Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement
We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted...
Saved in:
Published in | Communications in theoretical physics Vol. 56; no. 11; pp. 831 - 836 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols. |
---|---|
AbstractList | We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme. Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former QSDC protocols. We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols. |
Author | 施锦 龚彦晓 徐平 祝世宁 詹佑邦 |
AuthorAffiliation | National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, HuMan 223300, China |
Author_xml | – sequence: 1 fullname: 施锦 龚彦晓 徐平 祝世宁 詹佑邦 |
BookMark | eNqNkE9PAjEQxXvAREA_gLf15sGV_mHb7tGAigmJGuHcdMss1Ox2oe0e-PYuQjh4MJ4mefN-8zJvgHqucYDQDcEPBEs5wjRjKSeYjjI-ykZY9lD_rF2iQQhfGGMqOOmj949Wu9jWySeY1kMytR5MTCZNXbfOGh1t45JinyyDdetksfEA6dTW4EK30FUy22_Bg4varSvo5HiFLkpdBbg-zSFaPj8tJrN0_vbyOnmcp4aNSUyLjJSaUgMUC8lykpMCRGmokbzgGFalYIyLMcWyKKnktBQGjF4RArlY0ZVkQ3R3vLv1za6FEFVtg4Gq0g6aNigyZrmQlHLcWcXRanwTgodSGRt_Pote20oRrA69qUNH6tCRyrjKFD6EkF_k1tta-_2fzP2Rsc32X_bbU8Smcetd1_IZYnkuM0Yw-wZwsoy8 |
CitedBy_id | crossref_primary_10_1007_s10773_012_1336_y crossref_primary_10_1016_j_scib_2021_11_002 crossref_primary_10_1103_PhysRevA_105_062422 crossref_primary_10_1007_s10773_017_3540_2 crossref_primary_10_7498_aps_64_160307 crossref_primary_10_1007_s11128_015_1107_9 crossref_primary_10_1007_s11434_013_6091_9 crossref_primary_10_1038_lsa_2016_144 crossref_primary_10_1142_S0217979220501064 crossref_primary_10_1007_s11433_014_5566_2 crossref_primary_10_1007_s10773_015_2880_z crossref_primary_10_1007_s10773_017_3569_2 crossref_primary_10_1007_s10773_018_3938_5 crossref_primary_10_1007_s11128_018_2152_y crossref_primary_10_1007_s10773_014_2053_5 crossref_primary_10_1007_s11433_014_5542_x crossref_primary_10_1007_s11128_020_02840_0 crossref_primary_10_1088_0253_6102_59_5_05 crossref_primary_10_1007_s10773_012_1154_2 crossref_primary_10_1007_s10773_013_1718_9 crossref_primary_10_1007_s10773_024_05725_5 crossref_primary_10_1007_s11082_022_03920_4 crossref_primary_10_1007_s10773_014_2028_6 crossref_primary_10_1007_s10773_018_3803_6 crossref_primary_10_1140_epjd_e2012_30626_x crossref_primary_10_1007_s10773_014_2021_0 crossref_primary_10_1109_COMST_2021_3109944 crossref_primary_10_1007_s10773_019_04036_4 crossref_primary_10_1007_s11128_022_03671_x crossref_primary_10_1007_s10773_019_04183_8 crossref_primary_10_1109_ACCESS_2020_3006136 crossref_primary_10_1007_s10773_022_05138_2 crossref_primary_10_1109_ACCESS_2019_2937101 crossref_primary_10_1007_s10773_018_3726_2 crossref_primary_10_7498_aps_66_180303 crossref_primary_10_1088_1674_1056_23_1_010305 crossref_primary_10_1002_que2_83 crossref_primary_10_1007_s11128_018_1925_7 crossref_primary_10_1007_s10773_013_1884_9 crossref_primary_10_1007_s11433_020_1576_y crossref_primary_10_7498_aps_71_20211702 crossref_primary_10_1007_s10773_015_2537_y crossref_primary_10_1007_s11433_017_9100_9 crossref_primary_10_1007_s11128_020_02965_2 crossref_primary_10_1007_s11433_014_5434_0 crossref_primary_10_1088_0031_8949_89_12_125102 crossref_primary_10_1088_1674_1056_26_3_030302 crossref_primary_10_1007_s10773_020_04447_8 |
Cites_doi | 10.1103/PhysRevA.71.044305 10.1088/0253-6102/53/4/12 10.1103/PhysRevA.68.042317 10.1038/nphys919 10.1103/PhysRevA.79.030301 10.1103/RevModPhys.74.145 10.1126/science.283.5410.2050 10.1088/0253-6102/50/3/19 10.1103/PhysRevLett.100.160502 10.1016/j.physleta.2005.10.050 10.1103/PhysRevLett.104.010501 10.1103/PhysRevA.82.032318 10.12693/APhysPolA.101.357 10.1103/PhysRevLett.96.190501 10.1103/PhysRevLett.89.257901 10.1038/nphys1150 10.1103/PhysRevLett.89.187902 10.1103/PhysRevLett.91.109801 10.1016/j.optcom.2009.11.087 10.1103/PhysRevLett.101.233601 10.1103/PhysRevA.83.062333 10.1088/0256-307X/28/4/040305 10.1088/1674-1056/19/11/110306 10.1016/j.physleta.2004.06.009 10.1103/PhysRevLett.85.3313 10.1103/PhysRevA.72.052110 10.1103/PhysRevA.59.1829 10.1103/PhysRevA.74.054302 10.1103/PhysRevLett.106.033601 10.1103/PhysRevLett.89.240401 10.1103/PhysRevLett.99.120503 10.1103/PhysRevA.82.054301 10.1103/PhysRevA.78.064304 10.1103/PhysRevLett.105.210504 10.1103/PhysRevLett.83.648 10.1103/PhysRevA.72.044302 10.1007/s11434-010-4336-4 10.1103/PhysRevLett.97.140407 10.1103/PhysRevA.77.053812 10.1088/0253-6102/55/4/08 10.1103/PhysRevA.82.044305 10.1103/PhysRevLett.85.441 10.1103/PhysRevA.72.016301 10.1038/nphys1603 10.1103/PhysRevA.83.032305 10.1103/PhysRevA.68.042313 10.1016/j.optcom.2009.08.024 10.1103/PhysRevLett.95.260501 10.1088/0253-6102/54/5/10 10.1007/s11433-011-4265-5 10.1103/PhysRevLett.98.020503 10.1103/PhysRevA.73.022338 10.1088/0253-6102/53/4/13 10.1080/09500349708231877 10.1103/PhysRevLett.93.053601 10.1088/0253-6102/54/6/08 10.1016/j.optcom.2010.08.061 10.1007/s11433-011-4245-9 10.1007/s11467-007-0050-3 10.1103/PhysRevA.69.052319 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/0253-6102/56/5/08 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement |
EndPage | 836 |
ExternalDocumentID | 10_1088_0253_6102_56_5_08 39985310 |
GroupedDBID | 02O 042 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA AAPBV ADACO CDYEO UNR -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c341t-b51fa22ce207839191be7fc2c86b60edf733674208bf2862f7cecad11e97d2d83 |
IEDL.DBID | IOP |
ISSN | 0253-6102 |
IngestDate | Thu Aug 07 15:15:45 EDT 2025 Tue Jul 01 01:35:44 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Nov 10 14:15:21 EST 2020 Wed Feb 14 11:04:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-b51fa22ce207839191be7fc2c86b60edf733674208bf2862f7cecad11e97d2d83 |
Notes | quantum secure direct communication, hyperentanglement, Bell bases measurement 11-2592/O3 We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1439782260 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1088_0253_6102_56_5_08 chongqing_primary_39985310 crossref_primary_10_1088_0253_6102_56_5_08 iop_primary_10_1088_0253_6102_56_5_08 proquest_miscellaneous_1439782260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-01 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAlternate | Communications in Theoretical Physics |
PublicationYear | 2011 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 48 49 R.H. Shi (6) 2011; 55 C.H. Bennett (1) 1984 H. Yuan (26) 2008; 50 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 2 3 4 5 7 60 61 20 27 28 29 Z.Y. Wang (23) 2010; 54 T.J. Wang (21) 2011; 28 S.J. Qin (24) 2010; 53 Y.B. Zhan (8) 2010; 53 30 31 33 34 35 36 37 38 39 A. Beige (9) 2002; 101 J. Yang (22) 2010; 54 J. Yang (25) 2010; 19 40 41 42 P.G. Kwiat (32) 1997; 44 43 |
References_xml | – ident: 13 doi: 10.1103/PhysRevA.71.044305 – volume: 53 start-page: 645 issn: 0253-6102 year: 2010 ident: 24 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/53/4/12 – ident: 12 doi: 10.1103/PhysRevA.68.042317 – ident: 36 doi: 10.1038/nphys919 – ident: 49 doi: 10.1103/PhysRevA.79.030301 – ident: 2 doi: 10.1103/RevModPhys.74.145 – ident: 30 doi: 10.1126/science.283.5410.2050 – start-page: 175 year: 1984 ident: 1 – volume: 50 start-page: 627 issn: 0253-6102 year: 2008 ident: 26 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/50/3/19 – ident: 41 doi: 10.1103/PhysRevLett.100.160502 – ident: 55 doi: 10.1016/j.physleta.2005.10.050 – ident: 60 doi: 10.1103/PhysRevLett.104.010501 – ident: 39 doi: 10.1103/PhysRevA.82.032318 – volume: 101 start-page: 357 issn: 0587-4246 year: 2002 ident: 9 publication-title: Acta Phys. Pol. doi: 10.12693/APhysPolA.101.357 – ident: 38 doi: 10.1103/PhysRevLett.96.190501 – ident: 43 doi: 10.1103/PhysRevLett.89.257901 – ident: 47 doi: 10.1038/nphys1150 – ident: 10 doi: 10.1103/PhysRevLett.89.187902 – ident: 11 doi: 10.1103/PhysRevLett.91.109801 – ident: 18 doi: 10.1016/j.optcom.2009.11.087 – ident: 58 doi: 10.1103/PhysRevLett.101.233601 – ident: 61 doi: 10.1103/PhysRevA.83.062333 – volume: 28 start-page: 040305 issn: 0256-307X year: 2011 ident: 21 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/28/4/040305 – volume: 19 start-page: 110306 issn: 1674-1056 year: 2010 ident: 25 publication-title: Chin. Phys. doi: 10.1088/1674-1056/19/11/110306 – ident: 7 doi: 10.1016/j.physleta.2004.06.009 – ident: 53 doi: 10.1103/PhysRevLett.85.3313 – ident: 35 doi: 10.1103/PhysRevA.72.052110 – ident: 3 doi: 10.1103/PhysRevA.59.1829 – ident: 56 doi: 10.1103/PhysRevA.74.054302 – ident: 51 doi: 10.1103/PhysRevLett.106.033601 – ident: 57 doi: 10.1103/PhysRevLett.89.240401 – ident: 40 doi: 10.1103/PhysRevLett.99.120503 – ident: 50 doi: 10.1103/PhysRevA.82.054301 – ident: 16 doi: 10.1103/PhysRevA.78.064304 – ident: 34 doi: 10.1103/PhysRevLett.105.210504 – ident: 4 doi: 10.1103/PhysRevLett.83.648 – ident: 54 doi: 10.1103/PhysRevA.72.044302 – ident: 28 doi: 10.1007/s11434-010-4336-4 – ident: 45 doi: 10.1103/PhysRevLett.97.140407 – ident: 48 doi: 10.1103/PhysRevA.77.053812 – volume: 55 start-page: 573 issn: 0253-6102 year: 2011 ident: 6 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/55/4/08 – ident: 44 doi: 10.1103/PhysRevA.82.044305 – ident: 31 doi: 10.1103/PhysRevLett.85.441 – ident: 20 doi: 10.1103/PhysRevA.72.016301 – ident: 52 doi: 10.1038/nphys1603 – ident: 46 doi: 10.1103/PhysRevA.83.032305 – ident: 37 doi: 10.1103/PhysRevA.68.042313 – ident: 17 doi: 10.1016/j.optcom.2009.08.024 – ident: 33 doi: 10.1103/PhysRevLett.95.260501 – volume: 54 start-page: 829 issn: 0253-6102 year: 2010 ident: 22 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/54/5/10 – ident: 27 doi: 10.1007/s11433-011-4265-5 – ident: 5 doi: 10.1103/PhysRevLett.98.020503 – ident: 15 doi: 10.1103/PhysRevA.73.022338 – volume: 53 start-page: 648 issn: 0253-6102 year: 2010 ident: 8 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/53/4/13 – volume: 44 start-page: 2173 year: 1997 ident: 32 publication-title: J. Mod. Opt. doi: 10.1080/09500349708231877 – ident: 59 doi: 10.1103/PhysRevLett.93.053601 – volume: 54 start-page: 997 issn: 0253-6102 year: 2010 ident: 23 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/54/6/08 – ident: 42 doi: 10.1016/j.optcom.2010.08.061 – ident: 29 doi: 10.1007/s11433-011-4245-9 – ident: 14 doi: 10.1007/s11467-007-0050-3 – ident: 19 doi: 10.1103/PhysRevA.69.052319 |
SSID | ssj0002761 |
Score | 2.1344705 |
Snippet | We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states... We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states... |
SourceID | proquest crossref iop chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 831 |
SubjectTerms | Bells Channels Computer information security Degrees of freedom Mathematical analysis Messages Photons Three dimensional 三维 光子传输 双光子 子秘密 自由度 量子信息 量子安全直接通信 量子通道 |
Title | Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement |
URI | http://lib.cqvip.com/qk/83837X/201111/39985310.html http://iopscience.iop.org/0253-6102/56/5/08 https://www.proquest.com/docview/1439782260 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EHxxOhU3P4igL0K3Nm368SjqmII6YYO9heZLRe2mWx_0r_eStpMxkL0VmqQ0udz9Lnf3C0Jnmug0EYnvBDF3nUDowIk5VU7KiaQGAmtp6p3vH8LeMLgb0dEfz_breFJq_jY82kg-GGUfHByXdGjYoR1b2At23zhat4_9udYlkeVGnbeuIpjg4C2NYHgUXsbZ8ydYhwV7tA4fXVLK1tJ060UJ99QSFJoEk7d2PuNt8bNM37jKT2yjrRJx4stCRHbQmsoaqF6iT1zu7WkDbdhkUDHdRf2nHOY7_8D2MF7hQi3ihVoSzL-xTTfAA5AG5VybWwIKhg_cA9_WkD6l2XORnL6Hht2bwVXPKW9ecARYtZnDqadTQoQiJsqXgE_HVaQFEXHIQ1dJbUgUIxOZ55qAT6QjoUQqPU8lkSQy9vdRLRtn6gBhSkBNkCBKZAqGEKwf9RX0UURJwBrcbaLWfC3YpGDYYICaAEZ48NKtFoeJkrPcXJ3xzmzsPI6ZmVhmJpbRkFHmxk10Me9SDfdP43NYoVXanVYywWD7mZhKmqlxPgXPCQAdgKzQba041iHatOfStp7xCNVmX7k6BmAz4ydWon8ByT7sJw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoU28DMY28bGBkbaXSWlSJ06cR7SuKrCxTgKJNyv-6hCQdmvzMP56zk5SrTAhJN4ixbYcn3P3O9_dzwAfLbVFrvI4SLiMgkTZJOCSmaCQVDMHga129c7fT9PBeXJ8wS7-qeK_HE8a1d_Bx5oouF7CJiGOh2ilY_R4IhqyNGRhxMOJtsuwyuI0d0ldRz-Gc11MM8-YOu_SxjX_N4xjV_g1Lke_0WYsWKllnMkDVe3tT38dinbmddrJVaeayY66vUfq-JxP24BXDTglh3X717Bkyk1Yb4AqadTAdBNe-LxRNX0Dw58Viqa6If7c3pBag5KFshMi_xKfmUDOcOOYoOcuFKjJQMgA3WDHD1WUozqP_S2c97-efRkEzSUNgUIDOAsk69qCUmWoCwjm6P5Jk1lFFU9lGhltHd9i5oL40lJ0n2ymjCp0t2vyTFPN43ewUo5LswWEUdQoNMlyXaDNREPJYoN9DDUaYYmMtmFnLiAxqck4BAIsRBxdfBm1EhOqoTd3t2xcCx9m51y4xRVucQVLBRMR34bP8y7tcI80_oRSe0q7g3ajCPxTXfilKM24mqKThdgP8Vga7TxxrH14Oez1xbej05NdWPOn2b4K8j2szP5U5gPCoZnc8zv-DvxT_Bo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Secure+Direct+Communication+by+Using+Three-Dimensional+Hyperentanglement&rft.jtitle=Communications+in+theoretical+physics&rft.au=Shi%2C+Jin&rft.au=Gong%2C+Yan-Xiao&rft.au=Xu%2C+Ping&rft.au=Zhu%2C+Shi-Ning&rft.date=2011-11-01&rft.issn=0253-6102&rft.volume=56&rft.issue=5&rft.spage=831&rft.epage=836&rft_id=info:doi/10.1088%2F0253-6102%2F56%2F5%2F08&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_56_5_08 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |