Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films
The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measuremen...
Saved in:
Published in | Nature materials Vol. 12; no. 7; pp. 634 - 640 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO
3
substrates, indications of a new record of 65 K have been reported. Using
in situ
photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its
T
c
, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using
in situ
angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material. |
---|---|
AbstractList | The record superconducting transition temperature (Tc) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films-a key ingredient of Fe-HTS that was missed in FeSe before-and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its Tc, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material. The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. |
Author | Jiang, Juan Chen, Fei Peng, Rui Xu, Haichao Tan, Shiyong Lai, Xinchun Xiang, Tao Fan, Qin Hu, Jiangping Feng, Donglai Ye, Zirong Xia, Miao Xu, Difei Zhang, Tong Xie, Binping Zhang, Yan Xie, Xin |
Author_xml | – sequence: 1 givenname: Shiyong surname: Tan fullname: Tan, Shiyong organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University, China Academy of Engineering Physics – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 3 givenname: Miao surname: Xia fullname: Xia, Miao organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 4 givenname: Zirong surname: Ye fullname: Ye, Zirong organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 5 givenname: Fei surname: Chen fullname: Chen, Fei organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 6 givenname: Xin surname: Xie fullname: Xie, Xin organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 7 givenname: Rui surname: Peng fullname: Peng, Rui organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 8 givenname: Difei surname: Xu fullname: Xu, Difei organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 9 givenname: Qin surname: Fan fullname: Fan, Qin organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 10 givenname: Haichao surname: Xu fullname: Xu, Haichao organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 11 givenname: Juan surname: Jiang fullname: Jiang, Juan organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 12 givenname: Tong surname: Zhang fullname: Zhang, Tong organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 13 givenname: Xinchun surname: Lai fullname: Lai, Xinchun organization: China Academy of Engineering Physics – sequence: 14 givenname: Tao surname: Xiang fullname: Xiang, Tao organization: Institute of Physics, Chinese Academy of Sciences – sequence: 15 givenname: Jiangping surname: Hu fullname: Hu, Jiangping organization: Institute of Physics, Chinese Academy of Sciences – sequence: 16 givenname: Binping surname: Xie fullname: Xie, Binping organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University – sequence: 17 givenname: Donglai surname: Feng fullname: Feng, Donglai email: dlfeng@fudan.edu.cn organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23708327$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1KAzEQAOAgiv_gE8iCFz1sm5_dZHuUYlUoeFDPS5rMamQ3uyZZpW_js_hkprZVKZ4yGb4Jk5kDtG1bCwidEDwgmBVD28jAeJ5toX2SCZ5mnOPtVUwIpXvowPsXjCnJc76L9igTuGBU7KPq1gZwlVSQGqt7BTrxfQdOtYtbMG8mzBNpYzY4aWyqoQOrwYbEd8YmMfIL8S7fwCcxMYF7GN67B3PHPj_Cc8xUpm78EdqpZO3heHUeosfJ1cP4Jp3eXd-OL6epYhkJaUGFxKrQWFGu6UgQzeiMZpTPhGBc0gozjkdE53pUUJVHSGJdUVRKCUWrjB2i8-W7nWtfe_ChbIxXUNfSQtv7ksSPc5ZnlER6tkFf2t7Z2N23EpjmBY7qdKX6WQO67JxppJuX6wlGMFgC5VrvHVSlMkEG09rFwOqS4HKxonK9ot8WfwrWb_5DL5bUR2KfwP1pcdN-ARGInyA |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_7b01561 crossref_primary_10_1038_s42254_022_00438_2 crossref_primary_10_1103_PhysRevB_94_125437 crossref_primary_10_1103_PhysRevB_91_041112 crossref_primary_10_1103_PhysRevMaterials_2_074801 crossref_primary_10_1088_0953_2048_29_5_054009 crossref_primary_10_1103_PhysRevB_92_064515 crossref_primary_10_1088_1674_1056_ac8e9d crossref_primary_10_1038_ncomms8777 crossref_primary_10_1021_nn404262v crossref_primary_10_1103_PhysRevB_108_115147 crossref_primary_10_7566_JPSJ_89_044709 crossref_primary_10_1103_PhysRevB_110_134516 crossref_primary_10_1103_PhysRevResearch_2_033356 crossref_primary_10_1021_jacs_5b06687 crossref_primary_10_1088_1361_6668_aabddb crossref_primary_10_1103_PhysRevB_107_134516 crossref_primary_10_3367_UFNe_2016_07_037863 crossref_primary_10_1103_PhysRevB_109_094514 crossref_primary_10_1088_1742_6596_871_1_012017 crossref_primary_10_1063_5_0225073 crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_1016_j_physc_2016_05_001 crossref_primary_10_1021_acs_nanolett_8b02704 crossref_primary_10_7498_aps_67_20181818 crossref_primary_10_1103_PhysRevB_92_224515 crossref_primary_10_1088_1367_2630_16_3_033034 crossref_primary_10_1103_PhysRevB_94_104510 crossref_primary_10_1063_5_0058895 crossref_primary_10_1103_PhysRevLett_118_067002 crossref_primary_10_1002_admi_201900772 crossref_primary_10_1103_PhysRevB_101_140502 crossref_primary_10_5802_crphys_87 crossref_primary_10_1063_1_4919695 crossref_primary_10_1038_s41467_021_23106_y crossref_primary_10_1103_PhysRevB_91_155106 crossref_primary_10_1103_PhysRevMaterials_7_014803 crossref_primary_10_1021_acsnano_3c02876 crossref_primary_10_1063_1_4900870 crossref_primary_10_1103_PhysRevB_90_174505 crossref_primary_10_1088_0953_2048_30_1_013002 crossref_primary_10_1038_ncomms5247 crossref_primary_10_1103_PhysRevB_110_L140507 crossref_primary_10_1016_j_scib_2019_03_017 crossref_primary_10_1093_nsr_nwad213 crossref_primary_10_1063_5_0072979 crossref_primary_10_1088_1361_648X_aa5f26 crossref_primary_10_1088_1361_6668_ada115 crossref_primary_10_1002_adma_202405009 crossref_primary_10_1103_PhysRevB_98_094509 crossref_primary_10_1002_smm2_1013 crossref_primary_10_1103_PhysRevB_93_125129 crossref_primary_10_1038_nmat4686 crossref_primary_10_1103_PhysRevB_94_024505 crossref_primary_10_1103_PhysRevB_103_245114 crossref_primary_10_1103_PhysRevB_98_024506 crossref_primary_10_1039_C5TA09418F crossref_primary_10_1007_s43673_023_00106_2 crossref_primary_10_1103_PhysRevResearch_4_013032 crossref_primary_10_1038_srep07273 crossref_primary_10_1063_1_4876750 crossref_primary_10_1038_s41598_019_40644_0 crossref_primary_10_1088_1361_6501_ad1915 crossref_primary_10_1103_PhysRevB_106_125404 crossref_primary_10_35848_1347_4065_abefad crossref_primary_10_1021_acs_nanolett_9b00144 crossref_primary_10_1103_PhysRevB_100_224504 crossref_primary_10_1103_PhysRevB_95_214509 crossref_primary_10_1088_0256_307X_34_7_077404 crossref_primary_10_1038_nmat4138 crossref_primary_10_1016_j_ccr_2018_07_019 crossref_primary_10_1038_s41427_021_00336_6 crossref_primary_10_1103_PhysRevB_101_205421 crossref_primary_10_1021_acs_inorgchem_6b01949 crossref_primary_10_1088_1361_6528_ad13bd crossref_primary_10_1063_5_0215589 crossref_primary_10_1038_ncomms12146 crossref_primary_10_1088_1361_648X_aa5bdd crossref_primary_10_1103_PhysRevLett_117_217003 crossref_primary_10_1016_j_aop_2015_02_005 crossref_primary_10_1103_PhysRevB_92_035144 crossref_primary_10_1146_annurev_conmatphys_031016_025404 crossref_primary_10_1103_PhysRevB_95_020503 crossref_primary_10_1103_PhysRevX_8_011014 crossref_primary_10_1103_PhysRevLett_112_107001 crossref_primary_10_1088_0953_8984_26_47_473202 crossref_primary_10_1002_ange_201707568 crossref_primary_10_1038_s41598_018_22291_z crossref_primary_10_1103_PhysRevResearch_1_033025 crossref_primary_10_1038_srep06040 crossref_primary_10_1103_PhysRevLett_131_256002 crossref_primary_10_1038_s41467_017_02327_0 crossref_primary_10_1038_nphys4186 crossref_primary_10_1021_acs_inorgchem_7b02318 crossref_primary_10_7498_aps_71_20220118 crossref_primary_10_1088_0022_3727_48_32_323001 crossref_primary_10_1038_srep32078 crossref_primary_10_1093_nsr_nwy142 crossref_primary_10_1007_s11837_014_0885_3 crossref_primary_10_1103_PhysRevB_93_115138 crossref_primary_10_1016_j_mattod_2020_07_005 crossref_primary_10_1088_1361_6668_aae146 crossref_primary_10_1103_PhysRevX_9_041049 crossref_primary_10_1038_s43586_022_00133_7 crossref_primary_10_1103_PhysRevB_105_125410 crossref_primary_10_1557_mrs_2020_120 crossref_primary_10_1103_PhysRevB_105_104512 crossref_primary_10_1088_1674_1056_26_7_077402 crossref_primary_10_1088_1361_6668_ac6987 crossref_primary_10_1360_SSPMA_2022_0305 crossref_primary_10_1016_j_scib_2018_09_006 crossref_primary_10_1016_j_jssc_2016_08_026 crossref_primary_10_1088_0256_307X_34_8_087401 crossref_primary_10_1103_PhysRevB_100_035110 crossref_primary_10_1063_1_4886995 crossref_primary_10_1103_PhysRevB_98_024308 crossref_primary_10_1038_s41586_023_05900_4 crossref_primary_10_1103_PhysRevLett_122_046401 crossref_primary_10_3367_UFNr_2016_07_037863 crossref_primary_10_1021_acs_nanolett_6b00059 crossref_primary_10_1063_1_5027023 crossref_primary_10_1016_j_jallcom_2024_175559 crossref_primary_10_1073_pnas_1912836116 crossref_primary_10_1021_acs_nanolett_9b00135 crossref_primary_10_1103_PhysRevB_105_165407 crossref_primary_10_1088_1361_648X_aaca61 crossref_primary_10_1007_s10948_022_06256_y crossref_primary_10_1103_PhysRevLett_124_027002 crossref_primary_10_1038_ncomms12182 crossref_primary_10_1103_PhysRevB_93_195303 crossref_primary_10_1088_1367_2630_ab76ad crossref_primary_10_1103_PhysRevB_93_064517 crossref_primary_10_1103_PhysRevLett_121_207003 crossref_primary_10_1088_2053_1591_1_1_015026 crossref_primary_10_1103_PhysRevB_94_155127 crossref_primary_10_1038_s41467_017_00427_5 crossref_primary_10_1039_D2NR02599J crossref_primary_10_1103_PhysRevB_97_224512 crossref_primary_10_1103_PhysRevB_102_224422 crossref_primary_10_1002_anie_201707568 crossref_primary_10_1103_PhysRevB_97_024502 crossref_primary_10_1088_0256_307X_36_5_056801 crossref_primary_10_1002_adma_201803732 crossref_primary_10_1088_1674_1056_24_11_117902 crossref_primary_10_7567_1882_0786_aaf5c5 crossref_primary_10_1016_j_matlet_2023_135662 crossref_primary_10_7498_aps_67_20181541 crossref_primary_10_3233_JAE_190115 crossref_primary_10_1088_0953_8984_27_29_293203 crossref_primary_10_1002_advs_201600098 crossref_primary_10_1103_PhysRevB_106_245112 crossref_primary_10_1038_nphys3177 crossref_primary_10_1103_PhysRevLett_125_176405 crossref_primary_10_1103_PhysRevB_93_024511 crossref_primary_10_1002_advs_202309003 crossref_primary_10_1038_s42254_019_0088_5 crossref_primary_10_1103_PhysRevLett_119_107003 crossref_primary_10_1103_PhysRevB_96_014515 crossref_primary_10_1103_PhysRevB_106_094501 crossref_primary_10_7498_aps_67_20181455 crossref_primary_10_1103_PhysRevB_90_134520 crossref_primary_10_1093_nsr_nwae272 crossref_primary_10_1088_1361_648X_ab85f0 crossref_primary_10_1021_acs_jpcc_4c05431 crossref_primary_10_1038_nmat4155 crossref_primary_10_1103_PhysRevB_100_020503 crossref_primary_10_1038_nmat4153 crossref_primary_10_1146_annurev_conmatphys_033117_053942 crossref_primary_10_1016_j_cap_2017_03_015 crossref_primary_10_1103_PhysRevLett_120_267003 crossref_primary_10_1016_j_physc_2015_02_020 crossref_primary_10_1103_PhysRevB_93_184503 crossref_primary_10_1209_0295_5075_133_27002 crossref_primary_10_1103_PhysRevB_89_020501 crossref_primary_10_1103_PhysRevB_99_064502 crossref_primary_10_1103_PhysRevB_93_075428 crossref_primary_10_1103_PhysRevB_89_100502 crossref_primary_10_1016_j_jallcom_2015_08_216 crossref_primary_10_1126_sciadv_aav0764 crossref_primary_10_1038_s41467_019_08560_z crossref_primary_10_1016_j_physc_2015_02_028 crossref_primary_10_1103_PhysRevB_92_014506 crossref_primary_10_1103_PhysRevB_97_060501 crossref_primary_10_1103_PhysRevB_108_045106 crossref_primary_10_1103_PhysRevB_100_064518 crossref_primary_10_7498_aps_67_20181681 crossref_primary_10_1103_PhysRevB_91_174510 crossref_primary_10_1103_PhysRevB_97_115165 crossref_primary_10_1007_s10948_019_05253_y crossref_primary_10_1103_PhysRevB_89_020507 crossref_primary_10_1007_s40843_015_0015_8 crossref_primary_10_1103_PhysRevMaterials_9_034201 crossref_primary_10_1038_ncomms4202 crossref_primary_10_1088_0256_307X_35_5_057401 crossref_primary_10_1007_s10948_017_4103_8 crossref_primary_10_1016_j_apsusc_2025_162293 crossref_primary_10_1088_1361_6668_abd28f crossref_primary_10_1103_PhysRevB_96_214426 crossref_primary_10_1088_1367_2630_18_2_022001 crossref_primary_10_1088_0953_8984_26_26_265002 crossref_primary_10_1103_PhysRevLett_119_067004 crossref_primary_10_1103_PhysRevX_10_031033 crossref_primary_10_1016_j_physc_2015_02_011 crossref_primary_10_1039_C9CC06163K crossref_primary_10_1016_j_physc_2015_02_009 crossref_primary_10_1063_1_4969896 crossref_primary_10_1002_adma_202006124 crossref_primary_10_7498_aps_64_097503 crossref_primary_10_1088_0953_8984_29_2_025004 crossref_primary_10_1179_1743284714Y_0000000551 crossref_primary_10_1021_acsami_7b11853 crossref_primary_10_1038_srep10392 crossref_primary_10_1088_1674_1056_22_8_087407 crossref_primary_10_1103_PhysRevB_91_060509 crossref_primary_10_1021_acs_inorgchem_2c01906 crossref_primary_10_1103_PhysRevB_100_235123 crossref_primary_10_1126_sciadv_aao2682 crossref_primary_10_1021_ic503033k crossref_primary_10_1186_s40580_023_00405_2 crossref_primary_10_1103_PhysRevB_107_235406 crossref_primary_10_1103_PhysRevLett_112_177002 crossref_primary_10_1103_PhysRevB_90_214513 crossref_primary_10_7498_aps_67_20180770 crossref_primary_10_1103_PhysRevB_95_205405 crossref_primary_10_1103_PhysRevB_91_045107 crossref_primary_10_1103_PhysRevResearch_5_043011 crossref_primary_10_1209_0295_5075_109_28003 crossref_primary_10_1007_s40042_022_00471_5 crossref_primary_10_1088_1367_2630_ab9b59 crossref_primary_10_1038_srep10011 crossref_primary_10_3390_condmat2030025 crossref_primary_10_1007_s12274_022_4956_4 crossref_primary_10_1088_2053_1583_ab734b crossref_primary_10_1103_PhysRevX_4_031041 crossref_primary_10_1103_RevModPhys_93_025006 crossref_primary_10_1088_1361_6668_acb08d crossref_primary_10_1103_PhysRevB_106_214522 crossref_primary_10_1103_PhysRevB_97_014516 crossref_primary_10_1109_TASC_2016_2639738 crossref_primary_10_1103_PhysRevB_97_174509 crossref_primary_10_1016_j_apsusc_2014_02_124 crossref_primary_10_1103_PhysRevB_96_245111 crossref_primary_10_3390_cryst13010018 crossref_primary_10_1007_s10948_017_4301_4 crossref_primary_10_1103_PhysRevB_96_035137 crossref_primary_10_1088_1361_6668_ab1c00 crossref_primary_10_1038_s41467_024_47350_0 crossref_primary_10_1088_0034_4885_77_4_046502 crossref_primary_10_1038_ncomms3783 crossref_primary_10_7498_aps_67_20181401 crossref_primary_10_7498_aps_67_20181522 crossref_primary_10_1103_PhysRevX_4_031053 crossref_primary_10_1038_s41586_021_03643_8 crossref_primary_10_1103_PhysRevB_95_165107 crossref_primary_10_1038_s43246_024_00554_9 crossref_primary_10_7498_aps_67_20181768 crossref_primary_10_1103_PhysRevB_97_035408 crossref_primary_10_1103_PhysRevB_95_100504 crossref_primary_10_1039_D2CP04191J crossref_primary_10_1063_1_4950964 crossref_primary_10_3390_condmat3030020 crossref_primary_10_7498_aps_70_20201673 crossref_primary_10_3390_cryst12060853 crossref_primary_10_1007_s11433_023_2324_0 crossref_primary_10_1007_s10948_014_2635_8 crossref_primary_10_1002_chem_201504840 crossref_primary_10_1039_C5TC04041H crossref_primary_10_1063_5_0004304 crossref_primary_10_7566_JPSJ_84_063701 crossref_primary_10_1063_1_5120329 crossref_primary_10_1109_TASC_2025_3530910 crossref_primary_10_1103_PhysRevB_106_165301 crossref_primary_10_1088_1367_2630_aaf312 crossref_primary_10_1088_1361_6668_ab6dc4 crossref_primary_10_1103_PhysRevB_102_014502 crossref_primary_10_1103_PhysRevB_106_L180506 crossref_primary_10_1038_s41535_021_00388_5 crossref_primary_10_3390_nano13233029 crossref_primary_10_1038_s41535_017_0050_7 crossref_primary_10_1063_5_0013484 crossref_primary_10_7498_aps_67_20181638 crossref_primary_10_1103_PhysRevB_90_144517 crossref_primary_10_1103_PhysRevB_93_104513 crossref_primary_10_1103_PhysRevLett_116_157001 crossref_primary_10_1002_pssb_201600163 crossref_primary_10_1016_j_cplett_2013_11_045 crossref_primary_10_1016_j_surfrep_2021_100542 crossref_primary_10_1103_PhysRevB_99_035118 crossref_primary_10_1021_nl501480f crossref_primary_10_1038_s41598_019_42041_z crossref_primary_10_1093_nsr_nwu040 crossref_primary_10_1103_PhysRevB_102_115144 crossref_primary_10_1021_acs_nanolett_7b01650 crossref_primary_10_1007_s40843_015_0022_9 crossref_primary_10_1038_ncomms3877 crossref_primary_10_1016_j_cpc_2014_12_009 crossref_primary_10_1038_ncomms10840 crossref_primary_10_7566_JPSJ_85_073704 crossref_primary_10_1002_wcms_1304 crossref_primary_10_3390_condmat8030057 crossref_primary_10_1103_PhysRevB_88_205130 crossref_primary_10_3390_coatings11030276 crossref_primary_10_1103_PhysRevLett_115_026402 crossref_primary_10_1063_1_5094131 crossref_primary_10_1016_j_optmat_2022_112727 crossref_primary_10_1103_PhysRevB_95_115101 crossref_primary_10_7566_JPSJ_90_124709 crossref_primary_10_1038_ncomms10608 crossref_primary_10_1088_1361_648X_aacd37 crossref_primary_10_1088_2053_1583_3_2_024006 crossref_primary_10_1016_j_elspec_2015_06_002 crossref_primary_10_1007_s10853_024_09344_7 crossref_primary_10_1038_nphys3450 crossref_primary_10_1063_1_4939759 crossref_primary_10_1103_PhysRevLett_120_136403 crossref_primary_10_1103_PhysRevB_103_094502 crossref_primary_10_1103_PhysRevB_96_184513 crossref_primary_10_1016_j_jmmm_2017_12_060 crossref_primary_10_1088_2053_1583_aa6917 crossref_primary_10_15407_ufm_18_01_001 crossref_primary_10_1126_sciadv_ado4572 crossref_primary_10_1016_j_cap_2020_08_019 crossref_primary_10_3390_nano12193340 crossref_primary_10_1103_PhysRevB_104_184503 crossref_primary_10_1038_s41535_020_0227_3 crossref_primary_10_1088_1361_648X_abe44c crossref_primary_10_1103_PhysRevB_110_174514 crossref_primary_10_1088_2516_1075_ad5acb crossref_primary_10_1088_2053_1583_3_2_024002 crossref_primary_10_1103_PhysRevLett_121_267005 crossref_primary_10_1088_0953_2048_27_11_115010 crossref_primary_10_1103_PhysRevB_95_081106 crossref_primary_10_1103_PhysRevB_105_245140 crossref_primary_10_1088_1361_648X_ab1630 crossref_primary_10_1073_pnas_1611967113 crossref_primary_10_1007_s10948_019_05304_4 crossref_primary_10_1088_1361_648X_ab31cd crossref_primary_10_1103_PhysRevB_96_125107 crossref_primary_10_1103_PhysRevMaterials_6_124801 crossref_primary_10_1007_s10948_018_4917_z crossref_primary_10_1021_acsami_1c14451 crossref_primary_10_1103_PhysRevLett_125_097003 crossref_primary_10_1103_PhysRevB_98_214503 crossref_primary_10_1088_1361_648X_aa78d5 crossref_primary_10_1103_PhysRevB_93_054516 crossref_primary_10_1088_2053_1591_aba708 crossref_primary_10_1016_j_jpcs_2023_111717 crossref_primary_10_1038_s41467_017_00162_x crossref_primary_10_3390_mi12101224 crossref_primary_10_1021_acs_nanolett_9b00972 crossref_primary_10_1103_PhysRevB_101_100501 crossref_primary_10_1103_PhysRevLett_116_077002 crossref_primary_10_1103_PhysRevB_95_205117 crossref_primary_10_1093_nsr_nwu007 crossref_primary_10_3390_cryst9110560 crossref_primary_10_1016_j_physc_2017_10_001 crossref_primary_10_1016_j_physc_2020_1353708 crossref_primary_10_1103_PhysRevB_92_205117 crossref_primary_10_1103_PhysRevB_94_134502 crossref_primary_10_1103_PhysRevB_94_245139 crossref_primary_10_1103_PhysRevB_92_060504 crossref_primary_10_1063_5_0209228 crossref_primary_10_1021_acs_nanolett_1c02830 crossref_primary_10_1103_PhysRevLett_129_066403 crossref_primary_10_1103_PhysRevX_14_041039 crossref_primary_10_1103_PhysRevB_95_205127 crossref_primary_10_1088_1361_648X_ac7277 crossref_primary_10_1103_PhysRevB_94_100504 crossref_primary_10_1103_PhysRevB_94_100503 crossref_primary_10_1103_PhysRevLett_112_057002 crossref_primary_10_1103_PhysRevB_89_060506 crossref_primary_10_1039_C7CP00173H crossref_primary_10_3390_ma14216383 crossref_primary_10_1021_jacs_7b00216 crossref_primary_10_1103_PhysRevB_93_020507 crossref_primary_10_1103_PhysRevB_93_134513 crossref_primary_10_1088_0256_307X_31_1_017401 crossref_primary_10_1103_PhysRevB_93_020505 crossref_primary_10_4028_www_scientific_net_MSF_916_38 crossref_primary_10_1038_nphys3530 crossref_primary_10_1038_s41598_018_33121_7 crossref_primary_10_1103_PhysRevB_111_104501 crossref_primary_10_1103_PhysRevB_99_125130 crossref_primary_10_1016_j_commatsci_2017_10_037 crossref_primary_10_1103_PhysRevB_100_155134 crossref_primary_10_1063_10_0000123 crossref_primary_10_1103_PhysRevLett_113_027002 crossref_primary_10_7567_APEX_6_113101 crossref_primary_10_1002_admi_202200864 crossref_primary_10_1016_j_cossms_2013_03_005 crossref_primary_10_1103_PhysRevB_104_184507 crossref_primary_10_1103_PhysRevB_107_184508 crossref_primary_10_1007_s11467_016_0572_7 crossref_primary_10_1038_s41467_017_00281_5 crossref_primary_10_1088_1674_1056_24_11_117404 crossref_primary_10_1088_1674_1056_24_11_117405 crossref_primary_10_7566_JPSJ_86_033706 crossref_primary_10_1088_1674_1056_24_11_117402 crossref_primary_10_1103_PhysRevMaterials_2_024801 crossref_primary_10_1016_j_scib_2018_05_016 crossref_primary_10_1038_s41467_018_08024_w crossref_primary_10_1103_PhysRevLett_114_037002 crossref_primary_10_1021_acsami_6b00574 crossref_primary_10_1007_s11434_016_1087_x crossref_primary_10_1088_1361_6668_ab627b crossref_primary_10_1016_j_scib_2017_03_010 crossref_primary_10_1103_PhysRevB_89_220506 crossref_primary_10_1007_s12274_022_4718_3 crossref_primary_10_1021_acs_jpclett_2c03856 crossref_primary_10_1038_s41586_024_08118_0 crossref_primary_10_1073_pnas_1414094112 crossref_primary_10_1103_PhysRevB_93_180503 crossref_primary_10_1103_PhysRevB_93_180506 crossref_primary_10_1103_PhysRevLett_127_016803 crossref_primary_10_1103_PhysRevLett_134_016501 crossref_primary_10_1007_s10948_021_05924_9 crossref_primary_10_1103_PhysRevB_92_094513 crossref_primary_10_1088_2053_1583_aa8165 crossref_primary_10_1038_natrevmats_2017_60 crossref_primary_10_1038_srep02213 crossref_primary_10_1021_acs_nanolett_4c01493 crossref_primary_10_7566_JPSJ_85_013702 crossref_primary_10_1007_s44214_022_00014_w crossref_primary_10_1103_PhysRevB_105_214518 crossref_primary_10_1103_PhysRevB_104_024509 crossref_primary_10_1103_PhysRevB_89_220503 crossref_primary_10_1038_s41535_025_00733_y crossref_primary_10_1021_acs_nanolett_2c03587 crossref_primary_10_1021_acs_nanolett_5b01274 crossref_primary_10_1038_s42005_018_0006_7 crossref_primary_10_1126_sciadv_1603238 crossref_primary_10_1038_natrevmats_2016_94 crossref_primary_10_1103_PhysRevB_101_235154 crossref_primary_10_1103_PhysRevB_106_014509 crossref_primary_10_1103_PhysRevB_94_144512 crossref_primary_10_1088_1367_2630_ac9d5e crossref_primary_10_1103_PhysRevResearch_2_023156 crossref_primary_10_1038_s41467_021_23317_3 crossref_primary_10_1088_0953_2048_29_12_123001 crossref_primary_10_1146_annurev_conmatphys_033117_054137 crossref_primary_10_1038_ncomms9585 crossref_primary_10_1103_PhysRevB_108_L100509 crossref_primary_10_1002_smll_202400987 crossref_primary_10_1103_PhysRevLett_120_156406 crossref_primary_10_1073_pnas_2001123117 crossref_primary_10_1002_adma_202209457 crossref_primary_10_1038_ncomms10565 crossref_primary_10_1103_PhysRevB_93_224506 crossref_primary_10_1103_PhysRevB_94_201107 crossref_primary_10_1103_PhysRevB_93_224508 crossref_primary_10_1103_PhysRevB_95_224507 crossref_primary_10_1007_s11433_024_2596_6 crossref_primary_10_1103_PhysRevB_92_121108 crossref_primary_10_1126_sciadv_aar3679 crossref_primary_10_1103_PhysRevLett_123_036801 crossref_primary_10_1103_PhysRevB_108_214514 crossref_primary_10_1038_s41699_023_00381_5 crossref_primary_10_1039_D0TA08678A crossref_primary_10_1103_PhysRevB_89_014501 crossref_primary_10_1360_SSPMA_2022_0406 crossref_primary_10_1038_s41524_022_00707_9 crossref_primary_10_1039_D1CS00563D crossref_primary_10_1088_2053_1583_2_1_015001 crossref_primary_10_1038_s41524_022_00871_y crossref_primary_10_1103_PhysRevLett_124_097001 crossref_primary_10_1016_j_actamat_2017_01_051 crossref_primary_10_1002_smll_201904788 crossref_primary_10_1088_1674_1056_24_11_110702 crossref_primary_10_1103_PhysRevB_103_035143 crossref_primary_10_7566_JPSJ_85_103702 crossref_primary_10_1088_0953_2048_27_12_122001 crossref_primary_10_1103_PhysRevMaterials_4_051402 crossref_primary_10_1103_PhysRevB_94_081116 crossref_primary_10_1016_j_ssi_2023_116274 crossref_primary_10_1063_1_4919766 crossref_primary_10_1103_PhysRevB_102_180501 crossref_primary_10_1103_PhysRevB_108_054503 crossref_primary_10_1038_srep06481 crossref_primary_10_1103_PhysRevB_104_195110 crossref_primary_10_1103_PhysRevLett_121_197001 crossref_primary_10_1103_PhysRevB_93_094505 crossref_primary_10_1007_s11434_016_1102_2 crossref_primary_10_1002_adma_202109621 crossref_primary_10_1103_PhysRevB_95_174504 crossref_primary_10_1088_1361_648X_aaf2d9 crossref_primary_10_1021_acs_inorgchem_2c00568 crossref_primary_10_1103_PhysRevB_100_241101 crossref_primary_10_1038_s41467_021_22516_2 crossref_primary_10_1103_PhysRevB_106_024517 crossref_primary_10_1103_PhysRevB_106_L060504 crossref_primary_10_1088_1361_648X_aab40d crossref_primary_10_1002_apxr_202200058 crossref_primary_10_1103_PhysRevLett_120_097001 crossref_primary_10_1140_epjp_s13360_023_04126_7 crossref_primary_10_3390_nano12020270 crossref_primary_10_1021_acs_nanolett_4c01725 crossref_primary_10_1038_nature13894 crossref_primary_10_1080_08940886_2023_2226048 crossref_primary_10_1088_1674_1056_ad7c2a crossref_primary_10_1146_annurev_conmatphys_031016_025242 crossref_primary_10_1080_08940886_2023_2226047 crossref_primary_10_1016_j_physb_2015_05_035 crossref_primary_10_1103_PhysRevB_111_125152 crossref_primary_10_1103_PhysRevB_100_014512 crossref_primary_10_1038_nmat4728 crossref_primary_10_1103_PhysRevB_97_165105 crossref_primary_10_1039_C9NR04996G crossref_primary_10_1103_PhysRevB_90_205124 crossref_primary_10_1103_PhysRevB_96_020502 crossref_primary_10_1038_nphys3626 crossref_primary_10_1103_PhysRevLett_124_227002 crossref_primary_10_1021_acs_nanolett_4c01612 crossref_primary_10_1088_0256_307X_36_10_107404 crossref_primary_10_7567_JJAP_56_020308 crossref_primary_10_1103_PhysRevB_104_014502 crossref_primary_10_1038_s41467_021_24783_5 crossref_primary_10_1103_PhysRevLett_115_237002 crossref_primary_10_1016_j_spmi_2020_106573 crossref_primary_10_1103_PhysRevB_96_155124 crossref_primary_10_1103_PhysRevB_91_064511 crossref_primary_10_1103_PhysRevLett_117_117001 crossref_primary_10_1039_C8CP01463A crossref_primary_10_1088_1361_648X_ad44fd crossref_primary_10_1016_j_jssc_2016_04_008 crossref_primary_10_21468_SciPostPhys_15_3_081 crossref_primary_10_1063_5_0146553 crossref_primary_10_1021_acsami_4c18021 crossref_primary_10_1007_s11434_015_0842_8 crossref_primary_10_1103_PhysRevLett_117_077003 crossref_primary_10_1088_1742_6596_1054_1_012019 crossref_primary_10_1103_PhysRevB_94_115153 crossref_primary_10_1142_S0218625X18410019 crossref_primary_10_1103_PhysRevMaterials_6_064803 crossref_primary_10_1103_PhysRevB_91_220503 crossref_primary_10_1038_nmat3683 crossref_primary_10_1016_j_jallcom_2022_168045 crossref_primary_10_1103_PhysRevB_101_075123 crossref_primary_10_1021_acs_nanolett_8b03282 crossref_primary_10_9714_psac_2014_16_2_007 crossref_primary_10_7498_aps_65_127401 crossref_primary_10_1038_s41467_024_51615_z crossref_primary_10_1103_PhysRevB_93_245138 crossref_primary_10_1103_PhysRevB_96_220507 crossref_primary_10_1103_PhysRevB_96_220509 crossref_primary_10_1038_s41524_020_00414_3 crossref_primary_10_1088_0256_307X_32_2_027401 crossref_primary_10_3390_sym13020155 crossref_primary_10_3390_sym12091402 crossref_primary_10_1021_acs_nanolett_2c03735 crossref_primary_10_1088_2053_1583_3_1_014005 crossref_primary_10_1088_0256_307X_41_6_067401 crossref_primary_10_1103_PhysRevB_109_144513 crossref_primary_10_1103_PhysRevB_91_020502 crossref_primary_10_1103_PhysRevB_94_174516 crossref_primary_10_1038_ncomms6044 crossref_primary_10_1016_j_ccr_2023_215591 crossref_primary_10_1038_nmat4302 crossref_primary_10_1103_PhysRevLett_128_246401 crossref_primary_10_1038_s41467_021_26201_2 crossref_primary_10_1038_ncomms6047 crossref_primary_10_1103_PhysRevB_91_020504 crossref_primary_10_1103_PhysRevB_96_054516 crossref_primary_10_1088_1361_648X_ac2db9 crossref_primary_10_1103_PhysRevB_109_035105 crossref_primary_10_1021_acs_inorgchem_1c03610 crossref_primary_10_1038_srep05592 crossref_primary_10_1103_PhysRevB_110_224504 crossref_primary_10_1103_PhysRevMaterials_8_014802 crossref_primary_10_1103_PhysRevB_103_165105 crossref_primary_10_1038_s41467_024_47688_5 crossref_primary_10_1002_pssb_201600149 crossref_primary_10_1088_1367_2630_18_10_103001 crossref_primary_10_1103_PhysRevLett_116_107001 crossref_primary_10_1088_0953_8984_27_18_183201 crossref_primary_10_1038_ncomms11116 crossref_primary_10_7566_JPSJ_85_104701 crossref_primary_10_1021_acs_nanolett_5b05243 crossref_primary_10_1038_ncomms14988 crossref_primary_10_1103_PhysRevMaterials_2_114005 crossref_primary_10_1103_PhysRevB_92_165104 crossref_primary_10_1088_1361_6668_aaa501 crossref_primary_10_1088_0256_307X_39_12_127401 crossref_primary_10_1021_acs_nanolett_1c03508 crossref_primary_10_1103_PhysRevB_92_180507 crossref_primary_10_1039_D4TC05033A crossref_primary_10_1007_s11434_015_0853_5 crossref_primary_10_1103_PhysRevX_11_021054 crossref_primary_10_1103_PhysRevB_104_094512 crossref_primary_10_1103_PhysRevB_94_115146 crossref_primary_10_1021_acs_nanolett_4c02508 crossref_primary_10_1103_PhysRevB_95_184516 crossref_primary_10_1021_acs_nanolett_4c02627 crossref_primary_10_1038_s41535_017_0059_y crossref_primary_10_1002_adfm_202313236 crossref_primary_10_1103_PhysRevB_98_121410 crossref_primary_10_1088_2053_1591_ab7c85 crossref_primary_10_1103_PhysRevB_94_045114 crossref_primary_10_1103_PhysRevLett_117_067001 crossref_primary_10_1038_s41535_021_00381_y crossref_primary_10_1103_PhysRevB_102_180403 crossref_primary_10_1088_2053_1583_2_4_044012 crossref_primary_10_1103_PhysRevB_110_014520 |
Cites_doi | 10.1103/PhysRevB.85.235123 10.1103/PhysRevB.85.085121 10.1073/pnas.1015572108 10.1103/PhysRevB.80.174510 10.1103/PhysRevLett.102.247001 10.1103/PhysRevB.81.155124 10.1103/PhysRevB.82.165113 10.1103/PhysRevLett.102.177003 10.1073/pnas.0807325105 10.1103/PhysRevLett.108.267002 10.1088/1367-2630/14/7/073019 10.1103/PhysRevB.86.134508 10.1103/PhysRevLett.88.075508 10.1038/nature10813 10.1103/PhysRevLett.104.097002 10.1038/nmat3464 10.1063/1.2986244 10.1103/PhysRevB.81.224503 10.1103/PhysRevLett.102.127003 10.1038/ncomms1946 10.1038/nphys1923 10.1038/nmat2491 10.1103/PhysRevB.79.054503 10.1038/nmat2981 10.1088/0256-307X/29/3/037402 10.1103/PhysRevLett.102.107002 10.1038/nmat3120 10.1103/PhysRevLett.105.117002 10.1103/PhysRevB.81.184519 10.1038/nmat3648 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Jul 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Jul 2013 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/nmat3654 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1476-4660 |
EndPage | 640 |
ExternalDocumentID | 3002966101 23708327 10_1038_nmat3654 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c341t-827a0c8d0c26d2971d32b2426b7736a2f036091d5d982c58d0134188fcc7c2f43 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Tue Aug 05 11:07:38 EDT 2025 Fri Jul 25 09:03:42 EDT 2025 Mon Jul 21 05:55:54 EDT 2025 Tue Jul 01 02:13:54 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-827a0c8d0c26d2971d32b2426b7736a2f036091d5d982c58d0134188fcc7c2f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23708327 |
PQID | 1370702580 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1370635421 proquest_journals_1370702580 pubmed_primary_23708327 crossref_citationtrail_10_1038_nmat3654 crossref_primary_10_1038_nmat3654 springer_journals_10_1038_nmat3654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ge (CR26) 2013; 3 Zvanut (CR13) 2008; 104 Szot, Speier, Carius, Zastrow, Beyer (CR14) 2002; 88 Ma (CR3) 2009; 102 Sun (CR31) 2012; 483 Xiang (CR9) 2012; 86 Yin, Haule, Kotilar (CR23) 2011; 10 Bao (CR5) 2009; 102 Yi (CR21) 2012; 14 Yi (CR25) 2009; 80 Wang (CR6) 2012; 29 Zhang (CR10) 2011; 10 Tamai (CR15) 2010; 104 Matthew (CR30) 2013; 12 Albenque (CR29) 2010; 81 Wen (CR27) 2012; 108 Yi (CR20) 2011; 108 Kasahara (CR28) 2010; 81 Liu, Lu, Xiang (CR33) 2012; 85 Yang (CR11) 2009; 102 Zhang (CR17) 2009; 102 CR8 Hsu (CR1) 2008; 105 CR24 Yin, Haule, Kotilar (CR22) 2011; 7 Chen (CR32) 2011; 1 Zhou (CR12) 2010; 81 He (CR16) 2010; 105 Liu (CR7) 2012; 3 Zhang (CR19) 2010; 82 Medvedev (CR2) 2009; 8 Zhang (CR18) 2012; 85 Li (CR4) 2009; 79 ME Zvanut (BFnmat3654_CR13) 2008; 104 A Tamai (BFnmat3654_CR15) 2010; 104 LL Sun (BFnmat3654_CR31) 2012; 483 K Liu (BFnmat3654_CR33) 2012; 85 B Zhou (BFnmat3654_CR12) 2010; 81 K Szot (BFnmat3654_CR14) 2002; 88 S Medvedev (BFnmat3654_CR2) 2009; 8 BFnmat3654_CR8 M Yi (BFnmat3654_CR21) 2012; 14 M Yi (BFnmat3654_CR25) 2009; 80 Y Zhang (BFnmat3654_CR19) 2010; 82 S Kasahara (BFnmat3654_CR28) 2010; 81 Y Zhang (BFnmat3654_CR18) 2012; 85 FR Albenque (BFnmat3654_CR29) 2010; 81 ZP Yin (BFnmat3654_CR22) 2011; 7 QY Wang (BFnmat3654_CR6) 2012; 29 SL Li (BFnmat3654_CR4) 2009; 79 YY Xiang (BFnmat3654_CR9) 2012; 86 W Bao (BFnmat3654_CR5) 2009; 102 ZP Yin (BFnmat3654_CR23) 2011; 10 F Ma (BFnmat3654_CR3) 2009; 102 DF Liu (BFnmat3654_CR7) 2012; 3 BL Matthew (BFnmat3654_CR30) 2013; 12 M Yi (BFnmat3654_CR20) 2011; 108 BFnmat3654_CR24 YC Wen (BFnmat3654_CR27) 2012; 108 F Chen (BFnmat3654_CR32) 2011; 1 FC Hsu (BFnmat3654_CR1) 2008; 105 C He (BFnmat3654_CR16) 2010; 105 LX Yang (BFnmat3654_CR11) 2009; 102 Y Zhang (BFnmat3654_CR17) 2009; 102 Y Zhang (BFnmat3654_CR10) 2011; 10 QQ Ge (BFnmat3654_CR26) 2013; 3 22367543 - Nature. 2012 Feb 22;483(7387):67-9 21358648 - Nat Mater. 2011 Apr;10(4):273-7 23104153 - Nat Mater. 2013 Jan;12(1):15-9 20867599 - Phys Rev Lett. 2010 Sep 10;105(11):117002 23708329 - Nat Mater. 2013 Jul;12(7):605-10 23708331 - Nat Mater. 2013 Jul;12(7):600-1 19525948 - Nat Mater. 2009 Aug;8(8):630-3 23005008 - Phys Rev Lett. 2012 Jun 29;108(26):267002 19392313 - Phys Rev Lett. 2009 Mar 27;102(12):127003 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001 22760630 - Nat Commun. 2012 Jul 03;3:931 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4 19518816 - Phys Rev Lett. 2009 May 1;102(17):177003 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002 21927004 - Nat Mater. 2011 Sep 18;10(12):932-5 11863913 - Phys Rev Lett. 2002 Feb 18;88(7):075508 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 |
References_xml | – volume: 85 start-page: 235123 year: 2012 ident: CR33 article-title: Atomic and electronic structures of monolayer and bilayer thin films on SrTiO (001): First-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235123 – volume: 85 start-page: 085121 year: 2012 ident: CR18 article-title: Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085121 – volume: 108 start-page: 6878 year: 2011 end-page: 6883 ident: CR20 article-title: Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe Co ) As above the spin density wave transition publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015572108 – volume: 3 start-page: 011020 year: 2013 ident: CR26 article-title: Anisotropic but nodeless superconducting gap in the presence of spin-density wave in ion-pnictide superconductor NaFe Co As publication-title: Phys. Rev. X – volume: 80 start-page: 174510 year: 2009 ident: CR25 article-title: Unconventional electronic reconstruction in undoped (Ba,Sr)Fe As across the spin density wave transition publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174510 – volume: 1 start-page: 021020 year: 2011 ident: CR32 article-title: Electronic identification of the parental phase and mesoscopic phase separation of K Fe Se superconductors publication-title: Phys. Rev. X – volume: 102 start-page: 247001 year: 2009 ident: CR5 article-title: Tunable ( , ) -type AFM order in -Fe(Te,Se) superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.247001 – volume: 81 start-page: 155124 year: 2010 ident: CR12 article-title: High-resolution angle-resolved photoemission spectroscopy study of the electronic structure of EuFe As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155124 – volume: 82 start-page: 165113 year: 2010 ident: CR19 article-title: Strong correlations and spin-density-wave phase induced by a massive spectral weight redistribution in -Fe Te publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.165113 – volume: 102 start-page: 177003 year: 2009 ident: CR3 article-title: First-principles calculations of the electronic structure of tetragonal -FeTe and -FeSe crystals: Evidence for a bicollinear AFM order publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.177003 – volume: 105 start-page: 14262 year: 2008 end-page: 14264 ident: CR1 article-title: Superconductivity in the PbO-type structure -FeSe publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807325105 – ident: CR8 – volume: 108 start-page: 267002 year: 2012 ident: CR27 article-title: Gap opening and orbital modification of superconducting FeSe above the structural distortion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.267002 – volume: 14 start-page: 073019 year: 2012 ident: CR21 article-title: Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs publication-title: New J. Phys. doi: 10.1088/1367-2630/14/7/073019 – volume: 86 start-page: 134508 year: 2012 ident: CR9 article-title: High-temperature superconductivity at the FeSe/SrTiO interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.134508 – volume: 88 start-page: 075508 year: 2002 ident: CR14 article-title: Localized metallic conductivity and self-healing during thermal reduction of SrTiO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.075508 – volume: 483 start-page: 67 year: 2012 end-page: 69 ident: CR31 article-title: Re-emerging superconductivity at 48 kelvin in iron chalcogenides publication-title: Nature doi: 10.1038/nature10813 – volume: 104 start-page: 097002 year: 2010 ident: CR15 article-title: Strong electron correlations in the normal state of the iron-based FeSe Te superconductor observed by angle-resolved photoemission spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 12 start-page: 15 year: 2013 end-page: 19 ident: CR30 article-title: Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer publication-title: Nature Mater. doi: 10.1038/nmat3464 – volume: 104 start-page: 064122 year: 2008 ident: CR13 article-title: An annealing study of an oxygen vacancy related defect in SrTiO substrates publication-title: J. Appl. Phys. doi: 10.1063/1.2986244 – volume: 81 start-page: 224503 year: 2010 ident: CR29 article-title: Hole and electron contributions to the transport properties of Ba(Fe Ru ) As single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.224503 – volume: 102 start-page: 127003 year: 2009 ident: CR17 article-title: Unusual doping dependence of the electronic structure and coexistence of spin-density-wave and superconductor phase in single crystalline Sr K Fe As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.127003 – volume: 3 start-page: 931 year: 2012 ident: CR7 article-title: Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor publication-title: Nature Commun. doi: 10.1038/ncomms1946 – volume: 7 start-page: 294 year: 2011 end-page: 297 ident: CR22 article-title: Magnetism and charge dynamics in iron pnictides publication-title: Nature Phys. doi: 10.1038/nphys1923 – volume: 8 start-page: 630 year: 2009 end-page: 633 ident: CR2 article-title: Electronic and magnetic phase diagram of -Fe Sewith superconductivity at 36.7 K under pressure publication-title: Nature Mater. doi: 10.1038/nmat2491 – volume: 79 start-page: 054503 year: 2009 ident: CR4 article-title: First-order magnetic and structural phase transition in Fe Se Te publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.054503 – volume: 10 start-page: 273 year: 2011 end-page: 277 ident: CR10 article-title: Nodeless superconducting gap in A Fe Se (A = K,Cs) revealed by angle-resolved photoemission spectroscopy publication-title: Nature Mater. doi: 10.1038/nmat2981 – volume: 29 start-page: 037402 year: 2012 ident: CR6 article-title: Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/3/037402 – volume: 102 start-page: 107002 year: 2009 ident: CR11 article-title: Electronic structure and unusual exchange splitting in the spin-density wave state of BaFe As parent compound of iron based superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.107002 – volume: 10 start-page: 932 year: 2011 end-page: 935 ident: CR23 article-title: Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides publication-title: Nature Mater. doi: 10.1038/nmat3120 – volume: 105 start-page: 117002 year: 2010 ident: CR16 article-title: Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.117002 – ident: CR24 – volume: 81 start-page: 184519 year: 2010 ident: CR28 article-title: Evolution from non-Fermi to Fermi-liquid transport via isovalent doping in BaFe (As P ) superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.184519 – volume: 104 start-page: 064122 year: 2008 ident: BFnmat3654_CR13 publication-title: J. Appl. Phys. doi: 10.1063/1.2986244 – volume: 10 start-page: 273 year: 2011 ident: BFnmat3654_CR10 publication-title: Nature Mater. doi: 10.1038/nmat2981 – volume: 14 start-page: 073019 year: 2012 ident: BFnmat3654_CR21 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/7/073019 – volume: 79 start-page: 054503 year: 2009 ident: BFnmat3654_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.054503 – volume: 102 start-page: 107002 year: 2009 ident: BFnmat3654_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.107002 – volume: 1 start-page: 021020 year: 2011 ident: BFnmat3654_CR32 publication-title: Phys. Rev. X – ident: BFnmat3654_CR24 – volume: 108 start-page: 6878 year: 2011 ident: BFnmat3654_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015572108 – volume: 8 start-page: 630 year: 2009 ident: BFnmat3654_CR2 publication-title: Nature Mater. doi: 10.1038/nmat2491 – volume: 85 start-page: 085121 year: 2012 ident: BFnmat3654_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085121 – volume: 483 start-page: 67 year: 2012 ident: BFnmat3654_CR31 publication-title: Nature doi: 10.1038/nature10813 – volume: 81 start-page: 224503 year: 2010 ident: BFnmat3654_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.224503 – volume: 29 start-page: 037402 year: 2012 ident: BFnmat3654_CR6 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/3/037402 – volume: 105 start-page: 117002 year: 2010 ident: BFnmat3654_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.117002 – volume: 108 start-page: 267002 year: 2012 ident: BFnmat3654_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.267002 – volume: 80 start-page: 174510 year: 2009 ident: BFnmat3654_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174510 – volume: 85 start-page: 235123 year: 2012 ident: BFnmat3654_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235123 – volume: 88 start-page: 075508 year: 2002 ident: BFnmat3654_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.075508 – volume: 86 start-page: 134508 year: 2012 ident: BFnmat3654_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.134508 – volume: 105 start-page: 14262 year: 2008 ident: BFnmat3654_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807325105 – volume: 12 start-page: 15 year: 2013 ident: BFnmat3654_CR30 publication-title: Nature Mater. doi: 10.1038/nmat3464 – ident: BFnmat3654_CR8 doi: 10.1038/nmat3648 – volume: 81 start-page: 155124 year: 2010 ident: BFnmat3654_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155124 – volume: 7 start-page: 294 year: 2011 ident: BFnmat3654_CR22 publication-title: Nature Phys. doi: 10.1038/nphys1923 – volume: 10 start-page: 932 year: 2011 ident: BFnmat3654_CR23 publication-title: Nature Mater. doi: 10.1038/nmat3120 – volume: 81 start-page: 184519 year: 2010 ident: BFnmat3654_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.184519 – volume: 102 start-page: 247001 year: 2009 ident: BFnmat3654_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.247001 – volume: 104 start-page: 097002 year: 2010 ident: BFnmat3654_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 102 start-page: 177003 year: 2009 ident: BFnmat3654_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.177003 – volume: 3 start-page: 931 year: 2012 ident: BFnmat3654_CR7 publication-title: Nature Commun. doi: 10.1038/ncomms1946 – volume: 102 start-page: 127003 year: 2009 ident: BFnmat3654_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.127003 – volume: 3 start-page: 011020 year: 2013 ident: BFnmat3654_CR26 publication-title: Phys. Rev. X – volume: 82 start-page: 165113 year: 2010 ident: BFnmat3654_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.165113 – reference: 11863913 - Phys Rev Lett. 2002 Feb 18;88(7):075508 – reference: 21927004 - Nat Mater. 2011 Sep 18;10(12):932-5 – reference: 22760630 - Nat Commun. 2012 Jul 03;3:931 – reference: 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002 – reference: 22367543 - Nature. 2012 Feb 22;483(7387):67-9 – reference: 19525948 - Nat Mater. 2009 Aug;8(8):630-3 – reference: 21358648 - Nat Mater. 2011 Apr;10(4):273-7 – reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 – reference: 19392313 - Phys Rev Lett. 2009 Mar 27;102(12):127003 – reference: 23005008 - Phys Rev Lett. 2012 Jun 29;108(26):267002 – reference: 23708331 - Nat Mater. 2013 Jul;12(7):600-1 – reference: 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001 – reference: 19518816 - Phys Rev Lett. 2009 May 1;102(17):177003 – reference: 23104153 - Nat Mater. 2013 Jan;12(1):15-9 – reference: 23708329 - Nat Mater. 2013 Jul;12(7):605-10 – reference: 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4 – reference: 20867599 - Phys Rev Lett. 2010 Sep 10;105(11):117002 |
SSID | ssj0021556 |
Score | 2.6042087 |
Snippet | The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in... The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in... The record superconducting transition temperature (Tc) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56K. Recently, in... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 634 |
SubjectTerms | 639/301/119/1003 639/301/119/544 Biomaterials Condensed Matter Physics Density High temperature Interfaces Materials Science Nanotechnology Optical and Electronic Materials Physics Strain rate Substrates Superconductivity Thin films Transition temperatures |
Title | Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films |
URI | https://link.springer.com/article/10.1038/nmat3654 https://www.ncbi.nlm.nih.gov/pubmed/23708327 https://www.proquest.com/docview/1370702580 https://www.proquest.com/docview/1370635421 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NKiR4QBufBYYCQuLJamI7sfs0sYmumjRAfEh9ixJ_iEolLU26_fs7O0mBMe0lD_bJcXz23c93lzuAM2oNHjSF5zvJDOEsVKQvkz4KQ57lSnKZZM408PMqGT7wH6N41BjcyiasspWJXlDrqXI28l7EBO5OGsvwy-yZuKpRzrvalNBYgY5LXeZCusTo5cKFurL-u0gkBHEFbZPPMtkrEA-yJOZv1dE7jPnOP-rVzuAjbDZ4MbioGfwJPphiCzZeZRHcgjUfxanKbTDevmczZQhetZFpOigXMzPHO69L6-rrRARZga2-MgRpK-BWQTkbF4F2wexI8Tv7ZcoAGwbmzvTu5vfjaxZUj9hgx5OncgceBpf334akqaNAFOqoikgqslBJHSqaaNoXkWY0d6o5FwJZRC1qMYQNOtZ9SVWMhC7Lm5RWKaGo5WwXVotpYfYhMFEolU1i69yD2nKpYpQSORPcItCKRBfO2-VMVZNk3H3RJPXObibTduG7cLKknNWJNf5Bc9RyJG2OVpm-bAQcYtmNh8J5OrLCTBc1DSIpTqMu7NWcXL6EYh-KMZzqacvaV4P_NYOD_8_gENapL4_hwnePYLWaL8xnBClVfux3Ij7l4PsxdL5eXt3c_gH1hedY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEHBAUF4LBQwCcbI2sZ3YOSCEgGVLHxy6lXoLiR9ipZJdNlkqfopvZOysl0IRt17tkTPxPO0ZzwA8Z86ioGmU77yyVPBE00LlBSpDUdVaCZVX_mpg_yAfH4mPx9nxBvyMb2F8WmXUiUFRm5n2d-TDlEvkTpap5PX8G_Vdo3x0NbbQ6Nli1_44xSNb-2rnHdL3BWOj95O3Y7rqKkA1auyOKiarRCuTaJYbVsjUcFZ7Q1VLiQgzhzodjajJTKGYzhDQ1zxTymktNXOC47qX4LLgvPASpUYf1gc8tM39ayaZU_RjWCx2y9WwQf-T55n40_yd82nPxWODmRvdhBsr_5S86RnqFmzYZguun6lauAVXQtaobm-DDfeJrtKW4tEemcSQdjm3Czxj-zKyoS8FqRocDZ0oaOy425F2Pm2I8cnzCHFafbctwYGRPbTDw8Vk-omT7gsOuOnJ1_YOHF3IDt-FzWbW2PtAbJoo7fLM-XCkcULpDLVSzaVw6NilcgAv43aWelXU3P_RSRmC61yVceMH8HQNOe8LefwDZjtSpFyJclv-ZjxcYj2NQugjK1VjZ8seBj03wdIB3Ospuf4IwzlUm4jqs0jaM4v_hcGD_2PwBK6OJ_t75d7Owe5DuMZCaw6fOrwNm91iaR-hg9TVjwNXEvh80WLwC_SVH50 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQHBAUF4LBQwCcbI2sZ3Ye0AIUVYthYLUVtpbSPxQV2qzyyZLxa_xdYydeFso4tarPXImnqc94xmAl8xZFDSN8p2XlgqeaDpS-QiVoSgrrYTKS3818Hkv3z4UHyfZZA1-xbcwPq0y6sSgqM1M-zvyYcolcifLVDJ0fVrE163x2_l36jtI-UhrbKfRsciu_XmKx7fmzc4W0voVY-MPB--3ad9hgGrU3i1VTJaJVibRLDdsJFPDWeWNViUlIs8c6nc0qCYzI8V0hoC-_plSTmupmRMc170CVyXPUi9jcnJ22EM73b1skjlFn4bFwrdcDWv0RXmeiT9N4QX_9kJsNpi88W241fuq5F3HXHdgzdYbcPNcBcMNuBYySHVzF2y4W3SlthSP-cgwhjTLuV3geduXlA09KkhZ42joSkFj992WNPNpTYxPpEeI0_KHbQgOjO2-He4vDqZfOGmPcMBNj0-ae3B4KTt8H9brWW0fArFporTLM-dDk8YJpTPUUBWXwqGTl8oBvI7bWei-wLn_o-MiBNq5KuLGD-D5CnLeFfX4B8xmpEjRi3VTnDEhLrGaRoH0UZaytrNlB4NenGDpAB50lFx9hOEcqlBE9UUk7bnF_8Lg0f8xeAbXUQCKTzt7u4_hBgtdOnwW8Sast4ulfYK-Uls9DUxJ4NtlS8FvNmgjyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface-induced+superconductivity+and+strain-dependent+spin+density+waves+in+FeSe%2FSrTiO3+thin+films&rft.jtitle=Nature+materials&rft.au=Tan%2C+Shiyong&rft.au=Zhang%2C+Yan&rft.au=Xia%2C+Miao&rft.au=Ye%2C+Zirong&rft.date=2013-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=12&rft.issue=7&rft.spage=634&rft_id=info:doi/10.1038%2Fnmat3654&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |