CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios
The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor ti...
Saved in:
Published in | Aerospace science and technology Vol. 135; p. 108194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1270-9638 1626-3219 |
DOI | 10.1016/j.ast.2023.108194 |
Cover
Abstract | The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor tip speed. The effect of the degree of the rolling moment on the rotor thrust, called lift offset, is studied in detail. The coaxial rotor model is a pair of contrarotating rotors, each rotor consisting of two untwisted blades with a radius of 1.016 m. The pitch angle of the blades is controlled by both collective and cyclic as in a conventional single main-rotor helicopter. CFD analysis is performed using a flow solver based on the compressible Navier-Stokes equations with a Reynolds-averaged turbulence model. Laminar/turbulent transition in the boundary layer is taken into account in the calculation. The rotor trim for target forces and moments is achieved using a gradient-based delta-form blade pitch angle adjusting technique in conjunction with CFD analysis. The reliability of the calculations is confirmed by comparison with published wind tunnel experiments and two comprehensive analyses. Applying the lift offset improves the lift-to-effective drag ratio (lift-drag ratio) and reduces thrust fluctuations. However, in the case where the advance ratio exceeds 0.6, the lift-drag ratio drops significantly even if the lift offset is 0.3. The thrust fluctuation also increases with such a high advance ratio. Detailed analysis reveals that the degradation of aerodynamic performance and vibratory aerodynamic loads is closely related to the pitch angle control to compensate for the reduction in thrust on the retreating side due to the increased reverse flow region. It is effective to reduce the collective and longitudinal cyclic pitch angles for the improvement of the aerodynamic performance of coaxial rotors with an appropriate lift offset. |
---|---|
AbstractList | The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The analysis focuses on the high-speed forward flight with an advance ratio of 0.5 or higher, which is the ratio of the forward speed to the rotor tip speed. The effect of the degree of the rolling moment on the rotor thrust, called lift offset, is studied in detail. The coaxial rotor model is a pair of contrarotating rotors, each rotor consisting of two untwisted blades with a radius of 1.016 m. The pitch angle of the blades is controlled by both collective and cyclic as in a conventional single main-rotor helicopter. CFD analysis is performed using a flow solver based on the compressible Navier-Stokes equations with a Reynolds-averaged turbulence model. Laminar/turbulent transition in the boundary layer is taken into account in the calculation. The rotor trim for target forces and moments is achieved using a gradient-based delta-form blade pitch angle adjusting technique in conjunction with CFD analysis. The reliability of the calculations is confirmed by comparison with published wind tunnel experiments and two comprehensive analyses. Applying the lift offset improves the lift-to-effective drag ratio (lift-drag ratio) and reduces thrust fluctuations. However, in the case where the advance ratio exceeds 0.6, the lift-drag ratio drops significantly even if the lift offset is 0.3. The thrust fluctuation also increases with such a high advance ratio. Detailed analysis reveals that the degradation of aerodynamic performance and vibratory aerodynamic loads is closely related to the pitch angle control to compensate for the reduction in thrust on the retreating side due to the increased reverse flow region. It is effective to reduce the collective and longitudinal cyclic pitch angles for the improvement of the aerodynamic performance of coaxial rotors with an appropriate lift offset. |
ArticleNumber | 108194 |
Author | Kameda, Masaharu Yumino, Takumi Sugawara, Hideaki Hayami, Kaito Tanabe, Yasutada |
Author_xml | – sequence: 1 givenname: Kaito surname: Hayami fullname: Hayami, Kaito organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan – sequence: 2 givenname: Hideaki surname: Sugawara fullname: Sugawara, Hideaki organization: The Aviation Technology Directorate, Japan Aerospace Exploration Agency, Osawa 6-13-1, Mitaka, 181-0015, Tokyo, Japan – sequence: 3 givenname: Takumi surname: Yumino fullname: Yumino, Takumi organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan – sequence: 4 givenname: Yasutada surname: Tanabe fullname: Tanabe, Yasutada organization: The Aviation Technology Directorate, Japan Aerospace Exploration Agency, Osawa 6-13-1, Mitaka, 181-0015, Tokyo, Japan – sequence: 5 givenname: Masaharu surname: Kameda fullname: Kameda, Masaharu email: kame@cc.tuat.ac.jp organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588, Tokyo, Japan |
BookMark | eNp9kL9OwzAQhy1UJErhAdj8Ain-kzixmFChgFSJBRYW6-LYxFUaV7ZV6NvjUiaGTnen03e633eJJqMfDUI3lMwpoeJ2PYeY5owwnueGyvIMTalgouCMyknuWU0KKXhzgS5jXBNCmCzZFH0slg8YRhj20UXsR5x6g7cmWB82MGqDvcWAtYdvBwMOPvmAv1zq8eBsyksbTcKQcO8-ewzd7pcJkJyPV-jcwhDN9V-doffl49viuVi9Pr0s7leF5iVNRVdRWTd1W1aipFB2XFNTC6oBOilExVvBeSOIabWUhBjGhGypBU04s6ytOJ-h-nhXBx9jMFZplw4fjCmAGxQl6qBIrVVWpA6K1FFRJuk_chvcBsL-JHN3ZEyOtHMmqKidyak7F4xOqvPuBP0DI72Abg |
CitedBy_id | crossref_primary_10_1177_1475472X241306336 crossref_primary_10_3390_drones8070277 crossref_primary_10_1007_s11831_025_10261_4 crossref_primary_10_2322_jjsass_72_94 crossref_primary_10_3390_s24227115 crossref_primary_10_3390_drones8120703 crossref_primary_10_2322_tjsass_68_1 crossref_primary_10_1016_j_cja_2024_09_042 crossref_primary_10_1016_j_energy_2024_131701 crossref_primary_10_12985_ksaa_2024_32_4_85 crossref_primary_10_3390_drones7110677 |
Cites_doi | 10.2322/tjsass.65.262 10.1007/s13272-013-0078-8 10.1016/j.ast.2020.105818 10.4050/JAHS.59.012005 10.2514/1.C034748 10.1016/j.ast.2021.107260 10.2514/1.C035370 10.2514/1.42362 10.2514/1.J058295 10.1016/j.ast.2020.106206 10.4050/JAHS.61.011001 10.1016/j.ast.2017.06.015 10.1016/j.jfluidstructs.2019.102764 10.2514/1.C036163 10.1007/s42405-019-00221-1 10.1016/j.ast.2019.03.010 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Masson SAS |
Copyright_xml | – notice: 2023 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ast.2023.108194 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1626-3219 |
ExternalDocumentID | 10_1016_j_ast_2023_108194 S1270963823000913 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c341t-d519787b45641a4d3c1e761caad96653b633860ebc9900e2269b1fac032f2b533 |
IEDL.DBID | AIKHN |
ISSN | 1270-9638 |
IngestDate | Thu Apr 24 23:02:18 EDT 2025 Tue Jul 01 01:22:12 EDT 2025 Fri Feb 23 02:38:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aerodynamics Vibratory airload Advanced rotorcraft Computational fluid dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-d519787b45641a4d3c1e761caad96653b633860ebc9900e2269b1fac032f2b533 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ast_2023_108194 crossref_primary_10_1016_j_ast_2023_108194 elsevier_sciencedirect_doi_10_1016_j_ast_2023_108194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Aerospace science and technology |
PublicationYear | 2023 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Sugawara, Tanabe, Kameda (br0280) 2022; 65 Yeo (br0030) 2019; 88 Smith, Lim, van der Wall, Baeder, Biedron, Boyd, Jayaraman, Jung, Min (br0300) 2013; 4 Cameron (br0140) 2016 Hayami, Sugawara, Tanabe, Kameda (br0330) 2020 Walsh, Weiner, Arifian, Lawrence, Wilson, Millott, Blackwell (br0060) 2011 Tanabe, Saito (br0220) 2009 Ormiston (br0010) 2016; 61 Ruddell (br0040) 1981 Yeo, Johnson (br0120) 2014; 59 Jia, Lee (br0210) 2020; 58 Lorber, Law, O'Neill, Bowles (br0070) 2016 Zhu, Nie, Zhang, Wei, Zhang (br0080) 2020; 106 Langtry, Menter (br0260) 2009; 47 Tanabe, Saito, Takayama, Sasaki, Nakahashi (br0230) 2010 Enconniere, Ortiz-Carretero, Pachidis (br0020) 2017; 69 Menter, Kuntz, Langtry (br0270) 2003 Cameron, Sirohi (br0130) 2016 Feil, Hajek, Rauleder (br0160) 2020; 92 Ho, Yeo (br0180) 2020; 100 Ho, Yeo (br0170) 2020; 21 Leishman (br0290) 2006 Sugawara, Tanabe (br0100) 2019; 56 Passe, Sridharan, Baeder (br0200) 2015 Bagai (br0050) 2008 Tanabe, Saito, Sugawara (br0250) 2012 W. Johnson, Technology drivers in the development of CAMRAD II, in: American Helicopter Society Aeromechanics Specialist Meeting, San Francisco, CA, January 19–21, 1994. Sugawara, Tanabe, Kameda (br0110) 2021; 58 Feil, Rauleder, Cameron, Sirohi (br0150) 2019; 56 Tanabe, Saito, Sugawara (br0240) 2012 Jamal Haddadi, Zarafshan, Dehghani (br0090) 2022; 120 H. Saberi, M.J. Hasbun, J. Hong, H. Yeo, R.A. Ormiston, Overview of RCAS capabilities, validations, and rotorcraft applications, in: American Helicopter Society 71st Annual Forum, Virginia Beach, VA, May 5–7, 2015. Johnson (br0190) 2009 Menter (10.1016/j.ast.2023.108194_br0270) 2003 Enconniere (10.1016/j.ast.2023.108194_br0020) 2017; 69 Jia (10.1016/j.ast.2023.108194_br0210) 2020; 58 Leishman (10.1016/j.ast.2023.108194_br0290) 2006 Ruddell (10.1016/j.ast.2023.108194_br0040) 1981 Langtry (10.1016/j.ast.2023.108194_br0260) 2009; 47 Feil (10.1016/j.ast.2023.108194_br0160) 2020; 92 Zhu (10.1016/j.ast.2023.108194_br0080) 2020; 106 Bagai (10.1016/j.ast.2023.108194_br0050) 2008 Cameron (10.1016/j.ast.2023.108194_br0130) 2016 Ho (10.1016/j.ast.2023.108194_br0180) 2020; 100 10.1016/j.ast.2023.108194_br0320 Yeo (10.1016/j.ast.2023.108194_br0030) 2019; 88 Sugawara (10.1016/j.ast.2023.108194_br0100) 2019; 56 Cameron (10.1016/j.ast.2023.108194_br0140) 2016 Johnson (10.1016/j.ast.2023.108194_br0190) 2009 Smith (10.1016/j.ast.2023.108194_br0300) 2013; 4 Passe (10.1016/j.ast.2023.108194_br0200) 2015 Tanabe (10.1016/j.ast.2023.108194_br0250) 2012 Yeo (10.1016/j.ast.2023.108194_br0120) 2014; 59 Walsh (10.1016/j.ast.2023.108194_br0060) 2011 Sugawara (10.1016/j.ast.2023.108194_br0110) 2021; 58 Tanabe (10.1016/j.ast.2023.108194_br0240) 2012 Lorber (10.1016/j.ast.2023.108194_br0070) 2016 Hayami (10.1016/j.ast.2023.108194_br0330) 2020 Ormiston (10.1016/j.ast.2023.108194_br0010) 2016; 61 Ho (10.1016/j.ast.2023.108194_br0170) 2020; 21 Tanabe (10.1016/j.ast.2023.108194_br0220) 2009 Sugawara (10.1016/j.ast.2023.108194_br0280) 2022; 65 Tanabe (10.1016/j.ast.2023.108194_br0230) 2010 10.1016/j.ast.2023.108194_br0310 Jamal Haddadi (10.1016/j.ast.2023.108194_br0090) 2022; 120 Feil (10.1016/j.ast.2023.108194_br0150) 2019; 56 |
References_xml | – year: 2009 ident: br0190 article-title: Influence of lift offset on rotorcraft performance – start-page: 071 year: 2010 ident: br0230 article-title: A new hybrid method of overlapping structured grids combined with unstructured fuselage grids for rotorcraft analysis publication-title: Proceedings of 36th European Rotorcraft Forum – start-page: 2999 year: 2011 end-page: 3010 ident: br0060 article-title: High airspeed testing of the Sikorsky X2 technology demonstrator publication-title: Proceedings of the 67th Annual Forum of the American Helicopter Society, vol. 4 – start-page: 115 year: 2006 end-page: 158 ident: br0290 article-title: Principles of Helicopter Aerodynamics – year: 2020 ident: br0330 article-title: Numerical investigation of aerodynamic interference on coaxial rotor publication-title: AIAA Scitech 2020 Forum – reference: H. Saberi, M.J. Hasbun, J. Hong, H. Yeo, R.A. Ormiston, Overview of RCAS capabilities, validations, and rotorcraft applications, in: American Helicopter Society 71st Annual Forum, Virginia Beach, VA, May 5–7, 2015. – volume: 47 start-page: 2894 year: 2009 end-page: 2906 ident: br0260 article-title: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes publication-title: AIAA J. – reference: W. Johnson, Technology drivers in the development of CAMRAD II, in: American Helicopter Society Aeromechanics Specialist Meeting, San Francisco, CA, January 19–21, 1994. – volume: 69 start-page: 1 year: 2017 end-page: 14 ident: br0020 article-title: Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications publication-title: Aerosp. Sci. Technol. – volume: 58 start-page: 687 year: 2020 end-page: 701 ident: br0210 article-title: Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight publication-title: AIAA J. – volume: 120 year: 2022 ident: br0090 article-title: A coaxial quadrotor flying robot: design, analysis and control implementation publication-title: Aerosp. Sci. Technol. – volume: 56 start-page: 2285 year: 2019 end-page: 2298 ident: br0100 article-title: Numerical investigation of rotor/wing aerodynamic interactions at high advance ratios publication-title: J. Aircr. – start-page: 29 year: 2008 end-page: 44 ident: br0050 article-title: Aerodynamic design of the x2 technology demonstrator main rotor blade publication-title: Proceedings of the 64th Annual Forum of the American Helicopter Society, vol. 1 – year: 2016 ident: br0070 article-title: Overview of S-97 raider scale model tests publication-title: Proceedings of the 72nd Annual Forum of the American Helicopter Society – volume: 92 year: 2020 ident: br0160 article-title: Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests publication-title: J. Fluids Struct. – year: 2016 ident: br0130 article-title: Performance and loads of a model coaxial rotor part I: wind tunnel measurements publication-title: American Helicopter Society 72nd Annual Forum – volume: 65 start-page: 262 year: 2022 end-page: 272 ident: br0280 article-title: A coupled cfd/trim analysis of coaxial rotors publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. – start-page: 23 year: 2009 ident: br0220 article-title: Significance of all-speed scheme in application to rotorcraft CFD simulations publication-title: Proceedings of 3rd International Basic Research Conference on Rotorcraft Technology – volume: 106 year: 2020 ident: br0080 article-title: Design and assessment of octocopter drones with improved aerodynamic efficiency and performance publication-title: Aerosp. Sci. Technol. – volume: 21 start-page: 418 year: 2020 end-page: 438 ident: br0170 article-title: Rotorcraft comprehensive analysis calculations of a coaxial rotor with lift offset publication-title: Int. J. Aeronaut. Space Sci. – volume: 4 start-page: 345 year: 2013 end-page: 372 ident: br0300 article-title: The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction publication-title: CEAS Aeronaut. J. – volume: 58 start-page: 997 year: 2021 end-page: 1009 ident: br0110 article-title: Effect of lift-share ratio on aerodynamic performance of winged compound helicopter publication-title: J. Aircr. – volume: 100 year: 2020 ident: br0180 article-title: Analytical study of an isolated coaxial rotor system with lift offset publication-title: Aerosp. Sci. Technol. – start-page: 2015 year: 2015 end-page: 2883 ident: br0200 article-title: Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight publication-title: 33rd AIAA Applied Aerodynamics Conference – volume: 88 start-page: 158 year: 2019 end-page: 173 ident: br0030 article-title: Design and aeromechanics investigation of compound helicopters publication-title: Aerosp. Sci. Technol. – year: 2012 ident: br0240 article-title: Evaluation of rotor noise reduction by active devices using a CFD/CSD coupling analysis tool chain publication-title: Proceedings of 1st Asian/Australian Rotorcraft Forum – year: 2012 ident: br0250 article-title: Construction and validation of an analysis tool chain for rotorcraft active noise reduction publication-title: Proceedings of 38th European Rotorcraft Forum – volume: 61 start-page: 1 year: 2016 end-page: 23 ident: br0010 article-title: Revitalizing advanced rotorcraft research—and the compound helicopter publication-title: J. Am. Helicopter Soc. – year: 1981 ident: br0040 article-title: Advancing blade concept (abc) development test program publication-title: AIAA/SETP/SFTE/SAE/ITEA/IEEE 1st Flight Testing Conference – volume: 56 start-page: 166 year: 2019 end-page: 178 ident: br0150 article-title: Aeromechanics analysis of a high-advance-ratio lift-offset coaxial rotor system publication-title: J. Aircr. – start-page: 625 year: 2003 end-page: 632 ident: br0270 article-title: Ten years of industrial experience with the SST turbulence model publication-title: Turbulence, Heat and Mass Transfer 4 – volume: 59 start-page: 1 year: 2014 end-page: 12 ident: br0120 article-title: Investigation of maximum blade loading capability of lift-offset rotors publication-title: J. Am. Helicopter Soc. – year: 2016 ident: br0140 article-title: Comprehensive aeromechanical measurements of a model-scale, coaxial, counter-rotating rotor system – volume: 65 start-page: 262 issue: 6 year: 2022 ident: 10.1016/j.ast.2023.108194_br0280 article-title: A coupled cfd/trim analysis of coaxial rotors publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. doi: 10.2322/tjsass.65.262 – ident: 10.1016/j.ast.2023.108194_br0310 – volume: 4 start-page: 345 issue: 4 year: 2013 ident: 10.1016/j.ast.2023.108194_br0300 article-title: The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction publication-title: CEAS Aeronaut. J. doi: 10.1007/s13272-013-0078-8 – volume: 100 year: 2020 ident: 10.1016/j.ast.2023.108194_br0180 article-title: Analytical study of an isolated coaxial rotor system with lift offset publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105818 – volume: 59 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ast.2023.108194_br0120 article-title: Investigation of maximum blade loading capability of lift-offset rotors publication-title: J. Am. Helicopter Soc. doi: 10.4050/JAHS.59.012005 – volume: 56 start-page: 166 issue: 1 year: 2019 ident: 10.1016/j.ast.2023.108194_br0150 article-title: Aeromechanics analysis of a high-advance-ratio lift-offset coaxial rotor system publication-title: J. Aircr. doi: 10.2514/1.C034748 – volume: 120 year: 2022 ident: 10.1016/j.ast.2023.108194_br0090 article-title: A coaxial quadrotor flying robot: design, analysis and control implementation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.107260 – start-page: 2999 year: 2011 ident: 10.1016/j.ast.2023.108194_br0060 article-title: High airspeed testing of the Sikorsky X2 technology demonstrator – year: 1981 ident: 10.1016/j.ast.2023.108194_br0040 article-title: Advancing blade concept (abc) development test program – start-page: 29 year: 2008 ident: 10.1016/j.ast.2023.108194_br0050 article-title: Aerodynamic design of the x2 technology demonstrator main rotor blade – volume: 56 start-page: 2285 issue: 6 year: 2019 ident: 10.1016/j.ast.2023.108194_br0100 article-title: Numerical investigation of rotor/wing aerodynamic interactions at high advance ratios publication-title: J. Aircr. doi: 10.2514/1.C035370 – start-page: 2015 year: 2015 ident: 10.1016/j.ast.2023.108194_br0200 article-title: Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight – start-page: 071 year: 2010 ident: 10.1016/j.ast.2023.108194_br0230 article-title: A new hybrid method of overlapping structured grids combined with unstructured fuselage grids for rotorcraft analysis – year: 2012 ident: 10.1016/j.ast.2023.108194_br0250 article-title: Construction and validation of an analysis tool chain for rotorcraft active noise reduction – volume: 47 start-page: 2894 issue: 12 year: 2009 ident: 10.1016/j.ast.2023.108194_br0260 article-title: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes publication-title: AIAA J. doi: 10.2514/1.42362 – volume: 58 start-page: 687 issue: 2 year: 2020 ident: 10.1016/j.ast.2023.108194_br0210 article-title: Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight publication-title: AIAA J. doi: 10.2514/1.J058295 – start-page: 23 year: 2009 ident: 10.1016/j.ast.2023.108194_br0220 article-title: Significance of all-speed scheme in application to rotorcraft CFD simulations – start-page: 115 year: 2006 ident: 10.1016/j.ast.2023.108194_br0290 – year: 2009 ident: 10.1016/j.ast.2023.108194_br0190 – year: 2020 ident: 10.1016/j.ast.2023.108194_br0330 article-title: Numerical investigation of aerodynamic interference on coaxial rotor – year: 2016 ident: 10.1016/j.ast.2023.108194_br0140 – volume: 106 year: 2020 ident: 10.1016/j.ast.2023.108194_br0080 article-title: Design and assessment of octocopter drones with improved aerodynamic efficiency and performance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106206 – volume: 61 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ast.2023.108194_br0010 article-title: Revitalizing advanced rotorcraft research—and the compound helicopter publication-title: J. Am. Helicopter Soc. doi: 10.4050/JAHS.61.011001 – volume: 69 start-page: 1 year: 2017 ident: 10.1016/j.ast.2023.108194_br0020 article-title: Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.06.015 – volume: 92 year: 2020 ident: 10.1016/j.ast.2023.108194_br0160 article-title: Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.102764 – volume: 58 start-page: 997 issue: 5 year: 2021 ident: 10.1016/j.ast.2023.108194_br0110 article-title: Effect of lift-share ratio on aerodynamic performance of winged compound helicopter publication-title: J. Aircr. doi: 10.2514/1.C036163 – year: 2016 ident: 10.1016/j.ast.2023.108194_br0130 article-title: Performance and loads of a model coaxial rotor part I: wind tunnel measurements – volume: 21 start-page: 418 issue: 2 year: 2020 ident: 10.1016/j.ast.2023.108194_br0170 article-title: Rotorcraft comprehensive analysis calculations of a coaxial rotor with lift offset publication-title: Int. J. Aeronaut. Space Sci. doi: 10.1007/s42405-019-00221-1 – volume: 88 start-page: 158 year: 2019 ident: 10.1016/j.ast.2023.108194_br0030 article-title: Design and aeromechanics investigation of compound helicopters publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.03.010 – start-page: 625 year: 2003 ident: 10.1016/j.ast.2023.108194_br0270 article-title: Ten years of industrial experience with the SST turbulence model – ident: 10.1016/j.ast.2023.108194_br0320 – year: 2016 ident: 10.1016/j.ast.2023.108194_br0070 article-title: Overview of S-97 raider scale model tests – year: 2012 ident: 10.1016/j.ast.2023.108194_br0240 article-title: Evaluation of rotor noise reduction by active devices using a CFD/CSD coupling analysis tool chain |
SSID | ssj0002942 |
Score | 2.401561 |
Snippet | The aerodynamic performance of an isolated coaxial rotor in forward flight is analyzed by a high-fidelity computational fluid dynamics (CFD) approach. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108194 |
SubjectTerms | Advanced rotorcraft Aerodynamics Computational fluid dynamics Vibratory airload |
Title | CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios |
URI | https://dx.doi.org/10.1016/j.ast.2023.108194 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lBw8CWuTbPZ1LNVSFXrRQvGyJNkEKqVb2hU8-dtNdrO1gnrwuNkMLMMw82XzzTcAV7EiEaZKeYHIMo-JjHmxYKGXBExSqShmomT5jsPRhD1Mg2kDBnUvjKVVutxf5fQyW7uVnvNmbzmb9Z7snakNHwOisVW3bEKb-kkYtKDdv38cjTcJmSblDB2737MG9eVmSfPia8uopL4l25GE_VyetkrOcB_2HFZE_epzDqChFoewu6UgeAQvg-Et4k5YBOULZPAcWn41A6BcI45kzt9NnKFVbk7YyP56RfOZLsxLvVYF4gWyqsXI8QFQGRTrY5gM754HI8-NS_CkKUWFl9ke1DgSViCGcJb5kqgoJJLzzJxpAl-E5jgaYiWkqUBYGdyVCKK5xD7VVBjYdwKtRb5Qp4CwlYkLYyGCkjeTcKKp1kQFieBEREEHcO2lVDotcTvSYp7WpLHX1Dg2tY5NK8d24HpjsqyENP7azGrXp9-iITWJ_nezs_-ZncOOfar4OBfQKlZv6tJAjUJ0oXnzQbouoD4BSlrQqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7aAexE-cnzl4EsqaNunHcUxH5-YubjC8lCRNYTLasVXwzzdp0zlBPXht8iA8Hu_9XvPL7wHcBRL7tiOlRXmSWIQnxAo48ayQEuEI6diElyzfsRdNydOMzhrQq9_CaFqlyf1VTi-ztfnSMd7sLOfzzou-M9Xho0C0rdUtd6BFqOr2mtDqDobReJOQnbCcoaP3W9qgvtwsaV5srRmVjqvJdjgkP5enrZLTP4QDgxVRtzrOETRkdgz7WwqCJ_Da6z8gZoRFUJ4hhefQ8usxAMpTxJDI2YeKM7TKVYeN9K9XtJinhVpM17JArEBatRgZPgAqg2J9CtP-46QXWWZcgiVUKSqsRL9BDXyuBWIwI4krsPQ9LBhLVE9DXe6pdtSzJReqAtlS4a6Q45QJ23VShyvYdwbNLM_kOSBby8R5Aee05M2EDKdOmmJJQ84w92kb7NpLsTBa4nqkxSKuSWNvsXJsrB0bV45tw_3GZFkJafy1mdSuj79FQ6wS_e9mF_8zu4XdaPI8ikeD8fAS9vRKxc25gmaxepfXCnYU_MaE1SdOwtKY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+on+the+performance+of+a+coaxial+rotor+with+lift+offset+at+high+advance+ratios&rft.jtitle=Aerospace+science+and+technology&rft.au=Hayami%2C+Kaito&rft.au=Sugawara%2C+Hideaki&rft.au=Yumino%2C+Takumi&rft.au=Tanabe%2C+Yasutada&rft.date=2023-04-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=135&rft_id=info:doi/10.1016%2Fj.ast.2023.108194&rft.externalDocID=S1270963823000913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |