Deep Multitask Learning for Railway Track Inspection

Railroad tracks need to be periodically inspected and monitored to ensure safe transportation. Automated track inspection using computer vision and pattern recognition methods has recently shown the potential to improve safety by allowing for more frequent inspections while reducing human errors. Ac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 18; no. 1; pp. 153 - 164
Main Authors Gibert, Xavier, Patel, Vishal M., Chellappa, Rama
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Railroad tracks need to be periodically inspected and monitored to ensure safe transportation. Automated track inspection using computer vision and pattern recognition methods has recently shown the potential to improve safety by allowing for more frequent inspections while reducing human errors. Achieving full automation is still very challenging due to the number of different possible failure modes, as well as the broad range of image variations that can potentially trigger false alarms. In addition, the number of defective components is very small, so not many training examples are available for the machine to learn a robust anomaly detector. In this paper, we show that detection performance can be improved by combining multiple detectors within a multitask learning framework. We show that this approach results in improved accuracy for detecting defects on railway ties and fasteners.
AbstractList Railroad tracks need to be periodically inspected and monitored to ensure safe transportation. Automated track inspection using computer vision and pattern recognition methods has recently shown the potential to improve safety by allowing for more frequent inspections while reducing human errors. Achieving full automation is still very challenging due to the number of different possible failure modes, as well as the broad range of image variations that can potentially trigger false alarms. In addition, the number of defective components is very small, so not many training examples are available for the machine to learn a robust anomaly detector. In this paper, we show that detection performance can be improved by combining multiple detectors within a multitask learning framework. We show that this approach results in improved accuracy for detecting defects on railway ties and fasteners.
Author Patel, Vishal M.
Gibert, Xavier
Chellappa, Rama
Author_xml – sequence: 1
  givenname: Xavier
  surname: Gibert
  fullname: Gibert, Xavier
  email: xgibert@google.com
  organization: Univ. of Maryland, Mountain View, CA, USA
– sequence: 2
  givenname: Vishal M.
  surname: Patel
  fullname: Patel, Vishal M.
  email: vishal.m.patel@rutgers.edu
  organization: Dept. of Electr. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 3
  givenname: Rama
  surname: Chellappa
  fullname: Chellappa, Rama
  email: rama@umiacs.umd.edu
  organization: Dept. of Electr. Eng., Univ. of Maryland Inst. for Adv. Comput. Studies, College Park, MD, USA
BookMark eNo9kE1Lw0AQhhepYFv9AeIl4Dl1djf7kaPUr0JE0HhetptZSVuTuJsi_fcmtHia4eV5Z-CZkUnTNkjINYUFpZDflavyY8GAygUTUiuhz8iUCqFTGLLJuLMszUHABZnFuBnSTFA6JdkDYpe87nd93du4TQq0oambr8S3IXm39e7XHpIyWLdNVk3s0PV121ySc293Ea9Oc04-nx7L5UtavD2vlvdF6nhG-9TloBkD7yurgbOcU1S-UpWTvModq1AAMs69VBL4mmMFSjOveM7Wzopc8Tm5Pd7tQvuzx9ibTbsPzfDSUC2EZKAEHyh6pFxoYwzoTRfqbxsOhoIZ5ZhRjhnlmJOcoXNz7NSI-M8rAZJSxf8AG-ZgiQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1039_D0NA00388C
crossref_primary_10_1109_TIM_2023_3243673
crossref_primary_10_1049_ipr2_13020
crossref_primary_10_1007_s13349_023_00695_4
crossref_primary_10_1016_j_jmst_2020_04_033
crossref_primary_10_1016_j_autcon_2023_104854
crossref_primary_10_1016_j_ijtst_2018_11_001
crossref_primary_10_1109_JSEN_2017_2761858
crossref_primary_10_1007_s11042_021_10809_z
crossref_primary_10_1016_j_compind_2020_103303
crossref_primary_10_3390_s23187776
crossref_primary_10_1109_TIM_2018_2871353
crossref_primary_10_1109_TASE_2019_2900170
crossref_primary_10_1088_1361_6501_ac31ca
crossref_primary_10_1109_TIE_2023_3250766
crossref_primary_10_1109_JIOT_2022_3162295
crossref_primary_10_1109_TII_2024_3370330
crossref_primary_10_1088_1757_899X_750_1_012219
crossref_primary_10_1016_j_icte_2017_11_010
crossref_primary_10_1016_j_measurement_2021_110240
crossref_primary_10_1109_JSEN_2020_3009194
crossref_primary_10_1109_ACCESS_2020_2984264
crossref_primary_10_3390_s22197275
crossref_primary_10_1080_19439962_2019_1572681
crossref_primary_10_3390_s23146457
crossref_primary_10_1155_2023_1832501
crossref_primary_10_3390_s22176419
crossref_primary_10_1109_MITS_2019_2903540
crossref_primary_10_1016_j_measurement_2019_107332
crossref_primary_10_1049_hve2_12210
crossref_primary_10_1007_s00521_021_06280_4
crossref_primary_10_1109_ACCESS_2024_3355034
crossref_primary_10_31590_ejosat_1029905
crossref_primary_10_1007_s10489_021_02981_4
crossref_primary_10_3390_s19214738
crossref_primary_10_1109_TIM_2022_3162615
crossref_primary_10_2339_politeknik_693223
crossref_primary_10_1038_s41598_022_14971_8
crossref_primary_10_1109_TITS_2021_3131637
crossref_primary_10_1111_mice_12625
crossref_primary_10_1177_1729881418773943
crossref_primary_10_1109_JSEN_2019_2911015
crossref_primary_10_3390_app13106047
crossref_primary_10_1007_s40747_023_01219_9
crossref_primary_10_1016_j_culher_2019_02_002
crossref_primary_10_1016_j_eswa_2022_117946
crossref_primary_10_1109_TITS_2023_3334290
crossref_primary_10_3390_app122312044
crossref_primary_10_1109_TITS_2020_3020287
crossref_primary_10_3390_s22218399
crossref_primary_10_3390_sym14061100
crossref_primary_10_1109_ACCESS_2019_2962072
crossref_primary_10_1155_2018_4832972
crossref_primary_10_1109_TIM_2024_3417537
crossref_primary_10_1109_TITS_2023_3331901
crossref_primary_10_1142_S0218001422520048
crossref_primary_10_1007_s44163_024_00127_2
crossref_primary_10_1111_mice_13004
crossref_primary_10_1016_j_measurement_2021_110613
crossref_primary_10_1007_s12599_022_00745_z
crossref_primary_10_1016_j_measurement_2021_109742
crossref_primary_10_1109_TIM_2018_2868490
crossref_primary_10_1016_j_neucom_2019_01_036
crossref_primary_10_1109_JSEN_2021_3133280
crossref_primary_10_1016_j_ifacol_2018_07_017
crossref_primary_10_1016_j_trc_2018_02_019
crossref_primary_10_1109_JSEN_2023_3339883
crossref_primary_10_1016_j_isprsjprs_2023_04_011
crossref_primary_10_1109_JSEN_2021_3062021
crossref_primary_10_1016_j_trc_2018_05_007
crossref_primary_10_1109_ACCESS_2020_3007603
crossref_primary_10_1109_TNNLS_2021_3105284
crossref_primary_10_1016_j_compind_2023_103909
crossref_primary_10_1007_s11440_021_01266_x
crossref_primary_10_3390_s21144710
crossref_primary_10_1002_inf2_12028
crossref_primary_10_1109_TIM_2024_3370748
crossref_primary_10_3390_app14093573
crossref_primary_10_1109_TCCN_2021_3118456
crossref_primary_10_1109_ACCESS_2020_2997946
crossref_primary_10_1109_JIOT_2021_3057835
crossref_primary_10_1109_TIM_2020_3006324
crossref_primary_10_1155_2021_8956164
crossref_primary_10_1111_mice_13109
crossref_primary_10_1016_j_neucom_2018_10_107
crossref_primary_10_1109_ACCESS_2019_2955753
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_3390_s20051367
crossref_primary_10_7717_peerj_cs_1727
crossref_primary_10_1109_TIM_2017_2775345
crossref_primary_10_1109_TITS_2017_2749981
crossref_primary_10_3390_s20144042
crossref_primary_10_1109_TITS_2022_3214121
crossref_primary_10_1088_1757_899X_1059_1_012062
crossref_primary_10_1364_PRJ_388253
crossref_primary_10_1016_j_engfailanal_2020_104906
crossref_primary_10_4236_jtts_2024_142013
crossref_primary_10_1109_MIE_2019_2952165
crossref_primary_10_1007_s10044_019_00781_8
crossref_primary_10_1016_j_measen_2024_101157
crossref_primary_10_1109_TII_2017_2774242
crossref_primary_10_1109_TIM_2020_2990541
crossref_primary_10_1088_1742_6596_1684_1_012030
crossref_primary_10_1109_TITS_2021_3136215
crossref_primary_10_1016_j_ijfatigue_2023_107864
crossref_primary_10_4018_IJSI_2019100103
crossref_primary_10_1109_TITS_2020_3034239
crossref_primary_10_1177_1475921720921772
crossref_primary_10_1007_s42417_023_01001_8
crossref_primary_10_1109_JIOT_2021_3126875
crossref_primary_10_1109_TIE_2020_3003622
crossref_primary_10_17671_gazibtd_762853
crossref_primary_10_1109_ACCESS_2023_3309814
crossref_primary_10_3390_app11125320
crossref_primary_10_1111_mice_12351
crossref_primary_10_3390_s21124065
crossref_primary_10_1177_13694332231175395
crossref_primary_10_1016_j_ndteint_2018_04_007
crossref_primary_10_1109_ACCESS_2020_3009654
crossref_primary_10_1109_TIM_2019_2909940
crossref_primary_10_35234_fumbd_894102
crossref_primary_10_1088_1742_6596_1834_1_012004
crossref_primary_10_1007_s11042_024_19565_2
crossref_primary_10_1109_TSMC_2018_2827937
crossref_primary_10_1109_TITS_2021_3058635
crossref_primary_10_1016_j_engstruct_2023_117085
crossref_primary_10_1109_TITS_2023_3305300
crossref_primary_10_1061_AJRUA6_0001024
crossref_primary_10_1111_mice_12362
crossref_primary_10_1109_JSEN_2019_2955378
crossref_primary_10_1109_TIM_2022_3144224
crossref_primary_10_1109_TITS_2020_3024216
crossref_primary_10_1109_JSEN_2023_3297205
crossref_primary_10_3390_ai5020024
crossref_primary_10_3934_ElectrEng_2020_1_19
crossref_primary_10_1016_j_engappai_2019_01_008
crossref_primary_10_1109_TITS_2022_3207490
crossref_primary_10_3390_s22249970
crossref_primary_10_48175_IJARSCT_18238
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1109_TIM_2018_2803830
crossref_primary_10_1088_1757_899X_397_1_012119
crossref_primary_10_1111_mice_12451
crossref_primary_10_3390_metrology4020016
crossref_primary_10_1109_TIM_2021_3117357
crossref_primary_10_1016_j_trc_2022_103679
crossref_primary_10_3390_electronics10111271
crossref_primary_10_1155_2021_6687146
crossref_primary_10_1016_j_engappai_2020_103678
crossref_primary_10_1109_ACCESS_2020_3022405
crossref_primary_10_1109_TIM_2019_2920721
crossref_primary_10_1016_j_measurement_2021_109454
crossref_primary_10_3390_buildings13081976
crossref_primary_10_3390_s21248335
crossref_primary_10_1109_TITS_2021_3095167
crossref_primary_10_1016_j_ssci_2022_105755
crossref_primary_10_1109_TIM_2019_2958580
crossref_primary_10_1109_TIM_2020_2973843
crossref_primary_10_48175_IJARSCT_8664
crossref_primary_10_1109_TIM_2021_3138498
crossref_primary_10_1051_e3sconf_202340902014
crossref_primary_10_3390_electronics13132564
crossref_primary_10_1002_stc_2504
crossref_primary_10_1007_s11801_022_2013_x
crossref_primary_10_1016_j_chemosphere_2018_10_084
crossref_primary_10_1177_0954409718796385
crossref_primary_10_4236_ajor_2022_126015
crossref_primary_10_1587_transinf_2020EDP7097
crossref_primary_10_3390_constrmater4010005
crossref_primary_10_1007_s11042_020_09520_2
crossref_primary_10_14489_vkit_2022_02_pp_008_018
crossref_primary_10_1016_j_ijleo_2022_168607
crossref_primary_10_1016_j_eswa_2024_124105
crossref_primary_10_1109_TII_2018_2842821
crossref_primary_10_1016_j_trpro_2023_11_354
crossref_primary_10_1177_0959651820953679
crossref_primary_10_1016_j_conbuildmat_2023_131472
crossref_primary_10_3390_s20174945
crossref_primary_10_1016_j_jmsy_2022_06_011
crossref_primary_10_1080_19439962_2019_1611682
crossref_primary_10_3390_ma13214837
crossref_primary_10_1038_s41529_018_0058_x
crossref_primary_10_1109_TIM_2020_3039301
crossref_primary_10_3390_app8091575
crossref_primary_10_3390_coatings13071140
crossref_primary_10_1109_ACCESS_2019_2921912
crossref_primary_10_1109_TITS_2019_2934346
crossref_primary_10_1002_adts_202200027
crossref_primary_10_1016_j_autcon_2022_104425
crossref_primary_10_1109_ACCESS_2020_3000068
crossref_primary_10_1007_s11042_023_15753_8
crossref_primary_10_1109_JSEN_2021_3132460
crossref_primary_10_1016_j_hspr_2022_11_001
crossref_primary_10_1088_1748_9326_ab66cb
crossref_primary_10_1080_23248378_2020_1825128
crossref_primary_10_1109_ACCESS_2020_3017125
crossref_primary_10_1109_ACCESS_2022_3183102
crossref_primary_10_1080_15732479_2021_1994617
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_3390_app12136296
crossref_primary_10_1080_00423114_2022_2103436
crossref_primary_10_1016_j_engappai_2023_106825
crossref_primary_10_1109_ACCESS_2021_3130261
crossref_primary_10_1016_j_eswa_2017_05_039
crossref_primary_10_3390_s20061562
crossref_primary_10_3390_s22051983
crossref_primary_10_1016_j_scs_2021_102898
crossref_primary_10_1155_2021_2565500
crossref_primary_10_1109_ACCESS_2020_3019318
crossref_primary_10_3390_app13116681
crossref_primary_10_1061__ASCE_IS_1943_555X_0000477
crossref_primary_10_1109_TITS_2021_3102613
crossref_primary_10_3390_app122010572
crossref_primary_10_3390_electronics13091781
crossref_primary_10_1109_ACCESS_2023_3273485
crossref_primary_10_3390_s23010544
crossref_primary_10_1093_iti_liad016
crossref_primary_10_1109_TIM_2018_2816800
crossref_primary_10_1088_1361_6501_abfdde
crossref_primary_10_1109_ACCESS_2019_2957427
crossref_primary_10_3390_app13127330
crossref_primary_10_1177_09544097211030373
crossref_primary_10_3390_app112110373
crossref_primary_10_1016_j_ijmecsci_2023_108244
Cites_doi 10.3390/s110807364
10.1109/TITS.2014.2311123
10.1109/ICOIP.2010.303
10.1109/WACV.2012.6163021
10.1109/TSMCC.2007.893278
10.1109/CVPR.2014.81
10.1016/j.cemconres.2004.01.027
10.1109/34.531803
10.1109/WACV.2015.98
10.1109/ICIP.2009.5414438
10.1109/TPAMI.2002.1017623
10.1023/A:1007379606734
10.1109/ITSC.2014.6957919
10.1007/BF00344251
10.1016/S0008-8846(00)00283-0
10.1109/CVPR.2005.177
10.1109/TPAMI.2006.79
10.1145/2647868.2654889
10.1115/JRC/ICE2007-40080
10.1109/CVPR.2001.990517
10.1109/ITSC.2002.1041195
10.1145/3065386
10.1007/978-3-642-02230-2_7
10.1162/neco.1989.1.4.541
10.1109/TITS.2013.2287155
10.1364/AO.33.003751
10.1007/978-3-642-40246-3_55
10.1109/TIM.2013.2283741
10.1109/5.726791
10.1109/TITS.2012.2236555
10.1109/CVPR.2015.7298965
10.1109/CIHSPS.2006.313313
10.1186/1687-6180-2014-64
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2016.2568758
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 164
ExternalDocumentID 10_1109_TITS_2016_2568758
7506117
Genre orig-research
GrantInformation_xml – fundername: Federal Railroad Administration
  funderid: 10.13039/100006283
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
XFK
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c341t-c908220ffda8032931e7fd7dc63d9c2de50e233f67603b3ed0782f7392bca5973
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Thu Oct 10 19:23:15 EDT 2024
Fri Aug 23 03:47:01 EDT 2024
Wed Jun 26 19:18:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-c908220ffda8032931e7fd7dc63d9c2de50e233f67603b3ed0782f7392bca5973
PQID 1855620753
PQPubID 75735
PageCount 12
ParticipantIDs crossref_primary_10_1109_TITS_2016_2568758
proquest_journals_1855620753
ieee_primary_7506117
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
muja (ref44) 2009
ref37
ref15
ref36
ref14
ref31
ref30
smak (ref1) 0
haghighat (ref46) 2013
ref32
gibert (ref5) 0
ref2
ref17
ref16
ref19
ref18
platt (ref48) 2000
pratt (ref38) 0
cunningham (ref6) 2000
berry (ref11) 0
gibert (ref10) 0
ref24
lv (ref35) 2015; 16
ref45
ref23
ref26
ref47
hinton (ref41) 0
ref25
hinton (ref39) 0
ref20
ref42
ref22
ref21
ref28
ref27
ref29
ref8
ahonen (ref43) 2009
trosino (ref7) 2002
ref9
ref4
ref3
collobert (ref33) 0
ref40
babenko (ref12) 2009
References_xml – ident: ref22
  doi: 10.3390/s110807364
– ident: ref36
  doi: 10.1109/TITS.2014.2311123
– ident: ref21
  doi: 10.1109/ICOIP.2010.303
– ident: ref16
  doi: 10.1109/WACV.2012.6163021
– ident: ref8
  doi: 10.1109/TSMCC.2007.893278
– ident: ref31
  doi: 10.1109/CVPR.2014.81
– ident: ref3
  doi: 10.1016/j.cemconres.2004.01.027
– ident: ref47
  doi: 10.1109/34.531803
– year: 2000
  ident: ref6
  publication-title: Automated Track Inspection Vehicle and Method
  contributor:
    fullname: cunningham
– ident: ref4
  doi: 10.1109/WACV.2015.98
– year: 2002
  ident: ref7
  publication-title: Automated Track Inspection Vehicle and Method
  contributor:
    fullname: trosino
– ident: ref9
  doi: 10.1109/ICIP.2009.5414438
– year: 2009
  ident: ref12
  publication-title: Visual Inspection of Railroad Tracks
  contributor:
    fullname: babenko
– ident: ref45
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref37
  doi: 10.1023/A:1007379606734
– start-page: 547
  year: 2000
  ident: ref48
  article-title: Large margin DAGs for multiclass classification
  publication-title: Advances in Neural Information Systems (NIPS)
  contributor:
    fullname: platt
– ident: ref25
  doi: 10.1109/ITSC.2014.6957919
– start-page: 1
  year: 0
  ident: ref39
  article-title: Learning distributed representation of concepts
  publication-title: Proc 8th Conf Cognitive Sci Soc
  contributor:
    fullname: hinton
– ident: ref26
  doi: 10.1007/BF00344251
– start-page: 289
  year: 0
  ident: ref10
  article-title: A machine vision system for automated joint bar inspection from a moving rail vehicle
  publication-title: Proc ASME/IEEE Joint Rail Conf Internal Combustion Engine Spring Tech Conf
  contributor:
    fullname: gibert
– ident: ref2
  doi: 10.1016/S0008-8846(00)00283-0
– ident: ref42
  doi: 10.1109/CVPR.2005.177
– volume: 16
  start-page: 865
  year: 2015
  ident: ref35
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans Intell Transp Syst
  contributor:
    fullname: lv
– start-page: 331
  year: 2009
  ident: ref44
  article-title: Fast approximate nearest neighbors with automatic algorithm configuration
  publication-title: International Conference on Computer Vision Theory and Application VISSAPP'09)
  contributor:
    fullname: muja
– ident: ref40
  doi: 10.1109/TPAMI.2006.79
– ident: ref32
  doi: 10.1145/2647868.2654889
– ident: ref20
  doi: 10.1115/JRC/ICE2007-40080
– ident: ref17
  doi: 10.1109/CVPR.2001.990517
– start-page: 1
  year: 0
  ident: ref1
  article-title: Evolution of Amtrak's concrete crosstie and fastening system program
  publication-title: Proc Int Concrete Crosstie Fastening Syst Symp
  contributor:
    fullname: smak
– ident: ref18
  doi: 10.1109/ITSC.2002.1041195
– ident: ref29
  doi: 10.1145/3065386
– start-page: 61
  year: 2009
  ident: ref43
  article-title: Rotation invariant image description with local binary pattern histogram Fourier features
  publication-title: Image Analysis
  doi: 10.1007/978-3-642-02230-2_7
  contributor:
    fullname: ahonen
– ident: ref27
  doi: 10.1162/neco.1989.1.4.541
– start-page: 1
  year: 0
  ident: ref33
  article-title: Torch7: A Matlab-like environment for machine learning
  publication-title: Proc Advances NIPS
  contributor:
    fullname: collobert
– ident: ref15
  doi: 10.1109/TITS.2013.2287155
– start-page: 1
  year: 0
  ident: ref11
  article-title: High speed video inspection of joint bars using advanced image collection and processing techniques
  publication-title: Proc World Congr Railway Res
  contributor:
    fullname: berry
– ident: ref13
  doi: 10.1364/AO.33.003751
– start-page: 440
  year: 2013
  ident: ref46
  article-title: Identification using encrypted biometrics
  publication-title: Computer Analysis of Images and Patterns
  doi: 10.1007/978-3-642-40246-3_55
  contributor:
    fullname: haghighat
– ident: ref23
  doi: 10.1109/TIM.2013.2283741
– ident: ref28
  doi: 10.1109/5.726791
– start-page: 584
  year: 0
  ident: ref38
  article-title: Direct transfer of learned information among neural networks
  publication-title: Proc AAAI
  contributor:
    fullname: pratt
– ident: ref14
  doi: 10.1109/TITS.2012.2236555
– ident: ref34
  doi: 10.1109/CVPR.2015.7298965
– year: 0
  ident: ref41
  publication-title: Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
  contributor:
    fullname: hinton
– ident: ref19
  doi: 10.1109/CIHSPS.2006.313313
– start-page: 621
  year: 0
  ident: ref5
  article-title: Material classification and semantic segmentation of railway track images with deep convolutional neural networks
  publication-title: Proc IEEE ICIP
  contributor:
    fullname: gibert
– ident: ref24
  doi: 10.1186/1687-6180-2014-64
– ident: ref30
  doi: 10.1109/CVPR.2015.7298594
SSID ssj0014511
Score 2.6573381
Snippet Railroad tracks need to be periodically inspected and monitored to ensure safe transportation. Automated track inspection using computer vision and pattern...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 153
SubjectTerms Computer vision
Deep convolutional neural networks
Detectors
Fasteners
Inspection
Machine learning
material identification
multitask learning
Multitasking
Neural networks
Rail transportation
Rails
railway track inspection
Railway tracks
Training
Title Deep Multitask Learning for Railway Track Inspection
URI https://ieeexplore.ieee.org/document/7506117
https://www.proquest.com/docview/1855620753
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjIwIZI6sePEI-KhFqkM0ErdIr-CUFFa0VQIfj22k1a8BjYPsWTd2fk---6-AziTuTS4SbhvuHXqE6yELyTVfhJzlCqqQ-kKhYf3tD8md5N40oCLdS2M1toln-nADl0sX83k0j6V9Qy60TBMmtBMUVTVaq0jBlZny2mjRsRnKF5FMEPEeqPB6NEmcdHA4Lvh5-k3DHJNVX79iR283G7DcLWwKqtkGixLEciPH5qN_135DmzVPNO7rDbGLjR0sQebX9QH20CutZ57VQUuX0y9Wmr1yTM81nvgzy9v_N0zWCan3qCoKjJnxT6Mb29GV32_bqLgSwNQpS9tT_MI5bniKcIG3EOd5CpRkmLFZKR0jHSEcU4TirDAWlnOkCeGNgnJzW0DH0CrmBX6EDykbBfwNGEiJYQRxJlAeUKVNBwnpEx34Hxl1mxeaWVk7o6BWGZ9kFkfZLUPOtC2Zlp_WFuoA92VI7L6NC0ywykMTTPkBh_9PesYNiILt-5ppAut8nWpTwxZKMWp2yWfWd65tA
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgADXwVRKJCBCZHixKmdjAioWmg7QCp1ixLbQagorWgrBL-es5NUfA1sHmLJurPznn137wDORCoQN73YRm7t2x6ViZ0IpmzeiokvmXKEKRTuD1hn6N2NWqMKXCxrYZRSJvlMNfXQxPLlRCz0U9klohtzHL4Cq4jzhOfVWsuYgVbaMuqormcHpFXGMB0SXIbd8FGncbEmIjwydP8bCpm2Kr_-xQZg2lvQL5eW55WMm4t50hQfP1Qb_7v2bdgsmKZ1lW-NHaiobBc2vugP1sC7UWpq5TW48WxsFWKrTxYyWeshfn55i98tRDMxtrpZXpM5yfZg2L4Nrzt20UbBFghRc1voruYuSVMZ-4QivDuKp5JLwagMhCtViyiX0pRxRmhCldSsIeVInBIR432D7kM1m2TqACwidR9wnweJ73mBR-IgISlnUiDLcVig6nBemjWa5moZkbllkCDSPoi0D6LCB3WoaTMtPywsVIdG6YioOE-zCFkFEjWkN_Tw71mnsNYJ-72o1x3cH8G6q8HXPJQ0oDp_XahjpA7z5MTsmE9Vib0I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Multitask+Learning+for+Railway+Track+Inspection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Gibert%2C+Xavier&rft.au=Patel%2C+Vishal+M.&rft.au=Chellappa%2C+Rama&rft.date=2017-01-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=18&rft.issue=1&rft.spage=153&rft.epage=164&rft_id=info:doi/10.1109%2FTITS.2016.2568758&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2016_2568758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon