Achieving robustness to temperature change of a NIR model for apple soluble solids content
Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was us...
Saved in:
Published in | Food quality and safety Vol. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2399-1399 2399-1402 |
DOI | 10.1093/fqsafe/fyad002 |
Cover
Loading…
Abstract | Abstract
The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards. |
---|---|
AbstractList | The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards. Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards. |
Author | Yao, Jinliang Jiang, Xiaogang Liu, Yande Ou Yang, Aiguo Li, Bin Zhu, Mingwang |
Author_xml | – sequence: 1 givenname: Xiaogang surname: Jiang fullname: Jiang, Xiaogang – sequence: 2 givenname: Jinliang surname: Yao fullname: Yao, Jinliang – sequence: 3 givenname: Mingwang surname: Zhu fullname: Zhu, Mingwang – sequence: 4 givenname: Bin surname: Li fullname: Li, Bin – sequence: 5 givenname: Yande surname: Liu fullname: Liu, Yande – sequence: 6 givenname: Aiguo surname: Ou Yang fullname: Ou Yang, Aiguo |
BookMark | eNqFkM9LwzAUx4NMcM5dPQc8eej22mRtehzDH4OhIHrxUpIm2SJd0iWpsP_eSudFEC_v-w7fz_vyvpdoZJ1VCF2nMEuhJHN9CFyruT5yCZCdoXFGyjJJKWSjn70fF2gaghFAGclomS3G6H1Z74z6NHaLvRNdiFaFgKPDUe1b5XnsvML1jtutwk5jjp_WL3jvpGqwdh7ztm0UDq7pxKBGBlw7G5WNV-hc8yao6Ukn6O3-7nX1mGyeH9ar5SapCU1jIkkmay4FZYIDpZkqpZYFFJSxnAFImVMiFGhRgAZgKSlI_ylbECYKlnEgE3Qz3G29O3QqxOrDdd72kRVJi5TlhEDeu2aDq_YuBK901Xqz5_5YpVB9V1gNFVanCnuA_gJqE3k0_XOem-Zv7HbAXNf-F_EFpVeJlA |
CitedBy_id | crossref_primary_10_1007_s12393_024_09374_6 crossref_primary_10_1093_fqsafe_fyad045 crossref_primary_10_1016_j_foodres_2025_115874 crossref_primary_10_3390_foods13121903 |
Cites_doi | 10.1007/s00216-003-2128-2 10.1021/ac960321m 10.1016/j.postharvbio.2019.111117 10.1016/j.jfoodeng.2013.04.033 10.1080/03610921003778225 10.1016/j.talanta.2011.03.089 10.1255/jnirs.1113 10.1002/app.40476 10.1016/j.talanta.2014.07.081 10.1016/j.postharvbio.2019.01.009 10.1016/0924-2031(95)00055-0 10.1016/S0925-5214(03)00118-2 10.1002/cem.780 10.1021/ac9709920 10.1002/cem.3301 10.1111/1541-4337.12217 10.1016/S0169-7439(03)00051-0 10.1016/S0169-7439(00)00069-1 10.1016/j.meatsci.2011.10.010 10.1016/S1474-6670(17)31867-0 10.1016/j.compag.2015.05.021 10.3390/rs6042699 10.1255/jnirs.463 10.1021/acs.energyfuels.5b01259 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.1093/fqsafe/fyad002 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One ProQuest Central SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2399-1402 |
ExternalDocumentID | 10_1093_fqsafe_fyad002 10.1093/fqsafe/fyad002 |
GroupedDBID | 0R~ AAFWJ AAPPN AAPXW AAVAP ABEJV ABPTD ABXVV ACGFS ADBBV AENZO AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS BAYMD BCNDV BTTYL GROUPED_DOAJ H13 IAO IOV ITC KPI KQ8 KSI M~E O9- OK1 ROX TOX 7X2 AAYXX ABGNP AEUYN AFKRA AMNDL ATCPS BENPR BHPHI CCPQU CITATION HCIFZ M0K PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c341t-d32dcadb48ba0442e9dfd7074886800dd643be0fb70f0081373afe8538b782a03 |
IEDL.DBID | BENPR |
ISSN | 2399-1399 |
IngestDate | Mon Jun 30 12:19:33 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jul 01 02:25:28 EDT 2025 Fri Dec 13 07:13:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Apple near-infrared spectroscopy soluble solids content temperature correction |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-d32dcadb48ba0442e9dfd7074886800dd643be0fb70f0081373afe8538b782a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171863306?pq-origsite=%requestingapplication% |
PQID | 3171863306 |
PQPubID | 7121351 |
ParticipantIDs | proquest_journals_3171863306 crossref_primary_10_1093_fqsafe_fyad002 crossref_citationtrail_10_1093_fqsafe_fyad002 oup_primary_10_1093_fqsafe_fyad002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: Oxford |
PublicationTitle | Food quality and safety |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press |
References | Ge (2023030412334200200_) 2020; 40 Centner (2023030412334200200_) 1996; 68 Kuda-Malwathumullage (2023030412334200200_) 2014; 131 Xu (2023030412334200200_) 2017; 43 Wang (2023030412334200200_) 2018; 49 Fu (2023030412334200200_) 2012; 32 Yao (2023030412334200200_) 2013; 119 Peirs (2023030412334200200_) 2003; 30 Barboza (2023030412334200200_) 2003; 377 Li (2023030412334200200_) 2016; 15 Sun (2023030412334200200_) 2018; 39 Gongal (2023030412334200200_) 2015; 116 Martens (2023030412334200200_) 2003; 17 Liu (2023030412334200200_) 2015; 29 Zhang (2023030412334200200_) 2019; 151 Bai (2023030412334200200_) 2011; 32 Sun (2023030412334200200_) 2020; 162 Haroon (2023030412334200200_) 2020; 34 Sun (2023030412334200200_) 2020; 40 Acharya (2023030412334200200_) 2014; 22 Chen (2023030412334200200_) 2004; 37 Shan (2023030412334200200_) 2015; 131 Zhou (2023030412334200200_) 2012; 90 Liu (2023030412334200200_) 2021; 41 Peng (2023030412334200200_) 2014; 6 Kang (2023030412334200200_) 2011; 85 McDevitt (2023030412334200200_) 2005; 13 Mateos-Aparicio (2023030412334200200_) 2011; 40 Roger (2023030412334200200_) 2003; 66 Bouveresse (2023030412334200200_) 1996; 11 Wülfert (2023030412334200200_) 1998; 70 Wülfert (2023030412334200200_) 2000; 51 Bao (2023030412334200200_) 2012; 128 |
References_xml | – volume: 377 start-page: 695 issue: 4 year: 2003 ident: 2023030412334200200_ article-title: Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-003-2128-2 – volume: 68 start-page: 3851 issue: 21 year: 1996 ident: 2023030412334200200_ article-title: Elimination of uninformative variables for multivariate calibration publication-title: Analytical Chemistry doi: 10.1021/ac960321m – volume: 162 start-page: 111117 year: 2020 ident: 2023030412334200200_ article-title: Achieving robustness to temperature change of a NIRS-PLSR model for intact mango fruit dry matter content publication-title: Postharvest Biology and Technology doi: 10.1016/j.postharvbio.2019.111117 – volume: 119 start-page: 22 issue: 1 year: 2013 ident: 2023030412334200200_ article-title: Assessing the temperature influence on the soluble solids content of watermelon juice as measured by visible and near-infrared spectroscopy and chemometrics publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2013.04.033 – volume: 40 start-page: 2305 issue: 13 year: 2011 ident: 2023030412334200200_ article-title: Partial least squares (PLS) methods: origins, evolution, and application to social sciences publication-title: Communications in Statistics—Theory and Methods doi: 10.1080/03610921003778225 – volume: 128 start-page: 200 year: 2012 ident: 2023030412334200200_ article-title: NIR detection of alcohol content based on GA-PLS. publication-title: Applied Mechanics and Materials – volume: 40 start-page: 1690 issue: 6 year: 2020 ident: 2023030412334200200_ article-title: Correction of temperature influence in near infrared spectroscopy publication-title: Spectroscopy and Spectral Analysis – volume: 85 start-page: 420 issue: 1 year: 2011 ident: 2023030412334200200_ article-title: Quantitative determination by temperature dependent near-infrared spectra: a further study publication-title: Talanta doi: 10.1016/j.talanta.2011.03.089 – volume: 32 start-page: 2080 issue: 8 year: 2012 ident: 2023030412334200200_ article-title: Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra. publication-title: Spectroscopy and Spectral Analysis – volume: 22 start-page: 279 issue: 4 year: 2014 ident: 2023030412334200200_ article-title: Robustness of partial least-squares models to change in sample temperature: I. A comparison of methods for sucrose in aqueous solution publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.1113 – volume: 131 start-page: 378 issue: 13 year: 2014 ident: 2023030412334200200_ article-title: Determination of temperatures of polyamide 66 directly from near-infrared spectra publication-title: Journal of Applied Polymer Science doi: 10.1002/app.40476 – volume: 43 start-page: 7 issue: 4 year: 2017 ident: 2023030412334200200_ article-title: The development and latest progress of near infrared spectrometer. publication-title: Anhui Chemical Industry – volume: 40 start-page: 1483 issue: 5 year: 2020 ident: 2023030412334200200_ article-title: Temperature correction of NIR reflectance spectrum of noninvasive blood glucose measurement based on EPO. publication-title: Spectroscopy and Spectral Analysis – volume: 131 start-page: 170 year: 2015 ident: 2023030412334200200_ article-title: Multilevel analysis of temperature dependent near-infrared spectra publication-title: Talanta doi: 10.1016/j.talanta.2014.07.081 – volume: 151 start-page: 111 year: 2019 ident: 2023030412334200200_ article-title: Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy publication-title: Postharvest Biology and Technology doi: 10.1016/j.postharvbio.2019.01.009 – volume: 11 start-page: 3 issue: 1 year: 1996 ident: 2023030412334200200_ article-title: Standardisation of near-infrared spectrometric instruments: a review publication-title: Vibrational Spectroscopy doi: 10.1016/0924-2031(95)00055-0 – volume: 30 start-page: 233 issue: 3 year: 2003 ident: 2023030412334200200_ article-title: Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents publication-title: Postharvest Biology and Technology doi: 10.1016/S0925-5214(03)00118-2 – volume: 17 start-page: 153 issue: 3 year: 2003 ident: 2023030412334200200_ article-title: Pre-whitening of data by covariance-weighted pre-processing. publication-title: Journal of Chemometrics: A Journal of the Chemometrics Society doi: 10.1002/cem.780 – volume: 70 start-page: 1761 issue: 9 year: 1998 ident: 2023030412334200200_ article-title: Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models publication-title: Analytical Chemistry doi: 10.1021/ac9709920 – volume: 34 start-page: e3301 issue: 11 year: 2020 ident: 2023030412334200200_ article-title: Evaluation of temperature compensation methods for a near-infrared calibration to predict the viscosity of micellar liquids publication-title: Journal of Chemometrics doi: 10.1002/cem.3301 – volume: 41 start-page: 243 issue: 1 year: 2021 ident: 2023030412334200200_ article-title: Detection on firmness and soluble solid content of peach during different storage days. publication-title: Spectroscopy and Spectral Analysis – volume: 15 start-page: 897 issue: 5 year: 2016 ident: 2023030412334200200_ article-title: Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12217 – volume: 66 start-page: 191 issue: 2 year: 2003 ident: 2023030412334200200_ article-title: EPO–PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(03)00051-0 – volume: 39 start-page: 222 issue: 2 year: 2018 ident: 2023030412334200200_ article-title: Near infrared spectroscopic detection of gluten content in wheat flour based on spectral pretreatment and simulated annealing algorithm. publication-title: Food Science – volume: 49 start-page: 348 issue: 7 year: 2018 ident: 2023030412334200200_ article-title: Hand-held device for non-destructive detection of potato quality parameters. publication-title: Transactions of the Chinese Society for Agricultural – volume: 51 start-page: 189 issue: 2 year: 2000 ident: 2023030412334200200_ article-title: Linear techniques to correct for temperature-induced spectral variation in multivariate calibration publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(00)00069-1 – volume: 90 start-page: 658 issue: 3 year: 2012 ident: 2023030412334200200_ article-title: Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy publication-title: Meat Science doi: 10.1016/j.meatsci.2011.10.010 – volume: 37 start-page: 553 issue: 9 year: 2004 ident: 2023030412334200200_ article-title: Modelling temperature-induced spectral variations in chemical process monitoring. publication-title: IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)31867-0 – volume: 116 start-page: 8 year: 2015 ident: 2023030412334200200_ article-title: Sensors and systems for fruit detection and localization: a review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.05.021 – volume: 6 start-page: 2699 issue: 4 year: 2014 ident: 2023030412334200200_ article-title: Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods publication-title: Remote Sensing doi: 10.3390/rs6042699 – volume: 32 start-page: 286 issue: 03 year: 2011 ident: 2023030412334200200_ article-title: Current research progress and prospects of technologies for apple quality evaluation. publication-title: Food Science – volume: 13 start-page: 109 issue: 3 year: 2005 ident: 2023030412334200200_ article-title: The ability of visible and near-infrared reflectance spectroscopy (NIRS) to predict the chemical composition of ground chicken carcasses and to discriminate between carcasses from different enotypes publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.463 – volume: 29 start-page: 6450 issue: 10 year: 2015 ident: 2023030412334200200_ article-title: Calibration transfer of near-infrared spectrometric model for calorific value prediction of straw using different scanning temperatures and accessories publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.5b01259 |
SSID | ssib048324925 ssj0002213632 |
Score | 2.2346835 |
Snippet | Abstract
The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction... The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Apples Correlation coefficient Correlation coefficients Fruits Least squares Near infrared radiation Prediction models Signal processing Temperature Temperature effects Temperature gradients |
Title | Achieving robustness to temperature change of a NIR model for apple soluble solids content |
URI | https://www.proquest.com/docview/3171863306 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT8JAEN0oXLwYPyOKZGKMnja0tLTbk0GFoEZUAgnx0nS7u5GEUKDl4L93tt1iPKiX7aF7aGamM29md94QcomgAmGChWkJdxTVlOeUo6qpbUuMr6zNuKu7kZ8HXn_sPk7aE1NwS821ytIn5o5aJLGukTcxztnMw-zbu1ksqZ4apU9XzQiNbVJFF8zQwqu33cHrsLQoF-21YN8zVZdWy3a8fGqZ7umk-KXBhsnRaaplGinZVJ-RKOssZaT60f1Wuus8BvX2yK4Bj9AptL1PtuT8gNTupzKDKzAMnzMYlAT7h-S9E39Mpa4ZwCrh6zTTjg2yBDQjlaFThqL3FxIFEQwehpAPxwEEs6BPtyVo6-TFcypS0JfbMVIdkXGvO7rrUzNNgcYYqTIqnJaII8FdxiPLdVsyEEr4iCAY8xA1CoHYhEtLcd9SGig4voPCwGjOOKKIyHKOSWWezOUJgTbqwo98WylLuJLFARPtABM3PezKi5SoEVpKLowN1bieeDELiyNvJywkHRpJ18j1Zv-iINn4decFKuLfTfVST6H5I9Pw235O_359Rnb0SPmizFInlWy1lucIPDLeMNbVyBN3XJ_eGK6jl8kXdljZ_Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeEKWtuuXRUdXHydokzibeQ4VoAe0WiCoEEuoljWNbXQltgAQh_lR_I-O1DeIAnDjlEMuHmfF8M2PPNwCfKaigMCGitERywyzlOZOkahbHmvBVDIVMbTfyQZGNj9NfJ8OTBfgfemHss8rgE-eOWjW1rZEPCOdikVH2nW2enTM7NcreroYRGs4s9vT1FaVs7ffJNun3S5Ls7hz9HDM_VYDV5LE7pnii6krJVMgqStNEj5RROSGpEBlFT0oRRksdGZlHxgImz3llNKGakISmVcRp3xewmHIKFXqw-GOn-H0YLDil8-HY_nyVJ0lins2npNkeUkaSGd0yR_KBOW9p64G5rlSo6wRkvNdtF-Bhjnm7y7Dkg1Xcctb1Ghb0bAX621Pd4Vf0jKKnWARC_zfwZ6v-N9W2RoEXjbxsO-tIsWvQMmB5-mZ0vcbYGKywmBzifBgPUvCM9jZdoz0N0n2nqkX7mJ6Q8S0cP4uc30Fv1sz0e8Ah6T6v8tiYSKVa1COhhiNKFO1wrawyqg8sSK6sPbW5nbBxWrordl46SZde0n34drv-zJF6PLjyEyniyUVrQU-l9wBteWevHx7__RFejo8O9sv9SbG3Cq_sOHtX4lmDXndxqdcp6Onkhrc0hL_Pbdw3Z8YTjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+robustness+to+temperature+change+of+a+NIR+model+for+apple+soluble+solids+content&rft.jtitle=Food+quality+and+safety&rft.au=Jiang%2C+Xiaogang&rft.au=Yao%2C+Jinliang&rft.au=Zhu%2C+Mingwang&rft.au=Li%2C+Bin&rft.date=2023-01-01&rft.pub=Oxford+University+Press&rft.issn=2399-1399&rft.eissn=2399-1402&rft.volume=7&rft_id=info:doi/10.1093%2Ffqsafe%2Ffyad002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-1399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-1399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-1399&client=summon |