Single-index models with functional connectivity network predictors

Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 24; no. 1; pp. 52 - 67
Main Authors Weaver, Caleb, Xiao, Luo, Lindquist, Martin A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 12.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.
AbstractList Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.
Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.
Author Xiao, Luo
Lindquist, Martin A
Weaver, Caleb
Author_xml – sequence: 1
  givenname: Caleb
  orcidid: 0000-0002-3654-2659
  surname: Weaver
  fullname: Weaver, Caleb
– sequence: 2
  givenname: Luo
  orcidid: 0000-0001-8707-0914
  surname: Xiao
  fullname: Xiao, Luo
– sequence: 3
  givenname: Martin A
  orcidid: 0000-0002-4935-5692
  surname: Lindquist
  fullname: Lindquist, Martin A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33948617$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLwzAUDjJxOv0JSh99qSZN0jYIggxvMPBBfQ5peuqiXTKTdNN_b6ebqA--nAvnu8D59tDAOgsIHRJ8QrCgp5VxIapoQjQ6nL68qQoTvoV2CcvLlFFeDD5nnrKcsSHaC-EZ4yyjOd1BQ0oFK3NS7KLxvbFPLaTG1vCWzFwNbUiWJk6TprM6GmdVm2hnLfTLwsT3xEJcOv-SzD3URkfnwz7ablQb4GDdR-jx6vJhfJNO7q5vxxeTVFNGYspBk6rBBWcka8oGA-HAFFOqrDDuS9H3JlcZFnVOQeusEVowUuCaQV5zTEfo_Et33lUzqDXY6FUr597MlH-XThn5-2LNVD65hRQFK7nIeoHjtYB3rx2EKGcmaGhbZcF1QWa8f5AoBKY99Oin17fJ5nM94OwLoL0LwUMjtVnl4VbWppUEy1VO8ldOcp1Tz-Z_2BuD_3kfZq6h_g
CitedBy_id crossref_primary_10_1007_s10994_022_06174_z
crossref_primary_10_1093_biomtc_ujaf023
crossref_primary_10_3390_math11092065
Cites_doi 10.1016/j.neuroimage.2018.04.077
10.1198/106186002853
10.1111/rssb.12031
10.1214/12-EJS669
10.1080/01621459.1997.10474001
10.1073/pnas.0308627101
10.1038/srep32328
10.1016/0304-4076(93)90114-K
10.1093/cercor/bhy109
10.1016/j.neuroimage.2014.03.034
10.1145/1553374.1553431
10.1093/biomet/asr054
10.1016/j.tics.2013.09.016
10.1093/brain/aws059
10.1016/j.neuroimage.2011.12.052
10.1017/CBO9780511804441
10.1109/TSP.2019.2899818
10.1016/j.neuroimage.2019.02.062
10.1038/nn.4135
10.1016/j.neuroimage.2011.11.054
10.1561/2200000016
10.1002/hbm.23092
10.1016/j.neuroimage.2005.12.057
10.1109/TPAMI.2012.235
10.1214/19-EJS1541
10.1016/j.neuroimage.2013.05.039
10.1038/30918
10.1109/TMI.2018.2831261
10.1093/biostatistics/kxm045
10.1111/rssb.12033
10.1016/j.neuroimage.2018.01.029
10.1111/j.1467-9868.2005.00503.x
10.1016/j.neuroimage.2020.117493
10.1016/j.neuroimage.2010.08.063
10.1214/ss/1038425655
10.1093/brain/awt079
10.3905/jpm.2004.110
10.1016/j.neuroimage.2009.11.011
10.1002/hbm.21514
10.1523/JNEUROSCI.0333-10.2010
10.1038/nn.4478
10.1016/j.neuroimage.2013.04.127
10.1111/rssb.12123
10.1080/01621459.2013.776499
10.1214/12-EJS740
ContentType Journal Article
Copyright The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: . 2021
Copyright_xml – notice: The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: . 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/biostatistics/kxab015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 67
ExternalDocumentID PMC9748592
33948617
10_1093_biostatistics_kxab015
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIA NIH HHS
  grantid: R56 AG064803
– fundername: NIH HHS
  grantid: R01 NS112303
– fundername: NIBIB NIH HHS
  grantid: R01 EB026549
– fundername: NIA NIH HHS
  grantid: R01 AG064803
– fundername: NIBIB NIH HHS
  grantid: R01 EB016061
– fundername: ;
  grantid: R01 NS112303; R56 AG064803; R01 AG064803
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
C45
KBUDW
ID FETCH-LOGICAL-c341t-5ec1bf075412f8f0e15e4a4aa8b00a8b78b0f6a209d63ecc2f9c94170d4e6d503
ISSN 1465-4644
1468-4357
IngestDate Thu Aug 21 18:39:17 EDT 2025
Fri Jul 11 16:14:55 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Tue Jul 01 03:45:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Networks
fMRI
Penalized splines
Sparsity
Nonparametric regression
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-5ec1bf075412f8f0e15e4a4aa8b00a8b78b0f6a209d63ecc2f9c94170d4e6d503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3654-2659
0000-0001-8707-0914
0000-0002-4935-5692
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9748592
PMID 33948617
PQID 2522397903
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9748592
proquest_miscellaneous_2522397903
pubmed_primary_33948617
crossref_citationtrail_10_1093_biostatistics_kxab015
crossref_primary_10_1093_biostatistics_kxab015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-12
PublicationDateYYYYMMDD 2022-12-12
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Friedman (2022121408255950800_B13) 2008; 9
Wang (2022121408255950800_B44) 2012; 6
Varoquaux (2022121408255950800_B42) 2010
Shen (2022121408255950800_B37) 2010; 49
Woo (2022121408255950800_B49) 2017; 20
Relión (2022121408255950800_B33) 2019; 13
Smith (2022121408255950800_B38) 2013; 80
Qiu (2022121408255950800_B32) 2016; 78
Finn (2022121408255950800_B12) 2015; 18
Mazumder (2022121408255950800_B28) 2012; 6
Liang (2022121408255950800_B23) 2016; 37
Wang (2022121408255950800_B45) 2020; 225
Vogelstein (2022121408255950800_B43) 2012; 35
Watts (2022121408255950800_B48) 1998; 393
Griffanti (2022121408255950800_B16) 2014; 95
Solo (2022121408255950800_B41) 2018; 37
Wang (2022121408255950800_B47) 2019; 67
Csardi (2022121408255950800_B6) 2006; 1695
Ichimura (2022121408255950800_B20) 1993; 58
Nair (2022121408255950800_B31) 2013; 136
Danaher (2022121408255950800_B8) 2014; 76
Zhou (2022121408255950800_B53) 2013; 108
Ledoit (2022121408255950800_B22) 2004; 30
Xiao (2022121408255950800_B50) 2019; 13
Zeng (2022121408255950800_B51) 2012; 135
Greicius (2022121408255950800_B15) 2004; 101
Eilers (2022121408255950800_B9) 1996; 11
Feng (2022121408255950800_B10) 2020; 30
Bien (2022121408255950800_B1) 2011; 98
Dadi (2022121408255950800_B7) 2019; 192
Ruppert (2022121408255950800_B35) 2002; 11
Ryali (2022121408255950800_B36) 2012; 59
Jacob (2022121408255950800_B21) 2009
Filippi (2022121408255950800_B11) 2013; 34
Mazumder (2022121408255950800_B27) 2012; 13
Marrelec (2022121408255950800_B26) 2006; 32
Smith (2022121408255950800_B39) 2011; 54
Hearne (2022121408255950800_B19) 2016; 6
Wang (2022121408255950800_B46) 2009; 19
Boyd (2022121408255950800_B2) 2004
Ritchie (2022121408255950800_B34) 2018; 28
Härdle (2022121408255950800_B18) 1989; 84
Mejia (2022121408255950800_B30) 2018; 172
Carroll (2022121408255950800_B4) 1997; 92
Lynall (2022121408255950800_B25) 2010; 30
Boyd (2022121408255950800_B3) 2011; 3
Liu (2022121408255950800_B24) 2012; 38
Zhou (2022121408255950800_B52) 2014; 76
Glasser (2022121408255950800_B14) 2013; 80
Colclough (2022121408255950800_B5) 2018; 178
Smith (2022121408255950800_B40) 2013; 17
Zou (2022121408255950800_B54) 2005; 67
Guha (2022121408255950800_B17) 2020
Meier (2022121408255950800_B29) 2012; 60
References_xml – volume: 178
  start-page: 370
  year: 2018
  ident: 2022121408255950800_B5
  article-title: Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.077
– volume: 11
  start-page: 735
  year: 2002
  ident: 2022121408255950800_B35
  article-title: Selecting the number of knots for penalized splines
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186002853
– volume: 76
  start-page: 463
  year: 2014
  ident: 2022121408255950800_B52
  article-title: Regularized matrix regression
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12031
– volume: 6
  start-page: 168
  year: 2012
  ident: 2022121408255950800_B44
  article-title: Efficient Gaussian graphical model determination under g-Wishart prior distributions
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS669
– volume: 92
  start-page: 477
  year: 1997
  ident: 2022121408255950800_B4
  article-title: Generalized partially linear single-index models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10474001
– volume: 101
  start-page: 4637
  year: 2004
  ident: 2022121408255950800_B15
  article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
  publication-title: Proceedings of the National Academy of Sciences United States of America
  doi: 10.1073/pnas.0308627101
– volume: 6
  start-page: 32328
  year: 2016
  ident: 2022121408255950800_B19
  article-title: Functional brain networks related to individual differences in human intelligence at rest
  publication-title: Scientific Reports
  doi: 10.1038/srep32328
– volume: 19
  start-page: 765
  year: 2009
  ident: 2022121408255950800_B46
  article-title: Spline estimation of single-index models
  publication-title: Statistica Sinica
– volume: 58
  start-page: 71
  year: 1993
  ident: 2022121408255950800_B20
  article-title: Semiparametric least squares (SLS) and weighted SLS estimation of single-index models
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(93)90114-K
– volume: 28
  start-page: 2959
  year: 2018
  ident: 2022121408255950800_B34
  article-title: Sex differences in the adult human brain: evidence from 5216 UK Biobank participants
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhy109
– volume: 95
  start-page: 232
  year: 2014
  ident: 2022121408255950800_B16
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– start-page: 433
  volume-title: Proceedings of the 26th Annual International Conference on Machine Learning
  year: 2009
  ident: 2022121408255950800_B21
  doi: 10.1145/1553374.1553431
– start-page: 2334
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: 2022121408255950800_B42
– volume: 98
  start-page: 807
  year: 2011
  ident: 2022121408255950800_B1
  article-title: Sparse estimation of a covariance matrix
  publication-title: Biometrika
  doi: 10.1093/biomet/asr054
– volume: 13
  start-page: 1648
  year: 2019
  ident: 2022121408255950800_B33
  article-title: Network classification with applications to brain connectomics
  publication-title: The Annals of Applied Statistics
– volume: 17
  start-page: 666
  year: 2013
  ident: 2022121408255950800_B40
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2013.09.016
– volume: 135
  start-page: 1498
  year: 2012
  ident: 2022121408255950800_B51
  article-title: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis
  publication-title: Brain
  doi: 10.1093/brain/aws059
– volume: 60
  start-page: 601
  year: 2012
  ident: 2022121408255950800_B29
  article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.052
– volume-title: Convex Optimization
  year: 2004
  ident: 2022121408255950800_B2
  doi: 10.1017/CBO9780511804441
– volume: 67
  start-page: 1929
  year: 2019
  ident: 2022121408255950800_B47
  article-title: Symmetric bilinear regression for signal subgraph estimation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2019.2899818
– volume: 192
  start-page: 115
  year: 2019
  ident: 2022121408255950800_B7
  article-title: Benchmarking functional connectome-based predictive models for resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.062
– volume: 18
  start-page: 1664
  year: 2015
  ident: 2022121408255950800_B12
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4135
– volume: 59
  start-page: 3852
  year: 2012
  ident: 2022121408255950800_B36
  article-title: Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.054
– volume: 3
  start-page: 1
  year: 2011
  ident: 2022121408255950800_B3
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000016
– start-page: 1
  year: 2020
  ident: 2022121408255950800_B17
  article-title: Bayesian regression with undirected network predictors with an application to brain connectome data
  publication-title: Journal of the American Statistical Association
– volume: 37
  start-page: 1162
  year: 2016
  ident: 2022121408255950800_B23
  article-title: A novel joint sparse partial correlation method for estimating group functional networks
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23092
– volume: 32
  start-page: 228
  year: 2006
  ident: 2022121408255950800_B26
  article-title: Partial correlation for functional brain interactivity investigation in functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 35
  start-page: 1539
  year: 2012
  ident: 2022121408255950800_B43
  article-title: Graph classification using signal-subgraphs: applications in statistical connectomics
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.235
– volume: 13
  start-page: 747
  year: 2019
  ident: 2022121408255950800_B50
  article-title: Asymptotic theory of penalized splines
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/19-EJS1541
– volume: 80
  start-page: 144
  year: 2013
  ident: 2022121408255950800_B38
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 393
  start-page: 440
  year: 1998
  ident: 2022121408255950800_B48
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 37
  start-page: 1537
  year: 2018
  ident: 2022121408255950800_B41
  article-title: Connectivity in fMRI: blind spots and breakthroughs
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2018.2831261
– volume: 9
  start-page: 432
  year: 2008
  ident: 2022121408255950800_B13
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 76
  start-page: 373
  year: 2014
  ident: 2022121408255950800_B8
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology
  doi: 10.1111/rssb.12033
– volume: 172
  start-page: 478
  year: 2018
  ident: 2022121408255950800_B30
  article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.01.029
– volume: 67
  start-page: 301
  year: 2005
  ident: 2022121408255950800_B54
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 225
  start-page: 117493
  year: 2020
  ident: 2022121408255950800_B45
  article-title: Learning clique subgraphs in structural brain network classification with application to crystallized cognition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117493
– volume: 38
  year: 2012
  ident: 2022121408255950800_B24
  article-title: High-dimensional sparse precision matrix estimation via sparse column inverse operator
  publication-title: arXiv preprint arXiv:1203.3896
– volume: 54
  start-page: 875
  year: 2011
  ident: 2022121408255950800_B39
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 11
  start-page: 89
  year: 1996
  ident: 2022121408255950800_B9
  article-title: Flexible smoothing with b-splines and penalties
  publication-title: Statistical Science
  doi: 10.1214/ss/1038425655
– volume: 13
  start-page: 781
  year: 2012
  ident: 2022121408255950800_B27
  article-title: Exact covariance thresholding into connected components for large-scale graphical lasso
  publication-title: Journal of Machine Learning Research
– volume: 136
  start-page: 1942
  year: 2013
  ident: 2022121408255950800_B31
  article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity
  publication-title: Brain
  doi: 10.1093/brain/awt079
– volume: 30
  start-page: 110
  year: 2004
  ident: 2022121408255950800_B22
  article-title: Honey, I shrunk the sample covariance matrix
  publication-title: The Journal of Portfolio Management
  doi: 10.3905/jpm.2004.110
– volume: 49
  start-page: 3110
  year: 2010
  ident: 2022121408255950800_B37
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.011
– volume: 1695
  start-page: 1
  year: 2006
  ident: 2022121408255950800_B6
  article-title: The igraph software package for complex network research
  publication-title: InterJournal, Complex Systems
– volume: 34
  start-page: 1330
  year: 2013
  ident: 2022121408255950800_B11
  article-title: The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21514
– volume: 30
  start-page: 9477
  year: 2010
  ident: 2022121408255950800_B25
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 20
  start-page: 365
  year: 2017
  ident: 2022121408255950800_B49
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4478
– volume: 80
  start-page: 105
  year: 2013
  ident: 2022121408255950800_B14
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 30
  start-page: 1
  year: 2020
  ident: 2022121408255950800_B10
  article-title: Sparse single index models for multivariate responses
  publication-title: Journal of Computational and Graphical Statistics
– volume: 84
  start-page: 986
  year: 1989
  ident: 2022121408255950800_B18
  article-title: Investigating smooth multiple regression by the method of average derivatives
  publication-title: Journal of the American Statistical Association
– volume: 78
  start-page: 487
  year: 2016
  ident: 2022121408255950800_B32
  article-title: Joint estimation of multiple graphical models from high dimensional time series
  publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology
  doi: 10.1111/rssb.12123
– volume: 108
  start-page: 540
  year: 2013
  ident: 2022121408255950800_B53
  article-title: Tensor regression with applications in neuroimaging data analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2013.776499
– volume: 6
  start-page: 2125
  year: 2012
  ident: 2022121408255950800_B28
  article-title: The graphical lasso: new insights and alternatives
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS740
SSID ssj0022363
Score 2.3541017
Snippet Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 52
SubjectTerms Brain - diagnostic imaging
Brain - physiology
Computer Simulation
Connectome - methods
Humans
Magnetic Resonance Imaging - methods
Nerve Net - diagnostic imaging
Nerve Net - physiology
Title Single-index models with functional connectivity network predictors
URI https://www.ncbi.nlm.nih.gov/pubmed/33948617
https://www.proquest.com/docview/2522397903
https://pubmed.ncbi.nlm.nih.gov/PMC9748592
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VK24oJa2dGmpgsQ1kNjOw0eEWlH6uBTE3iI7cdSIJUshi2h_PeNXNoFWfVycXWfjbPyNJx57vhmAHc6riuEIDCXP6pAR7QSgOAsTSfJcSVlHUrORP39JD0_Y0TSZLrNtGnZJJ3fLn7_klfwPqliHuGqW7D8g2zeKFfgZ8cUSEcbyrzD-iu-dmQpNxEOb08aR1fTbyi3yldqTpXQ5Ilrr9K0jA1SNSbQz2tRt5ppf5EI36zikN9713eX6GKwbnCpx7UmEMyV99bQRZvH102Le-_rg__u-aK48N6jTSyzD1QZiEp84P2dlNaSmauEcKxuqUEuDHomK1Yc2Ou09NW1DWMnhU-H3sxshI0vuHIB3cW7Qo5SzPLU8zzsRsv2ph_CIoLFgDOsPH3uzm9CUeu4Wp3uju-65e67CE9_KeIJyz-q46zw7mI0cP4U1Z0YE-1YmnsED1a7DY5tY9MdzOBhKRmAlI9CSESwlIxhKRuAkI1hKxgs4ef_u-OAwdOkywhKnIl2YqDLGsZUlLCZ1XkcqThQTTIgcVSsWGR7rVJCIVynFkUtqXnIWZ1HFVFolEX0JK-28Va8giGoS00xwwWKOFn_FVa23UJmSRPBcphNgvo-K0sWS1ylNZoX1aaDFqJcL18sT2O0vu7DBVP50wbYHoEC1p_eyRKvmi6uCoN2gt6QjOoENC0jfpEdyAtkIqv4HOqT6-EzbfDOh1dG6zhNONn_b5mtYXQ6LN7DSXS7UFk5LO_nWSN0t8OSXoQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-index+models+with+functional+connectivity+network+predictors&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Weaver%2C+Caleb&rft.au=Xiao%2C+Luo&rft.au=Lindquist%2C+Martin+A&rft.date=2022-12-12&rft.eissn=1468-4357&rft.volume=24&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxab015&rft_id=info%3Apmid%2F33948617&rft.externalDocID=33948617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon