QoS-Aware Automatic Service Composition:A Graph View
In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate pro...
Saved in:
Published in | Journal of computer science and technology Vol. 26; no. 5; pp. 837 - 853 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.09.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1000-9000 1860-4749 |
DOI | 10.1007/s11390-011-0183-2 |
Cover
Abstract | In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009. |
---|---|
AbstractList | In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users. However, most approaches treat these two aspects as two separate problems, automatic service composition and service selection. Although the latest researches realize the restriction of this separate view and some specific methods are proposed, they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously. In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem, we propose a new graph search problem, single-source optimal directed acyclic graphs (DAGs), for the first time. This novel single-source optimal DAGs (SSOD) problem is similar to, but more general than the classical single-source shortest paths (SSSP) problem. In this paper, a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n+m) (n and m are the number of nodes and edges in the graph respectively), and the proofs of its soundness. It is also directly applied to solve the QoS-aware automatic service composition problem, and a service composition tool named QSynth is implemented. Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios, even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.[PUBLICATION ABSTRACT] In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009. In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users. However, most approaches treat these two aspects as two separate problems, automatic service composition and service selection. Although the latest researches realize the restriction of this separate view and some specific methods are proposed, they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously. In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem, we propose a new graph search problem, single-source optimal directed acyclic graphs (DAGs), for the first time. This novel single-source optimal DAGs (SSOD) problem is similar to, but more general than the classical single-source shortest paths (SSSP) problem. In this paper, a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O ( n log n + m ) ( n and m are the number of nodes and edges in the graph respectively), and the proofs of its soundness. It is also directly applied to solve the QoS-aware automatic service composition problem, and a service composition tool named QSynth is implemented. Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios, even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009. |
Author | 姜伟 吴甜 虎嵩林 刘志勇 |
AuthorAffiliation | Senior Member,CCF1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China Graduate University of the Chinese Academy of Sciences,Beijing 100190,China State Grid Information & Telecommunication Company Ltd,Beijing 100190,China |
Author_xml | – sequence: 1 fullname: 姜伟 吴甜 虎嵩林 刘志勇 |
BookMark | eNp9kE1OwzAQhS1UJNrCAdgF9gFP7MTxMqqgIFVCqMDWclynddXGqZ1ScRXOwp24Aq5SgcSii_lZzDdv5g1Qr7a1RugS8A1gzG49AOE4xgAhchInJ6gPeYZjyijvhR5jHPOQztDA-yXGhGFK-yh7ttO42Emno2Lb2rVsjYqm2r0bpaORXTfWm9bY-vvrs4jGTjaL6M3o3Tk6reTK64tDHaLX-7uX0UM8eRo_jopJrAiFNma00kEzyzXwkpISSEIV16mSkFVQzSpV4jRXmucVAcikKiuezGSeAtAEZoQM0XW3t3F2s9W-FUu7dXWQFDknOUsZY2EIuiHlrPdOV6JxZi3dhwAs9u6Izh0R3BF7d0QSGPaPUaaV-09bJ83qKJl0pA8q9Vy7v5OOQVcHuYWt55vA_d5IeAI4hYT8AFbZhWo |
CitedBy_id | crossref_primary_10_1109_TSC_2015_2466544 crossref_primary_10_1016_j_ins_2019_01_015 crossref_primary_10_1109_TSC_2022_3207232 crossref_primary_10_1007_s11761_019_00254_0 crossref_primary_10_1109_TSC_2013_41 crossref_primary_10_1177_1550147719879049 crossref_primary_10_1016_j_future_2017_04_009 crossref_primary_10_1109_TSC_2020_2964753 crossref_primary_10_1016_j_ins_2016_09_003 |
Cites_doi | 10.1145/77600.77615 10.1109/ICEBE.2005.128 10.1109/ICWS.2008.68 10.1109/MIC.2003.1167338 10.1145/988672.988747 10.1145/261342.261352 10.1016/S0196-6774(03)00046-4 10.1145/1385989.1386019 10.1016/j.websem.2004.06.005 10.1145/1242572.1242795 10.1090/qam/102435 10.1109/ISCC.2006.116 10.1109/CEC.2009.41 10.1007/s11390-006-0547-1 10.1109/ICIW.2008.32 10.4018/jwsr.2007010101 10.1145/844357.844360 10.1145/1068009.1068189 10.1145/1232722.1232728 10.1007/BF01386390 10.1109/ICCCN.2007.4317873 10.1137/S0097539795288246 10.1109/TSE.2004.11 10.1109/ECOWS.2006.2 10.1145/1367497.1367605 10.1007/978-3-540-89652-4_16 10.1007/3-540-61680-2_51 10.1109/CEC.2009.27 10.1109/ICWS.2006.148 10.4018/jwsr.2006040101 10.1109/CEC.2009.44 10.1109/ICIW.2007.51 10.1109/ICWS.2006.69 10.4018/jwsr.2007010103 10.1109/EDOC.2004.1342512 10.1145/316542.316548 10.4018/jwsr.2005100103 10.1145/50087.50096 10.1145/28869.28874 10.1007/BF02592101 10.1007/3-540-48005-6_26 10.1109/TSC.2008.1 10.1145/1453101.1453125 10.1177/0037549707079226 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC & Science Press, China 2011 Springer Science+Business Media, LLC & Science Press, China 2011. |
Copyright_xml | – notice: Springer Science+Business Media, LLC & Science Press, China 2011 – notice: Springer Science+Business Media, LLC & Science Press, China 2011. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s11390-011-0183-2 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | QoS-Aware Automatic Service Composition:A Graph View |
EISSN | 1860-4749 |
EndPage | 853 |
ExternalDocumentID | 2467098511 10_1007_s11390_011_0183_2 39210512 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c341t-74fe00068e19b43b1324c9e5ca16f1fdfcb058ce98f3116acbf92da8511421d33 |
IEDL.DBID | U2A |
ISSN | 1000-9000 |
IngestDate | Fri Jul 25 10:58:10 EDT 2025 Mon Sep 08 01:37:37 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Fri Feb 21 02:40:05 EST 2025 Wed Feb 14 09:54:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | QoS-aware automatic service composition single-source optimal DAGs Web service |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-74fe00068e19b43b1324c9e5ca16f1fdfcb058ce98f3116acbf92da8511421d33 |
Notes | Wei Jiang ,Tian Wu ,Song-Lin Hu ,Senior Member,CCF Zhi-Yong Liu 1,Senior Member,CCF1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China 2 Graduate University of the Chinese Academy of Sciences,Beijing 100190,China 3 State Grid Information & Telecommunication Company Ltd,Beijing 100190,China Web service; automatic service composition; QoS-aware; single-source optimal DAGs 11-2296/TP In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 893875777 |
PQPubID | 326258 |
PageCount | 17 |
ParticipantIDs | proquest_journals_893875777 crossref_primary_10_1007_s11390_011_0183_2 crossref_citationtrail_10_1007_s11390_011_0183_2 springer_journals_10_1007_s11390_011_0183_2 chongqing_primary_39210512 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitleAlternate | Journal of Computer Science and Technology |
PublicationYear | 2011 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hashemian S V, Mavaddat F. A graph-based framework for composition of stateless Web services. In Proc. ECOWS, Zurich, Switzerland, Dec. 4–6, 2006, pp.75-86. Al-Masri E, Mahmoud Q H. Investigating Web services on the World Wide Web. In Proc. the 17th International Conference on World Wide Web (WWW2008), Beijing, China, Apr. 21–25, 2008, pp.795–804. ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQos-aware middleware for Web services compositionIEEE Transactions on Software Engineering200430531132710.1109/TSE.2004.11 Yan Y, Xu B, Gu Z, Luo S. A QoS-driven approach for semantic service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, July 20–23, 2009, pp.523-526. Jaeger M C, Rojec-Goldmann G, Mühl G. QoS aggregation for Web service composition using workflow patterns. In Proc. EDOC, Enschede, The Netherlands, Sept. 19–23, 2004, pp.149–159. Oh S C, Kil H, Lee D, Kumara S R T. Wsben: A Web services discovery and composition benchmark. In Proc. ICWS, Chicago, USA, Sept. 18–22, 2006, pp.239–248. SirinEParsiaBWuDHendlerJNauDHTN planning for Web service composition using shop2Web Semantics: Science, Services and Agents on the World Wide Web20041437739610.1016/j.websem.2004.06.005 FredmanMLTarjanREFibonacci heaps and their uses in improved network optimization algorithmsJ. ACM198734359661590419510.1145/28869.28874 Bartalos P, Bieliková M. Semantic Web service composition framework based on parallel processing. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, Jul. 20–23, 2009, pp.495–498. LiangQASuSYWAnd/or graph and search algorithm for discovering composite Web servicesInt. J. Web Service Res.200524486710.4018/jwsr.2005100103 MilanovicNMalekMSearch strategies for automatic web service compositionInt. J. Web Service Res.20063213210.4018/jwsr.2006040101 AttMTThorupMUndirected single source shortest paths with positive integer weights in linear timeJournal of the ACM1999463362394181573810.1145/316542.316548 ThorupMOn ram priority queuesSIAM J. Comput.20003018610917627070968.6803710.1137/S0097539795288246 Canfora G, Penta M D, Esposito R, Villani M L. An approach for QoS-aware service composition based on genetic algorithms. In Proc. GECCO, Washington DC, USA, Jun. 25–29, 2005, pp.1069–1075. RanSA model for Web services discovery with QoSSIGe-com Exch.20034111010.1145/844357.844360 DriscollJRGabowHNShrairmanRTarjanRERelaxed heaps: An alternative to Fibonacci heaps with applications to parallel computationCommun. ACM1988311113431354102251810.1145/50087.50096 YuTZhangYLinKJEfficient algorithms for Web services selection with end-to-end QoS constraintsACM Trans. Web200711610.1145/1232722.1232728 Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of Web services capabilities. In Proc. International Semantic Web Conference, Sardidia, Italy, Jun. 9–12, 2002, pp.333–347. WangXHuangSZhouAQoS-aware composite services retrievalJ. Comput. Sci. Technol.200621454755810.1007/s11390-006-0547-1 GoldbergAVA heuristic improvement of the Bellman-Ford algorithmNumerische Mathematik1959126927110760910.1007/BF01386390 Web Service Challenge 2009. http://ws-challenge.georgetown.edu/wsc09/. Gao Y, Na J, Zhang B, Yang L, Gong Q. Optimal Web services selection using dynamic programming. In Proc. Oric, ISCC, Alexandia, Egypt, Jun. 28-Jul. 1, 2006, pp.365-370. Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware Web service composition. In Proc. International Conference on Web Services (ICWS 2006), Chicago, USA, Sept. 18–22, 2006, pp.72–82. Bleul S, Weise T, Geihs K. The Web service challenge — A review on semantic web service composition. In Proc. Int. Conf. Service-Oriented Computing (ICSOC 2009), Stockholm, Sweden, Nov. 14–27, 2009. Fulkerson D R, Ford L R. Flows in Networks. Princeton University Press, 1962. Rivest R L, Stein C, Cormen T H, Leiserson C E. Introduction to Algorithms, 2nd Edition. The MIT Press, McGraw-Hill Book Company, 2003. Liu J, Gu N, Zong Y, Ding Z, Zhang S, Zhang Q. Web services automatic composition based on QoS. In Proc. the IEEE International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct. 18–21, 2005, pp.607–610. Hwang C L, Yoon K. Flows in Networks. Princeton University Press, 1962. Gu Z, Li J, Xu B. Automatic service composition based on enhanced service dependency graph. In Proc. ICWS 2008, Beijing, China, Sept. 23–26, 2008, pp.246-253. AhujaRKMehlhornKOrlinJBTarjanREFaster algorithms for the shortest path problemJ. ACM199037221322310722560696.6804610.1145/77600.77615 Zhang R, Arpinar I B, Aleman-Meza B. Automatic composition of semantic Web services. In Proc. ICWS 2003, Las Vegas, USA, Jul. 23–26, 2003, pp.38-41. ZhovtobryukhDA petri net-based approach for automated goal-driven Web service compositionSimulation2007831336310.1177/0037549707079226 MeyerUAverage-case complexity of single-source shortest-paths algorithms: Lower and upper boundsJ. Algorithms20034819113420060981079.6810810.1016/S0196-6774(03)00046-4 Al-Masri E, Mahmoud Q H. QoS-based discovery and ranking of Web services. In Proc. ICCCN, Honolulu, USA, Aug. 13–16, 2007, pp.529–534. Jaeger M C, Rojec-Goldmann G, Muhl G. QoS aggregation in Web service compositions. In Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, Mar. 29-Apr. 1, 2005, pp.181-185. Casati F, Ilnicki S, Jin L J, Krishnamoorthy V, Shan M C. Eflow: A platform for developing and managing composite e-services. In Proc. the Academia/Industry Working Conference on Research Challenges (AIWORC2000), Buffalo, USA, Apr. 27–29, 2000, p.341. Amazon simple storage service(amazon s3). http://aws.amazon.com/s3/. BellmanROn a routing problemQuarterly of Applied Mathematics195816187901024350081.14403 Ponnekanti S R, Fox A. Sword: A developer toolkit for Web service composition. In Proc. the 11th International WWW Conference (WWW2002), Honolulu, USA, May 7–11, 2002. Panahi M, Lin K J, Zhang Y, Chang S H, Zhang J, Varela L. The Llama middleware support for accountable service-oriented architecture. In Proc. the 6th International Conference on Service-Oriented Computing (ICSOC 2008), Sydney, Australia, Dec. 1–5, 2008, pp.180–194. Hu S, Muthusamy V, Li G, Jacobsen H A. Distributed automatic service composition in large-scale systems. In Proc. the Second International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, Jul. 1–4, 2008, pp.233–244. Raimondi F, Skene J, Emmerich W. Efficient online monitoring of Web-service SLAS. In Proc. the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), Atlanta, USA, Nov. 9–14, 2008, pp.170–180. RamanRRecent results on the single-source shortest paths problemACM SIGACT News1997282818710.1145/261342.261352 OhSCLeeDKumaraSRTWeb service planner (WSPR): An effective and scalable Web service composition algorithmInt. J. Web Service Res.20074112210.4018/jwsr.2007010101 CherkasskyBVGoldbergAVRadzikTShortest paths algorithms: Theory and experimental evaluationMathematical Programming1993732129174139216010.1007/BF02592101 OWL-S: Semantic markup forWeb services. http://www.w3.org/submission/owl-s/, Oct. 2010. Patil A A, Oundhakar S A, Sheth A P, Verma K. Meteor-s Web service annotation framework. In Proc. the 13th International Conference on World Wide Web (WWW2004), New York, USA, May 17–20, 2004, pp.553–562. Raman R. Priority queues: Small, monotone and trans-dichotomous. In Proc. the 4th Annual European Symposium on Algorithms (ESA), Barcelona, Spain, Sept. 25–27, 1996, pp.121–137. Al-Masri E, Mahmoud Q H. Discovering the bestWeb service. In Proc. WWW, Chiba, Japan, May 10–14, 2007, pp.1257–1258. ZhouAHuangSWangXBits: A binary tree based Web service composition systemInt. J. Web Service Res.200741405810.4018/jwsr.2007010103 BenatallahBShengQZDumasMThe Self-Serv environment for Web services compositionInternet Computing, IEEE200371404810.1109/MIC.2003.1167338 McIlraith S, Son T. Adapting golog for composition of semantic Web services. In Proc. the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002, pp.482–493. Naseri M, Towhidi A. QoS-aware automatic composition of Web services using AI planners. In Proc. the Second International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, May 13–19, 2007, p.29. McDermott D V. Estimated-regression planning for interactions with Web services. In Proc. AIPS, Toulouse, France, Apr. 23–27, 2002, pp.204–211. DijkstraEWA note on two problems in connexion with graphs. Numerische Mathematik195912692711076090092.16002 Huang Z, Jiang W, Hu S, Liu Z. Effective pruning algorithm for QoS-aware service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computings (CEC2009), Vienna, Austria, July 20–23, 2009, pp.519-522. OhSCLeeDKumaraSREffective Web service composition in diverse and large-scale service networksIEEE Transactions on Services Computing200811153210.1109/TSC.2008.1 RK Ahuja (183_CR37) 1990; 37 S Ran (183_CR44) 2003; 4 ML Fredman (183_CR36) 1987; 34 183_CR17 183_CR18 183_CR19 R Raman (183_CR39) 1997; 28 183_CR53 183_CR10 183_CR11 183_CR55 183_CR12 183_CR56 183_CR13 183_CR57 183_CR16 N Milanovic (183_CR14) 2006; 3 L Zeng (183_CR2) 2004; 30 183_CR30 D Zhovtobryukh (183_CR22) 2007; 83 U Meyer (183_CR42) 2003; 48 183_CR28 183_CR29 T Yu (183_CR3) 2007; 1 E Sirin (183_CR7) 2004; 1 MT Att (183_CR41) 1999; 46 183_CR21 183_CR24 183_CR25 183_CR26 M Thorup (183_CR38) 2000; 30 183_CR40 183_CR5 183_CR4 A Zhou (183_CR8) 2007; 4 183_CR9 SC Oh (183_CR47) 2008; 1 183_CR6 183_CR1 QA Liang (183_CR23) 2005; 2 183_CR31 183_CR33 183_CR50 183_CR51 BV Cherkassky (183_CR43) 1993; 73 183_CR52 R Bellman (183_CR32) 1958; 16 AV Goldberg (183_CR35) 1959; 1 SC Oh (183_CR20) 2007; 4 B Benatallah (183_CR15) 2003; 7 X Wang (183_CR27) 2006; 21 JR Driscoll (183_CR54) 1988; 31 E Dijkstra (183_CR34) 1959; 1 183_CR45 183_CR46 183_CR48 183_CR49 |
References_xml | – reference: ThorupMOn ram priority queuesSIAM J. Comput.20003018610917627070968.6803710.1137/S0097539795288246 – reference: LiangQASuSYWAnd/or graph and search algorithm for discovering composite Web servicesInt. J. Web Service Res.200524486710.4018/jwsr.2005100103 – reference: GoldbergAVA heuristic improvement of the Bellman-Ford algorithmNumerische Mathematik1959126927110760910.1007/BF01386390 – reference: Liu J, Gu N, Zong Y, Ding Z, Zhang S, Zhang Q. Web services automatic composition based on QoS. In Proc. the IEEE International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct. 18–21, 2005, pp.607–610. – reference: OWL-S: Semantic markup forWeb services. http://www.w3.org/submission/owl-s/, Oct. 2010. – reference: ZhouAHuangSWangXBits: A binary tree based Web service composition systemInt. J. Web Service Res.200741405810.4018/jwsr.2007010103 – reference: SirinEParsiaBWuDHendlerJNauDHTN planning for Web service composition using shop2Web Semantics: Science, Services and Agents on the World Wide Web20041437739610.1016/j.websem.2004.06.005 – reference: Zhang R, Arpinar I B, Aleman-Meza B. Automatic composition of semantic Web services. In Proc. ICWS 2003, Las Vegas, USA, Jul. 23–26, 2003, pp.38-41. – reference: Patil A A, Oundhakar S A, Sheth A P, Verma K. Meteor-s Web service annotation framework. In Proc. the 13th International Conference on World Wide Web (WWW2004), New York, USA, May 17–20, 2004, pp.553–562. – reference: Hashemian S V, Mavaddat F. A graph-based framework for composition of stateless Web services. In Proc. ECOWS, Zurich, Switzerland, Dec. 4–6, 2006, pp.75-86. – reference: Al-Masri E, Mahmoud Q H. Investigating Web services on the World Wide Web. In Proc. the 17th International Conference on World Wide Web (WWW2008), Beijing, China, Apr. 21–25, 2008, pp.795–804. – reference: Al-Masri E, Mahmoud Q H. Discovering the bestWeb service. In Proc. WWW, Chiba, Japan, May 10–14, 2007, pp.1257–1258. – reference: Al-Masri E, Mahmoud Q H. QoS-based discovery and ranking of Web services. In Proc. ICCCN, Honolulu, USA, Aug. 13–16, 2007, pp.529–534. – reference: Jaeger M C, Rojec-Goldmann G, Mühl G. QoS aggregation for Web service composition using workflow patterns. In Proc. EDOC, Enschede, The Netherlands, Sept. 19–23, 2004, pp.149–159. – reference: Gu Z, Li J, Xu B. Automatic service composition based on enhanced service dependency graph. In Proc. ICWS 2008, Beijing, China, Sept. 23–26, 2008, pp.246-253. – reference: Hwang C L, Yoon K. Flows in Networks. Princeton University Press, 1962. – reference: YuTZhangYLinKJEfficient algorithms for Web services selection with end-to-end QoS constraintsACM Trans. Web200711610.1145/1232722.1232728 – reference: CherkasskyBVGoldbergAVRadzikTShortest paths algorithms: Theory and experimental evaluationMathematical Programming1993732129174139216010.1007/BF02592101 – reference: DijkstraEWA note on two problems in connexion with graphs. Numerische Mathematik195912692711076090092.16002 – reference: Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of Web services capabilities. In Proc. International Semantic Web Conference, Sardidia, Italy, Jun. 9–12, 2002, pp.333–347. – reference: Ponnekanti S R, Fox A. Sword: A developer toolkit for Web service composition. In Proc. the 11th International WWW Conference (WWW2002), Honolulu, USA, May 7–11, 2002. – reference: McIlraith S, Son T. Adapting golog for composition of semantic Web services. In Proc. the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002, pp.482–493. – reference: RamanRRecent results on the single-source shortest paths problemACM SIGACT News1997282818710.1145/261342.261352 – reference: RanSA model for Web services discovery with QoSSIGe-com Exch.20034111010.1145/844357.844360 – reference: OhSCLeeDKumaraSREffective Web service composition in diverse and large-scale service networksIEEE Transactions on Services Computing200811153210.1109/TSC.2008.1 – reference: Yan Y, Xu B, Gu Z, Luo S. A QoS-driven approach for semantic service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, July 20–23, 2009, pp.523-526. – reference: Raman R. Priority queues: Small, monotone and trans-dichotomous. In Proc. the 4th Annual European Symposium on Algorithms (ESA), Barcelona, Spain, Sept. 25–27, 1996, pp.121–137. – reference: Bleul S, Weise T, Geihs K. The Web service challenge — A review on semantic web service composition. In Proc. Int. Conf. Service-Oriented Computing (ICSOC 2009), Stockholm, Sweden, Nov. 14–27, 2009. – reference: Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware Web service composition. In Proc. International Conference on Web Services (ICWS 2006), Chicago, USA, Sept. 18–22, 2006, pp.72–82. – reference: Bartalos P, Bieliková M. Semantic Web service composition framework based on parallel processing. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, Jul. 20–23, 2009, pp.495–498. – reference: Naseri M, Towhidi A. QoS-aware automatic composition of Web services using AI planners. In Proc. the Second International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, May 13–19, 2007, p.29. – reference: Raimondi F, Skene J, Emmerich W. Efficient online monitoring of Web-service SLAS. In Proc. the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), Atlanta, USA, Nov. 9–14, 2008, pp.170–180. – reference: Panahi M, Lin K J, Zhang Y, Chang S H, Zhang J, Varela L. The Llama middleware support for accountable service-oriented architecture. In Proc. the 6th International Conference on Service-Oriented Computing (ICSOC 2008), Sydney, Australia, Dec. 1–5, 2008, pp.180–194. – reference: ZhovtobryukhDA petri net-based approach for automated goal-driven Web service compositionSimulation2007831336310.1177/0037549707079226 – reference: Fulkerson D R, Ford L R. Flows in Networks. Princeton University Press, 1962. – reference: Huang Z, Jiang W, Hu S, Liu Z. Effective pruning algorithm for QoS-aware service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computings (CEC2009), Vienna, Austria, July 20–23, 2009, pp.519-522. – reference: AhujaRKMehlhornKOrlinJBTarjanREFaster algorithms for the shortest path problemJ. ACM199037221322310722560696.6804610.1145/77600.77615 – reference: Web Service Challenge 2009. http://ws-challenge.georgetown.edu/wsc09/. – reference: FredmanMLTarjanREFibonacci heaps and their uses in improved network optimization algorithmsJ. ACM198734359661590419510.1145/28869.28874 – reference: Casati F, Ilnicki S, Jin L J, Krishnamoorthy V, Shan M C. Eflow: A platform for developing and managing composite e-services. In Proc. the Academia/Industry Working Conference on Research Challenges (AIWORC2000), Buffalo, USA, Apr. 27–29, 2000, p.341. – reference: ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQos-aware middleware for Web services compositionIEEE Transactions on Software Engineering200430531132710.1109/TSE.2004.11 – reference: MeyerUAverage-case complexity of single-source shortest-paths algorithms: Lower and upper boundsJ. Algorithms20034819113420060981079.6810810.1016/S0196-6774(03)00046-4 – reference: Canfora G, Penta M D, Esposito R, Villani M L. An approach for QoS-aware service composition based on genetic algorithms. In Proc. GECCO, Washington DC, USA, Jun. 25–29, 2005, pp.1069–1075. – reference: Jaeger M C, Rojec-Goldmann G, Muhl G. QoS aggregation in Web service compositions. In Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, Mar. 29-Apr. 1, 2005, pp.181-185. – reference: BellmanROn a routing problemQuarterly of Applied Mathematics195816187901024350081.14403 – reference: Amazon simple storage service(amazon s3). http://aws.amazon.com/s3/. – reference: OhSCLeeDKumaraSRTWeb service planner (WSPR): An effective and scalable Web service composition algorithmInt. J. Web Service Res.20074112210.4018/jwsr.2007010101 – reference: Hu S, Muthusamy V, Li G, Jacobsen H A. Distributed automatic service composition in large-scale systems. In Proc. the Second International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, Jul. 1–4, 2008, pp.233–244. – reference: AttMTThorupMUndirected single source shortest paths with positive integer weights in linear timeJournal of the ACM1999463362394181573810.1145/316542.316548 – reference: MilanovicNMalekMSearch strategies for automatic web service compositionInt. J. Web Service Res.20063213210.4018/jwsr.2006040101 – reference: BenatallahBShengQZDumasMThe Self-Serv environment for Web services compositionInternet Computing, IEEE200371404810.1109/MIC.2003.1167338 – reference: Gao Y, Na J, Zhang B, Yang L, Gong Q. Optimal Web services selection using dynamic programming. In Proc. Oric, ISCC, Alexandia, Egypt, Jun. 28-Jul. 1, 2006, pp.365-370. – reference: DriscollJRGabowHNShrairmanRTarjanRERelaxed heaps: An alternative to Fibonacci heaps with applications to parallel computationCommun. ACM1988311113431354102251810.1145/50087.50096 – reference: Oh S C, Kil H, Lee D, Kumara S R T. Wsben: A Web services discovery and composition benchmark. In Proc. ICWS, Chicago, USA, Sept. 18–22, 2006, pp.239–248. – reference: Rivest R L, Stein C, Cormen T H, Leiserson C E. Introduction to Algorithms, 2nd Edition. The MIT Press, McGraw-Hill Book Company, 2003. – reference: McDermott D V. Estimated-regression planning for interactions with Web services. In Proc. AIPS, Toulouse, France, Apr. 23–27, 2002, pp.204–211. – reference: WangXHuangSZhouAQoS-aware composite services retrievalJ. Comput. Sci. Technol.200621454755810.1007/s11390-006-0547-1 – volume: 37 start-page: 213 issue: 2 year: 1990 ident: 183_CR37 publication-title: J. ACM doi: 10.1145/77600.77615 – ident: 183_CR33 – ident: 183_CR26 doi: 10.1109/ICEBE.2005.128 – ident: 183_CR10 – ident: 183_CR31 doi: 10.1109/ICWS.2008.68 – ident: 183_CR6 – volume: 7 start-page: 40 issue: 1 year: 2003 ident: 183_CR15 publication-title: Internet Computing, IEEE doi: 10.1109/MIC.2003.1167338 – ident: 183_CR18 – ident: 183_CR52 – ident: 183_CR17 doi: 10.1145/988672.988747 – volume: 28 start-page: 81 issue: 2 year: 1997 ident: 183_CR39 publication-title: ACM SIGACT News doi: 10.1145/261342.261352 – volume: 48 start-page: 91 issue: 1 year: 2003 ident: 183_CR42 publication-title: J. Algorithms doi: 10.1016/S0196-6774(03)00046-4 – ident: 183_CR24 doi: 10.1145/1385989.1386019 – volume: 1 start-page: 377 issue: 4 year: 2004 ident: 183_CR7 publication-title: Web Semantics: Science, Services and Agents on the World Wide Web doi: 10.1016/j.websem.2004.06.005 – ident: 183_CR57 doi: 10.1145/1242572.1242795 – volume: 16 start-page: 87 issue: 1 year: 1958 ident: 183_CR32 publication-title: Quarterly of Applied Mathematics doi: 10.1090/qam/102435 – ident: 183_CR25 doi: 10.1109/ISCC.2006.116 – ident: 183_CR13 doi: 10.1109/CEC.2009.41 – volume: 21 start-page: 547 issue: 4 year: 2006 ident: 183_CR27 publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-006-0547-1 – ident: 183_CR56 doi: 10.1109/ICIW.2008.32 – volume: 4 start-page: 1 issue: 1 year: 2007 ident: 183_CR20 publication-title: Int. J. Web Service Res. doi: 10.4018/jwsr.2007010101 – volume: 4 start-page: 1 issue: 1 year: 2003 ident: 183_CR44 publication-title: SIGe-com Exch. doi: 10.1145/844357.844360 – ident: 183_CR4 doi: 10.1145/1068009.1068189 – volume: 1 start-page: 6 issue: 1 year: 2007 ident: 183_CR3 publication-title: ACM Trans. Web doi: 10.1145/1232722.1232728 – volume: 1 start-page: 269 year: 1959 ident: 183_CR35 publication-title: Numerische Mathematik doi: 10.1007/BF01386390 – ident: 183_CR49 doi: 10.1109/ICCCN.2007.4317873 – volume: 30 start-page: 86 issue: 1 year: 2000 ident: 183_CR38 publication-title: SIAM J. Comput. doi: 10.1137/S0097539795288246 – volume: 30 start-page: 311 issue: 5 year: 2004 ident: 183_CR2 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2004.11 – ident: 183_CR9 doi: 10.1109/ECOWS.2006.2 – ident: 183_CR48 – ident: 183_CR1 doi: 10.1145/1367497.1367605 – ident: 183_CR19 doi: 10.1007/978-3-540-89652-4_16 – ident: 183_CR40 doi: 10.1007/3-540-61680-2_51 – ident: 183_CR30 doi: 10.1109/CEC.2009.27 – ident: 183_CR16 – ident: 183_CR55 doi: 10.1109/ICWS.2006.148 – volume: 3 start-page: 1 issue: 2 year: 2006 ident: 183_CR14 publication-title: Int. J. Web Service Res. doi: 10.4018/jwsr.2006040101 – ident: 183_CR12 doi: 10.1109/CEC.2009.44 – ident: 183_CR28 doi: 10.1109/ICIW.2007.51 – ident: 183_CR5 doi: 10.1109/ICWS.2006.69 – volume: 4 start-page: 40 issue: 1 year: 2007 ident: 183_CR8 publication-title: Int. J. Web Service Res. doi: 10.4018/jwsr.2007010103 – ident: 183_CR51 doi: 10.1109/EDOC.2004.1342512 – volume: 46 start-page: 362 issue: 3 year: 1999 ident: 183_CR41 publication-title: Journal of the ACM doi: 10.1145/316542.316548 – ident: 183_CR45 – ident: 183_CR11 – volume: 2 start-page: 48 issue: 4 year: 2005 ident: 183_CR23 publication-title: Int. J. Web Service Res. doi: 10.4018/jwsr.2005100103 – volume: 31 start-page: 1343 issue: 11 year: 1988 ident: 183_CR54 publication-title: Commun. ACM doi: 10.1145/50087.50096 – volume: 34 start-page: 596 issue: 3 year: 1987 ident: 183_CR36 publication-title: J. ACM doi: 10.1145/28869.28874 – volume: 1 start-page: 269 year: 1959 ident: 183_CR34 publication-title: A note on two problems in connexion with graphs. Numerische Mathematik – ident: 183_CR53 – volume: 73 start-page: 129 issue: 2 year: 1993 ident: 183_CR43 publication-title: Mathematical Programming doi: 10.1007/BF02592101 – ident: 183_CR46 doi: 10.1007/3-540-48005-6_26 – ident: 183_CR21 – ident: 183_CR29 – volume: 1 start-page: 15 issue: 1 year: 2008 ident: 183_CR47 publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2008.1 – ident: 183_CR50 doi: 10.1145/1453101.1453125 – volume: 83 start-page: 33 issue: 1 year: 2007 ident: 183_CR22 publication-title: Simulation doi: 10.1177/0037549707079226 |
SSID | ssj0037044 |
Score | 2.004431 |
Snippet | In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of... In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 837 |
SubjectTerms | Accuracy Algorithms Analysis Artificial Intelligence Automation Composition Computer Science Data Structures and Information Theory Dijkstra's algorithm Dijkstra算法 Graph algorithms Graph theory Information Systems Applications (incl.Internet) Internet service providers Preferences QoS Quality of service Regular Paper Restaurants Science Service introduction Shortest-path problems Software Engineering Studies Theory of Computation User requirements Web services 单源最短路径 图形模型 感知 服务组合 自动服务 视图 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4QLl58GwE1PXjSNO6j-zIxBg1ITCC-MNyattvqwbCAEP--naWFaCLHzbY9TKczX9vp9yF0lvLE14KmREdCECpjTkxW9EiuA61VHJsPeO_c68fdAX0YRsMK6rm3MFBW6WJiGajzQsIZ-aXpBNzrSXIznhAQjYLLVaegwa2yQn5dMoxtoJqJyKlx-9ptu__47EJzmHiluiucaRNQy3TXnOVbOoOFoEYLdtdpSAIgW_goRu8Tk0J-J60VEv1zeVrmpM4O2rJgErcWs7-LKmq0h7adUAO263YfRU_FC2l986nCrfmsKFlasY0SGJrbyq0r3ML3wGCN34wxDtCg03696xKrl0CkyUUzklCtIP2kys8EDYXZaFKZqUhyP9a-zrUUXpRKlaU69P2YS6GzIOeAuWjg52F4iKqjYqSOEI7MLk8lygu5oBQ0PIEESOZKZ9wTSvE6aiyNw8YLXgxmoJZBa35QR56zFpOWaRwELz7ZiiMZjM2MsRkYm5ku58subrg1jZtuCphdcV9s6R91dOFmZfX337Eaa8dqos3FGTLUlB2j6mw6VycGhMzEqXWtHxeB1eg priority: 102 providerName: ProQuest |
Title | QoS-Aware Automatic Service Composition:A Graph View |
URI | http://lib.cqvip.com/qk/85226X/201105/39210512.html https://link.springer.com/article/10.1007/s11390-011-0183-2 https://www.proquest.com/docview/893875777 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4FttqycGTEthH9uVtlT5QLL4qegpJNlFButoH_ftmtpsuigqelmUnWZgkM98kk28QOop55GpBY6IDIQiVISfGKzok057WKgzNC9x3vhqE_SG9eAwey3vcE5vtbo8kC0tdXXYzYAWSqCD8jX1i7G49MKE7rMahl1rz60dOUcEV9q0JVMS0R5k_dQGECi_56PnD_O6rY6rQ5rcD0sLvdDfRegkYcboY4S20okbbaMMWY8Dl2txBwU1-R9I5HyuczqZ5wcSKS0uAQbzMzjrFKe4BSzV-eFXzXTTsdu7P-6SsiUCk8TdTElGtwMXEyk0E9YUJJqlMVCC5G2pXZ1oKJ4ilSmLtu27IpdCJl3HAVdRzM9_fQ7VRPlL7CAcmklORcnwuKIU6nUD0IzOlE-4IpXgDNZfKYe8L7gtm4JRBZK7XQI7VFpMlmzgUtXhjFQ8yKJsZZTNQNjNNjpdNbHd_CLfsELByVU2YmTjAvx9FDXRiR6X6-mtfzX9Jt9DaYt8Y8sgOUG06nqlDAzymoo1W426vjepp7-myY55nncH1bbuYfp-zrtAK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hcGgvLS1UDa_6AJcii314X0ioSlsgFIhaChU31_bacEBZHkGIH9f_xszGTtRK5cZxtWsfxrPz8sz3AayVqoidFiV3mdZcmFxx9IoRr13inM1zfKB556NB3j8V386ysxn4E2ZhqK0y2MTWUNeNoRr5Ji4i7PWi-HR1zYk0ii5XA4OG8swK9XaLMObnOg7swz1mcLfb-1_xuNeTZHfn5Eufe5IBbtCAj3ghnCWbXdq40iLVmJ0JU9nMqDh3saud0VFWGluVLo3jXBntqqRWFKiIJK6pHooeYFbQgGsHZj_vDL4fB1eQFlHLJks1dE7snOFatZ3dw9iLesIomy9TnhC4w0UzPL9Gl_W3k5xGvv9c1rY-cHcOXvnglfXG2vYGZuzwLbwOxBDM24l5yH40P3nvXt1Y1rsbNS0qLPNWidHnvlNsi_XYHiFms18o_AU4fRbRvYPOsBna98AyzCptYaNUaSGIM5RAh0xtXaUiba3qwuJEOPJqjMMhMbTD6DBOuhAFaUnjkc2JYONSTjGZSdgShS1J2BKXfJwsCds98fFSOALp__BbOdHHLmyEU5m-_e9ei0_u9QFe9E-ODuXh_uBgCV6O69fUz7YMndHNnV3BAGikV72aMfj93Jr9COkgEuI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iIF7cxRm3HDwpwaZNN29FHXdRdMRbSNJEBWlH7eDfN69tZlBU8FiyFF6S974kL9-H0HYiYmokS4gJpSRMRYLYqOiR3PjG6CiyH_De-fIqOumzs4fwodU5fXfZ7u5KsnnTACxNRbU3yM3e-OGbBS6QUAVb4SQg1gdPWW9MYaL3_cy54iD2ajVXOMMmoI7prjV_6gLIFZ7K4vHV_vprkBojz2-XpXUM6s2j2RY84qwZ7QU0oYtFNOeEGXC7TpdQeFPekuxDvGmcDauyZmXFrVfAUL3N1NrHGT4Gxmp8_6w_llG_d3R3cEJafQSibOypSMyMhnCTaJpKFki7sWQq1aESNDLU5EZJL0yUThMTUBoJJU3q5wIwFvNpHgQraLIoC72KcGh3dTrWXiAkY6DZCaQ_KtcmFZ7UWnRQd2QcPmh4MLiFVhadUb-DPGctrlpmcRC4eOFjTmQwNrfG5mBsbpvsjJq47v6ovOaGgLcr7J3bSQRc_HHcQbtuVMalv_bV_VftLTR9fdjjF6dX52topjlOhvSydTRZvQ31hsUjldys59wnH67TJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS-Aware+Automatic+Service+Composition%EF%BC%9AA+Graph+View&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%A7%9C%E4%BC%9F+%E5%90%B4%E7%94%9C+%E8%99%8E%E5%B5%A9%E6%9E%97+%E5%88%98%E5%BF%97%E5%8B%87&rft.date=2011-09-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=26&rft.issue=5&rft.spage=837&rft.epage=853&rft_id=info:doi/10.1007%2Fs11390-011-0183-2&rft.externalDocID=39210512 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg |