: 2015 ident: 2019103013414807100_bbx168-B101 article-title: Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids publication-title: Protein Sci doi: 10.1002/pro.2800 – volume: 12(Suppl 13) start-page: S7 year: 2011 ident: 2019103013414807100_bbx168-B54 article-title: Prediction of RNA-binding amino acids from protein and RNA sequences publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-S13-S7 – volume: 9 start-page: e96694 issue: 5 year: 2014 ident: 2019103013414807100_bbx168-B32 article-title: Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome publication-title: PLoS One doi: 10.1371/journal.pone.0096694 – volume: 55 start-page: 1077 issue: 5 year: 2015 ident: 2019103013414807100_bbx168-B72 article-title: Solvent accessible surface area-based hot-spot detection methods for protein–protein and protein–nucleic acid interfaces publication-title: J Chem Inf Model doi: 10.1021/ci500760m – volume: 36 start-page: 5922 issue: 18 year: 2008 ident: 2019103013414807100_bbx168-B27 article-title: Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn573 – year: 2017 ident: 2019103013414807100_bbx168-B33 article-title: Predicting protein-DNA binding residues by weightedly combining sequence-based features and boosting multiple SVMs publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2616469 – volume: 12(Suppl 13) start-page: S5 year: 2011 ident: 2019103013414807100_bbx168-B42 article-title: Prediction of dinucleotide-specific RNA-binding sites in proteins publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-S13-S5 – volume: 28 start-page: 331 issue: 3 year: 2012 ident: 2019103013414807100_bbx168-B75 article-title: Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr657 – volume: 320 start-page: 991 issue: 5 year: 2002 ident: 2019103013414807100_bbx168-B109 article-title: Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00571-5 – volume: 41 start-page: 7606 issue: 16 year: 2013 ident: 2019103013414807100_bbx168-B112 article-title: Novel approach for selecting the best predictor for identifying the binding sites in DNA binding proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt544 – volume: 114 start-page: 538 issue: 1 year: 2014 ident: 2019103013414807100_bbx168-B5 article-title: Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins publication-title: Chem Rev doi: 10.1021/cr4004665 – volume: 9 start-page: 203 issue: 1 year: 2012 ident: 2019103013414807100_bbx168-B80 article-title: Predicting metal-binding sites from protein sequence publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2011.94 – volume: 11 start-page: 9 issue: 1 year: 2011 ident: 2019103013414807100_bbx168-B65 article-title: Deciphering the shape and deformation of secondary structures through local conformation analysis publication-title: BMC Struct Biol doi: 10.1186/1472-6807-11-9 – volume: 41 start-page: D1096 year: 2013 ident: 2019103013414807100_bbx168-B84 article-title: BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gks966 – volume: 26 start-page: 1841 issue: 15 year: 2010 ident: 2019103013414807100_bbx168-B58 article-title: Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq302 |
SSID | ssj0020781 |
Score | 2.5275376 |
SecondaryResourceType | review_article |
Snippet | Abstract
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that... Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1250 |
SubjectTerms | Amino Acid Sequence Amino acids Amino Acids - chemistry Binding Binding Sites - genetics Computational Biology - methods Databases, Protein Deoxyribonucleic acid DNA DNA - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Empirical analysis Evolutionary conservation Humans Internet Ligands Nucleic acids Performance prediction Protein Binding Protein Interaction Domains and Motifs Proteins Residues Ribonucleic acid RNA RNA - metabolism RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Software |
Title | Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29253082 https://www.proquest.com/docview/2955228576 https://www.proquest.com/docview/1978714550 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1dS8MwFA0yEHwRv53OEdEXwbK1TZr2cahjCE6QCXsr-WRF1411A_333jRdYTi0D4WQpCm5CedcknsuQreEcMnggS1uwEGJY-EJAALPZ4p1mUkY1TZQ-GUYDd7J85iOq0s0xZYj_CTsiEx0hPjyIxvSC-hrFfJHr-ParbJyNS6GiHlW3H0tQrrRdQN2NkLZfjHKEln6B2i_ooS452x4iHZ0foR2XZLI72O0slt2oSfupjl2sSaY5wrr6TwrFT6g5KRF8Mxgmx1lyhcfZeFx2PPu8Ru8yx6lKkOWW3fYYhZ8DBYj_BzO8nUdlhOe5cUJGvWfRg8Dr0qW4EkAoqVndGRiAHeZCBoB6dOBDLuBIiJWMiA8ZIGIEhMqLiQVkeTKCEFozDi3mdG74Slq5LNcnyMMiEUDJVikgJwAvRIKIN4Q8MSoSgwhTXS3nspUVkLiNp_FZ-oOtMMUpj11095EN3XbuZPP2NqqDRb5s0Frbay02mNFGiQUyGMMDlMTXdfVsDvskQfP9WxVpD44yazUYm-iM2fkepggCagV67n4b_RLtAc0ycZ6eX7SQo3lYqWvgIosRbtciT9-dNst |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+review+and+empirical+analysis+of+hallmarks+of+DNA-%2C+RNA-+and+protein-binding+residues+in+protein+chains&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Jian&rft.au=Ma%2C+Zhiqiang&rft.au=Kurgan%2C+Lukasz&rft.date=2019-07-19&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=20&rft.issue=4&rft.spage=1250&rft_id=info:doi/10.1093%2Fbib%2Fbbx168&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |