Achieving robustness to temperature change of a NIR model for apple soluble solids content

Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was us...

Full description

Saved in:
Bibliographic Details
Published inFood quality and safety Vol. 7
Main Authors Jiang, Xiaogang, Yao, Jinliang, Zhu, Mingwang, Li, Bin, Liu, Yande, Ou Yang, Aiguo
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2399-1399
2399-1402
DOI10.1093/fqsafe/fyad002

Cover

Loading…
Abstract Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.
AbstractList The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.
Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares correction models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a satisfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting workshops or orchards.
Author Yao, Jinliang
Jiang, Xiaogang
Liu, Yande
Ou Yang, Aiguo
Li, Bin
Zhu, Mingwang
Author_xml – sequence: 1
  givenname: Xiaogang
  surname: Jiang
  fullname: Jiang, Xiaogang
– sequence: 2
  givenname: Jinliang
  surname: Yao
  fullname: Yao, Jinliang
– sequence: 3
  givenname: Mingwang
  surname: Zhu
  fullname: Zhu, Mingwang
– sequence: 4
  givenname: Bin
  surname: Li
  fullname: Li, Bin
– sequence: 5
  givenname: Yande
  surname: Liu
  fullname: Liu, Yande
– sequence: 6
  givenname: Aiguo
  surname: Ou Yang
  fullname: Ou Yang, Aiguo
BookMark eNqFkM9LwzAUx4NMcM5dPQc8eej22mRtehzDH4OhIHrxUpIm2SJd0iWpsP_eSudFEC_v-w7fz_vyvpdoZJ1VCF2nMEuhJHN9CFyruT5yCZCdoXFGyjJJKWSjn70fF2gaghFAGclomS3G6H1Z74z6NHaLvRNdiFaFgKPDUe1b5XnsvML1jtutwk5jjp_WL3jvpGqwdh7ztm0UDq7pxKBGBlw7G5WNV-hc8yao6Ukn6O3-7nX1mGyeH9ar5SapCU1jIkkmay4FZYIDpZkqpZYFFJSxnAFImVMiFGhRgAZgKSlI_ylbECYKlnEgE3Qz3G29O3QqxOrDdd72kRVJi5TlhEDeu2aDq_YuBK901Xqz5_5YpVB9V1gNFVanCnuA_gJqE3k0_XOem-Zv7HbAXNf-F_EFpVeJlA
CitedBy_id crossref_primary_10_1007_s12393_024_09374_6
crossref_primary_10_1093_fqsafe_fyad045
crossref_primary_10_1016_j_foodres_2025_115874
crossref_primary_10_3390_foods13121903
Cites_doi 10.1007/s00216-003-2128-2
10.1021/ac960321m
10.1016/j.postharvbio.2019.111117
10.1016/j.jfoodeng.2013.04.033
10.1080/03610921003778225
10.1016/j.talanta.2011.03.089
10.1255/jnirs.1113
10.1002/app.40476
10.1016/j.talanta.2014.07.081
10.1016/j.postharvbio.2019.01.009
10.1016/0924-2031(95)00055-0
10.1016/S0925-5214(03)00118-2
10.1002/cem.780
10.1021/ac9709920
10.1002/cem.3301
10.1111/1541-4337.12217
10.1016/S0169-7439(03)00051-0
10.1016/S0169-7439(00)00069-1
10.1016/j.meatsci.2011.10.010
10.1016/S1474-6670(17)31867-0
10.1016/j.compag.2015.05.021
10.3390/rs6042699
10.1255/jnirs.463
10.1021/acs.energyfuels.5b01259
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of Zhejiang University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1093/fqsafe/fyad002
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2399-1402
ExternalDocumentID 10_1093_fqsafe_fyad002
10.1093/fqsafe/fyad002
GroupedDBID 0R~
AAFWJ
AAPPN
AAPXW
AAVAP
ABEJV
ABPTD
ABXVV
ACGFS
ADBBV
AENZO
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
BAYMD
BCNDV
BTTYL
GROUPED_DOAJ
H13
IAO
IOV
ITC
KPI
KQ8
KSI
M~E
O9-
OK1
ROX
TOX
7X2
AAYXX
ABGNP
AEUYN
AFKRA
AMNDL
ATCPS
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c341t-d32dcadb48ba0442e9dfd7074886800dd643be0fb70f0081373afe8538b782a03
IEDL.DBID BENPR
ISSN 2399-1399
IngestDate Mon Jun 30 12:19:33 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Tue Jul 01 02:25:28 EDT 2025
Fri Dec 13 07:13:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Apple
near-infrared spectroscopy
soluble solids content
temperature correction
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-d32dcadb48ba0442e9dfd7074886800dd643be0fb70f0081373afe8538b782a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171863306?pq-origsite=%requestingapplication%
PQID 3171863306
PQPubID 7121351
ParticipantIDs proquest_journals_3171863306
crossref_primary_10_1093_fqsafe_fyad002
crossref_citationtrail_10_1093_fqsafe_fyad002
oup_primary_10_1093_fqsafe_fyad002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: Oxford
PublicationTitle Food quality and safety
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
References Ge (2023030412334200200_) 2020; 40
Centner (2023030412334200200_) 1996; 68
Kuda-Malwathumullage (2023030412334200200_) 2014; 131
Xu (2023030412334200200_) 2017; 43
Wang (2023030412334200200_) 2018; 49
Fu (2023030412334200200_) 2012; 32
Yao (2023030412334200200_) 2013; 119
Peirs (2023030412334200200_) 2003; 30
Barboza (2023030412334200200_) 2003; 377
Li (2023030412334200200_) 2016; 15
Sun (2023030412334200200_) 2018; 39
Gongal (2023030412334200200_) 2015; 116
Martens (2023030412334200200_) 2003; 17
Liu (2023030412334200200_) 2015; 29
Zhang (2023030412334200200_) 2019; 151
Bai (2023030412334200200_) 2011; 32
Sun (2023030412334200200_) 2020; 162
Haroon (2023030412334200200_) 2020; 34
Sun (2023030412334200200_) 2020; 40
Acharya (2023030412334200200_) 2014; 22
Chen (2023030412334200200_) 2004; 37
Shan (2023030412334200200_) 2015; 131
Zhou (2023030412334200200_) 2012; 90
Liu (2023030412334200200_) 2021; 41
Peng (2023030412334200200_) 2014; 6
Kang (2023030412334200200_) 2011; 85
McDevitt (2023030412334200200_) 2005; 13
Mateos-Aparicio (2023030412334200200_) 2011; 40
Roger (2023030412334200200_) 2003; 66
Bouveresse (2023030412334200200_) 1996; 11
Wülfert (2023030412334200200_) 1998; 70
Wülfert (2023030412334200200_) 2000; 51
Bao (2023030412334200200_) 2012; 128
References_xml – volume: 377
  start-page: 695
  issue: 4
  year: 2003
  ident: 2023030412334200200_
  article-title: Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-003-2128-2
– volume: 68
  start-page: 3851
  issue: 21
  year: 1996
  ident: 2023030412334200200_
  article-title: Elimination of uninformative variables for multivariate calibration
  publication-title: Analytical Chemistry
  doi: 10.1021/ac960321m
– volume: 162
  start-page: 111117
  year: 2020
  ident: 2023030412334200200_
  article-title: Achieving robustness to temperature change of a NIRS-PLSR model for intact mango fruit dry matter content
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2019.111117
– volume: 119
  start-page: 22
  issue: 1
  year: 2013
  ident: 2023030412334200200_
  article-title: Assessing the temperature influence on the soluble solids content of watermelon juice as measured by visible and near-infrared spectroscopy and chemometrics
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2013.04.033
– volume: 40
  start-page: 2305
  issue: 13
  year: 2011
  ident: 2023030412334200200_
  article-title: Partial least squares (PLS) methods: origins, evolution, and application to social sciences
  publication-title: Communications in Statistics—Theory and Methods
  doi: 10.1080/03610921003778225
– volume: 128
  start-page: 200
  year: 2012
  ident: 2023030412334200200_
  article-title: NIR detection of alcohol content based on GA-PLS.
  publication-title: Applied Mechanics and Materials
– volume: 40
  start-page: 1690
  issue: 6
  year: 2020
  ident: 2023030412334200200_
  article-title: Correction of temperature influence in near infrared spectroscopy
  publication-title: Spectroscopy and Spectral Analysis
– volume: 85
  start-page: 420
  issue: 1
  year: 2011
  ident: 2023030412334200200_
  article-title: Quantitative determination by temperature dependent near-infrared spectra: a further study
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.03.089
– volume: 32
  start-page: 2080
  issue: 8
  year: 2012
  ident: 2023030412334200200_
  article-title: Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra.
  publication-title: Spectroscopy and Spectral Analysis
– volume: 22
  start-page: 279
  issue: 4
  year: 2014
  ident: 2023030412334200200_
  article-title: Robustness of partial least-squares models to change in sample temperature: I. A comparison of methods for sucrose in aqueous solution
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.1113
– volume: 131
  start-page: 378
  issue: 13
  year: 2014
  ident: 2023030412334200200_
  article-title: Determination of temperatures of polyamide 66 directly from near-infrared spectra
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.40476
– volume: 43
  start-page: 7
  issue: 4
  year: 2017
  ident: 2023030412334200200_
  article-title: The development and latest progress of near infrared spectrometer.
  publication-title: Anhui Chemical Industry
– volume: 40
  start-page: 1483
  issue: 5
  year: 2020
  ident: 2023030412334200200_
  article-title: Temperature correction of NIR reflectance spectrum of noninvasive blood glucose measurement based on EPO.
  publication-title: Spectroscopy and Spectral Analysis
– volume: 131
  start-page: 170
  year: 2015
  ident: 2023030412334200200_
  article-title: Multilevel analysis of temperature dependent near-infrared spectra
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.07.081
– volume: 151
  start-page: 111
  year: 2019
  ident: 2023030412334200200_
  article-title: Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2019.01.009
– volume: 11
  start-page: 3
  issue: 1
  year: 1996
  ident: 2023030412334200200_
  article-title: Standardisation of near-infrared spectrometric instruments: a review
  publication-title: Vibrational Spectroscopy
  doi: 10.1016/0924-2031(95)00055-0
– volume: 30
  start-page: 233
  issue: 3
  year: 2003
  ident: 2023030412334200200_
  article-title: Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/S0925-5214(03)00118-2
– volume: 17
  start-page: 153
  issue: 3
  year: 2003
  ident: 2023030412334200200_
  article-title: Pre-whitening of data by covariance-weighted pre-processing.
  publication-title: Journal of Chemometrics: A Journal of the Chemometrics Society
  doi: 10.1002/cem.780
– volume: 70
  start-page: 1761
  issue: 9
  year: 1998
  ident: 2023030412334200200_
  article-title: Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models
  publication-title: Analytical Chemistry
  doi: 10.1021/ac9709920
– volume: 34
  start-page: e3301
  issue: 11
  year: 2020
  ident: 2023030412334200200_
  article-title: Evaluation of temperature compensation methods for a near-infrared calibration to predict the viscosity of micellar liquids
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.3301
– volume: 41
  start-page: 243
  issue: 1
  year: 2021
  ident: 2023030412334200200_
  article-title: Detection on firmness and soluble solid content of peach during different storage days.
  publication-title: Spectroscopy and Spectral Analysis
– volume: 15
  start-page: 897
  issue: 5
  year: 2016
  ident: 2023030412334200200_
  article-title: Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12217
– volume: 66
  start-page: 191
  issue: 2
  year: 2003
  ident: 2023030412334200200_
  article-title: EPO–PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(03)00051-0
– volume: 39
  start-page: 222
  issue: 2
  year: 2018
  ident: 2023030412334200200_
  article-title: Near infrared spectroscopic detection of gluten content in wheat flour based on spectral pretreatment and simulated annealing algorithm.
  publication-title: Food Science
– volume: 49
  start-page: 348
  issue: 7
  year: 2018
  ident: 2023030412334200200_
  article-title: Hand-held device for non-destructive detection of potato quality parameters.
  publication-title: Transactions of the Chinese Society for Agricultural
– volume: 51
  start-page: 189
  issue: 2
  year: 2000
  ident: 2023030412334200200_
  article-title: Linear techniques to correct for temperature-induced spectral variation in multivariate calibration
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(00)00069-1
– volume: 90
  start-page: 658
  issue: 3
  year: 2012
  ident: 2023030412334200200_
  article-title: Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy
  publication-title: Meat Science
  doi: 10.1016/j.meatsci.2011.10.010
– volume: 37
  start-page: 553
  issue: 9
  year: 2004
  ident: 2023030412334200200_
  article-title: Modelling temperature-induced spectral variations in chemical process monitoring.
  publication-title: IFAC Proceedings Volumes
  doi: 10.1016/S1474-6670(17)31867-0
– volume: 116
  start-page: 8
  year: 2015
  ident: 2023030412334200200_
  article-title: Sensors and systems for fruit detection and localization: a review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.05.021
– volume: 6
  start-page: 2699
  issue: 4
  year: 2014
  ident: 2023030412334200200_
  article-title: Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods
  publication-title: Remote Sensing
  doi: 10.3390/rs6042699
– volume: 32
  start-page: 286
  issue: 03
  year: 2011
  ident: 2023030412334200200_
  article-title: Current research progress and prospects of technologies for apple quality evaluation.
  publication-title: Food Science
– volume: 13
  start-page: 109
  issue: 3
  year: 2005
  ident: 2023030412334200200_
  article-title: The ability of visible and near-infrared reflectance spectroscopy (NIRS) to predict the chemical composition of ground chicken carcasses and to discriminate between carcasses from different enotypes
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.463
– volume: 29
  start-page: 6450
  issue: 10
  year: 2015
  ident: 2023030412334200200_
  article-title: Calibration transfer of near-infrared spectrometric model for calorific value prediction of straw using different scanning temperatures and accessories
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.5b01259
SSID ssib048324925
ssj0002213632
Score 2.2346835
Snippet Abstract The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction...
The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction model. To...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Apples
Correlation coefficient
Correlation coefficients
Fruits
Least squares
Near infrared radiation
Prediction models
Signal processing
Temperature
Temperature effects
Temperature gradients
Title Achieving robustness to temperature change of a NIR model for apple soluble solids content
URI https://www.proquest.com/docview/3171863306
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT8JAEN0oXLwYPyOKZGKMnja0tLTbk0GFoEZUAgnx0nS7u5GEUKDl4L93tt1iPKiX7aF7aGamM29md94QcomgAmGChWkJdxTVlOeUo6qpbUuMr6zNuKu7kZ8HXn_sPk7aE1NwS821ytIn5o5aJLGukTcxztnMw-zbu1ksqZ4apU9XzQiNbVJFF8zQwqu33cHrsLQoF-21YN8zVZdWy3a8fGqZ7umk-KXBhsnRaaplGinZVJ-RKOssZaT60f1Wuus8BvX2yK4Bj9AptL1PtuT8gNTupzKDKzAMnzMYlAT7h-S9E39Mpa4ZwCrh6zTTjg2yBDQjlaFThqL3FxIFEQwehpAPxwEEs6BPtyVo6-TFcypS0JfbMVIdkXGvO7rrUzNNgcYYqTIqnJaII8FdxiPLdVsyEEr4iCAY8xA1CoHYhEtLcd9SGig4voPCwGjOOKKIyHKOSWWezOUJgTbqwo98WylLuJLFARPtABM3PezKi5SoEVpKLowN1bieeDELiyNvJywkHRpJ18j1Zv-iINn4decFKuLfTfVST6H5I9Pw235O_359Rnb0SPmizFInlWy1lucIPDLeMNbVyBN3XJ_eGK6jl8kXdljZ_Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeEKWtuuXRUdXHydokzibeQ4VoAe0WiCoEEuoljWNbXQltgAQh_lR_I-O1DeIAnDjlEMuHmfF8M2PPNwCfKaigMCGitERywyzlOZOkahbHmvBVDIVMbTfyQZGNj9NfJ8OTBfgfemHss8rgE-eOWjW1rZEPCOdikVH2nW2enTM7NcreroYRGs4s9vT1FaVs7ffJNun3S5Ls7hz9HDM_VYDV5LE7pnii6krJVMgqStNEj5RROSGpEBlFT0oRRksdGZlHxgImz3llNKGakISmVcRp3xewmHIKFXqw-GOn-H0YLDil8-HY_nyVJ0lins2npNkeUkaSGd0yR_KBOW9p64G5rlSo6wRkvNdtF-Bhjnm7y7Dkg1Xcctb1Ghb0bAX621Pd4Vf0jKKnWARC_zfwZ6v-N9W2RoEXjbxsO-tIsWvQMmB5-mZ0vcbYGKywmBzifBgPUvCM9jZdoz0N0n2nqkX7mJ6Q8S0cP4uc30Fv1sz0e8Ah6T6v8tiYSKVa1COhhiNKFO1wrawyqg8sSK6sPbW5nbBxWrordl46SZde0n34drv-zJF6PLjyEyniyUVrQU-l9wBteWevHx7__RFejo8O9sv9SbG3Cq_sOHtX4lmDXndxqdcp6Onkhrc0hL_Pbdw3Z8YTjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+robustness+to+temperature+change+of+a+NIR+model+for+apple+soluble+solids+content&rft.jtitle=Food+quality+and+safety&rft.au=Jiang%2C+Xiaogang&rft.au=Yao%2C+Jinliang&rft.au=Zhu%2C+Mingwang&rft.au=Li%2C+Bin&rft.date=2023-01-01&rft.pub=Oxford+University+Press&rft.issn=2399-1399&rft.eissn=2399-1402&rft.volume=7&rft_id=info:doi/10.1093%2Ffqsafe%2Ffyad002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-1399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-1399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-1399&client=summon