Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films

The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measuremen...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 12; no. 7; pp. 634 - 640
Main Authors Tan, Shiyong, Zhang, Yan, Xia, Miao, Ye, Zirong, Chen, Fei, Xie, Xin, Peng, Rui, Xu, Difei, Fan, Qin, Xu, Haichao, Jiang, Juan, Zhang, Tong, Lai, Xinchun, Xiang, Tao, Hu, Jiangping, Xie, Binping, Feng, Donglai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.
AbstractList The record superconducting transition temperature (Tc) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films-a key ingredient of Fe-HTS that was missed in FeSe before-and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its Tc, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.
The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T(c), we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Author Jiang, Juan
Chen, Fei
Peng, Rui
Xu, Haichao
Tan, Shiyong
Lai, Xinchun
Xiang, Tao
Fan, Qin
Hu, Jiangping
Feng, Donglai
Ye, Zirong
Xia, Miao
Xu, Difei
Zhang, Tong
Xie, Binping
Zhang, Yan
Xie, Xin
Author_xml – sequence: 1
  givenname: Shiyong
  surname: Tan
  fullname: Tan, Shiyong
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University, China Academy of Engineering Physics
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 3
  givenname: Miao
  surname: Xia
  fullname: Xia, Miao
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 4
  givenname: Zirong
  surname: Ye
  fullname: Ye, Zirong
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 5
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 6
  givenname: Xin
  surname: Xie
  fullname: Xie, Xin
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 7
  givenname: Rui
  surname: Peng
  fullname: Peng, Rui
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 8
  givenname: Difei
  surname: Xu
  fullname: Xu, Difei
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 9
  givenname: Qin
  surname: Fan
  fullname: Fan, Qin
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 10
  givenname: Haichao
  surname: Xu
  fullname: Xu, Haichao
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 11
  givenname: Juan
  surname: Jiang
  fullname: Jiang, Juan
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 12
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 13
  givenname: Xinchun
  surname: Lai
  fullname: Lai, Xinchun
  organization: China Academy of Engineering Physics
– sequence: 14
  givenname: Tao
  surname: Xiang
  fullname: Xiang, Tao
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 15
  givenname: Jiangping
  surname: Hu
  fullname: Hu, Jiangping
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 16
  givenname: Binping
  surname: Xie
  fullname: Xie, Binping
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
– sequence: 17
  givenname: Donglai
  surname: Feng
  fullname: Feng, Donglai
  email: dlfeng@fudan.edu.cn
  organization: Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23708327$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1KAzEQAOAgiv_gE8iCFz1sm5_dZHuUYlUoeFDPS5rMamQ3uyZZpW_js_hkprZVKZ4yGb4Jk5kDtG1bCwidEDwgmBVD28jAeJ5toX2SCZ5mnOPtVUwIpXvowPsXjCnJc76L9igTuGBU7KPq1gZwlVSQGqt7BTrxfQdOtYtbMG8mzBNpYzY4aWyqoQOrwYbEd8YmMfIL8S7fwCcxMYF7GN67B3PHPj_Cc8xUpm78EdqpZO3heHUeosfJ1cP4Jp3eXd-OL6epYhkJaUGFxKrQWFGu6UgQzeiMZpTPhGBc0gozjkdE53pUUJVHSGJdUVRKCUWrjB2i8-W7nWtfe_ChbIxXUNfSQtv7ksSPc5ZnlER6tkFf2t7Z2N23EpjmBY7qdKX6WQO67JxppJuX6wlGMFgC5VrvHVSlMkEG09rFwOqS4HKxonK9ot8WfwrWb_5DL5bUR2KfwP1pcdN-ARGInyA
CitedBy_id crossref_primary_10_1021_acs_chemmater_7b01561
crossref_primary_10_1038_s42254_022_00438_2
crossref_primary_10_1103_PhysRevB_94_125437
crossref_primary_10_1103_PhysRevB_91_041112
crossref_primary_10_1103_PhysRevMaterials_2_074801
crossref_primary_10_1088_0953_2048_29_5_054009
crossref_primary_10_1103_PhysRevB_92_064515
crossref_primary_10_1088_1674_1056_ac8e9d
crossref_primary_10_1038_ncomms8777
crossref_primary_10_1021_nn404262v
crossref_primary_10_1103_PhysRevB_108_115147
crossref_primary_10_7566_JPSJ_89_044709
crossref_primary_10_1103_PhysRevB_110_134516
crossref_primary_10_1103_PhysRevResearch_2_033356
crossref_primary_10_1021_jacs_5b06687
crossref_primary_10_1088_1361_6668_aabddb
crossref_primary_10_1103_PhysRevB_107_134516
crossref_primary_10_3367_UFNe_2016_07_037863
crossref_primary_10_1103_PhysRevB_109_094514
crossref_primary_10_1088_1742_6596_871_1_012017
crossref_primary_10_1063_5_0225073
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1016_j_physc_2016_05_001
crossref_primary_10_1021_acs_nanolett_8b02704
crossref_primary_10_7498_aps_67_20181818
crossref_primary_10_1103_PhysRevB_92_224515
crossref_primary_10_1088_1367_2630_16_3_033034
crossref_primary_10_1103_PhysRevB_94_104510
crossref_primary_10_1063_5_0058895
crossref_primary_10_1103_PhysRevLett_118_067002
crossref_primary_10_1002_admi_201900772
crossref_primary_10_1103_PhysRevB_101_140502
crossref_primary_10_5802_crphys_87
crossref_primary_10_1063_1_4919695
crossref_primary_10_1038_s41467_021_23106_y
crossref_primary_10_1103_PhysRevB_91_155106
crossref_primary_10_1103_PhysRevMaterials_7_014803
crossref_primary_10_1021_acsnano_3c02876
crossref_primary_10_1063_1_4900870
crossref_primary_10_1103_PhysRevB_90_174505
crossref_primary_10_1088_0953_2048_30_1_013002
crossref_primary_10_1038_ncomms5247
crossref_primary_10_1103_PhysRevB_110_L140507
crossref_primary_10_1016_j_scib_2019_03_017
crossref_primary_10_1093_nsr_nwad213
crossref_primary_10_1063_5_0072979
crossref_primary_10_1088_1361_648X_aa5f26
crossref_primary_10_1088_1361_6668_ada115
crossref_primary_10_1002_adma_202405009
crossref_primary_10_1103_PhysRevB_98_094509
crossref_primary_10_1002_smm2_1013
crossref_primary_10_1103_PhysRevB_93_125129
crossref_primary_10_1038_nmat4686
crossref_primary_10_1103_PhysRevB_94_024505
crossref_primary_10_1103_PhysRevB_103_245114
crossref_primary_10_1103_PhysRevB_98_024506
crossref_primary_10_1039_C5TA09418F
crossref_primary_10_1007_s43673_023_00106_2
crossref_primary_10_1103_PhysRevResearch_4_013032
crossref_primary_10_1038_srep07273
crossref_primary_10_1063_1_4876750
crossref_primary_10_1038_s41598_019_40644_0
crossref_primary_10_1088_1361_6501_ad1915
crossref_primary_10_1103_PhysRevB_106_125404
crossref_primary_10_35848_1347_4065_abefad
crossref_primary_10_1021_acs_nanolett_9b00144
crossref_primary_10_1103_PhysRevB_100_224504
crossref_primary_10_1103_PhysRevB_95_214509
crossref_primary_10_1088_0256_307X_34_7_077404
crossref_primary_10_1038_nmat4138
crossref_primary_10_1016_j_ccr_2018_07_019
crossref_primary_10_1038_s41427_021_00336_6
crossref_primary_10_1103_PhysRevB_101_205421
crossref_primary_10_1021_acs_inorgchem_6b01949
crossref_primary_10_1088_1361_6528_ad13bd
crossref_primary_10_1063_5_0215589
crossref_primary_10_1038_ncomms12146
crossref_primary_10_1088_1361_648X_aa5bdd
crossref_primary_10_1103_PhysRevLett_117_217003
crossref_primary_10_1016_j_aop_2015_02_005
crossref_primary_10_1103_PhysRevB_92_035144
crossref_primary_10_1146_annurev_conmatphys_031016_025404
crossref_primary_10_1103_PhysRevB_95_020503
crossref_primary_10_1103_PhysRevX_8_011014
crossref_primary_10_1103_PhysRevLett_112_107001
crossref_primary_10_1088_0953_8984_26_47_473202
crossref_primary_10_1002_ange_201707568
crossref_primary_10_1038_s41598_018_22291_z
crossref_primary_10_1103_PhysRevResearch_1_033025
crossref_primary_10_1038_srep06040
crossref_primary_10_1103_PhysRevLett_131_256002
crossref_primary_10_1038_s41467_017_02327_0
crossref_primary_10_1038_nphys4186
crossref_primary_10_1021_acs_inorgchem_7b02318
crossref_primary_10_7498_aps_71_20220118
crossref_primary_10_1088_0022_3727_48_32_323001
crossref_primary_10_1038_srep32078
crossref_primary_10_1093_nsr_nwy142
crossref_primary_10_1007_s11837_014_0885_3
crossref_primary_10_1103_PhysRevB_93_115138
crossref_primary_10_1016_j_mattod_2020_07_005
crossref_primary_10_1088_1361_6668_aae146
crossref_primary_10_1103_PhysRevX_9_041049
crossref_primary_10_1038_s43586_022_00133_7
crossref_primary_10_1103_PhysRevB_105_125410
crossref_primary_10_1557_mrs_2020_120
crossref_primary_10_1103_PhysRevB_105_104512
crossref_primary_10_1088_1674_1056_26_7_077402
crossref_primary_10_1088_1361_6668_ac6987
crossref_primary_10_1360_SSPMA_2022_0305
crossref_primary_10_1016_j_scib_2018_09_006
crossref_primary_10_1016_j_jssc_2016_08_026
crossref_primary_10_1088_0256_307X_34_8_087401
crossref_primary_10_1103_PhysRevB_100_035110
crossref_primary_10_1063_1_4886995
crossref_primary_10_1103_PhysRevB_98_024308
crossref_primary_10_1038_s41586_023_05900_4
crossref_primary_10_1103_PhysRevLett_122_046401
crossref_primary_10_3367_UFNr_2016_07_037863
crossref_primary_10_1021_acs_nanolett_6b00059
crossref_primary_10_1063_1_5027023
crossref_primary_10_1016_j_jallcom_2024_175559
crossref_primary_10_1073_pnas_1912836116
crossref_primary_10_1021_acs_nanolett_9b00135
crossref_primary_10_1103_PhysRevB_105_165407
crossref_primary_10_1088_1361_648X_aaca61
crossref_primary_10_1007_s10948_022_06256_y
crossref_primary_10_1103_PhysRevLett_124_027002
crossref_primary_10_1038_ncomms12182
crossref_primary_10_1103_PhysRevB_93_195303
crossref_primary_10_1088_1367_2630_ab76ad
crossref_primary_10_1103_PhysRevB_93_064517
crossref_primary_10_1103_PhysRevLett_121_207003
crossref_primary_10_1088_2053_1591_1_1_015026
crossref_primary_10_1103_PhysRevB_94_155127
crossref_primary_10_1038_s41467_017_00427_5
crossref_primary_10_1039_D2NR02599J
crossref_primary_10_1103_PhysRevB_97_224512
crossref_primary_10_1103_PhysRevB_102_224422
crossref_primary_10_1002_anie_201707568
crossref_primary_10_1103_PhysRevB_97_024502
crossref_primary_10_1088_0256_307X_36_5_056801
crossref_primary_10_1002_adma_201803732
crossref_primary_10_1088_1674_1056_24_11_117902
crossref_primary_10_7567_1882_0786_aaf5c5
crossref_primary_10_1016_j_matlet_2023_135662
crossref_primary_10_7498_aps_67_20181541
crossref_primary_10_3233_JAE_190115
crossref_primary_10_1088_0953_8984_27_29_293203
crossref_primary_10_1002_advs_201600098
crossref_primary_10_1103_PhysRevB_106_245112
crossref_primary_10_1038_nphys3177
crossref_primary_10_1103_PhysRevLett_125_176405
crossref_primary_10_1103_PhysRevB_93_024511
crossref_primary_10_1002_advs_202309003
crossref_primary_10_1038_s42254_019_0088_5
crossref_primary_10_1103_PhysRevLett_119_107003
crossref_primary_10_1103_PhysRevB_96_014515
crossref_primary_10_1103_PhysRevB_106_094501
crossref_primary_10_7498_aps_67_20181455
crossref_primary_10_1103_PhysRevB_90_134520
crossref_primary_10_1093_nsr_nwae272
crossref_primary_10_1088_1361_648X_ab85f0
crossref_primary_10_1021_acs_jpcc_4c05431
crossref_primary_10_1038_nmat4155
crossref_primary_10_1103_PhysRevB_100_020503
crossref_primary_10_1038_nmat4153
crossref_primary_10_1146_annurev_conmatphys_033117_053942
crossref_primary_10_1016_j_cap_2017_03_015
crossref_primary_10_1103_PhysRevLett_120_267003
crossref_primary_10_1016_j_physc_2015_02_020
crossref_primary_10_1103_PhysRevB_93_184503
crossref_primary_10_1209_0295_5075_133_27002
crossref_primary_10_1103_PhysRevB_89_020501
crossref_primary_10_1103_PhysRevB_99_064502
crossref_primary_10_1103_PhysRevB_93_075428
crossref_primary_10_1103_PhysRevB_89_100502
crossref_primary_10_1016_j_jallcom_2015_08_216
crossref_primary_10_1126_sciadv_aav0764
crossref_primary_10_1038_s41467_019_08560_z
crossref_primary_10_1016_j_physc_2015_02_028
crossref_primary_10_1103_PhysRevB_92_014506
crossref_primary_10_1103_PhysRevB_97_060501
crossref_primary_10_1103_PhysRevB_108_045106
crossref_primary_10_1103_PhysRevB_100_064518
crossref_primary_10_7498_aps_67_20181681
crossref_primary_10_1103_PhysRevB_91_174510
crossref_primary_10_1103_PhysRevB_97_115165
crossref_primary_10_1007_s10948_019_05253_y
crossref_primary_10_1103_PhysRevB_89_020507
crossref_primary_10_1007_s40843_015_0015_8
crossref_primary_10_1103_PhysRevMaterials_9_034201
crossref_primary_10_1038_ncomms4202
crossref_primary_10_1088_0256_307X_35_5_057401
crossref_primary_10_1007_s10948_017_4103_8
crossref_primary_10_1016_j_apsusc_2025_162293
crossref_primary_10_1088_1361_6668_abd28f
crossref_primary_10_1103_PhysRevB_96_214426
crossref_primary_10_1088_1367_2630_18_2_022001
crossref_primary_10_1088_0953_8984_26_26_265002
crossref_primary_10_1103_PhysRevLett_119_067004
crossref_primary_10_1103_PhysRevX_10_031033
crossref_primary_10_1016_j_physc_2015_02_011
crossref_primary_10_1039_C9CC06163K
crossref_primary_10_1016_j_physc_2015_02_009
crossref_primary_10_1063_1_4969896
crossref_primary_10_1002_adma_202006124
crossref_primary_10_7498_aps_64_097503
crossref_primary_10_1088_0953_8984_29_2_025004
crossref_primary_10_1179_1743284714Y_0000000551
crossref_primary_10_1021_acsami_7b11853
crossref_primary_10_1038_srep10392
crossref_primary_10_1088_1674_1056_22_8_087407
crossref_primary_10_1103_PhysRevB_91_060509
crossref_primary_10_1021_acs_inorgchem_2c01906
crossref_primary_10_1103_PhysRevB_100_235123
crossref_primary_10_1126_sciadv_aao2682
crossref_primary_10_1021_ic503033k
crossref_primary_10_1186_s40580_023_00405_2
crossref_primary_10_1103_PhysRevB_107_235406
crossref_primary_10_1103_PhysRevLett_112_177002
crossref_primary_10_1103_PhysRevB_90_214513
crossref_primary_10_7498_aps_67_20180770
crossref_primary_10_1103_PhysRevB_95_205405
crossref_primary_10_1103_PhysRevB_91_045107
crossref_primary_10_1103_PhysRevResearch_5_043011
crossref_primary_10_1209_0295_5075_109_28003
crossref_primary_10_1007_s40042_022_00471_5
crossref_primary_10_1088_1367_2630_ab9b59
crossref_primary_10_1038_srep10011
crossref_primary_10_3390_condmat2030025
crossref_primary_10_1007_s12274_022_4956_4
crossref_primary_10_1088_2053_1583_ab734b
crossref_primary_10_1103_PhysRevX_4_031041
crossref_primary_10_1103_RevModPhys_93_025006
crossref_primary_10_1088_1361_6668_acb08d
crossref_primary_10_1103_PhysRevB_106_214522
crossref_primary_10_1103_PhysRevB_97_014516
crossref_primary_10_1109_TASC_2016_2639738
crossref_primary_10_1103_PhysRevB_97_174509
crossref_primary_10_1016_j_apsusc_2014_02_124
crossref_primary_10_1103_PhysRevB_96_245111
crossref_primary_10_3390_cryst13010018
crossref_primary_10_1007_s10948_017_4301_4
crossref_primary_10_1103_PhysRevB_96_035137
crossref_primary_10_1088_1361_6668_ab1c00
crossref_primary_10_1038_s41467_024_47350_0
crossref_primary_10_1088_0034_4885_77_4_046502
crossref_primary_10_1038_ncomms3783
crossref_primary_10_7498_aps_67_20181401
crossref_primary_10_7498_aps_67_20181522
crossref_primary_10_1103_PhysRevX_4_031053
crossref_primary_10_1038_s41586_021_03643_8
crossref_primary_10_1103_PhysRevB_95_165107
crossref_primary_10_1038_s43246_024_00554_9
crossref_primary_10_7498_aps_67_20181768
crossref_primary_10_1103_PhysRevB_97_035408
crossref_primary_10_1103_PhysRevB_95_100504
crossref_primary_10_1039_D2CP04191J
crossref_primary_10_1063_1_4950964
crossref_primary_10_3390_condmat3030020
crossref_primary_10_7498_aps_70_20201673
crossref_primary_10_3390_cryst12060853
crossref_primary_10_1007_s11433_023_2324_0
crossref_primary_10_1007_s10948_014_2635_8
crossref_primary_10_1002_chem_201504840
crossref_primary_10_1039_C5TC04041H
crossref_primary_10_1063_5_0004304
crossref_primary_10_7566_JPSJ_84_063701
crossref_primary_10_1063_1_5120329
crossref_primary_10_1109_TASC_2025_3530910
crossref_primary_10_1103_PhysRevB_106_165301
crossref_primary_10_1088_1367_2630_aaf312
crossref_primary_10_1088_1361_6668_ab6dc4
crossref_primary_10_1103_PhysRevB_102_014502
crossref_primary_10_1103_PhysRevB_106_L180506
crossref_primary_10_1038_s41535_021_00388_5
crossref_primary_10_3390_nano13233029
crossref_primary_10_1038_s41535_017_0050_7
crossref_primary_10_1063_5_0013484
crossref_primary_10_7498_aps_67_20181638
crossref_primary_10_1103_PhysRevB_90_144517
crossref_primary_10_1103_PhysRevB_93_104513
crossref_primary_10_1103_PhysRevLett_116_157001
crossref_primary_10_1002_pssb_201600163
crossref_primary_10_1016_j_cplett_2013_11_045
crossref_primary_10_1016_j_surfrep_2021_100542
crossref_primary_10_1103_PhysRevB_99_035118
crossref_primary_10_1021_nl501480f
crossref_primary_10_1038_s41598_019_42041_z
crossref_primary_10_1093_nsr_nwu040
crossref_primary_10_1103_PhysRevB_102_115144
crossref_primary_10_1021_acs_nanolett_7b01650
crossref_primary_10_1007_s40843_015_0022_9
crossref_primary_10_1038_ncomms3877
crossref_primary_10_1016_j_cpc_2014_12_009
crossref_primary_10_1038_ncomms10840
crossref_primary_10_7566_JPSJ_85_073704
crossref_primary_10_1002_wcms_1304
crossref_primary_10_3390_condmat8030057
crossref_primary_10_1103_PhysRevB_88_205130
crossref_primary_10_3390_coatings11030276
crossref_primary_10_1103_PhysRevLett_115_026402
crossref_primary_10_1063_1_5094131
crossref_primary_10_1016_j_optmat_2022_112727
crossref_primary_10_1103_PhysRevB_95_115101
crossref_primary_10_7566_JPSJ_90_124709
crossref_primary_10_1038_ncomms10608
crossref_primary_10_1088_1361_648X_aacd37
crossref_primary_10_1088_2053_1583_3_2_024006
crossref_primary_10_1016_j_elspec_2015_06_002
crossref_primary_10_1007_s10853_024_09344_7
crossref_primary_10_1038_nphys3450
crossref_primary_10_1063_1_4939759
crossref_primary_10_1103_PhysRevLett_120_136403
crossref_primary_10_1103_PhysRevB_103_094502
crossref_primary_10_1103_PhysRevB_96_184513
crossref_primary_10_1016_j_jmmm_2017_12_060
crossref_primary_10_1088_2053_1583_aa6917
crossref_primary_10_15407_ufm_18_01_001
crossref_primary_10_1126_sciadv_ado4572
crossref_primary_10_1016_j_cap_2020_08_019
crossref_primary_10_3390_nano12193340
crossref_primary_10_1103_PhysRevB_104_184503
crossref_primary_10_1038_s41535_020_0227_3
crossref_primary_10_1088_1361_648X_abe44c
crossref_primary_10_1103_PhysRevB_110_174514
crossref_primary_10_1088_2516_1075_ad5acb
crossref_primary_10_1088_2053_1583_3_2_024002
crossref_primary_10_1103_PhysRevLett_121_267005
crossref_primary_10_1088_0953_2048_27_11_115010
crossref_primary_10_1103_PhysRevB_95_081106
crossref_primary_10_1103_PhysRevB_105_245140
crossref_primary_10_1088_1361_648X_ab1630
crossref_primary_10_1073_pnas_1611967113
crossref_primary_10_1007_s10948_019_05304_4
crossref_primary_10_1088_1361_648X_ab31cd
crossref_primary_10_1103_PhysRevB_96_125107
crossref_primary_10_1103_PhysRevMaterials_6_124801
crossref_primary_10_1007_s10948_018_4917_z
crossref_primary_10_1021_acsami_1c14451
crossref_primary_10_1103_PhysRevLett_125_097003
crossref_primary_10_1103_PhysRevB_98_214503
crossref_primary_10_1088_1361_648X_aa78d5
crossref_primary_10_1103_PhysRevB_93_054516
crossref_primary_10_1088_2053_1591_aba708
crossref_primary_10_1016_j_jpcs_2023_111717
crossref_primary_10_1038_s41467_017_00162_x
crossref_primary_10_3390_mi12101224
crossref_primary_10_1021_acs_nanolett_9b00972
crossref_primary_10_1103_PhysRevB_101_100501
crossref_primary_10_1103_PhysRevLett_116_077002
crossref_primary_10_1103_PhysRevB_95_205117
crossref_primary_10_1093_nsr_nwu007
crossref_primary_10_3390_cryst9110560
crossref_primary_10_1016_j_physc_2017_10_001
crossref_primary_10_1016_j_physc_2020_1353708
crossref_primary_10_1103_PhysRevB_92_205117
crossref_primary_10_1103_PhysRevB_94_134502
crossref_primary_10_1103_PhysRevB_94_245139
crossref_primary_10_1103_PhysRevB_92_060504
crossref_primary_10_1063_5_0209228
crossref_primary_10_1021_acs_nanolett_1c02830
crossref_primary_10_1103_PhysRevLett_129_066403
crossref_primary_10_1103_PhysRevX_14_041039
crossref_primary_10_1103_PhysRevB_95_205127
crossref_primary_10_1088_1361_648X_ac7277
crossref_primary_10_1103_PhysRevB_94_100504
crossref_primary_10_1103_PhysRevB_94_100503
crossref_primary_10_1103_PhysRevLett_112_057002
crossref_primary_10_1103_PhysRevB_89_060506
crossref_primary_10_1039_C7CP00173H
crossref_primary_10_3390_ma14216383
crossref_primary_10_1021_jacs_7b00216
crossref_primary_10_1103_PhysRevB_93_020507
crossref_primary_10_1103_PhysRevB_93_134513
crossref_primary_10_1088_0256_307X_31_1_017401
crossref_primary_10_1103_PhysRevB_93_020505
crossref_primary_10_4028_www_scientific_net_MSF_916_38
crossref_primary_10_1038_nphys3530
crossref_primary_10_1038_s41598_018_33121_7
crossref_primary_10_1103_PhysRevB_111_104501
crossref_primary_10_1103_PhysRevB_99_125130
crossref_primary_10_1016_j_commatsci_2017_10_037
crossref_primary_10_1103_PhysRevB_100_155134
crossref_primary_10_1063_10_0000123
crossref_primary_10_1103_PhysRevLett_113_027002
crossref_primary_10_7567_APEX_6_113101
crossref_primary_10_1002_admi_202200864
crossref_primary_10_1016_j_cossms_2013_03_005
crossref_primary_10_1103_PhysRevB_104_184507
crossref_primary_10_1103_PhysRevB_107_184508
crossref_primary_10_1007_s11467_016_0572_7
crossref_primary_10_1038_s41467_017_00281_5
crossref_primary_10_1088_1674_1056_24_11_117404
crossref_primary_10_1088_1674_1056_24_11_117405
crossref_primary_10_7566_JPSJ_86_033706
crossref_primary_10_1088_1674_1056_24_11_117402
crossref_primary_10_1103_PhysRevMaterials_2_024801
crossref_primary_10_1016_j_scib_2018_05_016
crossref_primary_10_1038_s41467_018_08024_w
crossref_primary_10_1103_PhysRevLett_114_037002
crossref_primary_10_1021_acsami_6b00574
crossref_primary_10_1007_s11434_016_1087_x
crossref_primary_10_1088_1361_6668_ab627b
crossref_primary_10_1016_j_scib_2017_03_010
crossref_primary_10_1103_PhysRevB_89_220506
crossref_primary_10_1007_s12274_022_4718_3
crossref_primary_10_1021_acs_jpclett_2c03856
crossref_primary_10_1038_s41586_024_08118_0
crossref_primary_10_1073_pnas_1414094112
crossref_primary_10_1103_PhysRevB_93_180503
crossref_primary_10_1103_PhysRevB_93_180506
crossref_primary_10_1103_PhysRevLett_127_016803
crossref_primary_10_1103_PhysRevLett_134_016501
crossref_primary_10_1007_s10948_021_05924_9
crossref_primary_10_1103_PhysRevB_92_094513
crossref_primary_10_1088_2053_1583_aa8165
crossref_primary_10_1038_natrevmats_2017_60
crossref_primary_10_1038_srep02213
crossref_primary_10_1021_acs_nanolett_4c01493
crossref_primary_10_7566_JPSJ_85_013702
crossref_primary_10_1007_s44214_022_00014_w
crossref_primary_10_1103_PhysRevB_105_214518
crossref_primary_10_1103_PhysRevB_104_024509
crossref_primary_10_1103_PhysRevB_89_220503
crossref_primary_10_1038_s41535_025_00733_y
crossref_primary_10_1021_acs_nanolett_2c03587
crossref_primary_10_1021_acs_nanolett_5b01274
crossref_primary_10_1038_s42005_018_0006_7
crossref_primary_10_1126_sciadv_1603238
crossref_primary_10_1038_natrevmats_2016_94
crossref_primary_10_1103_PhysRevB_101_235154
crossref_primary_10_1103_PhysRevB_106_014509
crossref_primary_10_1103_PhysRevB_94_144512
crossref_primary_10_1088_1367_2630_ac9d5e
crossref_primary_10_1103_PhysRevResearch_2_023156
crossref_primary_10_1038_s41467_021_23317_3
crossref_primary_10_1088_0953_2048_29_12_123001
crossref_primary_10_1146_annurev_conmatphys_033117_054137
crossref_primary_10_1038_ncomms9585
crossref_primary_10_1103_PhysRevB_108_L100509
crossref_primary_10_1002_smll_202400987
crossref_primary_10_1103_PhysRevLett_120_156406
crossref_primary_10_1073_pnas_2001123117
crossref_primary_10_1002_adma_202209457
crossref_primary_10_1038_ncomms10565
crossref_primary_10_1103_PhysRevB_93_224506
crossref_primary_10_1103_PhysRevB_94_201107
crossref_primary_10_1103_PhysRevB_93_224508
crossref_primary_10_1103_PhysRevB_95_224507
crossref_primary_10_1007_s11433_024_2596_6
crossref_primary_10_1103_PhysRevB_92_121108
crossref_primary_10_1126_sciadv_aar3679
crossref_primary_10_1103_PhysRevLett_123_036801
crossref_primary_10_1103_PhysRevB_108_214514
crossref_primary_10_1038_s41699_023_00381_5
crossref_primary_10_1039_D0TA08678A
crossref_primary_10_1103_PhysRevB_89_014501
crossref_primary_10_1360_SSPMA_2022_0406
crossref_primary_10_1038_s41524_022_00707_9
crossref_primary_10_1039_D1CS00563D
crossref_primary_10_1088_2053_1583_2_1_015001
crossref_primary_10_1038_s41524_022_00871_y
crossref_primary_10_1103_PhysRevLett_124_097001
crossref_primary_10_1016_j_actamat_2017_01_051
crossref_primary_10_1002_smll_201904788
crossref_primary_10_1088_1674_1056_24_11_110702
crossref_primary_10_1103_PhysRevB_103_035143
crossref_primary_10_7566_JPSJ_85_103702
crossref_primary_10_1088_0953_2048_27_12_122001
crossref_primary_10_1103_PhysRevMaterials_4_051402
crossref_primary_10_1103_PhysRevB_94_081116
crossref_primary_10_1016_j_ssi_2023_116274
crossref_primary_10_1063_1_4919766
crossref_primary_10_1103_PhysRevB_102_180501
crossref_primary_10_1103_PhysRevB_108_054503
crossref_primary_10_1038_srep06481
crossref_primary_10_1103_PhysRevB_104_195110
crossref_primary_10_1103_PhysRevLett_121_197001
crossref_primary_10_1103_PhysRevB_93_094505
crossref_primary_10_1007_s11434_016_1102_2
crossref_primary_10_1002_adma_202109621
crossref_primary_10_1103_PhysRevB_95_174504
crossref_primary_10_1088_1361_648X_aaf2d9
crossref_primary_10_1021_acs_inorgchem_2c00568
crossref_primary_10_1103_PhysRevB_100_241101
crossref_primary_10_1038_s41467_021_22516_2
crossref_primary_10_1103_PhysRevB_106_024517
crossref_primary_10_1103_PhysRevB_106_L060504
crossref_primary_10_1088_1361_648X_aab40d
crossref_primary_10_1002_apxr_202200058
crossref_primary_10_1103_PhysRevLett_120_097001
crossref_primary_10_1140_epjp_s13360_023_04126_7
crossref_primary_10_3390_nano12020270
crossref_primary_10_1021_acs_nanolett_4c01725
crossref_primary_10_1038_nature13894
crossref_primary_10_1080_08940886_2023_2226048
crossref_primary_10_1088_1674_1056_ad7c2a
crossref_primary_10_1146_annurev_conmatphys_031016_025242
crossref_primary_10_1080_08940886_2023_2226047
crossref_primary_10_1016_j_physb_2015_05_035
crossref_primary_10_1103_PhysRevB_111_125152
crossref_primary_10_1103_PhysRevB_100_014512
crossref_primary_10_1038_nmat4728
crossref_primary_10_1103_PhysRevB_97_165105
crossref_primary_10_1039_C9NR04996G
crossref_primary_10_1103_PhysRevB_90_205124
crossref_primary_10_1103_PhysRevB_96_020502
crossref_primary_10_1038_nphys3626
crossref_primary_10_1103_PhysRevLett_124_227002
crossref_primary_10_1021_acs_nanolett_4c01612
crossref_primary_10_1088_0256_307X_36_10_107404
crossref_primary_10_7567_JJAP_56_020308
crossref_primary_10_1103_PhysRevB_104_014502
crossref_primary_10_1038_s41467_021_24783_5
crossref_primary_10_1103_PhysRevLett_115_237002
crossref_primary_10_1016_j_spmi_2020_106573
crossref_primary_10_1103_PhysRevB_96_155124
crossref_primary_10_1103_PhysRevB_91_064511
crossref_primary_10_1103_PhysRevLett_117_117001
crossref_primary_10_1039_C8CP01463A
crossref_primary_10_1088_1361_648X_ad44fd
crossref_primary_10_1016_j_jssc_2016_04_008
crossref_primary_10_21468_SciPostPhys_15_3_081
crossref_primary_10_1063_5_0146553
crossref_primary_10_1021_acsami_4c18021
crossref_primary_10_1007_s11434_015_0842_8
crossref_primary_10_1103_PhysRevLett_117_077003
crossref_primary_10_1088_1742_6596_1054_1_012019
crossref_primary_10_1103_PhysRevB_94_115153
crossref_primary_10_1142_S0218625X18410019
crossref_primary_10_1103_PhysRevMaterials_6_064803
crossref_primary_10_1103_PhysRevB_91_220503
crossref_primary_10_1038_nmat3683
crossref_primary_10_1016_j_jallcom_2022_168045
crossref_primary_10_1103_PhysRevB_101_075123
crossref_primary_10_1021_acs_nanolett_8b03282
crossref_primary_10_9714_psac_2014_16_2_007
crossref_primary_10_7498_aps_65_127401
crossref_primary_10_1038_s41467_024_51615_z
crossref_primary_10_1103_PhysRevB_93_245138
crossref_primary_10_1103_PhysRevB_96_220507
crossref_primary_10_1103_PhysRevB_96_220509
crossref_primary_10_1038_s41524_020_00414_3
crossref_primary_10_1088_0256_307X_32_2_027401
crossref_primary_10_3390_sym13020155
crossref_primary_10_3390_sym12091402
crossref_primary_10_1021_acs_nanolett_2c03735
crossref_primary_10_1088_2053_1583_3_1_014005
crossref_primary_10_1088_0256_307X_41_6_067401
crossref_primary_10_1103_PhysRevB_109_144513
crossref_primary_10_1103_PhysRevB_91_020502
crossref_primary_10_1103_PhysRevB_94_174516
crossref_primary_10_1038_ncomms6044
crossref_primary_10_1016_j_ccr_2023_215591
crossref_primary_10_1038_nmat4302
crossref_primary_10_1103_PhysRevLett_128_246401
crossref_primary_10_1038_s41467_021_26201_2
crossref_primary_10_1038_ncomms6047
crossref_primary_10_1103_PhysRevB_91_020504
crossref_primary_10_1103_PhysRevB_96_054516
crossref_primary_10_1088_1361_648X_ac2db9
crossref_primary_10_1103_PhysRevB_109_035105
crossref_primary_10_1021_acs_inorgchem_1c03610
crossref_primary_10_1038_srep05592
crossref_primary_10_1103_PhysRevB_110_224504
crossref_primary_10_1103_PhysRevMaterials_8_014802
crossref_primary_10_1103_PhysRevB_103_165105
crossref_primary_10_1038_s41467_024_47688_5
crossref_primary_10_1002_pssb_201600149
crossref_primary_10_1088_1367_2630_18_10_103001
crossref_primary_10_1103_PhysRevLett_116_107001
crossref_primary_10_1088_0953_8984_27_18_183201
crossref_primary_10_1038_ncomms11116
crossref_primary_10_7566_JPSJ_85_104701
crossref_primary_10_1021_acs_nanolett_5b05243
crossref_primary_10_1038_ncomms14988
crossref_primary_10_1103_PhysRevMaterials_2_114005
crossref_primary_10_1103_PhysRevB_92_165104
crossref_primary_10_1088_1361_6668_aaa501
crossref_primary_10_1088_0256_307X_39_12_127401
crossref_primary_10_1021_acs_nanolett_1c03508
crossref_primary_10_1103_PhysRevB_92_180507
crossref_primary_10_1039_D4TC05033A
crossref_primary_10_1007_s11434_015_0853_5
crossref_primary_10_1103_PhysRevX_11_021054
crossref_primary_10_1103_PhysRevB_104_094512
crossref_primary_10_1103_PhysRevB_94_115146
crossref_primary_10_1021_acs_nanolett_4c02508
crossref_primary_10_1103_PhysRevB_95_184516
crossref_primary_10_1021_acs_nanolett_4c02627
crossref_primary_10_1038_s41535_017_0059_y
crossref_primary_10_1002_adfm_202313236
crossref_primary_10_1103_PhysRevB_98_121410
crossref_primary_10_1088_2053_1591_ab7c85
crossref_primary_10_1103_PhysRevB_94_045114
crossref_primary_10_1103_PhysRevLett_117_067001
crossref_primary_10_1038_s41535_021_00381_y
crossref_primary_10_1103_PhysRevB_102_180403
crossref_primary_10_1088_2053_1583_2_4_044012
crossref_primary_10_1103_PhysRevB_110_014520
Cites_doi 10.1103/PhysRevB.85.235123
10.1103/PhysRevB.85.085121
10.1073/pnas.1015572108
10.1103/PhysRevB.80.174510
10.1103/PhysRevLett.102.247001
10.1103/PhysRevB.81.155124
10.1103/PhysRevB.82.165113
10.1103/PhysRevLett.102.177003
10.1073/pnas.0807325105
10.1103/PhysRevLett.108.267002
10.1088/1367-2630/14/7/073019
10.1103/PhysRevB.86.134508
10.1103/PhysRevLett.88.075508
10.1038/nature10813
10.1103/PhysRevLett.104.097002
10.1038/nmat3464
10.1063/1.2986244
10.1103/PhysRevB.81.224503
10.1103/PhysRevLett.102.127003
10.1038/ncomms1946
10.1038/nphys1923
10.1038/nmat2491
10.1103/PhysRevB.79.054503
10.1038/nmat2981
10.1088/0256-307X/29/3/037402
10.1103/PhysRevLett.102.107002
10.1038/nmat3120
10.1103/PhysRevLett.105.117002
10.1103/PhysRevB.81.184519
10.1038/nmat3648
ContentType Journal Article
Copyright Springer Nature Limited 2013
Copyright Nature Publishing Group Jul 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: Copyright Nature Publishing Group Jul 2013
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/nmat3654
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1476-4660
EndPage 640
ExternalDocumentID 3002966101
23708327
10_1038_nmat3654
Genre Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c341t-827a0c8d0c26d2971d32b2426b7736a2f036091d5d982c58d0134188fcc7c2f43
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Tue Aug 05 11:07:38 EDT 2025
Fri Jul 25 09:03:42 EDT 2025
Mon Jul 21 05:55:54 EDT 2025
Tue Jul 01 02:13:54 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Fri Feb 21 02:40:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-827a0c8d0c26d2971d32b2426b7736a2f036091d5d982c58d0134188fcc7c2f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23708327
PQID 1370702580
PQPubID 27576
PageCount 7
ParticipantIDs proquest_miscellaneous_1370635421
proquest_journals_1370702580
pubmed_primary_23708327
crossref_citationtrail_10_1038_nmat3654
crossref_primary_10_1038_nmat3654
springer_journals_10_1038_nmat3654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ge (CR26) 2013; 3
Zvanut (CR13) 2008; 104
Szot, Speier, Carius, Zastrow, Beyer (CR14) 2002; 88
Ma (CR3) 2009; 102
Sun (CR31) 2012; 483
Xiang (CR9) 2012; 86
Yin, Haule, Kotilar (CR23) 2011; 10
Bao (CR5) 2009; 102
Yi (CR21) 2012; 14
Yi (CR25) 2009; 80
Wang (CR6) 2012; 29
Zhang (CR10) 2011; 10
Tamai (CR15) 2010; 104
Matthew (CR30) 2013; 12
Albenque (CR29) 2010; 81
Wen (CR27) 2012; 108
Yi (CR20) 2011; 108
Kasahara (CR28) 2010; 81
Liu, Lu, Xiang (CR33) 2012; 85
Yang (CR11) 2009; 102
Zhang (CR17) 2009; 102
CR8
Hsu (CR1) 2008; 105
CR24
Yin, Haule, Kotilar (CR22) 2011; 7
Chen (CR32) 2011; 1
Zhou (CR12) 2010; 81
He (CR16) 2010; 105
Liu (CR7) 2012; 3
Zhang (CR19) 2010; 82
Medvedev (CR2) 2009; 8
Zhang (CR18) 2012; 85
Li (CR4) 2009; 79
ME Zvanut (BFnmat3654_CR13) 2008; 104
A Tamai (BFnmat3654_CR15) 2010; 104
LL Sun (BFnmat3654_CR31) 2012; 483
K Liu (BFnmat3654_CR33) 2012; 85
B Zhou (BFnmat3654_CR12) 2010; 81
K Szot (BFnmat3654_CR14) 2002; 88
S Medvedev (BFnmat3654_CR2) 2009; 8
BFnmat3654_CR8
M Yi (BFnmat3654_CR21) 2012; 14
M Yi (BFnmat3654_CR25) 2009; 80
Y Zhang (BFnmat3654_CR19) 2010; 82
S Kasahara (BFnmat3654_CR28) 2010; 81
Y Zhang (BFnmat3654_CR18) 2012; 85
FR Albenque (BFnmat3654_CR29) 2010; 81
ZP Yin (BFnmat3654_CR22) 2011; 7
QY Wang (BFnmat3654_CR6) 2012; 29
SL Li (BFnmat3654_CR4) 2009; 79
YY Xiang (BFnmat3654_CR9) 2012; 86
W Bao (BFnmat3654_CR5) 2009; 102
ZP Yin (BFnmat3654_CR23) 2011; 10
F Ma (BFnmat3654_CR3) 2009; 102
DF Liu (BFnmat3654_CR7) 2012; 3
BL Matthew (BFnmat3654_CR30) 2013; 12
M Yi (BFnmat3654_CR20) 2011; 108
BFnmat3654_CR24
YC Wen (BFnmat3654_CR27) 2012; 108
F Chen (BFnmat3654_CR32) 2011; 1
FC Hsu (BFnmat3654_CR1) 2008; 105
C He (BFnmat3654_CR16) 2010; 105
LX Yang (BFnmat3654_CR11) 2009; 102
Y Zhang (BFnmat3654_CR17) 2009; 102
Y Zhang (BFnmat3654_CR10) 2011; 10
QQ Ge (BFnmat3654_CR26) 2013; 3
22367543 - Nature. 2012 Feb 22;483(7387):67-9
21358648 - Nat Mater. 2011 Apr;10(4):273-7
23104153 - Nat Mater. 2013 Jan;12(1):15-9
20867599 - Phys Rev Lett. 2010 Sep 10;105(11):117002
23708329 - Nat Mater. 2013 Jul;12(7):605-10
23708331 - Nat Mater. 2013 Jul;12(7):600-1
19525948 - Nat Mater. 2009 Aug;8(8):630-3
23005008 - Phys Rev Lett. 2012 Jun 29;108(26):267002
19392313 - Phys Rev Lett. 2009 Mar 27;102(12):127003
19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001
22760630 - Nat Commun. 2012 Jul 03;3:931
18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4
19518816 - Phys Rev Lett. 2009 May 1;102(17):177003
19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002
21927004 - Nat Mater. 2011 Sep 18;10(12):932-5
11863913 - Phys Rev Lett. 2002 Feb 18;88(7):075508
20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
References_xml – volume: 85
  start-page: 235123
  year: 2012
  ident: CR33
  article-title: Atomic and electronic structures of monolayer and bilayer thin films on SrTiO (001): First-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235123
– volume: 85
  start-page: 085121
  year: 2012
  ident: CR18
  article-title: Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.085121
– volume: 108
  start-page: 6878
  year: 2011
  end-page: 6883
  ident: CR20
  article-title: Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe Co ) As above the spin density wave transition
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1015572108
– volume: 3
  start-page: 011020
  year: 2013
  ident: CR26
  article-title: Anisotropic but nodeless superconducting gap in the presence of spin-density wave in ion-pnictide superconductor NaFe Co As
  publication-title: Phys. Rev. X
– volume: 80
  start-page: 174510
  year: 2009
  ident: CR25
  article-title: Unconventional electronic reconstruction in undoped (Ba,Sr)Fe As across the spin density wave transition
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.174510
– volume: 1
  start-page: 021020
  year: 2011
  ident: CR32
  article-title: Electronic identification of the parental phase and mesoscopic phase separation of K Fe Se superconductors
  publication-title: Phys. Rev. X
– volume: 102
  start-page: 247001
  year: 2009
  ident: CR5
  article-title: Tunable ( , ) -type AFM order in -Fe(Te,Se) superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.247001
– volume: 81
  start-page: 155124
  year: 2010
  ident: CR12
  article-title: High-resolution angle-resolved photoemission spectroscopy study of the electronic structure of EuFe As
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155124
– volume: 82
  start-page: 165113
  year: 2010
  ident: CR19
  article-title: Strong correlations and spin-density-wave phase induced by a massive spectral weight redistribution in -Fe Te
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165113
– volume: 102
  start-page: 177003
  year: 2009
  ident: CR3
  article-title: First-principles calculations of the electronic structure of tetragonal -FeTe and -FeSe crystals: Evidence for a bicollinear AFM order
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.177003
– volume: 105
  start-page: 14262
  year: 2008
  end-page: 14264
  ident: CR1
  article-title: Superconductivity in the PbO-type structure -FeSe
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807325105
– ident: CR8
– volume: 108
  start-page: 267002
  year: 2012
  ident: CR27
  article-title: Gap opening and orbital modification of superconducting FeSe above the structural distortion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.267002
– volume: 14
  start-page: 073019
  year: 2012
  ident: CR21
  article-title: Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/7/073019
– volume: 86
  start-page: 134508
  year: 2012
  ident: CR9
  article-title: High-temperature superconductivity at the FeSe/SrTiO interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.134508
– volume: 88
  start-page: 075508
  year: 2002
  ident: CR14
  article-title: Localized metallic conductivity and self-healing during thermal reduction of SrTiO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.075508
– volume: 483
  start-page: 67
  year: 2012
  end-page: 69
  ident: CR31
  article-title: Re-emerging superconductivity at 48 kelvin in iron chalcogenides
  publication-title: Nature
  doi: 10.1038/nature10813
– volume: 104
  start-page: 097002
  year: 2010
  ident: CR15
  article-title: Strong electron correlations in the normal state of the iron-based FeSe Te superconductor observed by angle-resolved photoemission spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 12
  start-page: 15
  year: 2013
  end-page: 19
  ident: CR30
  article-title: Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer
  publication-title: Nature Mater.
  doi: 10.1038/nmat3464
– volume: 104
  start-page: 064122
  year: 2008
  ident: CR13
  article-title: An annealing study of an oxygen vacancy related defect in SrTiO substrates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2986244
– volume: 81
  start-page: 224503
  year: 2010
  ident: CR29
  article-title: Hole and electron contributions to the transport properties of Ba(Fe Ru ) As single crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.224503
– volume: 102
  start-page: 127003
  year: 2009
  ident: CR17
  article-title: Unusual doping dependence of the electronic structure and coexistence of spin-density-wave and superconductor phase in single crystalline Sr K Fe As
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.127003
– volume: 3
  start-page: 931
  year: 2012
  ident: CR7
  article-title: Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1946
– volume: 7
  start-page: 294
  year: 2011
  end-page: 297
  ident: CR22
  article-title: Magnetism and charge dynamics in iron pnictides
  publication-title: Nature Phys.
  doi: 10.1038/nphys1923
– volume: 8
  start-page: 630
  year: 2009
  end-page: 633
  ident: CR2
  article-title: Electronic and magnetic phase diagram of -Fe Sewith superconductivity at 36.7 K under pressure
  publication-title: Nature Mater.
  doi: 10.1038/nmat2491
– volume: 79
  start-page: 054503
  year: 2009
  ident: CR4
  article-title: First-order magnetic and structural phase transition in Fe Se Te
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.054503
– volume: 10
  start-page: 273
  year: 2011
  end-page: 277
  ident: CR10
  article-title: Nodeless superconducting gap in A Fe Se  (A = K,Cs) revealed by angle-resolved photoemission spectroscopy
  publication-title: Nature Mater.
  doi: 10.1038/nmat2981
– volume: 29
  start-page: 037402
  year: 2012
  ident: CR6
  article-title: Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/3/037402
– volume: 102
  start-page: 107002
  year: 2009
  ident: CR11
  article-title: Electronic structure and unusual exchange splitting in the spin-density wave state of BaFe As parent compound of iron based superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.107002
– volume: 10
  start-page: 932
  year: 2011
  end-page: 935
  ident: CR23
  article-title: Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
  publication-title: Nature Mater.
  doi: 10.1038/nmat3120
– volume: 105
  start-page: 117002
  year: 2010
  ident: CR16
  article-title: Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.117002
– ident: CR24
– volume: 81
  start-page: 184519
  year: 2010
  ident: CR28
  article-title: Evolution from non-Fermi to Fermi-liquid transport via isovalent doping in BaFe (As P ) superconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.184519
– volume: 104
  start-page: 064122
  year: 2008
  ident: BFnmat3654_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2986244
– volume: 10
  start-page: 273
  year: 2011
  ident: BFnmat3654_CR10
  publication-title: Nature Mater.
  doi: 10.1038/nmat2981
– volume: 14
  start-page: 073019
  year: 2012
  ident: BFnmat3654_CR21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/7/073019
– volume: 79
  start-page: 054503
  year: 2009
  ident: BFnmat3654_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.054503
– volume: 102
  start-page: 107002
  year: 2009
  ident: BFnmat3654_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.107002
– volume: 1
  start-page: 021020
  year: 2011
  ident: BFnmat3654_CR32
  publication-title: Phys. Rev. X
– ident: BFnmat3654_CR24
– volume: 108
  start-page: 6878
  year: 2011
  ident: BFnmat3654_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1015572108
– volume: 8
  start-page: 630
  year: 2009
  ident: BFnmat3654_CR2
  publication-title: Nature Mater.
  doi: 10.1038/nmat2491
– volume: 85
  start-page: 085121
  year: 2012
  ident: BFnmat3654_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.085121
– volume: 483
  start-page: 67
  year: 2012
  ident: BFnmat3654_CR31
  publication-title: Nature
  doi: 10.1038/nature10813
– volume: 81
  start-page: 224503
  year: 2010
  ident: BFnmat3654_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.224503
– volume: 29
  start-page: 037402
  year: 2012
  ident: BFnmat3654_CR6
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/3/037402
– volume: 105
  start-page: 117002
  year: 2010
  ident: BFnmat3654_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.117002
– volume: 108
  start-page: 267002
  year: 2012
  ident: BFnmat3654_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.267002
– volume: 80
  start-page: 174510
  year: 2009
  ident: BFnmat3654_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.174510
– volume: 85
  start-page: 235123
  year: 2012
  ident: BFnmat3654_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235123
– volume: 88
  start-page: 075508
  year: 2002
  ident: BFnmat3654_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.075508
– volume: 86
  start-page: 134508
  year: 2012
  ident: BFnmat3654_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.134508
– volume: 105
  start-page: 14262
  year: 2008
  ident: BFnmat3654_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807325105
– volume: 12
  start-page: 15
  year: 2013
  ident: BFnmat3654_CR30
  publication-title: Nature Mater.
  doi: 10.1038/nmat3464
– ident: BFnmat3654_CR8
  doi: 10.1038/nmat3648
– volume: 81
  start-page: 155124
  year: 2010
  ident: BFnmat3654_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155124
– volume: 7
  start-page: 294
  year: 2011
  ident: BFnmat3654_CR22
  publication-title: Nature Phys.
  doi: 10.1038/nphys1923
– volume: 10
  start-page: 932
  year: 2011
  ident: BFnmat3654_CR23
  publication-title: Nature Mater.
  doi: 10.1038/nmat3120
– volume: 81
  start-page: 184519
  year: 2010
  ident: BFnmat3654_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.184519
– volume: 102
  start-page: 247001
  year: 2009
  ident: BFnmat3654_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.247001
– volume: 104
  start-page: 097002
  year: 2010
  ident: BFnmat3654_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 102
  start-page: 177003
  year: 2009
  ident: BFnmat3654_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.177003
– volume: 3
  start-page: 931
  year: 2012
  ident: BFnmat3654_CR7
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1946
– volume: 102
  start-page: 127003
  year: 2009
  ident: BFnmat3654_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.127003
– volume: 3
  start-page: 011020
  year: 2013
  ident: BFnmat3654_CR26
  publication-title: Phys. Rev. X
– volume: 82
  start-page: 165113
  year: 2010
  ident: BFnmat3654_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165113
– reference: 11863913 - Phys Rev Lett. 2002 Feb 18;88(7):075508
– reference: 21927004 - Nat Mater. 2011 Sep 18;10(12):932-5
– reference: 22760630 - Nat Commun. 2012 Jul 03;3:931
– reference: 19392146 - Phys Rev Lett. 2009 Mar 13;102(10):107002
– reference: 22367543 - Nature. 2012 Feb 22;483(7387):67-9
– reference: 19525948 - Nat Mater. 2009 Aug;8(8):630-3
– reference: 21358648 - Nat Mater. 2011 Apr;10(4):273-7
– reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
– reference: 19392313 - Phys Rev Lett. 2009 Mar 27;102(12):127003
– reference: 23005008 - Phys Rev Lett. 2012 Jun 29;108(26):267002
– reference: 23708331 - Nat Mater. 2013 Jul;12(7):600-1
– reference: 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001
– reference: 19518816 - Phys Rev Lett. 2009 May 1;102(17):177003
– reference: 23104153 - Nat Mater. 2013 Jan;12(1):15-9
– reference: 23708329 - Nat Mater. 2013 Jul;12(7):605-10
– reference: 18776050 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14262-4
– reference: 20867599 - Phys Rev Lett. 2010 Sep 10;105(11):117002
SSID ssj0021556
Score 2.6042087
Snippet The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in...
The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in...
The record superconducting transition temperature (Tc) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56K. Recently, in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 634
SubjectTerms 639/301/119/1003
639/301/119/544
Biomaterials
Condensed Matter Physics
Density
High temperature
Interfaces
Materials Science
Nanotechnology
Optical and Electronic Materials
Physics
Strain rate
Substrates
Superconductivity
Thin films
Transition temperatures
Title Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films
URI https://link.springer.com/article/10.1038/nmat3654
https://www.ncbi.nlm.nih.gov/pubmed/23708327
https://www.proquest.com/docview/1370702580
https://www.proquest.com/docview/1370635421
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NKiR4QBufBYYCQuLJamI7sfs0sYmumjRAfEh9ixJ_iEolLU26_fs7O0mBMe0lD_bJcXz23c93lzuAM2oNHjSF5zvJDOEsVKQvkz4KQ57lSnKZZM408PMqGT7wH6N41BjcyiasspWJXlDrqXI28l7EBO5OGsvwy-yZuKpRzrvalNBYgY5LXeZCusTo5cKFurL-u0gkBHEFbZPPMtkrEA-yJOZv1dE7jPnOP-rVzuAjbDZ4MbioGfwJPphiCzZeZRHcgjUfxanKbTDevmczZQhetZFpOigXMzPHO69L6-rrRARZga2-MgRpK-BWQTkbF4F2wexI8Tv7ZcoAGwbmzvTu5vfjaxZUj9hgx5OncgceBpf334akqaNAFOqoikgqslBJHSqaaNoXkWY0d6o5FwJZRC1qMYQNOtZ9SVWMhC7Lm5RWKaGo5WwXVotpYfYhMFEolU1i69yD2nKpYpQSORPcItCKRBfO2-VMVZNk3H3RJPXObibTduG7cLKknNWJNf5Bc9RyJG2OVpm-bAQcYtmNh8J5OrLCTBc1DSIpTqMu7NWcXL6EYh-KMZzqacvaV4P_NYOD_8_gENapL4_hwnePYLWaL8xnBClVfux3Ij7l4PsxdL5eXt3c_gH1hedY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEHBAUF4LBQwCcbI2sZ3YOSCEgGVLHxy6lXoLiR9ipZJdNlkqfopvZOysl0IRt17tkTPxPO0ZzwA8Z86ioGmU77yyVPBE00LlBSpDUdVaCZVX_mpg_yAfH4mPx9nxBvyMb2F8WmXUiUFRm5n2d-TDlEvkTpap5PX8G_Vdo3x0NbbQ6Nli1_44xSNb-2rnHdL3BWOj95O3Y7rqKkA1auyOKiarRCuTaJYbVsjUcFZ7Q1VLiQgzhzodjajJTKGYzhDQ1zxTymktNXOC47qX4LLgvPASpUYf1gc8tM39ayaZU_RjWCx2y9WwQf-T55n40_yd82nPxWODmRvdhBsr_5S86RnqFmzYZguun6lauAVXQtaobm-DDfeJrtKW4tEemcSQdjm3Czxj-zKyoS8FqRocDZ0oaOy425F2Pm2I8cnzCHFafbctwYGRPbTDw8Vk-omT7gsOuOnJ1_YOHF3IDt-FzWbW2PtAbJoo7fLM-XCkcULpDLVSzaVw6NilcgAv43aWelXU3P_RSRmC61yVceMH8HQNOe8LefwDZjtSpFyJclv-ZjxcYj2NQugjK1VjZ8seBj03wdIB3Ospuf4IwzlUm4jqs0jaM4v_hcGD_2PwBK6OJ_t75d7Owe5DuMZCaw6fOrwNm91iaR-hg9TVjwNXEvh80WLwC_SVH50
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQHBAUF4LBQwCcbI2sZ3Ye0AIUVYthYLUVtpbSPxQV2qzyyZLxa_xdYydeFso4tarPXImnqc94xmAl8xZFDSN8p2XlgqeaDpS-QiVoSgrrYTKS3818Hkv3z4UHyfZZA1-xbcwPq0y6sSgqM1M-zvyYcolcifLVDJ0fVrE163x2_l36jtI-UhrbKfRsciu_XmKx7fmzc4W0voVY-MPB--3ad9hgGrU3i1VTJaJVibRLDdsJFPDWeWNViUlIs8c6nc0qCYzI8V0hoC-_plSTmupmRMc170CVyXPUi9jcnJ22EM73b1skjlFn4bFwrdcDWv0RXmeiT9N4QX_9kJsNpi88W241fuq5F3HXHdgzdYbcPNcBcMNuBYySHVzF2y4W3SlthSP-cgwhjTLuV3geduXlA09KkhZ42joSkFj992WNPNpTYxPpEeI0_KHbQgOjO2-He4vDqZfOGmPcMBNj0-ae3B4KTt8H9brWW0fArFporTLM-dDk8YJpTPUUBWXwqGTl8oBvI7bWei-wLn_o-MiBNq5KuLGD-D5CnLeFfX4B8xmpEjRi3VTnDEhLrGaRoH0UZaytrNlB4NenGDpAB50lFx9hOEcqlBE9UUk7bnF_8Lg0f8xeAbXUQCKTzt7u4_hBgtdOnwW8Sast4ulfYK-Uls9DUxJ4NtlS8FvNmgjyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface-induced+superconductivity+and+strain-dependent+spin+density+waves+in+FeSe%2FSrTiO3+thin+films&rft.jtitle=Nature+materials&rft.au=Tan%2C+Shiyong&rft.au=Zhang%2C+Yan&rft.au=Xia%2C+Miao&rft.au=Ye%2C+Zirong&rft.date=2013-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=12&rft.issue=7&rft.spage=634&rft_id=info:doi/10.1038%2Fnmat3654&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon