Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement

We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 56; no. 11; pp. 831 - 836
Main Author 施锦 龚彦晓 徐平 祝世宁 詹佑邦
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols.
AbstractList We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme. Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former QSDC protocols.
We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols.
Author 施锦 龚彦晓 徐平 祝世宁 詹佑邦
AuthorAffiliation National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, HuMan 223300, China
Author_xml – sequence: 1
  fullname: 施锦 龚彦晓 徐平 祝世宁 詹佑邦
BookMark eNqNkE9PAjEQxXvAREA_gLf15sGV_mHb7tGAigmJGuHcdMss1Ox2oe0e-PYuQjh4MJ4mefN-8zJvgHqucYDQDcEPBEs5wjRjKSeYjjI-ykZY9lD_rF2iQQhfGGMqOOmj949Wu9jWySeY1kMytR5MTCZNXbfOGh1t45JinyyDdetksfEA6dTW4EK30FUy22_Bg4varSvo5HiFLkpdBbg-zSFaPj8tJrN0_vbyOnmcp4aNSUyLjJSaUgMUC8lykpMCRGmokbzgGFalYIyLMcWyKKnktBQGjF4RArlY0ZVkQ3R3vLv1za6FEFVtg4Gq0g6aNigyZrmQlHLcWcXRanwTgodSGRt_Pote20oRrA69qUNH6tCRyrjKFD6EkF_k1tta-_2fzP2Rsc32X_bbU8Smcetd1_IZYnkuM0Yw-wZwsoy8
CitedBy_id crossref_primary_10_1007_s10773_012_1336_y
crossref_primary_10_1016_j_scib_2021_11_002
crossref_primary_10_1103_PhysRevA_105_062422
crossref_primary_10_1007_s10773_017_3540_2
crossref_primary_10_7498_aps_64_160307
crossref_primary_10_1007_s11128_015_1107_9
crossref_primary_10_1007_s11434_013_6091_9
crossref_primary_10_1038_lsa_2016_144
crossref_primary_10_1142_S0217979220501064
crossref_primary_10_1007_s11433_014_5566_2
crossref_primary_10_1007_s10773_015_2880_z
crossref_primary_10_1007_s10773_017_3569_2
crossref_primary_10_1007_s10773_018_3938_5
crossref_primary_10_1007_s11128_018_2152_y
crossref_primary_10_1007_s10773_014_2053_5
crossref_primary_10_1007_s11433_014_5542_x
crossref_primary_10_1007_s11128_020_02840_0
crossref_primary_10_1088_0253_6102_59_5_05
crossref_primary_10_1007_s10773_012_1154_2
crossref_primary_10_1007_s10773_013_1718_9
crossref_primary_10_1007_s10773_024_05725_5
crossref_primary_10_1007_s11082_022_03920_4
crossref_primary_10_1007_s10773_014_2028_6
crossref_primary_10_1007_s10773_018_3803_6
crossref_primary_10_1140_epjd_e2012_30626_x
crossref_primary_10_1007_s10773_014_2021_0
crossref_primary_10_1109_COMST_2021_3109944
crossref_primary_10_1007_s10773_019_04036_4
crossref_primary_10_1007_s11128_022_03671_x
crossref_primary_10_1007_s10773_019_04183_8
crossref_primary_10_1109_ACCESS_2020_3006136
crossref_primary_10_1007_s10773_022_05138_2
crossref_primary_10_1109_ACCESS_2019_2937101
crossref_primary_10_1007_s10773_018_3726_2
crossref_primary_10_7498_aps_66_180303
crossref_primary_10_1088_1674_1056_23_1_010305
crossref_primary_10_1002_que2_83
crossref_primary_10_1007_s11128_018_1925_7
crossref_primary_10_1007_s10773_013_1884_9
crossref_primary_10_1007_s11433_020_1576_y
crossref_primary_10_7498_aps_71_20211702
crossref_primary_10_1007_s10773_015_2537_y
crossref_primary_10_1007_s11433_017_9100_9
crossref_primary_10_1007_s11128_020_02965_2
crossref_primary_10_1007_s11433_014_5434_0
crossref_primary_10_1088_0031_8949_89_12_125102
crossref_primary_10_1088_1674_1056_26_3_030302
crossref_primary_10_1007_s10773_020_04447_8
Cites_doi 10.1103/PhysRevA.71.044305
10.1088/0253-6102/53/4/12
10.1103/PhysRevA.68.042317
10.1038/nphys919
10.1103/PhysRevA.79.030301
10.1103/RevModPhys.74.145
10.1126/science.283.5410.2050
10.1088/0253-6102/50/3/19
10.1103/PhysRevLett.100.160502
10.1016/j.physleta.2005.10.050
10.1103/PhysRevLett.104.010501
10.1103/PhysRevA.82.032318
10.12693/APhysPolA.101.357
10.1103/PhysRevLett.96.190501
10.1103/PhysRevLett.89.257901
10.1038/nphys1150
10.1103/PhysRevLett.89.187902
10.1103/PhysRevLett.91.109801
10.1016/j.optcom.2009.11.087
10.1103/PhysRevLett.101.233601
10.1103/PhysRevA.83.062333
10.1088/0256-307X/28/4/040305
10.1088/1674-1056/19/11/110306
10.1016/j.physleta.2004.06.009
10.1103/PhysRevLett.85.3313
10.1103/PhysRevA.72.052110
10.1103/PhysRevA.59.1829
10.1103/PhysRevA.74.054302
10.1103/PhysRevLett.106.033601
10.1103/PhysRevLett.89.240401
10.1103/PhysRevLett.99.120503
10.1103/PhysRevA.82.054301
10.1103/PhysRevA.78.064304
10.1103/PhysRevLett.105.210504
10.1103/PhysRevLett.83.648
10.1103/PhysRevA.72.044302
10.1007/s11434-010-4336-4
10.1103/PhysRevLett.97.140407
10.1103/PhysRevA.77.053812
10.1088/0253-6102/55/4/08
10.1103/PhysRevA.82.044305
10.1103/PhysRevLett.85.441
10.1103/PhysRevA.72.016301
10.1038/nphys1603
10.1103/PhysRevA.83.032305
10.1103/PhysRevA.68.042313
10.1016/j.optcom.2009.08.024
10.1103/PhysRevLett.95.260501
10.1088/0253-6102/54/5/10
10.1007/s11433-011-4265-5
10.1103/PhysRevLett.98.020503
10.1103/PhysRevA.73.022338
10.1088/0253-6102/53/4/13
10.1080/09500349708231877
10.1103/PhysRevLett.93.053601
10.1088/0253-6102/54/6/08
10.1016/j.optcom.2010.08.061
10.1007/s11433-011-4245-9
10.1007/s11467-007-0050-3
10.1103/PhysRevA.69.052319
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0253-6102/56/5/08
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement
EndPage 836
ExternalDocumentID 10_1088_0253_6102_56_5_08
39985310
GroupedDBID 02O
042
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
AAPBV
ADACO
CDYEO
UNR
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c341t-b51fa22ce207839191be7fc2c86b60edf733674208bf2862f7cecad11e97d2d83
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Thu Aug 07 15:15:45 EDT 2025
Tue Jul 01 01:35:44 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Nov 10 14:15:21 EST 2020
Wed Feb 14 11:04:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-b51fa22ce207839191be7fc2c86b60edf733674208bf2862f7cecad11e97d2d83
Notes quantum secure direct communication, hyperentanglement, Bell bases measurement
11-2592/O3
We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former Q,SDC protocols.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1439782260
PQPubID 23500
PageCount 6
ParticipantIDs crossref_citationtrail_10_1088_0253_6102_56_5_08
chongqing_primary_39985310
crossref_primary_10_1088_0253_6102_56_5_08
iop_primary_10_1088_0253_6102_56_5_08
proquest_miscellaneous_1439782260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
49
R.H. Shi (6) 2011; 55
C.H. Bennett (1) 1984
H. Yuan (26) 2008; 50
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
2
3
4
5
7
60
61
20
27
28
29
Z.Y. Wang (23) 2010; 54
T.J. Wang (21) 2011; 28
S.J. Qin (24) 2010; 53
Y.B. Zhan (8) 2010; 53
30
31
33
34
35
36
37
38
39
A. Beige (9) 2002; 101
J. Yang (22) 2010; 54
J. Yang (25) 2010; 19
40
41
42
P.G. Kwiat (32) 1997; 44
43
References_xml – ident: 13
  doi: 10.1103/PhysRevA.71.044305
– volume: 53
  start-page: 645
  issn: 0253-6102
  year: 2010
  ident: 24
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/53/4/12
– ident: 12
  doi: 10.1103/PhysRevA.68.042317
– ident: 36
  doi: 10.1038/nphys919
– ident: 49
  doi: 10.1103/PhysRevA.79.030301
– ident: 2
  doi: 10.1103/RevModPhys.74.145
– ident: 30
  doi: 10.1126/science.283.5410.2050
– start-page: 175
  year: 1984
  ident: 1
– volume: 50
  start-page: 627
  issn: 0253-6102
  year: 2008
  ident: 26
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/50/3/19
– ident: 41
  doi: 10.1103/PhysRevLett.100.160502
– ident: 55
  doi: 10.1016/j.physleta.2005.10.050
– ident: 60
  doi: 10.1103/PhysRevLett.104.010501
– ident: 39
  doi: 10.1103/PhysRevA.82.032318
– volume: 101
  start-page: 357
  issn: 0587-4246
  year: 2002
  ident: 9
  publication-title: Acta Phys. Pol.
  doi: 10.12693/APhysPolA.101.357
– ident: 38
  doi: 10.1103/PhysRevLett.96.190501
– ident: 43
  doi: 10.1103/PhysRevLett.89.257901
– ident: 47
  doi: 10.1038/nphys1150
– ident: 10
  doi: 10.1103/PhysRevLett.89.187902
– ident: 11
  doi: 10.1103/PhysRevLett.91.109801
– ident: 18
  doi: 10.1016/j.optcom.2009.11.087
– ident: 58
  doi: 10.1103/PhysRevLett.101.233601
– ident: 61
  doi: 10.1103/PhysRevA.83.062333
– volume: 28
  start-page: 040305
  issn: 0256-307X
  year: 2011
  ident: 21
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/4/040305
– volume: 19
  start-page: 110306
  issn: 1674-1056
  year: 2010
  ident: 25
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/19/11/110306
– ident: 7
  doi: 10.1016/j.physleta.2004.06.009
– ident: 53
  doi: 10.1103/PhysRevLett.85.3313
– ident: 35
  doi: 10.1103/PhysRevA.72.052110
– ident: 3
  doi: 10.1103/PhysRevA.59.1829
– ident: 56
  doi: 10.1103/PhysRevA.74.054302
– ident: 51
  doi: 10.1103/PhysRevLett.106.033601
– ident: 57
  doi: 10.1103/PhysRevLett.89.240401
– ident: 40
  doi: 10.1103/PhysRevLett.99.120503
– ident: 50
  doi: 10.1103/PhysRevA.82.054301
– ident: 16
  doi: 10.1103/PhysRevA.78.064304
– ident: 34
  doi: 10.1103/PhysRevLett.105.210504
– ident: 4
  doi: 10.1103/PhysRevLett.83.648
– ident: 54
  doi: 10.1103/PhysRevA.72.044302
– ident: 28
  doi: 10.1007/s11434-010-4336-4
– ident: 45
  doi: 10.1103/PhysRevLett.97.140407
– ident: 48
  doi: 10.1103/PhysRevA.77.053812
– volume: 55
  start-page: 573
  issn: 0253-6102
  year: 2011
  ident: 6
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/55/4/08
– ident: 44
  doi: 10.1103/PhysRevA.82.044305
– ident: 31
  doi: 10.1103/PhysRevLett.85.441
– ident: 20
  doi: 10.1103/PhysRevA.72.016301
– ident: 52
  doi: 10.1038/nphys1603
– ident: 46
  doi: 10.1103/PhysRevA.83.032305
– ident: 37
  doi: 10.1103/PhysRevA.68.042313
– ident: 17
  doi: 10.1016/j.optcom.2009.08.024
– ident: 33
  doi: 10.1103/PhysRevLett.95.260501
– volume: 54
  start-page: 829
  issn: 0253-6102
  year: 2010
  ident: 22
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/54/5/10
– ident: 27
  doi: 10.1007/s11433-011-4265-5
– ident: 5
  doi: 10.1103/PhysRevLett.98.020503
– ident: 15
  doi: 10.1103/PhysRevA.73.022338
– volume: 53
  start-page: 648
  issn: 0253-6102
  year: 2010
  ident: 8
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/53/4/13
– volume: 44
  start-page: 2173
  year: 1997
  ident: 32
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349708231877
– ident: 59
  doi: 10.1103/PhysRevLett.93.053601
– volume: 54
  start-page: 997
  issn: 0253-6102
  year: 2010
  ident: 23
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/54/6/08
– ident: 42
  doi: 10.1016/j.optcom.2010.08.061
– ident: 29
  doi: 10.1007/s11433-011-4245-9
– ident: 14
  doi: 10.1007/s11467-007-0050-3
– ident: 19
  doi: 10.1103/PhysRevA.69.052319
SSID ssj0002761
Score 2.1344705
Snippet We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states...
We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 831
SubjectTerms Bells
Channels
Computer information security
Degrees of freedom
Mathematical analysis
Messages
Photons
Three dimensional
三维
光子传输
双光子
子秘密
自由度
量子信息
量子安全直接通信
量子通道
Title Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement
URI http://lib.cqvip.com/qk/83837X/201111/39985310.html
http://iopscience.iop.org/0253-6102/56/5/08
https://www.proquest.com/docview/1439782260
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EHxxOhU3P4igL0K3Nm368SjqmII6YYO9heZLRe2mWx_0r_eStpMxkL0VmqQ0udz9Lnf3C0Jnmug0EYnvBDF3nUDowIk5VU7KiaQGAmtp6p3vH8LeMLgb0dEfz_breFJq_jY82kg-GGUfHByXdGjYoR1b2At23zhat4_9udYlkeVGnbeuIpjg4C2NYHgUXsbZ8ydYhwV7tA4fXVLK1tJ060UJ99QSFJoEk7d2PuNt8bNM37jKT2yjrRJx4stCRHbQmsoaqF6iT1zu7WkDbdhkUDHdRf2nHOY7_8D2MF7hQi3ihVoSzL-xTTfAA5AG5VybWwIKhg_cA9_WkD6l2XORnL6Hht2bwVXPKW9ecARYtZnDqadTQoQiJsqXgE_HVaQFEXHIQ1dJbUgUIxOZ55qAT6QjoUQqPU8lkSQy9vdRLRtn6gBhSkBNkCBKZAqGEKwf9RX0UURJwBrcbaLWfC3YpGDYYICaAEZ48NKtFoeJkrPcXJ3xzmzsPI6ZmVhmJpbRkFHmxk10Me9SDfdP43NYoVXanVYywWD7mZhKmqlxPgXPCQAdgKzQba041iHatOfStp7xCNVmX7k6BmAz4ydWon8ByT7sJw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoU28DMY28bGBkbaXSWlSJ06cR7SuKrCxTgKJNyv-6hCQdmvzMP56zk5SrTAhJN4ixbYcn3P3O9_dzwAfLbVFrvI4SLiMgkTZJOCSmaCQVDMHga129c7fT9PBeXJ8wS7-qeK_HE8a1d_Bx5oouF7CJiGOh2ilY_R4IhqyNGRhxMOJtsuwyuI0d0ldRz-Gc11MM8-YOu_SxjX_N4xjV_g1Lke_0WYsWKllnMkDVe3tT38dinbmddrJVaeayY66vUfq-JxP24BXDTglh3X717Bkyk1Yb4AqadTAdBNe-LxRNX0Dw58Viqa6If7c3pBag5KFshMi_xKfmUDOcOOYoOcuFKjJQMgA3WDHD1WUozqP_S2c97-efRkEzSUNgUIDOAsk69qCUmWoCwjm6P5Jk1lFFU9lGhltHd9i5oL40lJ0n2ymjCp0t2vyTFPN43ewUo5LswWEUdQoNMlyXaDNREPJYoN9DDUaYYmMtmFnLiAxqck4BAIsRBxdfBm1EhOqoTd3t2xcCx9m51y4xRVucQVLBRMR34bP8y7tcI80_oRSe0q7g3ajCPxTXfilKM24mqKThdgP8Vga7TxxrH14Oez1xbej05NdWPOn2b4K8j2szP5U5gPCoZnc8zv-DvxT_Bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Secure+Direct+Communication+by+Using+Three-Dimensional+Hyperentanglement&rft.jtitle=Communications+in+theoretical+physics&rft.au=Shi%2C+Jin&rft.au=Gong%2C+Yan-Xiao&rft.au=Xu%2C+Ping&rft.au=Zhu%2C+Shi-Ning&rft.date=2011-11-01&rft.issn=0253-6102&rft.volume=56&rft.issue=5&rft.spage=831&rft.epage=836&rft_id=info:doi/10.1088%2F0253-6102%2F56%2F5%2F08&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_56_5_08
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg