CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios

The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor ti...

Full description

Saved in:
Bibliographic Details
Published inAerospace science and technology Vol. 135; p. 108194
Main Authors Hayami, Kaito, Sugawara, Hideaki, Yumino, Takumi, Tanabe, Yasutada, Kameda, Masaharu
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.04.2023
Subjects
Online AccessGet full text
ISSN1270-9638
1626-3219
DOI10.1016/j.ast.2023.108194

Cover

Abstract The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor tip speed. The effect of the degree of the rolling moment on the rotor thrust, called lift offset, is studied in detail. The coaxial rotor model is a pair of contrarotating rotors, each rotor consisting of two untwisted blades with a radius of 1.016 m. The pitch angle of the blades is controlled by both collective and cyclic as in a conventional single main-rotor helicopter. CFD analysis is performed using a flow solver based on the compressible Navier-Stokes equations with a Reynolds-averaged turbulence model. Laminar/turbulent transition in the boundary layer is taken into account in the calculation. The rotor trim for target forces and moments is achieved using a gradient-based delta-form blade pitch angle adjusting technique in conjunction with CFD analysis. The reliability of the calculations is confirmed by comparison with published wind tunnel experiments and two comprehensive analyses. Applying the lift offset improves the lift-to-effective drag ratio (lift-drag ratio) and reduces thrust fluctuations. However, in the case where the advance ratio exceeds 0.6, the lift-drag ratio drops significantly even if the lift offset is 0.3. The thrust fluctuation also increases with such a high advance ratio. Detailed analysis reveals that the degradation of aerodynamic performance and vibratory aerodynamic loads is closely related to the pitch angle control to compensate for the reduction in thrust on the retreating side due to the increased reverse flow region. It is effective to reduce the collective and longitudinal cyclic pitch angles for the improvement of the aerodynamic performance of coaxial rotors with an appropriate lift offset.
AbstractList The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor tip speed. The effect of the degree of the rolling moment on the rotor thrust, called lift offset, is studied in detail. The coaxial rotor model is a pair of contrarotating rotors, each rotor consisting of two untwisted blades with a radius of 1.016 m. The pitch angle of the blades is controlled by both collective and cyclic as in a conventional single main-rotor helicopter. CFD analysis is performed using a flow solver based on the compressible Navier-Stokes equations with a Reynolds-averaged turbulence model. Laminar/turbulent transition in the boundary layer is taken into account in the calculation. The rotor trim for target forces and moments is achieved using a gradient-based delta-form blade pitch angle adjusting technique in conjunction with CFD analysis. The reliability of the calculations is confirmed by comparison with published wind tunnel experiments and two comprehensive analyses. Applying the lift offset improves the lift-to-effective drag ratio (lift-drag ratio) and reduces thrust fluctuations. However, in the case where the advance ratio exceeds 0.6, the lift-drag ratio drops significantly even if the lift offset is 0.3. The thrust fluctuation also increases with such a high advance ratio. Detailed analysis reveals that the degradation of aerodynamic performance and vibratory aerodynamic loads is closely related to the pitch angle control to compensate for the reduction in thrust on the retreating side due to the increased reverse flow region. It is effective to reduce the collective and longitudinal cyclic pitch angles for the improvement of the aerodynamic performance of coaxial rotors with an appropriate lift offset.
ArticleNumber 108194
Author Kameda, Masaharu
Yumino, Takumi
Sugawara, Hideaki
Hayami, Kaito
Tanabe, Yasutada
Author_xml – sequence: 1
  givenname: Kaito
  surname: Hayami
  fullname: Hayami, Kaito
  organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan
– sequence: 2
  givenname: Hideaki
  surname: Sugawara
  fullname: Sugawara, Hideaki
  organization: The Aviation Technology Directorate, Japan Aerospace Exploration Agency, Osawa 6-13-1, Mitaka, 181-0015, Tokyo, Japan
– sequence: 3
  givenname: Takumi
  surname: Yumino
  fullname: Yumino, Takumi
  organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan
– sequence: 4
  givenname: Yasutada
  surname: Tanabe
  fullname: Tanabe, Yasutada
  organization: The Aviation Technology Directorate, Japan Aerospace Exploration Agency, Osawa 6-13-1, Mitaka, 181-0015, Tokyo, Japan
– sequence: 5
  givenname: Masaharu
  surname: Kameda
  fullname: Kameda, Masaharu
  email: kame@cc.tuat.ac.jp
  organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan
BookMark eNp9kL9OwzAQhy1UJErhAdj8Ain-kzixmFChgFSJBRYW6-LYxFUaV7ZV6NvjUiaGTnen03e633eJJqMfDUI3lMwpoeJ2PYeY5owwnueGyvIMTalgouCMyknuWU0KKXhzgS5jXBNCmCzZFH0slg8YRhj20UXsR5x6g7cmWB82MGqDvcWAtYdvBwMOPvmAv1zq8eBsyksbTcKQcO8-ewzd7pcJkJyPV-jcwhDN9V-doffl49viuVi9Pr0s7leF5iVNRVdRWTd1W1aipFB2XFNTC6oBOilExVvBeSOIabWUhBjGhGypBU04s6ytOJ-h-nhXBx9jMFZplw4fjCmAGxQl6qBIrVVWpA6K1FFRJuk_chvcBsL-JHN3ZEyOtHMmqKidyak7F4xOqvPuBP0DI72Abg
CitedBy_id crossref_primary_10_1177_1475472X241306336
crossref_primary_10_3390_drones8070277
crossref_primary_10_1007_s11831_025_10261_4
crossref_primary_10_2322_jjsass_72_94
crossref_primary_10_3390_s24227115
crossref_primary_10_3390_drones8120703
crossref_primary_10_2322_tjsass_68_1
crossref_primary_10_1016_j_cja_2024_09_042
crossref_primary_10_1016_j_energy_2024_131701
crossref_primary_10_12985_ksaa_2024_32_4_85
crossref_primary_10_3390_drones7110677
Cites_doi 10.2322/tjsass.65.262
10.1007/s13272-013-0078-8
10.1016/j.ast.2020.105818
10.4050/JAHS.59.012005
10.2514/1.C034748
10.1016/j.ast.2021.107260
10.2514/1.C035370
10.2514/1.42362
10.2514/1.J058295
10.1016/j.ast.2020.106206
10.4050/JAHS.61.011001
10.1016/j.ast.2017.06.015
10.1016/j.jfluidstructs.2019.102764
10.2514/1.C036163
10.1007/s42405-019-00221-1
10.1016/j.ast.2019.03.010
ContentType Journal Article
Copyright 2023 Elsevier Masson SAS
Copyright_xml – notice: 2023 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2023.108194
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
ExternalDocumentID 10_1016_j_ast_2023_108194
S1270963823000913
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c341t-d519787b45641a4d3c1e761caad96653b633860ebc9900e2269b1fac032f2b533
IEDL.DBID AIKHN
ISSN 1270-9638
IngestDate Thu Apr 24 23:02:18 EDT 2025
Tue Jul 01 01:22:12 EDT 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aerodynamics
Vibratory airload
Advanced rotorcraft
Computational fluid dynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-d519787b45641a4d3c1e761caad96653b633860ebc9900e2269b1fac032f2b533
ParticipantIDs crossref_citationtrail_10_1016_j_ast_2023_108194
crossref_primary_10_1016_j_ast_2023_108194
elsevier_sciencedirect_doi_10_1016_j_ast_2023_108194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Sugawara, Tanabe, Kameda (br0280) 2022; 65
Yeo (br0030) 2019; 88
Smith, Lim, van der Wall, Baeder, Biedron, Boyd, Jayaraman, Jung, Min (br0300) 2013; 4
Cameron (br0140) 2016
Hayami, Sugawara, Tanabe, Kameda (br0330) 2020
Walsh, Weiner, Arifian, Lawrence, Wilson, Millott, Blackwell (br0060) 2011
Tanabe, Saito (br0220) 2009
Ormiston (br0010) 2016; 61
Ruddell (br0040) 1981
Yeo, Johnson (br0120) 2014; 59
Jia, Lee (br0210) 2020; 58
Lorber, Law, O'Neill, Bowles (br0070) 2016
Zhu, Nie, Zhang, Wei, Zhang (br0080) 2020; 106
Langtry, Menter (br0260) 2009; 47
Tanabe, Saito, Takayama, Sasaki, Nakahashi (br0230) 2010
Enconniere, Ortiz-Carretero, Pachidis (br0020) 2017; 69
Menter, Kuntz, Langtry (br0270) 2003
Cameron, Sirohi (br0130) 2016
Feil, Hajek, Rauleder (br0160) 2020; 92
Ho, Yeo (br0180) 2020; 100
Ho, Yeo (br0170) 2020; 21
Leishman (br0290) 2006
Sugawara, Tanabe (br0100) 2019; 56
Passe, Sridharan, Baeder (br0200) 2015
Bagai (br0050) 2008
Tanabe, Saito, Sugawara (br0250) 2012
W. Johnson, Technology drivers in the development of CAMRAD II, in: American Helicopter Society Aeromechanics Specialist Meeting, San Francisco, CA, January 19–21, 1994.
Sugawara, Tanabe, Kameda (br0110) 2021; 58
Feil, Rauleder, Cameron, Sirohi (br0150) 2019; 56
Tanabe, Saito, Sugawara (br0240) 2012
Jamal Haddadi, Zarafshan, Dehghani (br0090) 2022; 120
H. Saberi, M.J. Hasbun, J. Hong, H. Yeo, R.A. Ormiston, Overview of RCAS capabilities, validations, and rotorcraft applications, in: American Helicopter Society 71st Annual Forum, Virginia Beach, VA, May 5–7, 2015.
Johnson (br0190) 2009
Menter (10.1016/j.ast.2023.108194_br0270) 2003
Enconniere (10.1016/j.ast.2023.108194_br0020) 2017; 69
Jia (10.1016/j.ast.2023.108194_br0210) 2020; 58
Leishman (10.1016/j.ast.2023.108194_br0290) 2006
Ruddell (10.1016/j.ast.2023.108194_br0040) 1981
Langtry (10.1016/j.ast.2023.108194_br0260) 2009; 47
Feil (10.1016/j.ast.2023.108194_br0160) 2020; 92
Zhu (10.1016/j.ast.2023.108194_br0080) 2020; 106
Bagai (10.1016/j.ast.2023.108194_br0050) 2008
Cameron (10.1016/j.ast.2023.108194_br0130) 2016
Ho (10.1016/j.ast.2023.108194_br0180) 2020; 100
10.1016/j.ast.2023.108194_br0320
Yeo (10.1016/j.ast.2023.108194_br0030) 2019; 88
Sugawara (10.1016/j.ast.2023.108194_br0100) 2019; 56
Cameron (10.1016/j.ast.2023.108194_br0140) 2016
Johnson (10.1016/j.ast.2023.108194_br0190) 2009
Smith (10.1016/j.ast.2023.108194_br0300) 2013; 4
Passe (10.1016/j.ast.2023.108194_br0200) 2015
Tanabe (10.1016/j.ast.2023.108194_br0250) 2012
Yeo (10.1016/j.ast.2023.108194_br0120) 2014; 59
Walsh (10.1016/j.ast.2023.108194_br0060) 2011
Sugawara (10.1016/j.ast.2023.108194_br0110) 2021; 58
Tanabe (10.1016/j.ast.2023.108194_br0240) 2012
Lorber (10.1016/j.ast.2023.108194_br0070) 2016
Hayami (10.1016/j.ast.2023.108194_br0330) 2020
Ormiston (10.1016/j.ast.2023.108194_br0010) 2016; 61
Ho (10.1016/j.ast.2023.108194_br0170) 2020; 21
Tanabe (10.1016/j.ast.2023.108194_br0220) 2009
Sugawara (10.1016/j.ast.2023.108194_br0280) 2022; 65
Tanabe (10.1016/j.ast.2023.108194_br0230) 2010
10.1016/j.ast.2023.108194_br0310
Jamal Haddadi (10.1016/j.ast.2023.108194_br0090) 2022; 120
Feil (10.1016/j.ast.2023.108194_br0150) 2019; 56
References_xml – year: 2009
  ident: br0190
  article-title: Influence of lift offset on rotorcraft performance
– start-page: 071
  year: 2010
  ident: br0230
  article-title: A new hybrid method of overlapping structured grids combined with unstructured fuselage grids for rotorcraft analysis
  publication-title: Proceedings of 36th European Rotorcraft Forum
– start-page: 2999
  year: 2011
  end-page: 3010
  ident: br0060
  article-title: High airspeed testing of the Sikorsky X2 technology demonstrator
  publication-title: Proceedings of the 67th Annual Forum of the American Helicopter Society, vol. 4
– start-page: 115
  year: 2006
  end-page: 158
  ident: br0290
  article-title: Principles of Helicopter Aerodynamics
– year: 2020
  ident: br0330
  article-title: Numerical investigation of aerodynamic interference on coaxial rotor
  publication-title: AIAA Scitech 2020 Forum
– reference: H. Saberi, M.J. Hasbun, J. Hong, H. Yeo, R.A. Ormiston, Overview of RCAS capabilities, validations, and rotorcraft applications, in: American Helicopter Society 71st Annual Forum, Virginia Beach, VA, May 5–7, 2015.
– volume: 47
  start-page: 2894
  year: 2009
  end-page: 2906
  ident: br0260
  article-title: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes
  publication-title: AIAA J.
– reference: W. Johnson, Technology drivers in the development of CAMRAD II, in: American Helicopter Society Aeromechanics Specialist Meeting, San Francisco, CA, January 19–21, 1994.
– volume: 69
  start-page: 1
  year: 2017
  end-page: 14
  ident: br0020
  article-title: Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications
  publication-title: Aerosp. Sci. Technol.
– volume: 58
  start-page: 687
  year: 2020
  end-page: 701
  ident: br0210
  article-title: Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight
  publication-title: AIAA J.
– volume: 120
  year: 2022
  ident: br0090
  article-title: A coaxial quadrotor flying robot: design, analysis and control implementation
  publication-title: Aerosp. Sci. Technol.
– volume: 56
  start-page: 2285
  year: 2019
  end-page: 2298
  ident: br0100
  article-title: Numerical investigation of rotor/wing aerodynamic interactions at high advance ratios
  publication-title: J. Aircr.
– start-page: 29
  year: 2008
  end-page: 44
  ident: br0050
  article-title: Aerodynamic design of the x2 technology demonstrator main rotor blade
  publication-title: Proceedings of the 64th Annual Forum of the American Helicopter Society, vol. 1
– year: 2016
  ident: br0070
  article-title: Overview of S-97 raider scale model tests
  publication-title: Proceedings of the 72nd Annual Forum of the American Helicopter Society
– volume: 92
  year: 2020
  ident: br0160
  article-title: Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests
  publication-title: J. Fluids Struct.
– year: 2016
  ident: br0130
  article-title: Performance and loads of a model coaxial rotor part I: wind tunnel measurements
  publication-title: American Helicopter Society 72nd Annual Forum
– volume: 65
  start-page: 262
  year: 2022
  end-page: 272
  ident: br0280
  article-title: A coupled cfd/trim analysis of coaxial rotors
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci.
– start-page: 23
  year: 2009
  ident: br0220
  article-title: Significance of all-speed scheme in application to rotorcraft CFD simulations
  publication-title: Proceedings of 3rd International Basic Research Conference on Rotorcraft Technology
– volume: 106
  year: 2020
  ident: br0080
  article-title: Design and assessment of octocopter drones with improved aerodynamic efficiency and performance
  publication-title: Aerosp. Sci. Technol.
– volume: 21
  start-page: 418
  year: 2020
  end-page: 438
  ident: br0170
  article-title: Rotorcraft comprehensive analysis calculations of a coaxial rotor with lift offset
  publication-title: Int. J. Aeronaut. Space Sci.
– volume: 4
  start-page: 345
  year: 2013
  end-page: 372
  ident: br0300
  article-title: The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction
  publication-title: CEAS Aeronaut. J.
– volume: 58
  start-page: 997
  year: 2021
  end-page: 1009
  ident: br0110
  article-title: Effect of lift-share ratio on aerodynamic performance of winged compound helicopter
  publication-title: J. Aircr.
– volume: 100
  year: 2020
  ident: br0180
  article-title: Analytical study of an isolated coaxial rotor system with lift offset
  publication-title: Aerosp. Sci. Technol.
– start-page: 2015
  year: 2015
  end-page: 2883
  ident: br0200
  article-title: Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight
  publication-title: 33rd AIAA Applied Aerodynamics Conference
– volume: 88
  start-page: 158
  year: 2019
  end-page: 173
  ident: br0030
  article-title: Design and aeromechanics investigation of compound helicopters
  publication-title: Aerosp. Sci. Technol.
– year: 2012
  ident: br0240
  article-title: Evaluation of rotor noise reduction by active devices using a CFD/CSD coupling analysis tool chain
  publication-title: Proceedings of 1st Asian/Australian Rotorcraft Forum
– year: 2012
  ident: br0250
  article-title: Construction and validation of an analysis tool chain for rotorcraft active noise reduction
  publication-title: Proceedings of 38th European Rotorcraft Forum
– volume: 61
  start-page: 1
  year: 2016
  end-page: 23
  ident: br0010
  article-title: Revitalizing advanced rotorcraft research—and the compound helicopter
  publication-title: J. Am. Helicopter Soc.
– year: 1981
  ident: br0040
  article-title: Advancing blade concept (abc) development test program
  publication-title: AIAA/SETP/SFTE/SAE/ITEA/IEEE 1st Flight Testing Conference
– volume: 56
  start-page: 166
  year: 2019
  end-page: 178
  ident: br0150
  article-title: Aeromechanics analysis of a high-advance-ratio lift-offset coaxial rotor system
  publication-title: J. Aircr.
– start-page: 625
  year: 2003
  end-page: 632
  ident: br0270
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbulence, Heat and Mass Transfer 4
– volume: 59
  start-page: 1
  year: 2014
  end-page: 12
  ident: br0120
  article-title: Investigation of maximum blade loading capability of lift-offset rotors
  publication-title: J. Am. Helicopter Soc.
– year: 2016
  ident: br0140
  article-title: Comprehensive aeromechanical measurements of a model-scale, coaxial, counter-rotating rotor system
– volume: 65
  start-page: 262
  issue: 6
  year: 2022
  ident: 10.1016/j.ast.2023.108194_br0280
  article-title: A coupled cfd/trim analysis of coaxial rotors
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci.
  doi: 10.2322/tjsass.65.262
– ident: 10.1016/j.ast.2023.108194_br0310
– volume: 4
  start-page: 345
  issue: 4
  year: 2013
  ident: 10.1016/j.ast.2023.108194_br0300
  article-title: The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction
  publication-title: CEAS Aeronaut. J.
  doi: 10.1007/s13272-013-0078-8
– volume: 100
  year: 2020
  ident: 10.1016/j.ast.2023.108194_br0180
  article-title: Analytical study of an isolated coaxial rotor system with lift offset
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105818
– volume: 59
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.ast.2023.108194_br0120
  article-title: Investigation of maximum blade loading capability of lift-offset rotors
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/JAHS.59.012005
– volume: 56
  start-page: 166
  issue: 1
  year: 2019
  ident: 10.1016/j.ast.2023.108194_br0150
  article-title: Aeromechanics analysis of a high-advance-ratio lift-offset coaxial rotor system
  publication-title: J. Aircr.
  doi: 10.2514/1.C034748
– volume: 120
  year: 2022
  ident: 10.1016/j.ast.2023.108194_br0090
  article-title: A coaxial quadrotor flying robot: design, analysis and control implementation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.107260
– start-page: 2999
  year: 2011
  ident: 10.1016/j.ast.2023.108194_br0060
  article-title: High airspeed testing of the Sikorsky X2 technology demonstrator
– year: 1981
  ident: 10.1016/j.ast.2023.108194_br0040
  article-title: Advancing blade concept (abc) development test program
– start-page: 29
  year: 2008
  ident: 10.1016/j.ast.2023.108194_br0050
  article-title: Aerodynamic design of the x2 technology demonstrator main rotor blade
– volume: 56
  start-page: 2285
  issue: 6
  year: 2019
  ident: 10.1016/j.ast.2023.108194_br0100
  article-title: Numerical investigation of rotor/wing aerodynamic interactions at high advance ratios
  publication-title: J. Aircr.
  doi: 10.2514/1.C035370
– start-page: 2015
  year: 2015
  ident: 10.1016/j.ast.2023.108194_br0200
  article-title: Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight
– start-page: 071
  year: 2010
  ident: 10.1016/j.ast.2023.108194_br0230
  article-title: A new hybrid method of overlapping structured grids combined with unstructured fuselage grids for rotorcraft analysis
– year: 2012
  ident: 10.1016/j.ast.2023.108194_br0250
  article-title: Construction and validation of an analysis tool chain for rotorcraft active noise reduction
– volume: 47
  start-page: 2894
  issue: 12
  year: 2009
  ident: 10.1016/j.ast.2023.108194_br0260
  article-title: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes
  publication-title: AIAA J.
  doi: 10.2514/1.42362
– volume: 58
  start-page: 687
  issue: 2
  year: 2020
  ident: 10.1016/j.ast.2023.108194_br0210
  article-title: Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight
  publication-title: AIAA J.
  doi: 10.2514/1.J058295
– start-page: 23
  year: 2009
  ident: 10.1016/j.ast.2023.108194_br0220
  article-title: Significance of all-speed scheme in application to rotorcraft CFD simulations
– start-page: 115
  year: 2006
  ident: 10.1016/j.ast.2023.108194_br0290
– year: 2009
  ident: 10.1016/j.ast.2023.108194_br0190
– year: 2020
  ident: 10.1016/j.ast.2023.108194_br0330
  article-title: Numerical investigation of aerodynamic interference on coaxial rotor
– year: 2016
  ident: 10.1016/j.ast.2023.108194_br0140
– volume: 106
  year: 2020
  ident: 10.1016/j.ast.2023.108194_br0080
  article-title: Design and assessment of octocopter drones with improved aerodynamic efficiency and performance
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106206
– volume: 61
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ast.2023.108194_br0010
  article-title: Revitalizing advanced rotorcraft research—and the compound helicopter
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/JAHS.61.011001
– volume: 69
  start-page: 1
  year: 2017
  ident: 10.1016/j.ast.2023.108194_br0020
  article-title: Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.06.015
– volume: 92
  year: 2020
  ident: 10.1016/j.ast.2023.108194_br0160
  article-title: Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.102764
– volume: 58
  start-page: 997
  issue: 5
  year: 2021
  ident: 10.1016/j.ast.2023.108194_br0110
  article-title: Effect of lift-share ratio on aerodynamic performance of winged compound helicopter
  publication-title: J. Aircr.
  doi: 10.2514/1.C036163
– year: 2016
  ident: 10.1016/j.ast.2023.108194_br0130
  article-title: Performance and loads of a model coaxial rotor part I: wind tunnel measurements
– volume: 21
  start-page: 418
  issue: 2
  year: 2020
  ident: 10.1016/j.ast.2023.108194_br0170
  article-title: Rotorcraft comprehensive analysis calculations of a coaxial rotor with lift offset
  publication-title: Int. J. Aeronaut. Space Sci.
  doi: 10.1007/s42405-019-00221-1
– volume: 88
  start-page: 158
  year: 2019
  ident: 10.1016/j.ast.2023.108194_br0030
  article-title: Design and aeromechanics investigation of compound helicopters
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.03.010
– start-page: 625
  year: 2003
  ident: 10.1016/j.ast.2023.108194_br0270
  article-title: Ten years of industrial experience with the SST turbulence model
– ident: 10.1016/j.ast.2023.108194_br0320
– year: 2016
  ident: 10.1016/j.ast.2023.108194_br0070
  article-title: Overview of S-97 raider scale model tests
– year: 2012
  ident: 10.1016/j.ast.2023.108194_br0240
  article-title: Evaluation of rotor noise reduction by active devices using a CFD/CSD coupling analysis tool chain
SSID ssj0002942
Score 2.401561
Snippet The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108194
SubjectTerms Advanced rotorcraft
Aerodynamics
Computational fluid dynamics
Vibratory airload
Title CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios
URI https://dx.doi.org/10.1016/j.ast.2023.108194
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lBw8CWuTbPZ1LNVSFXrRQvGyJNkEKqVb2hU8-dtNdrO1gnrwuNkMLMMw82XzzTcAV7EiEaZKeYHIMo-JjHmxYKGXBExSqShmomT5jsPRhD1Mg2kDBnUvjKVVutxf5fQyW7uVnvNmbzmb9Z7snakNHwOisVW3bEKb-kkYtKDdv38cjTcJmSblDB2737MG9eVmSfPia8uopL4l25GE_VyetkrOcB_2HFZE_epzDqChFoewu6UgeAQvg-Et4k5YBOULZPAcWn41A6BcI45kzt9NnKFVbk7YyP56RfOZLsxLvVYF4gWyqsXI8QFQGRTrY5gM754HI8-NS_CkKUWFl9ke1DgSViCGcJb5kqgoJJLzzJxpAl-E5jgaYiWkqUBYGdyVCKK5xD7VVBjYdwKtRb5Qp4CwlYkLYyGCkjeTcKKp1kQFieBEREEHcO2lVDotcTvSYp7WpLHX1Dg2tY5NK8d24HpjsqyENP7azGrXp9-iITWJ_nezs_-ZncOOfar4OBfQKlZv6tJAjUJ0oXnzQbouoD4BSlrQqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7aAexE-cnzl4EsqaNunHcUxH5-YubjC8lCRNYTLasVXwzzdp0zlBPXht8iA8Hu_9XvPL7wHcBRL7tiOlRXmSWIQnxAo48ayQEuEI6diElyzfsRdNydOMzhrQq9_CaFqlyf1VTi-ztfnSMd7sLOfzzou-M9Xho0C0rdUtd6BFqOr2mtDqDobReJOQnbCcoaP3W9qgvtwsaV5srRmVjqvJdjgkP5enrZLTP4QDgxVRtzrOETRkdgz7WwqCJ_Da6z8gZoRFUJ4hhefQ8usxAMpTxJDI2YeKM7TKVYeN9K9XtJinhVpM17JArEBatRgZPgAqg2J9CtP-46QXWWZcgiVUKSqsRL9BDXyuBWIwI4krsPQ9LBhLVE9DXe6pdtSzJReqAtlS4a6Q45QJ23VShyvYdwbNLM_kOSBby8R5Aee05M2EDKdOmmJJQ84w92kb7NpLsTBa4nqkxSKuSWNvsXJsrB0bV45tw_3GZFkJafy1mdSuj79FQ6wS_e9mF_8zu4XdaPI8ikeD8fAS9vRKxc25gmaxepfXCnYU_MaE1SdOwtKY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+on+the+performance+of+a+coaxial+rotor+with+lift+offset+at+high+advance+ratios&rft.jtitle=Aerospace+science+and+technology&rft.au=Hayami%2C+Kaito&rft.au=Sugawara%2C+Hideaki&rft.au=Yumino%2C+Takumi&rft.au=Tanabe%2C+Yasutada&rft.date=2023-04-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=135&rft_id=info:doi/10.1016%2Fj.ast.2023.108194&rft.externalDocID=S1270963823000913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon