QoS-Aware Automatic Service Composition:A Graph View

In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate pro...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 26; no. 5; pp. 837 - 853
Main Author 姜伟 吴甜 虎嵩林 刘志勇
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2011
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-011-0183-2

Cover

Abstract In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.
AbstractList In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users. However, most approaches treat these two aspects as two separate problems, automatic service composition and service selection. Although the latest researches realize the restriction of this separate view and some specific methods are proposed, they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously. In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem, we propose a new graph search problem, single-source optimal directed acyclic graphs (DAGs), for the first time. This novel single-source optimal DAGs (SSOD) problem is similar to, but more general than the classical single-source shortest paths (SSSP) problem. In this paper, a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n+m) (n and m are the number of nodes and edges in the graph respectively), and the proofs of its soundness. It is also directly applied to solve the QoS-aware automatic service composition problem, and a service composition tool named QSynth is implemented. Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios, even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.[PUBLICATION ABSTRACT]
In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.
In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users. However, most approaches treat these two aspects as two separate problems, automatic service composition and service selection. Although the latest researches realize the restriction of this separate view and some specific methods are proposed, they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously. In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem, we propose a new graph search problem, single-source optimal directed acyclic graphs (DAGs), for the first time. This novel single-source optimal DAGs (SSOD) problem is similar to, but more general than the classical single-source shortest paths (SSSP) problem. In this paper, a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O ( n log n  +  m ) ( n and m are the number of nodes and edges in the graph respectively), and the proofs of its soundness. It is also directly applied to solve the QoS-aware automatic service composition problem, and a service composition tool named QSynth is implemented. Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios, even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.
Author 姜伟 吴甜 虎嵩林 刘志勇
AuthorAffiliation Senior Member,CCF1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China Graduate University of the Chinese Academy of Sciences,Beijing 100190,China State Grid Information & Telecommunication Company Ltd,Beijing 100190,China
Author_xml – sequence: 1
  fullname: 姜伟 吴甜 虎嵩林 刘志勇
BookMark eNp9kE1OwzAQhS1UJNrCAdgF9gFP7MTxMqqgIFVCqMDWclynddXGqZ1ScRXOwp24Aq5SgcSii_lZzDdv5g1Qr7a1RugS8A1gzG49AOE4xgAhchInJ6gPeYZjyijvhR5jHPOQztDA-yXGhGFK-yh7ttO42Emno2Lb2rVsjYqm2r0bpaORXTfWm9bY-vvrs4jGTjaL6M3o3Tk6reTK64tDHaLX-7uX0UM8eRo_jopJrAiFNma00kEzyzXwkpISSEIV16mSkFVQzSpV4jRXmucVAcikKiuezGSeAtAEZoQM0XW3t3F2s9W-FUu7dXWQFDknOUsZY2EIuiHlrPdOV6JxZi3dhwAs9u6Izh0R3BF7d0QSGPaPUaaV-09bJ83qKJl0pA8q9Vy7v5OOQVcHuYWt55vA_d5IeAI4hYT8AFbZhWo
CitedBy_id crossref_primary_10_1109_TSC_2015_2466544
crossref_primary_10_1016_j_ins_2019_01_015
crossref_primary_10_1109_TSC_2022_3207232
crossref_primary_10_1007_s11761_019_00254_0
crossref_primary_10_1109_TSC_2013_41
crossref_primary_10_1177_1550147719879049
crossref_primary_10_1016_j_future_2017_04_009
crossref_primary_10_1109_TSC_2020_2964753
crossref_primary_10_1016_j_ins_2016_09_003
Cites_doi 10.1145/77600.77615
10.1109/ICEBE.2005.128
10.1109/ICWS.2008.68
10.1109/MIC.2003.1167338
10.1145/988672.988747
10.1145/261342.261352
10.1016/S0196-6774(03)00046-4
10.1145/1385989.1386019
10.1016/j.websem.2004.06.005
10.1145/1242572.1242795
10.1090/qam/102435
10.1109/ISCC.2006.116
10.1109/CEC.2009.41
10.1007/s11390-006-0547-1
10.1109/ICIW.2008.32
10.4018/jwsr.2007010101
10.1145/844357.844360
10.1145/1068009.1068189
10.1145/1232722.1232728
10.1007/BF01386390
10.1109/ICCCN.2007.4317873
10.1137/S0097539795288246
10.1109/TSE.2004.11
10.1109/ECOWS.2006.2
10.1145/1367497.1367605
10.1007/978-3-540-89652-4_16
10.1007/3-540-61680-2_51
10.1109/CEC.2009.27
10.1109/ICWS.2006.148
10.4018/jwsr.2006040101
10.1109/CEC.2009.44
10.1109/ICIW.2007.51
10.1109/ICWS.2006.69
10.4018/jwsr.2007010103
10.1109/EDOC.2004.1342512
10.1145/316542.316548
10.4018/jwsr.2005100103
10.1145/50087.50096
10.1145/28869.28874
10.1007/BF02592101
10.1007/3-540-48005-6_26
10.1109/TSC.2008.1
10.1145/1453101.1453125
10.1177/0037549707079226
ContentType Journal Article
Copyright Springer Science+Business Media, LLC & Science Press, China 2011
Springer Science+Business Media, LLC & Science Press, China 2011.
Copyright_xml – notice: Springer Science+Business Media, LLC & Science Press, China 2011
– notice: Springer Science+Business Media, LLC & Science Press, China 2011.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11390-011-0183-2
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate QoS-Aware Automatic Service Composition:A Graph View
EISSN 1860-4749
EndPage 853
ExternalDocumentID 2467098511
10_1007_s11390_011_0183_2
39210512
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c341t-74fe00068e19b43b1324c9e5ca16f1fdfcb058ce98f3116acbf92da8511421d33
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Fri Jul 25 10:58:10 EDT 2025
Mon Sep 08 01:37:37 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Fri Feb 21 02:40:05 EST 2025
Wed Feb 14 09:54:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords QoS-aware
automatic service composition
single-source optimal DAGs
Web service
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-74fe00068e19b43b1324c9e5ca16f1fdfcb058ce98f3116acbf92da8511421d33
Notes Wei Jiang ,Tian Wu ,Song-Lin Hu ,Senior Member,CCF Zhi-Yong Liu 1,Senior Member,CCF1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China 2 Graduate University of the Chinese Academy of Sciences,Beijing 100190,China 3 State Grid Information & Telecommunication Company Ltd,Beijing 100190,China
Web service; automatic service composition; QoS-aware; single-source optimal DAGs
11-2296/TP
In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users.However,most approaches treat these two aspects as two separate problems,automatic service composition and service selection.Although the latest researches realize the restriction of this separate view and some specific methods are proposed,they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously.In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem,we propose a new graph search problem,single-source optimal directed acyclic graphs (DAGs),for the first time.This novel single-source optimal DAGs (SSOD) problem is similar to,but more general than the classical single-source shortest paths (SSSP) problem.In this paper,a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively),and the proofs of its soundness.It is also directly applied to solve the QoS-aware automatic service composition problem,and a service composition tool named QSynth is implemented.Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios,even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 893875777
PQPubID 326258
PageCount 17
ParticipantIDs proquest_journals_893875777
crossref_primary_10_1007_s11390_011_0183_2
crossref_citationtrail_10_1007_s11390_011_0183_2
springer_journals_10_1007_s11390_011_0183_2
chongqing_primary_39210512
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationYear 2011
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hashemian S V, Mavaddat F. A graph-based framework for composition of stateless Web services. In Proc. ECOWS, Zurich, Switzerland, Dec. 4–6, 2006, pp.75-86.
Al-Masri E, Mahmoud Q H. Investigating Web services on the World Wide Web. In Proc. the 17th International Conference on World Wide Web (WWW2008), Beijing, China, Apr. 21–25, 2008, pp.795–804.
ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQos-aware middleware for Web services compositionIEEE Transactions on Software Engineering200430531132710.1109/TSE.2004.11
Yan Y, Xu B, Gu Z, Luo S. A QoS-driven approach for semantic service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, July 20–23, 2009, pp.523-526.
Jaeger M C, Rojec-Goldmann G, Mühl G. QoS aggregation for Web service composition using workflow patterns. In Proc. EDOC, Enschede, The Netherlands, Sept. 19–23, 2004, pp.149–159.
Oh S C, Kil H, Lee D, Kumara S R T. Wsben: A Web services discovery and composition benchmark. In Proc. ICWS, Chicago, USA, Sept. 18–22, 2006, pp.239–248.
SirinEParsiaBWuDHendlerJNauDHTN planning for Web service composition using shop2Web Semantics: Science, Services and Agents on the World Wide Web20041437739610.1016/j.websem.2004.06.005
FredmanMLTarjanREFibonacci heaps and their uses in improved network optimization algorithmsJ. ACM198734359661590419510.1145/28869.28874
Bartalos P, Bieliková M. Semantic Web service composition framework based on parallel processing. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, Jul. 20–23, 2009, pp.495–498.
LiangQASuSYWAnd/or graph and search algorithm for discovering composite Web servicesInt. J. Web Service Res.200524486710.4018/jwsr.2005100103
MilanovicNMalekMSearch strategies for automatic web service compositionInt. J. Web Service Res.20063213210.4018/jwsr.2006040101
AttMTThorupMUndirected single source shortest paths with positive integer weights in linear timeJournal of the ACM1999463362394181573810.1145/316542.316548
ThorupMOn ram priority queuesSIAM J. Comput.20003018610917627070968.6803710.1137/S0097539795288246
Canfora G, Penta M D, Esposito R, Villani M L. An approach for QoS-aware service composition based on genetic algorithms. In Proc. GECCO, Washington DC, USA, Jun. 25–29, 2005, pp.1069–1075.
RanSA model for Web services discovery with QoSSIGe-com Exch.20034111010.1145/844357.844360
DriscollJRGabowHNShrairmanRTarjanRERelaxed heaps: An alternative to Fibonacci heaps with applications to parallel computationCommun. ACM1988311113431354102251810.1145/50087.50096
YuTZhangYLinKJEfficient algorithms for Web services selection with end-to-end QoS constraintsACM Trans. Web200711610.1145/1232722.1232728
Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of Web services capabilities. In Proc. International Semantic Web Conference, Sardidia, Italy, Jun. 9–12, 2002, pp.333–347.
WangXHuangSZhouAQoS-aware composite services retrievalJ. Comput. Sci. Technol.200621454755810.1007/s11390-006-0547-1
GoldbergAVA heuristic improvement of the Bellman-Ford algorithmNumerische Mathematik1959126927110760910.1007/BF01386390
Web Service Challenge 2009. http://ws-challenge.georgetown.edu/wsc09/.
Gao Y, Na J, Zhang B, Yang L, Gong Q. Optimal Web services selection using dynamic programming. In Proc. Oric, ISCC, Alexandia, Egypt, Jun. 28-Jul. 1, 2006, pp.365-370.
Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware Web service composition. In Proc. International Conference on Web Services (ICWS 2006), Chicago, USA, Sept. 18–22, 2006, pp.72–82.
Bleul S, Weise T, Geihs K. The Web service challenge — A review on semantic web service composition. In Proc. Int. Conf. Service-Oriented Computing (ICSOC 2009), Stockholm, Sweden, Nov. 14–27, 2009.
Fulkerson D R, Ford L R. Flows in Networks. Princeton University Press, 1962.
Rivest R L, Stein C, Cormen T H, Leiserson C E. Introduction to Algorithms, 2nd Edition. The MIT Press, McGraw-Hill Book Company, 2003.
Liu J, Gu N, Zong Y, Ding Z, Zhang S, Zhang Q. Web services automatic composition based on QoS. In Proc. the IEEE International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct. 18–21, 2005, pp.607–610.
Hwang C L, Yoon K. Flows in Networks. Princeton University Press, 1962.
Gu Z, Li J, Xu B. Automatic service composition based on enhanced service dependency graph. In Proc. ICWS 2008, Beijing, China, Sept. 23–26, 2008, pp.246-253.
AhujaRKMehlhornKOrlinJBTarjanREFaster algorithms for the shortest path problemJ. ACM199037221322310722560696.6804610.1145/77600.77615
Zhang R, Arpinar I B, Aleman-Meza B. Automatic composition of semantic Web services. In Proc. ICWS 2003, Las Vegas, USA, Jul. 23–26, 2003, pp.38-41.
ZhovtobryukhDA petri net-based approach for automated goal-driven Web service compositionSimulation2007831336310.1177/0037549707079226
MeyerUAverage-case complexity of single-source shortest-paths algorithms: Lower and upper boundsJ. Algorithms20034819113420060981079.6810810.1016/S0196-6774(03)00046-4
Al-Masri E, Mahmoud Q H. QoS-based discovery and ranking of Web services. In Proc. ICCCN, Honolulu, USA, Aug. 13–16, 2007, pp.529–534.
Jaeger M C, Rojec-Goldmann G, Muhl G. QoS aggregation in Web service compositions. In Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, Mar. 29-Apr. 1, 2005, pp.181-185.
Casati F, Ilnicki S, Jin L J, Krishnamoorthy V, Shan M C. Eflow: A platform for developing and managing composite e-services. In Proc. the Academia/Industry Working Conference on Research Challenges (AIWORC2000), Buffalo, USA, Apr. 27–29, 2000, p.341.
Amazon simple storage service(amazon s3). http://aws.amazon.com/s3/.
BellmanROn a routing problemQuarterly of Applied Mathematics195816187901024350081.14403
Ponnekanti S R, Fox A. Sword: A developer toolkit for Web service composition. In Proc. the 11th International WWW Conference (WWW2002), Honolulu, USA, May 7–11, 2002.
Panahi M, Lin K J, Zhang Y, Chang S H, Zhang J, Varela L. The Llama middleware support for accountable service-oriented architecture. In Proc. the 6th International Conference on Service-Oriented Computing (ICSOC 2008), Sydney, Australia, Dec. 1–5, 2008, pp.180–194.
Hu S, Muthusamy V, Li G, Jacobsen H A. Distributed automatic service composition in large-scale systems. In Proc. the Second International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, Jul. 1–4, 2008, pp.233–244.
Raimondi F, Skene J, Emmerich W. Efficient online monitoring of Web-service SLAS. In Proc. the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), Atlanta, USA, Nov. 9–14, 2008, pp.170–180.
RamanRRecent results on the single-source shortest paths problemACM SIGACT News1997282818710.1145/261342.261352
OhSCLeeDKumaraSRTWeb service planner (WSPR): An effective and scalable Web service composition algorithmInt. J. Web Service Res.20074112210.4018/jwsr.2007010101
CherkasskyBVGoldbergAVRadzikTShortest paths algorithms: Theory and experimental evaluationMathematical Programming1993732129174139216010.1007/BF02592101
OWL-S: Semantic markup forWeb services. http://www.w3.org/submission/owl-s/, Oct. 2010.
Patil A A, Oundhakar S A, Sheth A P, Verma K. Meteor-s Web service annotation framework. In Proc. the 13th International Conference on World Wide Web (WWW2004), New York, USA, May 17–20, 2004, pp.553–562.
Raman R. Priority queues: Small, monotone and trans-dichotomous. In Proc. the 4th Annual European Symposium on Algorithms (ESA), Barcelona, Spain, Sept. 25–27, 1996, pp.121–137.
Al-Masri E, Mahmoud Q H. Discovering the bestWeb service. In Proc. WWW, Chiba, Japan, May 10–14, 2007, pp.1257–1258.
ZhouAHuangSWangXBits: A binary tree based Web service composition systemInt. J. Web Service Res.200741405810.4018/jwsr.2007010103
BenatallahBShengQZDumasMThe Self-Serv environment for Web services compositionInternet Computing, IEEE200371404810.1109/MIC.2003.1167338
McIlraith S, Son T. Adapting golog for composition of semantic Web services. In Proc. the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002, pp.482–493.
Naseri M, Towhidi A. QoS-aware automatic composition of Web services using AI planners. In Proc. the Second International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, May 13–19, 2007, p.29.
McDermott D V. Estimated-regression planning for interactions with Web services. In Proc. AIPS, Toulouse, France, Apr. 23–27, 2002, pp.204–211.
DijkstraEWA note on two problems in connexion with graphs. Numerische Mathematik195912692711076090092.16002
Huang Z, Jiang W, Hu S, Liu Z. Effective pruning algorithm for QoS-aware service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computings (CEC2009), Vienna, Austria, July 20–23, 2009, pp.519-522.
OhSCLeeDKumaraSREffective Web service composition in diverse and large-scale service networksIEEE Transactions on Services Computing200811153210.1109/TSC.2008.1
RK Ahuja (183_CR37) 1990; 37
S Ran (183_CR44) 2003; 4
ML Fredman (183_CR36) 1987; 34
183_CR17
183_CR18
183_CR19
R Raman (183_CR39) 1997; 28
183_CR53
183_CR10
183_CR11
183_CR55
183_CR12
183_CR56
183_CR13
183_CR57
183_CR16
N Milanovic (183_CR14) 2006; 3
L Zeng (183_CR2) 2004; 30
183_CR30
D Zhovtobryukh (183_CR22) 2007; 83
U Meyer (183_CR42) 2003; 48
183_CR28
183_CR29
T Yu (183_CR3) 2007; 1
E Sirin (183_CR7) 2004; 1
MT Att (183_CR41) 1999; 46
183_CR21
183_CR24
183_CR25
183_CR26
M Thorup (183_CR38) 2000; 30
183_CR40
183_CR5
183_CR4
A Zhou (183_CR8) 2007; 4
183_CR9
SC Oh (183_CR47) 2008; 1
183_CR6
183_CR1
QA Liang (183_CR23) 2005; 2
183_CR31
183_CR33
183_CR50
183_CR51
BV Cherkassky (183_CR43) 1993; 73
183_CR52
R Bellman (183_CR32) 1958; 16
AV Goldberg (183_CR35) 1959; 1
SC Oh (183_CR20) 2007; 4
B Benatallah (183_CR15) 2003; 7
X Wang (183_CR27) 2006; 21
JR Driscoll (183_CR54) 1988; 31
E Dijkstra (183_CR34) 1959; 1
183_CR45
183_CR46
183_CR48
183_CR49
References_xml – reference: ThorupMOn ram priority queuesSIAM J. Comput.20003018610917627070968.6803710.1137/S0097539795288246
– reference: LiangQASuSYWAnd/or graph and search algorithm for discovering composite Web servicesInt. J. Web Service Res.200524486710.4018/jwsr.2005100103
– reference: GoldbergAVA heuristic improvement of the Bellman-Ford algorithmNumerische Mathematik1959126927110760910.1007/BF01386390
– reference: Liu J, Gu N, Zong Y, Ding Z, Zhang S, Zhang Q. Web services automatic composition based on QoS. In Proc. the IEEE International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct. 18–21, 2005, pp.607–610.
– reference: OWL-S: Semantic markup forWeb services. http://www.w3.org/submission/owl-s/, Oct. 2010.
– reference: ZhouAHuangSWangXBits: A binary tree based Web service composition systemInt. J. Web Service Res.200741405810.4018/jwsr.2007010103
– reference: SirinEParsiaBWuDHendlerJNauDHTN planning for Web service composition using shop2Web Semantics: Science, Services and Agents on the World Wide Web20041437739610.1016/j.websem.2004.06.005
– reference: Zhang R, Arpinar I B, Aleman-Meza B. Automatic composition of semantic Web services. In Proc. ICWS 2003, Las Vegas, USA, Jul. 23–26, 2003, pp.38-41.
– reference: Patil A A, Oundhakar S A, Sheth A P, Verma K. Meteor-s Web service annotation framework. In Proc. the 13th International Conference on World Wide Web (WWW2004), New York, USA, May 17–20, 2004, pp.553–562.
– reference: Hashemian S V, Mavaddat F. A graph-based framework for composition of stateless Web services. In Proc. ECOWS, Zurich, Switzerland, Dec. 4–6, 2006, pp.75-86.
– reference: Al-Masri E, Mahmoud Q H. Investigating Web services on the World Wide Web. In Proc. the 17th International Conference on World Wide Web (WWW2008), Beijing, China, Apr. 21–25, 2008, pp.795–804.
– reference: Al-Masri E, Mahmoud Q H. Discovering the bestWeb service. In Proc. WWW, Chiba, Japan, May 10–14, 2007, pp.1257–1258.
– reference: Al-Masri E, Mahmoud Q H. QoS-based discovery and ranking of Web services. In Proc. ICCCN, Honolulu, USA, Aug. 13–16, 2007, pp.529–534.
– reference: Jaeger M C, Rojec-Goldmann G, Mühl G. QoS aggregation for Web service composition using workflow patterns. In Proc. EDOC, Enschede, The Netherlands, Sept. 19–23, 2004, pp.149–159.
– reference: Gu Z, Li J, Xu B. Automatic service composition based on enhanced service dependency graph. In Proc. ICWS 2008, Beijing, China, Sept. 23–26, 2008, pp.246-253.
– reference: Hwang C L, Yoon K. Flows in Networks. Princeton University Press, 1962.
– reference: YuTZhangYLinKJEfficient algorithms for Web services selection with end-to-end QoS constraintsACM Trans. Web200711610.1145/1232722.1232728
– reference: CherkasskyBVGoldbergAVRadzikTShortest paths algorithms: Theory and experimental evaluationMathematical Programming1993732129174139216010.1007/BF02592101
– reference: DijkstraEWA note on two problems in connexion with graphs. Numerische Mathematik195912692711076090092.16002
– reference: Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of Web services capabilities. In Proc. International Semantic Web Conference, Sardidia, Italy, Jun. 9–12, 2002, pp.333–347.
– reference: Ponnekanti S R, Fox A. Sword: A developer toolkit for Web service composition. In Proc. the 11th International WWW Conference (WWW2002), Honolulu, USA, May 7–11, 2002.
– reference: McIlraith S, Son T. Adapting golog for composition of semantic Web services. In Proc. the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002, pp.482–493.
– reference: RamanRRecent results on the single-source shortest paths problemACM SIGACT News1997282818710.1145/261342.261352
– reference: RanSA model for Web services discovery with QoSSIGe-com Exch.20034111010.1145/844357.844360
– reference: OhSCLeeDKumaraSREffective Web service composition in diverse and large-scale service networksIEEE Transactions on Services Computing200811153210.1109/TSC.2008.1
– reference: Yan Y, Xu B, Gu Z, Luo S. A QoS-driven approach for semantic service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, July 20–23, 2009, pp.523-526.
– reference: Raman R. Priority queues: Small, monotone and trans-dichotomous. In Proc. the 4th Annual European Symposium on Algorithms (ESA), Barcelona, Spain, Sept. 25–27, 1996, pp.121–137.
– reference: Bleul S, Weise T, Geihs K. The Web service challenge — A review on semantic web service composition. In Proc. Int. Conf. Service-Oriented Computing (ICSOC 2009), Stockholm, Sweden, Nov. 14–27, 2009.
– reference: Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware Web service composition. In Proc. International Conference on Web Services (ICWS 2006), Chicago, USA, Sept. 18–22, 2006, pp.72–82.
– reference: Bartalos P, Bieliková M. Semantic Web service composition framework based on parallel processing. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, Jul. 20–23, 2009, pp.495–498.
– reference: Naseri M, Towhidi A. QoS-aware automatic composition of Web services using AI planners. In Proc. the Second International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, May 13–19, 2007, p.29.
– reference: Raimondi F, Skene J, Emmerich W. Efficient online monitoring of Web-service SLAS. In Proc. the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), Atlanta, USA, Nov. 9–14, 2008, pp.170–180.
– reference: Panahi M, Lin K J, Zhang Y, Chang S H, Zhang J, Varela L. The Llama middleware support for accountable service-oriented architecture. In Proc. the 6th International Conference on Service-Oriented Computing (ICSOC 2008), Sydney, Australia, Dec. 1–5, 2008, pp.180–194.
– reference: ZhovtobryukhDA petri net-based approach for automated goal-driven Web service compositionSimulation2007831336310.1177/0037549707079226
– reference: Fulkerson D R, Ford L R. Flows in Networks. Princeton University Press, 1962.
– reference: Huang Z, Jiang W, Hu S, Liu Z. Effective pruning algorithm for QoS-aware service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computings (CEC2009), Vienna, Austria, July 20–23, 2009, pp.519-522.
– reference: AhujaRKMehlhornKOrlinJBTarjanREFaster algorithms for the shortest path problemJ. ACM199037221322310722560696.6804610.1145/77600.77615
– reference: Web Service Challenge 2009. http://ws-challenge.georgetown.edu/wsc09/.
– reference: FredmanMLTarjanREFibonacci heaps and their uses in improved network optimization algorithmsJ. ACM198734359661590419510.1145/28869.28874
– reference: Casati F, Ilnicki S, Jin L J, Krishnamoorthy V, Shan M C. Eflow: A platform for developing and managing composite e-services. In Proc. the Academia/Industry Working Conference on Research Challenges (AIWORC2000), Buffalo, USA, Apr. 27–29, 2000, p.341.
– reference: ZengLBenatallahBNguAHHDumasMKalagnanamJChangHQos-aware middleware for Web services compositionIEEE Transactions on Software Engineering200430531132710.1109/TSE.2004.11
– reference: MeyerUAverage-case complexity of single-source shortest-paths algorithms: Lower and upper boundsJ. Algorithms20034819113420060981079.6810810.1016/S0196-6774(03)00046-4
– reference: Canfora G, Penta M D, Esposito R, Villani M L. An approach for QoS-aware service composition based on genetic algorithms. In Proc. GECCO, Washington DC, USA, Jun. 25–29, 2005, pp.1069–1075.
– reference: Jaeger M C, Rojec-Goldmann G, Muhl G. QoS aggregation in Web service compositions. In Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, Mar. 29-Apr. 1, 2005, pp.181-185.
– reference: BellmanROn a routing problemQuarterly of Applied Mathematics195816187901024350081.14403
– reference: Amazon simple storage service(amazon s3). http://aws.amazon.com/s3/.
– reference: OhSCLeeDKumaraSRTWeb service planner (WSPR): An effective and scalable Web service composition algorithmInt. J. Web Service Res.20074112210.4018/jwsr.2007010101
– reference: Hu S, Muthusamy V, Li G, Jacobsen H A. Distributed automatic service composition in large-scale systems. In Proc. the Second International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, Jul. 1–4, 2008, pp.233–244.
– reference: AttMTThorupMUndirected single source shortest paths with positive integer weights in linear timeJournal of the ACM1999463362394181573810.1145/316542.316548
– reference: MilanovicNMalekMSearch strategies for automatic web service compositionInt. J. Web Service Res.20063213210.4018/jwsr.2006040101
– reference: BenatallahBShengQZDumasMThe Self-Serv environment for Web services compositionInternet Computing, IEEE200371404810.1109/MIC.2003.1167338
– reference: Gao Y, Na J, Zhang B, Yang L, Gong Q. Optimal Web services selection using dynamic programming. In Proc. Oric, ISCC, Alexandia, Egypt, Jun. 28-Jul. 1, 2006, pp.365-370.
– reference: DriscollJRGabowHNShrairmanRTarjanRERelaxed heaps: An alternative to Fibonacci heaps with applications to parallel computationCommun. ACM1988311113431354102251810.1145/50087.50096
– reference: Oh S C, Kil H, Lee D, Kumara S R T. Wsben: A Web services discovery and composition benchmark. In Proc. ICWS, Chicago, USA, Sept. 18–22, 2006, pp.239–248.
– reference: Rivest R L, Stein C, Cormen T H, Leiserson C E. Introduction to Algorithms, 2nd Edition. The MIT Press, McGraw-Hill Book Company, 2003.
– reference: McDermott D V. Estimated-regression planning for interactions with Web services. In Proc. AIPS, Toulouse, France, Apr. 23–27, 2002, pp.204–211.
– reference: WangXHuangSZhouAQoS-aware composite services retrievalJ. Comput. Sci. Technol.200621454755810.1007/s11390-006-0547-1
– volume: 37
  start-page: 213
  issue: 2
  year: 1990
  ident: 183_CR37
  publication-title: J. ACM
  doi: 10.1145/77600.77615
– ident: 183_CR33
– ident: 183_CR26
  doi: 10.1109/ICEBE.2005.128
– ident: 183_CR10
– ident: 183_CR31
  doi: 10.1109/ICWS.2008.68
– ident: 183_CR6
– volume: 7
  start-page: 40
  issue: 1
  year: 2003
  ident: 183_CR15
  publication-title: Internet Computing, IEEE
  doi: 10.1109/MIC.2003.1167338
– ident: 183_CR18
– ident: 183_CR52
– ident: 183_CR17
  doi: 10.1145/988672.988747
– volume: 28
  start-page: 81
  issue: 2
  year: 1997
  ident: 183_CR39
  publication-title: ACM SIGACT News
  doi: 10.1145/261342.261352
– volume: 48
  start-page: 91
  issue: 1
  year: 2003
  ident: 183_CR42
  publication-title: J. Algorithms
  doi: 10.1016/S0196-6774(03)00046-4
– ident: 183_CR24
  doi: 10.1145/1385989.1386019
– volume: 1
  start-page: 377
  issue: 4
  year: 2004
  ident: 183_CR7
  publication-title: Web Semantics: Science, Services and Agents on the World Wide Web
  doi: 10.1016/j.websem.2004.06.005
– ident: 183_CR57
  doi: 10.1145/1242572.1242795
– volume: 16
  start-page: 87
  issue: 1
  year: 1958
  ident: 183_CR32
  publication-title: Quarterly of Applied Mathematics
  doi: 10.1090/qam/102435
– ident: 183_CR25
  doi: 10.1109/ISCC.2006.116
– ident: 183_CR13
  doi: 10.1109/CEC.2009.41
– volume: 21
  start-page: 547
  issue: 4
  year: 2006
  ident: 183_CR27
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-006-0547-1
– ident: 183_CR56
  doi: 10.1109/ICIW.2008.32
– volume: 4
  start-page: 1
  issue: 1
  year: 2007
  ident: 183_CR20
  publication-title: Int. J. Web Service Res.
  doi: 10.4018/jwsr.2007010101
– volume: 4
  start-page: 1
  issue: 1
  year: 2003
  ident: 183_CR44
  publication-title: SIGe-com Exch.
  doi: 10.1145/844357.844360
– ident: 183_CR4
  doi: 10.1145/1068009.1068189
– volume: 1
  start-page: 6
  issue: 1
  year: 2007
  ident: 183_CR3
  publication-title: ACM Trans. Web
  doi: 10.1145/1232722.1232728
– volume: 1
  start-page: 269
  year: 1959
  ident: 183_CR35
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
– ident: 183_CR49
  doi: 10.1109/ICCCN.2007.4317873
– volume: 30
  start-page: 86
  issue: 1
  year: 2000
  ident: 183_CR38
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795288246
– volume: 30
  start-page: 311
  issue: 5
  year: 2004
  ident: 183_CR2
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2004.11
– ident: 183_CR9
  doi: 10.1109/ECOWS.2006.2
– ident: 183_CR48
– ident: 183_CR1
  doi: 10.1145/1367497.1367605
– ident: 183_CR19
  doi: 10.1007/978-3-540-89652-4_16
– ident: 183_CR40
  doi: 10.1007/3-540-61680-2_51
– ident: 183_CR30
  doi: 10.1109/CEC.2009.27
– ident: 183_CR16
– ident: 183_CR55
  doi: 10.1109/ICWS.2006.148
– volume: 3
  start-page: 1
  issue: 2
  year: 2006
  ident: 183_CR14
  publication-title: Int. J. Web Service Res.
  doi: 10.4018/jwsr.2006040101
– ident: 183_CR12
  doi: 10.1109/CEC.2009.44
– ident: 183_CR28
  doi: 10.1109/ICIW.2007.51
– ident: 183_CR5
  doi: 10.1109/ICWS.2006.69
– volume: 4
  start-page: 40
  issue: 1
  year: 2007
  ident: 183_CR8
  publication-title: Int. J. Web Service Res.
  doi: 10.4018/jwsr.2007010103
– ident: 183_CR51
  doi: 10.1109/EDOC.2004.1342512
– volume: 46
  start-page: 362
  issue: 3
  year: 1999
  ident: 183_CR41
  publication-title: Journal of the ACM
  doi: 10.1145/316542.316548
– ident: 183_CR45
– ident: 183_CR11
– volume: 2
  start-page: 48
  issue: 4
  year: 2005
  ident: 183_CR23
  publication-title: Int. J. Web Service Res.
  doi: 10.4018/jwsr.2005100103
– volume: 31
  start-page: 1343
  issue: 11
  year: 1988
  ident: 183_CR54
  publication-title: Commun. ACM
  doi: 10.1145/50087.50096
– volume: 34
  start-page: 596
  issue: 3
  year: 1987
  ident: 183_CR36
  publication-title: J. ACM
  doi: 10.1145/28869.28874
– volume: 1
  start-page: 269
  year: 1959
  ident: 183_CR34
  publication-title: A note on two problems in connexion with graphs. Numerische Mathematik
– ident: 183_CR53
– volume: 73
  start-page: 129
  issue: 2
  year: 1993
  ident: 183_CR43
  publication-title: Mathematical Programming
  doi: 10.1007/BF02592101
– ident: 183_CR46
  doi: 10.1007/3-540-48005-6_26
– ident: 183_CR21
– ident: 183_CR29
– volume: 1
  start-page: 15
  issue: 1
  year: 2008
  ident: 183_CR47
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2008.1
– ident: 183_CR50
  doi: 10.1145/1453101.1453125
– volume: 83
  start-page: 33
  issue: 1
  year: 2007
  ident: 183_CR22
  publication-title: Simulation
  doi: 10.1177/0037549707079226
SSID ssj0037044
Score 2.004431
Snippet In the research of service composition,it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of...
In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 837
SubjectTerms Accuracy
Algorithms
Analysis
Artificial Intelligence
Automation
Composition
Computer Science
Data Structures and Information Theory
Dijkstra's algorithm
Dijkstra算法
Graph algorithms
Graph theory
Information Systems Applications (incl.Internet)
Internet service providers
Preferences
QoS
Quality of service
Regular Paper
Restaurants
Science
Service introduction
Shortest-path problems
Software Engineering
Studies
Theory of Computation
User requirements
Web services
单源最短路径
图形模型
感知
服务组合
自动服务
视图
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4QLl58GwE1PXjSNO6j-zIxBg1ITCC-MNyattvqwbCAEP--naWFaCLHzbY9TKczX9vp9yF0lvLE14KmREdCECpjTkxW9EiuA61VHJsPeO_c68fdAX0YRsMK6rm3MFBW6WJiGajzQsIZ-aXpBNzrSXIznhAQjYLLVaegwa2yQn5dMoxtoJqJyKlx-9ptu__47EJzmHiluiucaRNQy3TXnOVbOoOFoEYLdtdpSAIgW_goRu8Tk0J-J60VEv1zeVrmpM4O2rJgErcWs7-LKmq0h7adUAO263YfRU_FC2l986nCrfmsKFlasY0SGJrbyq0r3ML3wGCN34wxDtCg03696xKrl0CkyUUzklCtIP2kys8EDYXZaFKZqUhyP9a-zrUUXpRKlaU69P2YS6GzIOeAuWjg52F4iKqjYqSOEI7MLk8lygu5oBQ0PIEESOZKZ9wTSvE6aiyNw8YLXgxmoJZBa35QR56zFpOWaRwELz7ZiiMZjM2MsRkYm5ku58subrg1jZtuCphdcV9s6R91dOFmZfX337Eaa8dqos3FGTLUlB2j6mw6VycGhMzEqXWtHxeB1eg
  priority: 102
  providerName: ProQuest
Title QoS-Aware Automatic Service Composition:A Graph View
URI http://lib.cqvip.com/qk/85226X/201105/39210512.html
https://link.springer.com/article/10.1007/s11390-011-0183-2
https://www.proquest.com/docview/893875777
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4FttqycGTEthH9uVtlT5QLL4qegpJNlFButoH_ftmtpsuigqelmUnWZgkM98kk28QOop55GpBY6IDIQiVISfGKzok057WKgzNC9x3vhqE_SG9eAwey3vcE5vtbo8kC0tdXXYzYAWSqCD8jX1i7G49MKE7rMahl1rz60dOUcEV9q0JVMS0R5k_dQGECi_56PnD_O6rY6rQ5rcD0sLvdDfRegkYcboY4S20okbbaMMWY8Dl2txBwU1-R9I5HyuczqZ5wcSKS0uAQbzMzjrFKe4BSzV-eFXzXTTsdu7P-6SsiUCk8TdTElGtwMXEyk0E9YUJJqlMVCC5G2pXZ1oKJ4ilSmLtu27IpdCJl3HAVdRzM9_fQ7VRPlL7CAcmklORcnwuKIU6nUD0IzOlE-4IpXgDNZfKYe8L7gtm4JRBZK7XQI7VFpMlmzgUtXhjFQ8yKJsZZTNQNjNNjpdNbHd_CLfsELByVU2YmTjAvx9FDXRiR6X6-mtfzX9Jt9DaYt8Y8sgOUG06nqlDAzymoo1W426vjepp7-myY55nncH1bbuYfp-zrtAK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hcGgvLS1UDa_6AJcii314X0ioSlsgFIhaChU31_bacEBZHkGIH9f_xszGTtRK5cZxtWsfxrPz8sz3AayVqoidFiV3mdZcmFxx9IoRr13inM1zfKB556NB3j8V386ysxn4E2ZhqK0y2MTWUNeNoRr5Ji4i7PWi-HR1zYk0ii5XA4OG8swK9XaLMObnOg7swz1mcLfb-1_xuNeTZHfn5Eufe5IBbtCAj3ghnCWbXdq40iLVmJ0JU9nMqDh3saud0VFWGluVLo3jXBntqqRWFKiIJK6pHooeYFbQgGsHZj_vDL4fB1eQFlHLJks1dE7snOFatZ3dw9iLesIomy9TnhC4w0UzPL9Gl_W3k5xGvv9c1rY-cHcOXvnglfXG2vYGZuzwLbwOxBDM24l5yH40P3nvXt1Y1rsbNS0qLPNWidHnvlNsi_XYHiFms18o_AU4fRbRvYPOsBna98AyzCptYaNUaSGIM5RAh0xtXaUiba3qwuJEOPJqjMMhMbTD6DBOuhAFaUnjkc2JYONSTjGZSdgShS1J2BKXfJwsCds98fFSOALp__BbOdHHLmyEU5m-_e9ei0_u9QFe9E-ODuXh_uBgCV6O69fUz7YMndHNnV3BAGikV72aMfj93Jr9COkgEuI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iIF7cxRm3HDwpwaZNN29FHXdRdMRbSNJEBWlH7eDfN69tZlBU8FiyFF6S974kL9-H0HYiYmokS4gJpSRMRYLYqOiR3PjG6CiyH_De-fIqOumzs4fwodU5fXfZ7u5KsnnTACxNRbU3yM3e-OGbBS6QUAVb4SQg1gdPWW9MYaL3_cy54iD2ajVXOMMmoI7prjV_6gLIFZ7K4vHV_vprkBojz2-XpXUM6s2j2RY84qwZ7QU0oYtFNOeEGXC7TpdQeFPekuxDvGmcDauyZmXFrVfAUL3N1NrHGT4Gxmp8_6w_llG_d3R3cEJafQSibOypSMyMhnCTaJpKFki7sWQq1aESNDLU5EZJL0yUThMTUBoJJU3q5wIwFvNpHgQraLIoC72KcGh3dTrWXiAkY6DZCaQ_KtcmFZ7UWnRQd2QcPmh4MLiFVhadUb-DPGctrlpmcRC4eOFjTmQwNrfG5mBsbpvsjJq47v6ovOaGgLcr7J3bSQRc_HHcQbtuVMalv_bV_VftLTR9fdjjF6dX52topjlOhvSydTRZvQ31hsUjldys59wnH67TJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS-Aware+Automatic+Service+Composition%EF%BC%9AA+Graph+View&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%A7%9C%E4%BC%9F+%E5%90%B4%E7%94%9C+%E8%99%8E%E5%B5%A9%E6%9E%97+%E5%88%98%E5%BF%97%E5%8B%87&rft.date=2011-09-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=26&rft.issue=5&rft.spage=837&rft.epage=853&rft_id=info:doi/10.1007%2Fs11390-011-0183-2&rft.externalDocID=39210512
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg