Review on sulfide stress cracking in sour service for OCTG and recent advances in modeling of hydrogen-assisted fracture
Sulfide stress cracking (SSC) presents a complex hydrogen-assisted cracking problem in oil and gas (O&G) production, primarily due to the presence of a wet hydrogen sulfide (H2S) environment. Recognized as a form of hydrogen embrittlement, SSC profoundly impacts the performance and durabilit...
Saved in:
Published in | Geoenergy Science and Engineering Vol. 230; p. 212174 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2949-8910 2949-8910 |
DOI | 10.1016/j.geoen.2023.212174 |
Cover
Abstract | Sulfide stress cracking (SSC) presents a complex hydrogen-assisted cracking problem in oil and gas (O&G) production, primarily due to the presence of a wet hydrogen sulfide (H2S) environment. Recognized as a form of hydrogen embrittlement, SSC profoundly impacts the performance and durability of oil country tubular goods (OCTG), with potential adverse financial and environmental consequences. For instance, casings play a crucial role as mechanical barriers throughout drilling, completion, and production operations. However, their exposure to sour service conditions renders them susceptible to SSC and premature failures. The O&G industry currently faces multiple challenges in material selection and designing for sour service conditions to effectively mitigate SSC-related failures. This article aims to provide an in-depth review encompassing design practices, material qualification standards, and experimental testing methodologies used to assess the susceptibility of OCTG to SSC under sour service conditions. This work also examines recent advancements in fracture mechanics-based modeling approaches, which offer accurate simulation capabilities for hydrogen-assisted failures of practical engineering significance. |
---|---|
AbstractList | Sulfide stress cracking (SSC) presents a complex hydrogen-assisted cracking problem in oil and gas (O&G) production, primarily due to the presence of a wet hydrogen sulfide (H2S) environment. Recognized as a form of hydrogen embrittlement, SSC profoundly impacts the performance and durability of oil country tubular goods (OCTG), with potential adverse financial and environmental consequences. For instance, casings play a crucial role as mechanical barriers throughout drilling, completion, and production operations. However, their exposure to sour service conditions renders them susceptible to SSC and premature failures. The O&G industry currently faces multiple challenges in material selection and designing for sour service conditions to effectively mitigate SSC-related failures. This article aims to provide an in-depth review encompassing design practices, material qualification standards, and experimental testing methodologies used to assess the susceptibility of OCTG to SSC under sour service conditions. This work also examines recent advancements in fracture mechanics-based modeling approaches, which offer accurate simulation capabilities for hydrogen-assisted failures of practical engineering significance. |
ArticleNumber | 212174 |
Author | Negi, Alok Barsoum, Imad AlFantazi, Akram Elkhodbia, Mohamed Mubarak, Ghadeer |
Author_xml | – sequence: 1 givenname: Mohamed surname: Elkhodbia fullname: Elkhodbia, Mohamed – sequence: 2 givenname: Alok surname: Negi fullname: Negi, Alok – sequence: 3 givenname: Ghadeer surname: Mubarak fullname: Mubarak, Ghadeer – sequence: 4 givenname: Imad orcidid: 0000-0002-9438-9648 surname: Barsoum fullname: Barsoum, Imad – sequence: 5 givenname: Akram surname: AlFantazi fullname: AlFantazi, Akram |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334917$$DView record from Swedish Publication Index |
BookMark | eNp9kN1OAjEQRhuDiYg8gTd9gcV2uyzsJUFFExITg942s-0Uyk9L2gLy9i5ijPHCq5lkvvMlc65Jy3mHhNxy1uOMl3fL3hw9ul7OctHLec4HxQVp51VRZcOKs9av_Yp0Y1wyxkQuKsbKNvl4xb3FA_WOxt3aWI00poAxUhVAraybU9uc_C7QiGFvFVLjA30ZzyYUnKYBFbpEQe_BKYyn8MZrXJ9Ab-jiqIOfo8sgRhsTamqa2rQLeEMuDawjdr9nh7w9PszGT9n0ZfI8Hk0zJQqeshr6hiujGANRMI0G6hx0jUUFZjAstRGcGYR8qEo0itdQGsA-lAqbL7UxokOyc2884HZXy22wGwhH6cHKe_s-kj7M5SotpBBFxQdNXpzzKvgYA5ofgjN58i2X8su3PPmWZ98NVf2hlE2QrHcpgF3_y34CMYiOiA |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e39115 crossref_primary_10_1016_j_engfracmech_2024_110318 crossref_primary_10_1016_j_tafmec_2023_104084 crossref_primary_10_1016_j_jmrt_2025_01_219 crossref_primary_10_1016_j_mtcomm_2023_106995 crossref_primary_10_1007_s11661_024_07312_z crossref_primary_10_1016_j_ijhydene_2024_07_348 crossref_primary_10_1007_s13369_024_09506_4 crossref_primary_10_1016_j_engfailanal_2024_107962 crossref_primary_10_1016_j_engfailanal_2024_107974 crossref_primary_10_1016_j_engfailanal_2025_109469 |
Cites_doi | 10.3390/ma13163604 10.1002/adma.200904354 10.1108/ACMM-09-2016-1708 10.1016/j.engfracmech.2007.09.003 10.1016/j.msea.2017.01.067 10.1515/corrrev-2012-0018 10.1557/mrs2003.143 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.5006/1.3290400 10.1016/j.ijhydene.2021.12.128 10.1098/rsta.2016.0411 10.1016/j.ijplas.2017.11.004 10.1016/j.actamat.2014.01.048 10.1016/j.petrol.2018.10.102 10.5006/1.3299822 10.1016/j.corsci.2022.110142 10.1016/0022-5096(89)90002-1 10.1016/j.jmps.2018.09.012 10.1016/S1359-6454(97)00364-9 10.1016/j.engfailanal.2016.05.019 10.5006/0010-9312-33.3.98 10.2118/148365-PA 10.1515/corrrev-2017-0079 10.1016/j.jmps.2004.02.010 10.1016/S0013-7944(00)00120-X 10.3390/met9050590 10.1016/0022-5096(60)90013-2 10.1007/s11661-003-0334-3 10.1016/j.ijhydene.2017.02.211 10.1016/S0022-5096(98)00064-7 10.1016/0022-5096(92)90020-3 10.1007/s12206-021-2106-7 10.1016/j.msea.2005.03.008 10.1016/j.actamat.2006.07.021 10.1007/BF02642850 10.1016/j.actamat.2016.07.022 10.1016/j.corsci.2008.03.007 10.1007/s10853-017-1978-5 10.1016/j.actamat.2018.12.014 10.2118/6144-PA 10.1016/j.matdes.2009.05.025 10.1016/j.ijhydene.2021.11.173 10.5006/1.3315931 10.1016/j.engfailanal.2009.04.007 10.1016/j.pmatsci.2021.100810 10.5006/1.3294355 10.1016/j.commatsci.2016.05.030 10.1016/j.ijhydene.2015.06.069 10.1016/j.jngse.2019.05.011 10.1016/j.ijhydene.2016.05.014 10.1016/j.jmps.2015.02.015 10.1016/j.electacta.2018.12.029 10.1016/j.actamat.2004.06.037 10.1007/s40195-015-0257-1 10.1007/s11661-003-0128-7 10.1016/j.ijhydene.2016.02.154 10.1016/0001-6160(80)90038-3 10.1016/j.jmps.2018.06.006 10.1016/j.ijplas.2012.11.005 10.1016/j.engfailanal.2019.06.095 10.1016/j.msea.2018.02.070 10.1515/corrrev-2019-0031 10.1149/1945-7111/ac96ad 10.5006/0010-9312-17.11.81 10.1016/0010-938X(93)90072-O 10.1016/j.corsci.2009.07.013 10.1007/BF01151655 10.3390/met8010062 10.1016/j.ijplas.2021.103023 10.1016/j.jngse.2022.104418 10.5006/0010-9312-23.6.154 10.1007/BF02662391 10.1016/j.cma.2019.112614 10.1007/s10704-013-9900-x 10.3390/cmd2030020 10.1016/j.corsci.2018.05.002 10.1016/j.engfracmech.2019.106528 10.1016/j.ijhydene.2020.05.015 10.3390/met12111813 10.1007/s12182-015-0060-7 10.1016/j.marpetgeo.2014.03.001 10.1016/S0065-2156(08)70121-2 10.1016/0921-5093(94)90975-X 10.1016/j.ijmecsci.2016.07.020 10.1016/j.corsci.2019.108291 10.1016/j.actamat.2012.06.040 10.1016/S0022-5096(03)00052-8 10.1103/RevModPhys.64.559 10.1016/0001-6160(70)90078-7 10.1115/1.3173064 10.1016/0008-8846(76)90007-7 10.1016/j.cma.2018.07.021 10.1007/s11837-013-0675-3 10.1016/j.jmps.2009.10.005 10.1016/j.engfracmech.2014.09.005 10.1016/j.scriptamat.2007.06.006 10.3390/ma15030801 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTPV AOWAS D8V |
DOI | 10.1016/j.geoen.2023.212174 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-8910 |
ExternalDocumentID | oai_DiVA_org_kth_334917 10_1016_j_geoen_2023_212174 |
GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ABJNI ACRLP ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIKHN AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT BELTK CITATION FDB M41 ROL SPC SSE SSR ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c341t-ba5f1cfc00a340defab2adbe49af786df310fea28c6efc1ba6fae5a6ce000dff3 |
ISSN | 2949-8910 |
IngestDate | Thu Aug 21 06:26:00 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 02:24:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-ba5f1cfc00a340defab2adbe49af786df310fea28c6efc1ba6fae5a6ce000dff3 |
ORCID | 0000-0002-9438-9648 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_334917 crossref_primary_10_1016_j_geoen_2023_212174 crossref_citationtrail_10_1016_j_geoen_2023_212174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoenergy Science and Engineering |
PublicationYear | 2023 |
References | (10.1016/j.geoen.2023.212174_b72) 2020 Kobayashi (10.1016/j.geoen.2023.212174_b89) 2006 Heady (10.1016/j.geoen.2023.212174_b62) 1977; 33 De Meo (10.1016/j.geoen.2023.212174_b37) 2016; 41 Ramamurthy (10.1016/j.geoen.2023.212174_b141) 2013; 31 Trautmann (10.1016/j.geoen.2023.212174_b168) 2020; 13 Thual (10.1016/j.geoen.2023.212174_b164) 2021 Jemblie (10.1016/j.geoen.2023.212174_b78) 2017; 42 ASTM (10.1016/j.geoen.2023.212174_b9) 2016 Anand (10.1016/j.geoen.2023.212174_b4) 2019; 122 Belytschko (10.1016/j.geoen.2023.212174_b16) 1999; 45 Traidia (10.1016/j.geoen.2023.212174_b167) 2018; 36 Tvergaard (10.1016/j.geoen.2023.212174_b170) 1992; 40 Rice (10.1016/j.geoen.2023.212174_b143) 1968 An (10.1016/j.geoen.2023.212174_b3) 2014; 185 Wu (10.1016/j.geoen.2023.212174_b178) 2020; 358 Smith (10.1016/j.geoen.2023.212174_b150) 2006 Ernst (10.1016/j.geoen.2023.212174_b51) 2004 G129-00 (10.1016/j.geoen.2023.212174_b53) 2013 (10.1016/j.geoen.2023.212174_b119) 2016 Mclntyre (10.1016/j.geoen.2023.212174_b112) 1988 Wang (10.1016/j.geoen.2023.212174_b176) 2022; 15 Kermani (10.1016/j.geoen.2023.212174_b85) 1993 Liu (10.1016/j.geoen.2023.212174_b101) 2017; 688 10.1016/j.geoen.2023.212174_b70 (10.1016/j.geoen.2023.212174_b121) 2016 Lidbury (10.1016/j.geoen.2023.212174_b96) 1983 Wallaert (10.1016/j.geoen.2023.212174_b172) 2018; 8 Chen (10.1016/j.geoen.2023.212174_b29) 2015; 78 King (10.1016/j.geoen.2023.212174_b88) 2017 Mohammed (10.1016/j.geoen.2023.212174_b113) 2019; 68 Nykyforchyn (10.1016/j.geoen.2023.212174_b130) 2010; 17 Chambers (10.1016/j.geoen.2023.212174_b28) 2019 Turnbull (10.1016/j.geoen.2023.212174_b169) 1993; 34 Dadfarnia (10.1016/j.geoen.2023.212174_b35) 2010; 22 Martínez-Pañeda (10.1016/j.geoen.2023.212174_b108) 2018; 342 Al-Mansour (10.1016/j.geoen.2023.212174_b1) 2009; 30 Barenblatt (10.1016/j.geoen.2023.212174_b12) 1962; 7 Duda (10.1016/j.geoen.2023.212174_b45) 2018; 102 Perez (10.1016/j.geoen.2023.212174_b137) 2013; 65 El-Sherik (10.1016/j.geoen.2023.212174_b48) 2017 Irwin (10.1016/j.geoen.2023.212174_b71) 1961 (10.1016/j.geoen.2023.212174_b120) 2020 Alvaro (10.1016/j.geoen.2023.212174_b2) 2015; 40 Kane (10.1016/j.geoen.2023.212174_b83) 1998 Shi (10.1016/j.geoen.2023.212174_b148) 2015; 28 Ding (10.1016/j.geoen.2023.212174_b41) 2021 Song (10.1016/j.geoen.2023.212174_b153) 2015; 12 Oriani (10.1016/j.geoen.2023.212174_b134) 1970; 18 Wang (10.1016/j.geoen.2023.212174_b174) 2009; 51 Baldy (10.1016/j.geoen.2023.212174_b10) 1961; 17 Bernard (10.1016/j.geoen.2023.212174_b17) 2009 Gross (10.1016/j.geoen.2023.212174_b57) 1966 Kane (10.1016/j.geoen.2023.212174_b84) 1977; 29 (10.1016/j.geoen.2023.212174_b75) 2005 Kahyarian (10.1016/j.geoen.2023.212174_b82) 2019; 297 Szklarz (10.1016/j.geoen.2023.212174_b158) 2011 Kim (10.1016/j.geoen.2023.212174_b86) 2022; 12 Myers (10.1016/j.geoen.2023.212174_b117) 1992; 64 Szklarz (10.1016/j.geoen.2023.212174_b157) 2001 Cernocky (10.1016/j.geoen.2023.212174_b27) 2010 Dugdale (10.1016/j.geoen.2023.212174_b46) 1960; 8 Ford (10.1016/j.geoen.2023.212174_b52) 1990 Huizinga (10.1016/j.geoen.2023.212174_b69) 2015 Holroyd (10.1016/j.geoen.2023.212174_b65) 2019; 37 Díaz (10.1016/j.geoen.2023.212174_b40) 2016; 66 Serebrinsky (10.1016/j.geoen.2023.212174_b147) 2004; 52 Beavers (10.1016/j.geoen.2023.212174_b15) 1992; 48 Wen (10.1016/j.geoen.2023.212174_b177) 2018; 139 Eliassen (10.1016/j.geoen.2023.212174_b50) 2008 Tale (10.1016/j.geoen.2023.212174_b161) 2021; 2 Tourret (10.1016/j.geoen.2023.212174_b166) 2022; 123 Ran (10.1016/j.geoen.2023.212174_b142) 2022; 47 Yuan (10.1016/j.geoen.2023.212174_b181) 2010 Hagiwara (10.1016/j.geoen.2023.212174_b59) 1997 Kim (10.1016/j.geoen.2023.212174_b87) 2021; 35 Asmara (10.1016/j.geoen.2023.212174_b8) 2018; 7 Novak (10.1016/j.geoen.2023.212174_b129) 2010; 58 Elboujdaini (10.1016/j.geoen.2023.212174_b49) 2011 Liu (10.1016/j.geoen.2023.212174_b97) 2021 Lufrano (10.1016/j.geoen.2023.212174_b103) 1998; 46 Sponseller (10.1016/j.geoen.2023.212174_b154) 1992; 48 Koh (10.1016/j.geoen.2023.212174_b90) 2004 Pressouyre (10.1016/j.geoen.2023.212174_b139) 1983; 14 Chen (10.1016/j.geoen.2023.212174_b30) 2021 Olden (10.1016/j.geoen.2023.212174_b132) 2008; 75 Gangloff (10.1016/j.geoen.2023.212174_b54) 2003 Davies (10.1016/j.geoen.2023.212174_b36) 2014; 56 (10.1016/j.geoen.2023.212174_b76) 2018 Martínez-Pañeda (10.1016/j.geoen.2023.212174_b109) 2020; 163 Izumi (10.1016/j.geoen.2023.212174_b77) 2020 Martínez-Pañeda (10.1016/j.geoen.2023.212174_b107) 2016; 41 Birnbaum (10.1016/j.geoen.2023.212174_b19) 1994; 176 Chong (10.1016/j.geoen.2023.212174_b33) 2014; 131 Hashizume (10.1016/j.geoen.2023.212174_b61) 2000 Yang (10.1016/j.geoen.2023.212174_b180) 2009 Nawathe (10.1016/j.geoen.2023.212174_b126) 2016 Shimamura (10.1016/j.geoen.2023.212174_b149) 2022 Chen (10.1016/j.geoen.2023.212174_b32) 2007; 55 Hondros (10.1016/j.geoen.2023.212174_b66) 1977; 8 Andrews (10.1016/j.geoen.2023.212174_b6) 2001; 57 Case (10.1016/j.geoen.2023.212174_b25) 2020; 77 Rihan (10.1016/j.geoen.2023.212174_b144) 2019; 174 Kumnick (10.1016/j.geoen.2023.212174_b93) 1980; 28 Raja (10.1016/j.geoen.2023.212174_b140) 2011 Barrera (10.1016/j.geoen.2023.212174_b13) 2018; 53 Jun (10.1016/j.geoen.2023.212174_b81) 2019 Chen (10.1016/j.geoen.2023.212174_b31) 2022; 198 Snape (10.1016/j.geoen.2023.212174_b151) 1967; 23 (10.1016/j.geoen.2023.212174_b118) 2011 Nagao (10.1016/j.geoen.2023.212174_b122) 2012; 60 Maiya (10.1016/j.geoen.2023.212174_b105) 1983 Zhao (10.1016/j.geoen.2023.212174_b183) 2003; 34 Ding (10.1016/j.geoen.2023.212174_b42) 2022 Huang (10.1016/j.geoen.2023.212174_b68) 2022; 47 Anderson (10.1016/j.geoen.2023.212174_b5) 2017 Thebault (10.1016/j.geoen.2023.212174_b162) 2014 Djukic (10.1016/j.geoen.2023.212174_b43) 2019; 216 Cancio (10.1016/j.geoen.2023.212174_b23) 2009 Garverick (10.1016/j.geoen.2023.212174_b55) 1994 (10.1016/j.geoen.2023.212174_b73) 2020 Scott (10.1016/j.geoen.2023.212174_b146) 2013 McHenry (10.1016/j.geoen.2023.212174_b111) 1987; 26 Wang (10.1016/j.geoen.2023.212174_b173) 2001; 68 (10.1016/j.geoen.2023.212174_b47) 2009 Díaz (10.1016/j.geoen.2023.212174_b39) 2016; 115 Clark (10.1016/j.geoen.2023.212174_b34) 2017 (10.1016/j.geoen.2023.212174_b74) 2012 Nakamura (10.1016/j.geoen.2023.212174_b123) 2016 Liang (10.1016/j.geoen.2023.212174_b94) 2021; 143 Szklarz (10.1016/j.geoen.2023.212174_b159) 2005 Liu (10.1016/j.geoen.2023.212174_b99) 2022 Long (10.1016/j.geoen.2023.212174_b102) 2018 Toribio (10.1016/j.geoen.2023.212174_b165) 1993; 28 Luo (10.1016/j.geoen.2023.212174_b104) 2019; 105 Pfeil (10.1016/j.geoen.2023.212174_b138) 1926; 112 Wang (10.1016/j.geoen.2023.212174_b175) 2005; 398 Di Leo (10.1016/j.geoen.2023.212174_b38) 2013; 43 Mohtadi-Bonab (10.1016/j.geoen.2023.212174_b114) 2019; 9 Saha (10.1016/j.geoen.2023.212174_b145) 2014 Thomas (10.1016/j.geoen.2023.212174_b163) 2003; 34 Sponseller (10.1016/j.geoen.2023.212174_b155) 1983; 82 Bandeira (10.1016/j.geoen.2023.212174_b11) 2013 Szklarz (10.1016/j.geoen.2023.212174_b160) 2003 Wu (10.1016/j.geoen.2023.212174_b179) 2018; 119 Zhang (10.1016/j.geoen.2023.212174_b182) 2018; 721 Ning (10.1016/j.geoen.2023.212174_b128) 2019 Martínez-Pañeda (10.1016/j.geoen.2023.212174_b110) 2016; 117 Liu (10.1016/j.geoen.2023.212174_b100) 2022; 169 Asahi (10.1016/j.geoen.2023.212174_b7) 1994; 50 Case (10.1016/j.geoen.2023.212174_b26) 2016 Nakamura (10.1016/j.geoen.2023.212174_b124) 2017 Vera (10.1016/j.geoen.2023.212174_b171) 1997 Birnbaum (10.1016/j.geoen.2023.212174_b18) 2003; 28 Moody (10.1016/j.geoen.2023.212174_b115) 1990; 30 Nakamura (10.1016/j.geoen.2023.212174_b125) 2019 Panico (10.1016/j.geoen.2023.212174_b135) 2015 Sun (10.1016/j.geoen.2023.212174_b156) 2007 Gerberich (10.1016/j.geoen.2023.212174_b56) 2009 Koyama (10.1016/j.geoen.2023.212174_b91) 2014; 70 Needleman (10.1016/j.geoen.2023.212174_b127) 1987; 54 Sofronis (10.1016/j.geoen.2023.212174_b152) 1989; 37 Martin (10.1016/j.geoen.2023.212174_b106) 2019; 165 Hamada (10.1016/j.geoen.2023.212174_b60) 2016 Hillerborg (10.1016/j.geoen.2023.212174_b64) 1976; 6 Huang (10.1016/j.geoen.2023.212174_b67) 2020; 45 Muther (10.1016/j.geoen.2023.212174_b116) 2021 Caballero (10.1016/j.geoen.2023.212174_b22) 1990 Barrera (10.1016/j.geoen.2023.212174_b14) 2016; 122 Liu (10.1016/j.geoen.2023.212174_b98) 2022; 99 Jiang (10.1016/j.geoen.2023.212174_b80) 2004; 52 Cao (10.1016/j.geoen.2023.212174_b24) 2017 Haase (10.1016/j.geoen.2023.212174_b58) 2018 Liang (10.1016/j.geoen.2023.212174_b95) 2003; 51 Jemblie (10.1016/j.geoen.2023.212174_b79) 2017; 375 Bosch (10.1016/j.geoen.2023.212174_b20) 2010 Hendrix (10.1016/j.geoen.2023.212174_b63) 2002 Krom (10.1016/j.geoen.2023.212174_b92) 1999; 47 Dong (10.1016/j.geoen.2023.212174_b44) 2012; 4 Omura (10.1016/j.geoen.2023.212174_b133) 2009 Bruschi (10.1016/j.geoen.2023.212174_b21) 2017 Olden (10.1016/j.geoen.2023.212174_b131) 2007; 57 Park (10.1016/j.geoen.2023.212174_b136) 2008; 50 |
References_xml | – volume: 13 start-page: 3604 issue: 16 year: 2020 ident: 10.1016/j.geoen.2023.212174_b168 article-title: Hydrogen uptake and embrittlement of carbon steels in various environments publication-title: Materials doi: 10.3390/ma13163604 – volume: 22 start-page: 1128 issue: 10 year: 2010 ident: 10.1016/j.geoen.2023.212174_b35 article-title: Recent advances in the study of structural materials compatibility with hydrogen publication-title: Adv. Mater. doi: 10.1002/adma.200904354 – year: 2017 ident: 10.1016/j.geoen.2023.212174_b24 article-title: Corrosion problems in the oil country tubular goods and their mitigation–a review publication-title: Anti-Corros. Methods Mater. doi: 10.1108/ACMM-09-2016-1708 – year: 2002 ident: 10.1016/j.geoen.2023.212174_b63 article-title: Brittle fracture of an underground gas gathering pipeline at ERW weld groove defects under hydrogen charging conditions and wet CO2/H2S corrosion – year: 2022 ident: 10.1016/j.geoen.2023.212174_b99 article-title: The influence of strain rate and specimen size on assessment of SSC resistance by novel NTSSRT method – volume: 75 start-page: 2333 issue: 8 year: 2008 ident: 10.1016/j.geoen.2023.212174_b132 article-title: Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25% Cr duplex stainless steel publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2007.09.003 – volume: 688 start-page: 378 year: 2017 ident: 10.1016/j.geoen.2023.212174_b101 article-title: Effect of quenching and tempering process on sulfide stress cracking susceptibility in API-5CT-C110 casing steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.01.067 – year: 2004 ident: 10.1016/j.geoen.2023.212174_b90 article-title: The efect of chromium and molybdenum on the susceptibility to sulfide stress cracking of Api X70 grade linepipe steels – volume: 31 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.geoen.2023.212174_b141 article-title: Stress corrosion cracking of high-strength steels publication-title: Corros. Rev. doi: 10.1515/corrrev-2012-0018 – volume: 28 start-page: 479 issue: 7 year: 2003 ident: 10.1016/j.geoen.2023.212174_b18 article-title: Hydrogen effects on deformation and fracture: science and sociology publication-title: MRS Bull. doi: 10.1557/mrs2003.143 – year: 2006 ident: 10.1016/j.geoen.2023.212174_b150 article-title: Corrosion of carbon steel by H2S in CO2 containing oilfield environments – volume: 45 start-page: 601 issue: 5 year: 1999 ident: 10.1016/j.geoen.2023.212174_b16 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – year: 2017 ident: 10.1016/j.geoen.2023.212174_b34 article-title: Using digital image correlation to improve stress-corrosion cracking evaluation by NACE TM0177-B – year: 2014 ident: 10.1016/j.geoen.2023.212174_b145 article-title: Comparison of C110 critical stress intensity factor (KISSC) data in CO2 and H2S environments with varying H2S concentrations – volume: 57 start-page: 721 issue: 8 year: 2001 ident: 10.1016/j.geoen.2023.212174_b6 article-title: Variation of the fracture toughness of a high-strength pipeline steel under cathodic protection publication-title: Corrosion doi: 10.5006/1.3290400 – year: 2005 ident: 10.1016/j.geoen.2023.212174_b159 article-title: Assessment of the effect of different test variables on the measured KISSC value – volume: 47 start-page: 10777 issue: 19 year: 2022 ident: 10.1016/j.geoen.2023.212174_b68 article-title: Predictive environmental hydrogen embrittlement on fracture toughness of commercial ferritic steels with hydrogen-modified fracture strain model publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.128 – volume: 375 issue: 2098 year: 2017 ident: 10.1016/j.geoen.2023.212174_b79 article-title: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2016.0411 – volume: 102 start-page: 16 year: 2018 ident: 10.1016/j.geoen.2023.212174_b45 article-title: A phase-field model for solute-assisted brittle fracture in elastic-plastic solids publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.11.004 – year: 2016 ident: 10.1016/j.geoen.2023.212174_b119 – volume: 70 start-page: 174 year: 2014 ident: 10.1016/j.geoen.2023.212174_b91 article-title: Hydrogen-assisted decohesion and localized plasticity in dual-phase steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.048 – year: 1983 ident: 10.1016/j.geoen.2023.212174_b105 – volume: 174 start-page: 1034 year: 2019 ident: 10.1016/j.geoen.2023.212174_b144 article-title: The susceptibility of P110 downhole tubular steel to sulfide stress cracking in H2S and NaCl publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.10.102 – volume: 48 start-page: 159 issue: 2 year: 1992 ident: 10.1016/j.geoen.2023.212174_b154 article-title: Interlaboratory testing of seven alloys for SSC resistance by the double cantilever beam method publication-title: Corrosion doi: 10.5006/1.3299822 – volume: 198 year: 2022 ident: 10.1016/j.geoen.2023.212174_b31 article-title: Assessment of sulfide corrosion cracking and hydrogen permeation behavior of ultrafine grain high strength steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110142 – year: 2004 ident: 10.1016/j.geoen.2023.212174_b51 article-title: Effect of different test variables on the KISSC value – year: 2015 ident: 10.1016/j.geoen.2023.212174_b135 article-title: Effect of testing variables on fracture toughness in sour environment – year: 2003 ident: 10.1016/j.geoen.2023.212174_b54 – volume: 37 start-page: 317 issue: 3 year: 1989 ident: 10.1016/j.geoen.2023.212174_b152 article-title: Numerical analysis of hydrogen transport near a blunting crack tip publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(89)90002-1 – volume: 7 issue: 1 year: 2018 ident: 10.1016/j.geoen.2023.212174_b8 article-title: The roles of H2S gas in behavior of carbon steel corrosion in oil and gas environment: a review publication-title: J. Tek. Mesin (JTM) – volume: 122 start-page: 280 year: 2019 ident: 10.1016/j.geoen.2023.212174_b4 article-title: On modeling fracture of ferritic steels due to hydrogen embrittlement publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.09.012 – year: 2001 ident: 10.1016/j.geoen.2023.212174_b157 article-title: Understanding the size effect in NACE TM0177 Method D (DCB) testing and implications for users – volume: 46 start-page: 1519 issue: 5 year: 1998 ident: 10.1016/j.geoen.2023.212174_b103 article-title: Enhanced hydrogen concentrations ahead of rounded notches and cracks—competition between plastic strain and hydrostatic stress publication-title: Acta Mater. doi: 10.1016/S1359-6454(97)00364-9 – volume: 66 start-page: 577 year: 2016 ident: 10.1016/j.geoen.2023.212174_b40 article-title: A review on diffusion modelling in hydrogen related failures of metals publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.05.019 – volume: 33 start-page: 98 issue: 3 year: 1977 ident: 10.1016/j.geoen.2023.212174_b62 article-title: Evaluation of sulfide corrosion cracking resistance in low alloy steels publication-title: Corrosion doi: 10.5006/0010-9312-33.3.98 – year: 2022 ident: 10.1016/j.geoen.2023.212174_b42 article-title: The development of eta function for the calculation of J-integral based on notch tensile testing in sulfide stress cracking (SSC) susceptibility evaluation – year: 2021 ident: 10.1016/j.geoen.2023.212174_b97 article-title: The effect of H2S and Cl-on hydrogen permeation in high strength low alloy carbon steels – volume: 4 start-page: 222 issue: 04 year: 2012 ident: 10.1016/j.geoen.2023.212174_b44 article-title: Global unconventional gas resource assessment publication-title: SPE Econ. Manag. doi: 10.2118/148365-PA – volume: 36 start-page: 323 issue: 4 year: 2018 ident: 10.1016/j.geoen.2023.212174_b167 article-title: Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry publication-title: Corros. Rev. doi: 10.1515/corrrev-2017-0079 – year: 2018 ident: 10.1016/j.geoen.2023.212174_b58 article-title: SSC resistance testing of heavy wall large-diameter pipes using full-size four-point bend tests and DCB tests – year: 2020 ident: 10.1016/j.geoen.2023.212174_b77 article-title: Effect of stress and hardness on corrosion groove of sour linepipe steel in low H2S content sour environment – volume: 30 start-page: 143 issue: 2 year: 1990 ident: 10.1016/j.geoen.2023.212174_b115 article-title: Hydrogen effects on the properties and fracture modes of iron-based alloys publication-title: Res Mech. – year: 2007 ident: 10.1016/j.geoen.2023.212174_b156 article-title: A mechanistic model of H2S corrosion of mild steel – year: 2017 ident: 10.1016/j.geoen.2023.212174_b48 – year: 2021 ident: 10.1016/j.geoen.2023.212174_b41 article-title: A novel model to assess sulfide stress cracking (SSC) susceptibility of carbon steels – year: 2009 ident: 10.1016/j.geoen.2023.212174_b17 article-title: Latest enhancements in high strength sour service tubulars – start-page: 183 year: 2011 ident: 10.1016/j.geoen.2023.212174_b49 article-title: Hydrogen-induced cracking and sulfide stress cracking – volume: 52 start-page: 2403 issue: 10 year: 2004 ident: 10.1016/j.geoen.2023.212174_b147 article-title: A quantum-mechanically informed continuum model of hydrogen embrittlement publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.02.010 – volume: 77 year: 2020 ident: 10.1016/j.geoen.2023.212174_b25 article-title: Fracture toughness assessment of the susceptibility for sulfide stress corrosion cracking in high-strength carbon steels: A review publication-title: CORROSION – year: 2020 ident: 10.1016/j.geoen.2023.212174_b72 – volume: 68 start-page: 647 issue: 6 year: 2001 ident: 10.1016/j.geoen.2023.212174_b173 article-title: The thermodynamics aspects of hydrogen induced embrittlement publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(00)00120-X – volume: 9 start-page: 590 issue: 5 year: 2019 ident: 10.1016/j.geoen.2023.212174_b114 article-title: Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: a review publication-title: Metals doi: 10.3390/met9050590 – year: 2016 ident: 10.1016/j.geoen.2023.212174_b126 article-title: Effect of residual stresses on causing sour burst pressure – volume: 8 start-page: 100 issue: 2 year: 1960 ident: 10.1016/j.geoen.2023.212174_b46 article-title: Yielding of steel sheets containing slits publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(60)90013-2 – volume: 34 start-page: 327 issue: 2 year: 2003 ident: 10.1016/j.geoen.2023.212174_b163 article-title: Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0334-3 – volume: 42 start-page: 11980 issue: 16 year: 2017 ident: 10.1016/j.geoen.2023.212174_b78 article-title: A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.211 – volume: 47 start-page: 971 issue: 4 year: 1999 ident: 10.1016/j.geoen.2023.212174_b92 article-title: Hydrogen transport near a blunting crack tip publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00064-7 – volume: 40 start-page: 1377 issue: 6 year: 1992 ident: 10.1016/j.geoen.2023.212174_b170 article-title: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(92)90020-3 – volume: 35 start-page: 3829 issue: 9 year: 2021 ident: 10.1016/j.geoen.2023.212174_b87 article-title: Hydrogen gaseous effects on fracture resistance of API-X70 estimated by XFEM publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-021-2106-7 – year: 2020 ident: 10.1016/j.geoen.2023.212174_b120 – year: 1988 ident: 10.1016/j.geoen.2023.212174_b112 – volume: 398 start-page: 37 issue: 1–2 year: 2005 ident: 10.1016/j.geoen.2023.212174_b175 article-title: Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.03.008 – volume: 55 start-page: 43 issue: 1 year: 2007 ident: 10.1016/j.geoen.2023.212174_b32 article-title: The role of residual stress in neutral pH stress corrosion cracking of pipeline steels–Part II: Crack dormancy publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.07.021 – volume: 8 start-page: 1363 issue: 9 year: 1977 ident: 10.1016/j.geoen.2023.212174_b66 article-title: The theory of grain boundary segregation in terms of surface adsorption analogues publication-title: Metall. Trans. A doi: 10.1007/BF02642850 – volume: 117 start-page: 321 year: 2016 ident: 10.1016/j.geoen.2023.212174_b110 article-title: Strain gradient plasticity-based modeling of hydrogen environment assisted cracking publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.022 – year: 2016 ident: 10.1016/j.geoen.2023.212174_b121 – volume: 50 start-page: 1865 issue: 7 year: 2008 ident: 10.1016/j.geoen.2023.212174_b136 article-title: Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.03.007 – volume: 53 start-page: 6251 issue: 9 year: 2018 ident: 10.1016/j.geoen.2023.212174_b13 article-title: Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1978-5 – year: 2016 ident: 10.1016/j.geoen.2023.212174_b123 article-title: Effect of side-groove root configuration on edge fracture on DCB test – volume: 165 start-page: 734 year: 2019 ident: 10.1016/j.geoen.2023.212174_b106 article-title: Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.014 – year: 1997 ident: 10.1016/j.geoen.2023.212174_b171 article-title: The relationship between hydrogen permeation and sulfide stress cracking susceptibility of OCTG materials at different temperatures and pH values – volume: 29 start-page: 1483 issue: 11 year: 1977 ident: 10.1016/j.geoen.2023.212174_b84 article-title: Sulfide stress cracking of high-strength steels in laboratory and oilfield environments publication-title: J. Pet. Technol. doi: 10.2118/6144-PA – volume: 30 start-page: 4088 issue: 10 year: 2009 ident: 10.1016/j.geoen.2023.212174_b1 article-title: Sulfide stress cracking resistance of API-X100 high strength low alloy steel publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.05.025 – volume: 47 start-page: 9045 issue: 14 year: 2022 ident: 10.1016/j.geoen.2023.212174_b142 article-title: Crack propagation analysis of hydrogen embrittlement based on peridynamics publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.173 – volume: 48 issue: 03 year: 1992 ident: 10.1016/j.geoen.2023.212174_b15 article-title: Limitations of the slow strain rate test for stress corrosion cracking testing publication-title: Corrosion doi: 10.5006/1.3315931 – volume: 17 start-page: 624 issue: 3 year: 2010 ident: 10.1016/j.geoen.2023.212174_b130 article-title: Environmentally assisted “in-bulk” steel degradation of long term service gas trunkline publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2009.04.007 – start-page: 1 year: 2021 ident: 10.1016/j.geoen.2023.212174_b116 article-title: Unconventional hydrocarbon resources: geological statistics, petrophysical characterization, and field development strategies publication-title: J. Pet. Explor. Prod. Technol. – year: 2000 ident: 10.1016/j.geoen.2023.212174_b61 article-title: Effects of pH and PH2s on SSC resistance of martensitic stainless steels – volume: 82 start-page: 172 year: 1983 ident: 10.1016/j.geoen.2023.212174_b155 article-title: Effect of microstructure on sulfide-stress-cracking resistance of high-strength casing steels publication-title: Micon – year: 2014 ident: 10.1016/j.geoen.2023.212174_b162 article-title: Klimit of C110 in NACE TM0177 Solution A Influence of the specimen size and the initial crack length – volume: 112 start-page: 182 issue: 760 year: 1926 ident: 10.1016/j.geoen.2023.212174_b138 article-title: The effect of occluded hydrogen on the tensile strength of iron publication-title: Proc. R. Soc. A – volume: 123 year: 2022 ident: 10.1016/j.geoen.2023.212174_b166 article-title: Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100810 – volume: 50 issue: 07 year: 1994 ident: 10.1016/j.geoen.2023.212174_b7 article-title: Prediction of sulfide stress cracking in high-strength tubulars publication-title: Corrosion doi: 10.5006/1.3294355 – volume: 122 start-page: 219 year: 2016 ident: 10.1016/j.geoen.2023.212174_b14 article-title: Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.05.030 – year: 2021 ident: 10.1016/j.geoen.2023.212174_b30 article-title: The susceptibility of nanostructured steel to sulfide stress corrosion cracking as a function of H2S concentration, pH and heat treatment – year: 2016 ident: 10.1016/j.geoen.2023.212174_b26 article-title: Effect of brine ionic strength on sulfide stress cracking resistance of high strength low alloy steel – year: 1990 ident: 10.1016/j.geoen.2023.212174_b22 article-title: Advantages of notched specimens in SSR tests – volume: 40 start-page: 16892 issue: 47 year: 2015 ident: 10.1016/j.geoen.2023.212174_b2 article-title: Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.06.069 – volume: 68 year: 2019 ident: 10.1016/j.geoen.2023.212174_b113 article-title: Casing structural integrity and failure modes in a range of well types-a review publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.05.011 – volume: 41 start-page: 10265 issue: 24 year: 2016 ident: 10.1016/j.geoen.2023.212174_b107 article-title: Strain gradient plasticity modeling of hydrogen diffusion to the crack tip publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.05.014 – year: 2010 ident: 10.1016/j.geoen.2023.212174_b27 article-title: Probabilistic approach to pipe crack initiation failure and crack propagation failure in H2S environments – year: 2017 ident: 10.1016/j.geoen.2023.212174_b5 – year: 2016 ident: 10.1016/j.geoen.2023.212174_b60 article-title: Comprehensive evaluation and development of unconventional hydrocarbon re-serves as energy resource publication-title: Pet. Environ. Biotechnol. – volume: 78 start-page: 352 year: 2015 ident: 10.1016/j.geoen.2023.212174_b29 article-title: Peridynamic modeling of pitting corrosion damage publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.02.015 – start-page: 271 year: 2017 ident: 10.1016/j.geoen.2023.212174_b88 article-title: Sulfide stress cracking – volume: 297 start-page: 676 year: 2019 ident: 10.1016/j.geoen.2023.212174_b82 article-title: H2S corrosion of mild steel: A quantitative analysis of the mechanism of the cathodic reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.029 – year: 2017 ident: 10.1016/j.geoen.2023.212174_b124 article-title: Optimization of side-groove configuration on DCB test – year: 1994 ident: 10.1016/j.geoen.2023.212174_b55 – volume: 52 start-page: 4801 issue: 16 year: 2004 ident: 10.1016/j.geoen.2023.212174_b80 article-title: First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.06.037 – year: 2018 ident: 10.1016/j.geoen.2023.212174_b102 article-title: The study on residual stresses in OCTG and its effect on pipe sour cracking (SSC) performances – volume: 28 start-page: 799 issue: 7 year: 2015 ident: 10.1016/j.geoen.2023.212174_b148 article-title: HIC and SSC behavior of high-strength pipeline steels publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-015-0257-1 – volume: 34 start-page: 1089 issue: 5 year: 2003 ident: 10.1016/j.geoen.2023.212174_b183 article-title: Role of microstructure on sulfide stress cracking of oil and gas pipeline steels publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0128-7 – start-page: 57 year: 2010 ident: 10.1016/j.geoen.2023.212174_b181 article-title: Effects of strain rate on fracture toughness in sour environment – volume: 41 start-page: 6593 issue: 15 year: 2016 ident: 10.1016/j.geoen.2023.212174_b37 article-title: Modelling of stress-corrosion cracking by using peridynamics publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.154 – volume: 28 start-page: 33 issue: 1 year: 1980 ident: 10.1016/j.geoen.2023.212174_b93 article-title: Deep trapping states for hydrogen in deformed iron publication-title: Acta Metall. doi: 10.1016/0001-6160(80)90038-3 – year: 2019 ident: 10.1016/j.geoen.2023.212174_b28 article-title: Low temperature effect on sulfide stress crack initiation in low alloy steels – volume: 119 start-page: 20 year: 2018 ident: 10.1016/j.geoen.2023.212174_b179 article-title: A length scale insensitive phase-field damage model for brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.006 – year: 2013 ident: 10.1016/j.geoen.2023.212174_b11 article-title: Adaptation of NACE standard TM 0177 C-ring test for flexible pipes carcass – volume: 43 start-page: 42 year: 2013 ident: 10.1016/j.geoen.2023.212174_b38 article-title: Hydrogen in metals: a coupled theory for species diffusion and large elastic–plastic deformations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.11.005 – year: 2005 ident: 10.1016/j.geoen.2023.212174_b75 – year: 1998 ident: 10.1016/j.geoen.2023.212174_b83 article-title: Roles of H2S in the behavior of engineering alloys: a review of literature and experience – volume: 105 start-page: 227 year: 2019 ident: 10.1016/j.geoen.2023.212174_b104 article-title: Effect of tempering temperature at high temperature zone on sulfide stress cracking behavior for casing steel publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.06.095 – start-page: 45 year: 2009 ident: 10.1016/j.geoen.2023.212174_b180 article-title: Fracture toughness testing using SENT specimens in a sour environment – year: 2012 ident: 10.1016/j.geoen.2023.212174_b74 – year: 2021 ident: 10.1016/j.geoen.2023.212174_b164 article-title: Effect of Ni and Cr alloying on the sour resistance of line pipe steels – year: 2013 ident: 10.1016/j.geoen.2023.212174_b146 article-title: Crack stability criteria and its implications on crack growth rates, mechanisms and crack geometry – volume: 721 start-page: 81 year: 2018 ident: 10.1016/j.geoen.2023.212174_b182 article-title: A systematical analysis with respect to multiple hydrogen traps influencing sulfide stress cracking behavior of API-5CT-C110 casing steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.02.070 – year: 2019 ident: 10.1016/j.geoen.2023.212174_b125 article-title: The effect of crack start positions for chevron notch type on NACE TM0177 DCB elastic compliance – volume: 37 start-page: 499 issue: 5 year: 2019 ident: 10.1016/j.geoen.2023.212174_b65 article-title: Estimation of environment-induced crack growth rate as a function of stress intensity factors generated during slow strain rate testing of aluminum alloys publication-title: Corros. Rev. doi: 10.1515/corrrev-2019-0031 – volume: 169 issue: 10 year: 2022 ident: 10.1016/j.geoen.2023.212174_b100 article-title: The effects of NaCl on hydrogen permeation and sulfide stress cracking resistance of C110 high-strength steel publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac96ad – volume: 17 start-page: 509t issue: 11 year: 1961 ident: 10.1016/j.geoen.2023.212174_b10 article-title: Sulfide stress cracking of steels for API Grade N-80 tubular products publication-title: Corrosion doi: 10.5006/0010-9312-17.11.81 – year: 2008 ident: 10.1016/j.geoen.2023.212174_b50 – volume: 34 start-page: 921 issue: 6 year: 1993 ident: 10.1016/j.geoen.2023.212174_b169 article-title: Modelling of environment assisted cracking publication-title: Corros. Sci. doi: 10.1016/0010-938X(93)90072-O – volume: 51 start-page: 2803 issue: 12 year: 2009 ident: 10.1016/j.geoen.2023.212174_b174 article-title: Effects of hydrogen on the fracture toughness of a X70 pipeline steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.07.013 – year: 1961 ident: 10.1016/j.geoen.2023.212174_b71 – volume: 28 start-page: 2289 issue: 9 year: 1993 ident: 10.1016/j.geoen.2023.212174_b165 article-title: Role of hydrostatic stress in hydrogen diffusion in pearlitic steel publication-title: J. Mater. Sci. doi: 10.1007/BF01151655 – volume: 8 start-page: 62 issue: 1 year: 2018 ident: 10.1016/j.geoen.2023.212174_b172 article-title: FeS corrosion products formation and hydrogen uptake in a sour environment for quenched & tempered steel publication-title: Metals doi: 10.3390/met8010062 – volume: 143 year: 2021 ident: 10.1016/j.geoen.2023.212174_b94 article-title: Effect of multiple hydrogen embrittlement mechanisms on crack propagation behavior of FCC metals: Competition vs. synergy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.103023 – volume: 99 year: 2022 ident: 10.1016/j.geoen.2023.212174_b98 article-title: The influence of H2S on hydrogen absorption and sulfide stress cracking resistance of high strength low alloy carbon steel C110 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2022.104418 – volume: 23 start-page: 154 issue: 6 year: 1967 ident: 10.1016/j.geoen.2023.212174_b151 article-title: Sulfide stress corrosion of some medium and low alloy steels publication-title: Corrosion doi: 10.5006/0010-9312-23.6.154 – year: 2013 ident: 10.1016/j.geoen.2023.212174_b53 – year: 1997 ident: 10.1016/j.geoen.2023.212174_b59 article-title: Fracture toughness (CTOD) of linepipe materials under cathodic protection – volume: 14 start-page: 2189 issue: 10 year: 1983 ident: 10.1016/j.geoen.2023.212174_b139 article-title: Hydrogen traps, repellers, and obstacles in steel; consequences on hydrogen diffusion, solubility, and embrittlement publication-title: Metall. Trans. A doi: 10.1007/BF02662391 – volume: 358 year: 2020 ident: 10.1016/j.geoen.2023.212174_b178 article-title: A phase-field regularized cohesive zone model for hydrogen assisted cracking publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112614 – start-page: 38 year: 2009 ident: 10.1016/j.geoen.2023.212174_b56 article-title: A coexistent view of hydrogen effects on mechanical behavior of crystals: HELP and HEDE – volume: 185 start-page: 179 issue: 1 year: 2014 ident: 10.1016/j.geoen.2023.212174_b3 article-title: Brittle crack-arrest fracture toughness in a high heat-input thick steel weld publication-title: Int. J. Fract. doi: 10.1007/s10704-013-9900-x – volume: 2 start-page: 376 issue: 3 year: 2021 ident: 10.1016/j.geoen.2023.212174_b161 article-title: Sulfide stress cracking of C-110 steel in a sour environment publication-title: Corros. Mater. Degrad. doi: 10.3390/cmd2030020 – start-page: 139 year: 1990 ident: 10.1016/j.geoen.2023.212174_b52 article-title: The crack-tip system and its relevance to the prediction of cracking in aqueous environments – year: 2006 ident: 10.1016/j.geoen.2023.212174_b89 article-title: Effect of testing temperature on SSC properties of low alloy steel – volume: 139 start-page: 124 year: 2018 ident: 10.1016/j.geoen.2023.212174_b177 article-title: Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.05.002 – year: 2018 ident: 10.1016/j.geoen.2023.212174_b76 – volume: 216 year: 2019 ident: 10.1016/j.geoen.2023.212174_b43 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106528 – volume: 45 start-page: 20053 issue: 38 year: 2020 ident: 10.1016/j.geoen.2023.212174_b67 article-title: Phase field modeling of hydrogen embrittlement publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.015 – volume: 12 start-page: 1813 issue: 11 year: 2022 ident: 10.1016/j.geoen.2023.212174_b86 article-title: Evaluation of fracture properties of two metallic materials under hydrogen gas conditions by using XFEM publication-title: Metals doi: 10.3390/met12111813 – year: 1966 ident: 10.1016/j.geoen.2023.212174_b57 – year: 2009 ident: 10.1016/j.geoen.2023.212174_b23 article-title: A mechanistic approach to sulfide stress cracking resistance of high stre gth octg steels – volume: 12 start-page: 563 issue: 4 year: 2015 ident: 10.1016/j.geoen.2023.212174_b153 article-title: The concept and the accumulation characteristics of unconventional hydrocarbon resources publication-title: Pet. Sci. doi: 10.1007/s12182-015-0060-7 – year: 2003 ident: 10.1016/j.geoen.2023.212174_b160 article-title: NACE TM0177 method D test procedure (DCB) learnings from comparative laboratory testing – volume: 56 start-page: 239 year: 2014 ident: 10.1016/j.geoen.2023.212174_b36 article-title: Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2014.03.001 – volume: 7 start-page: 55 issue: C year: 1962 ident: 10.1016/j.geoen.2023.212174_b12 article-title: The mathematical theory of equilibrium cracks in brittle fracture publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70121-2 – volume: 176 start-page: 191 issue: 1–2 year: 1994 ident: 10.1016/j.geoen.2023.212174_b19 article-title: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(94)90975-X – volume: 115 start-page: 360 year: 2016 ident: 10.1016/j.geoen.2023.212174_b39 article-title: Coupled hydrogen diffusion simulation using a heat transfer analogy publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.07.020 – year: 2019 ident: 10.1016/j.geoen.2023.212174_b128 article-title: Review of key factors related to sour service material selection for HPHT oil & gas production applications – volume: 26 issue: 8 year: 1987 ident: 10.1016/j.geoen.2023.212174_b111 article-title: Failure analysis of an amine-absorber pressure vessel publication-title: Mater. Perform. (U. S.) – start-page: ISIJINT year: 2022 ident: 10.1016/j.geoen.2023.212174_b149 article-title: Effect of surface hardness and hydrogen sulfide partial pressure on sulfide stress cracking behavior in low alloy linepipe steel publication-title: ISIJ Int. – year: 2011 ident: 10.1016/j.geoen.2023.212174_b140 – year: 2019 ident: 10.1016/j.geoen.2023.212174_b81 article-title: Measuring crack propagation resistance of linepipe steels in sour service-A comparative study of test methods and materials response – volume: 163 year: 2020 ident: 10.1016/j.geoen.2023.212174_b109 article-title: On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108291 – year: 2011 ident: 10.1016/j.geoen.2023.212174_b118 – volume: 60 start-page: 5182 issue: 13–14 year: 2012 ident: 10.1016/j.geoen.2023.212174_b122 article-title: The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.040 – year: 2017 ident: 10.1016/j.geoen.2023.212174_b21 article-title: Sour service challenges – year: 2011 ident: 10.1016/j.geoen.2023.212174_b158 article-title: Klimit in Nace Tm0177-method D (Dcb): Defintion, measurement and use – year: 2016 ident: 10.1016/j.geoen.2023.212174_b9 – year: 1968 ident: 10.1016/j.geoen.2023.212174_b143 – volume: 51 start-page: 1509 issue: 8 year: 2003 ident: 10.1016/j.geoen.2023.212174_b95 article-title: Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(03)00052-8 – volume: 64 start-page: 559 issue: 2 year: 1992 ident: 10.1016/j.geoen.2023.212174_b117 article-title: Hydrogen interactions with defects in crystalline solids publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.64.559 – volume: 18 start-page: 147 issue: 1 year: 1970 ident: 10.1016/j.geoen.2023.212174_b134 article-title: The diffusion and trapping of hydrogen in steel publication-title: Acta Metall. doi: 10.1016/0001-6160(70)90078-7 – volume: 54 start-page: 525 issue: 3 year: 1987 ident: 10.1016/j.geoen.2023.212174_b127 article-title: A continuum model for void nucleation by inclusion debonding publication-title: J. Appl. Mech. Trans. ASME doi: 10.1115/1.3173064 – volume: 6 start-page: 773 issue: 6 year: 1976 ident: 10.1016/j.geoen.2023.212174_b64 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(76)90007-7 – year: 2015 ident: 10.1016/j.geoen.2023.212174_b69 article-title: Fit for purpose qualification of casings in HPHT service-a multi-disciplinary approach – volume: 342 start-page: 742 year: 2018 ident: 10.1016/j.geoen.2023.212174_b108 article-title: A phase field formulation for hydrogen assisted cracking publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.07.021 – volume: 65 start-page: 1033 issue: 8 year: 2013 ident: 10.1016/j.geoen.2023.212174_b137 article-title: Corrosion in the oil and gas industry: an increasing challenge for materials publication-title: Jom doi: 10.1007/s11837-013-0675-3 – ident: 10.1016/j.geoen.2023.212174_b70 – start-page: 149 year: 1983 ident: 10.1016/j.geoen.2023.212174_b96 article-title: The estimation of crack tip strain rate parameters characterizing environment assisted crack growth data – volume: 58 start-page: 206 issue: 2 year: 2010 ident: 10.1016/j.geoen.2023.212174_b129 article-title: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.10.005 – year: 2010 ident: 10.1016/j.geoen.2023.212174_b20 article-title: DCB testing of C110 material in standard and mild sour test conditions – volume: 131 start-page: 485 year: 2014 ident: 10.1016/j.geoen.2023.212174_b33 article-title: Effects of wet H2S containing environment on mechanical properties of NACE grade C–Mn steel pipeline girth welds publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.09.005 – year: 2009 ident: 10.1016/j.geoen.2023.212174_b133 article-title: SSC resistance of high strength low alloy steel OCTG in high pressure H2S environments – year: 1993 ident: 10.1016/j.geoen.2023.212174_b85 article-title: The effect of environmental variables on crack propagation of carbon steels in sour media – year: 2020 ident: 10.1016/j.geoen.2023.212174_b73 – volume: 57 start-page: 615 issue: 7 year: 2007 ident: 10.1016/j.geoen.2023.212174_b131 article-title: Cohesive zone modeling of hydrogen-induced stress cracking in 25% Cr duplex stainless steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.06.006 – year: 2009 ident: 10.1016/j.geoen.2023.212174_b47 – volume: 15 start-page: 801 issue: 3 year: 2022 ident: 10.1016/j.geoen.2023.212174_b176 article-title: A study on the influential factors of stress corrosion cracking in C110 casing pipe publication-title: Materials doi: 10.3390/ma15030801 |
SSID | ssj0003239006 |
Score | 2.3223748 |
SecondaryResourceType | review_article |
Snippet | Sulfide stress cracking (SSC) presents a complex hydrogen-assisted cracking problem in oil and gas (O&G) production, primarily due to the presence of a wet... |
SourceID | swepub crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 212174 |
SubjectTerms | Hydrogen-assisted fracture Modeling approaches Sour service Sulfide stress cracking |
Title | Review on sulfide stress cracking in sour service for OCTG and recent advances in modeling of hydrogen-assisted fracture |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334917 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9sIFURVEKaA9IC7FkbN-H0OAtIgCQinqzdpnnabNotQVlF_P7MtJlYAKFyuy195k58t4dvf7ZhB6yYkq40yUkRSyiMxOYFSqgkYsLqXinFRpZrTDx5_yw5P0w2l22uv9WFWXtKzPf23UlfyPVeEc2NWoZP_Bst1D4QR8BvvCESwMxzvZ2GfFBwNeXV-oqZBB-sEXlM-8WsUszx9cOZdgSYWfR5Oxo5VLbhnmjgZgibG2MI4nQjc3YqGh7wjiawMGcaCMpMqnIAkR7Vhq6fSDwU2YR6-kOVyyQ2aNFsyRc491Qy-9rsouRZ9NndxGz5YQMBsh1lmPGyrkkkb8Bibj2tVnPrqkYnXhgiRewdf5N8BBFZWVZ7XKDee8gyZu52bN2bt1h3OwAvzQvumiDy_igav6syGL9tvpt2GtF2f1rG3qJElhpnoPbZOiMPv728PR149fuuW5hCRVbCuzdl8p5Kyy7MC1Pm_FNbeyztpIZfIQPfBTDDx0eNlBPTnfRT8dVrCeY48V7LCCA1bwFC7BvdhjBQNWsMEKBoNihxUcsGIaB6xgrfAaVnDAyiN08v7dZHQY-aobEYeIpo0YzdSAKx7HNEljIRVlhAom04qqosyFggmBkpSUPId_84DRXFGZ0ZxLGDahVPIYbc31XD5BmMK1ASM8EypOOc2rKmM0YUqIlItUij1EwpjV3KekN5VRLurAPTyv7UDXZqBrN9B76HV303eXkeXvzV85Y3SN_wCFp3dtuI_uL-H8DG21i2v5HCLTlr3wKPoNsVGZjg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+sulfide+stress+cracking+in+sour+service+for+OCTG+and+recent+advances+in+modeling+of+hydrogen-assisted+fracture&rft.jtitle=Geoenergy+Science+and+Engineering&rft.au=Elkhodbia%2C+Mohamed&rft.au=Negi%2C+Alok&rft.au=Mubarak%2C+Ghadeer&rft.au=Barsoum%2C+Imad&rft.date=2023-11-01&rft.issn=2949-8910&rft.eissn=2949-8910&rft.volume=230&rft_id=info:doi/10.1016%2Fj.geoen.2023.212174&rft.externalDocID=oai_DiVA_org_kth_334917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8910&client=summon |