Single-index models with functional connectivity network predictors
Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 24; no. 1; pp. 52 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
12.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions. |
---|---|
AbstractList | Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions. Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions. |
Author | Xiao, Luo Lindquist, Martin A Weaver, Caleb |
Author_xml | – sequence: 1 givenname: Caleb orcidid: 0000-0002-3654-2659 surname: Weaver fullname: Weaver, Caleb – sequence: 2 givenname: Luo orcidid: 0000-0001-8707-0914 surname: Xiao fullname: Xiao, Luo – sequence: 3 givenname: Martin A orcidid: 0000-0002-4935-5692 surname: Lindquist fullname: Lindquist, Martin A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33948617$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtLwzAUDjJxOv0JSh99qSZN0jYIggxvMPBBfQ5peuqiXTKTdNN_b6ebqA--nAvnu8D59tDAOgsIHRJ8QrCgp5VxIapoQjQ6nL68qQoTvoV2CcvLlFFeDD5nnrKcsSHaC-EZ4yyjOd1BQ0oFK3NS7KLxvbFPLaTG1vCWzFwNbUiWJk6TprM6GmdVm2hnLfTLwsT3xEJcOv-SzD3URkfnwz7ablQb4GDdR-jx6vJhfJNO7q5vxxeTVFNGYspBk6rBBWcka8oGA-HAFFOqrDDuS9H3JlcZFnVOQeusEVowUuCaQV5zTEfo_Et33lUzqDXY6FUr597MlH-XThn5-2LNVD65hRQFK7nIeoHjtYB3rx2EKGcmaGhbZcF1QWa8f5AoBKY99Oin17fJ5nM94OwLoL0LwUMjtVnl4VbWppUEy1VO8ldOcp1Tz-Z_2BuD_3kfZq6h_g |
CitedBy_id | crossref_primary_10_1007_s10994_022_06174_z crossref_primary_10_1093_biomtc_ujaf023 crossref_primary_10_3390_math11092065 |
Cites_doi | 10.1016/j.neuroimage.2018.04.077 10.1198/106186002853 10.1111/rssb.12031 10.1214/12-EJS669 10.1080/01621459.1997.10474001 10.1073/pnas.0308627101 10.1038/srep32328 10.1016/0304-4076(93)90114-K 10.1093/cercor/bhy109 10.1016/j.neuroimage.2014.03.034 10.1145/1553374.1553431 10.1093/biomet/asr054 10.1016/j.tics.2013.09.016 10.1093/brain/aws059 10.1016/j.neuroimage.2011.12.052 10.1017/CBO9780511804441 10.1109/TSP.2019.2899818 10.1016/j.neuroimage.2019.02.062 10.1038/nn.4135 10.1016/j.neuroimage.2011.11.054 10.1561/2200000016 10.1002/hbm.23092 10.1016/j.neuroimage.2005.12.057 10.1109/TPAMI.2012.235 10.1214/19-EJS1541 10.1016/j.neuroimage.2013.05.039 10.1038/30918 10.1109/TMI.2018.2831261 10.1093/biostatistics/kxm045 10.1111/rssb.12033 10.1016/j.neuroimage.2018.01.029 10.1111/j.1467-9868.2005.00503.x 10.1016/j.neuroimage.2020.117493 10.1016/j.neuroimage.2010.08.063 10.1214/ss/1038425655 10.1093/brain/awt079 10.3905/jpm.2004.110 10.1016/j.neuroimage.2009.11.011 10.1002/hbm.21514 10.1523/JNEUROSCI.0333-10.2010 10.1038/nn.4478 10.1016/j.neuroimage.2013.04.127 10.1111/rssb.12123 10.1080/01621459.2013.776499 10.1214/12-EJS740 |
ContentType | Journal Article |
Copyright | The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: . 2021 |
Copyright_xml | – notice: The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: . 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/biostatistics/kxab015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1468-4357 |
EndPage | 67 |
ExternalDocumentID | PMC9748592 33948617 10_1093_biostatistics_kxab015 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIA NIH HHS grantid: R56 AG064803 – fundername: NIH HHS grantid: R01 NS112303 – fundername: NIBIB NIH HHS grantid: R01 EB026549 – fundername: NIA NIH HHS grantid: R01 AG064803 – fundername: NIBIB NIH HHS grantid: R01 EB016061 – fundername: ; grantid: R01 NS112303; R56 AG064803; R01 AG064803 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY NU- O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF M49 NPM 7X8 5PM C45 KBUDW |
ID | FETCH-LOGICAL-c341t-5ec1bf075412f8f0e15e4a4aa8b00a8b78b0f6a209d63ecc2f9c94170d4e6d503 |
ISSN | 1465-4644 1468-4357 |
IngestDate | Thu Aug 21 18:39:17 EDT 2025 Fri Jul 11 16:14:55 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Tue Jul 01 03:45:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Networks fMRI Penalized splines Sparsity Nonparametric regression |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-5ec1bf075412f8f0e15e4a4aa8b00a8b78b0f6a209d63ecc2f9c94170d4e6d503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3654-2659 0000-0001-8707-0914 0000-0002-4935-5692 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9748592 |
PMID | 33948617 |
PQID | 2522397903 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9748592 proquest_miscellaneous_2522397903 pubmed_primary_33948617 crossref_citationtrail_10_1093_biostatistics_kxab015 crossref_primary_10_1093_biostatistics_kxab015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-12 |
PublicationDateYYYYMMDD | 2022-12-12 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biostatistics (Oxford, England) |
PublicationTitleAlternate | Biostatistics |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Friedman (2022121408255950800_B13) 2008; 9 Wang (2022121408255950800_B44) 2012; 6 Varoquaux (2022121408255950800_B42) 2010 Shen (2022121408255950800_B37) 2010; 49 Woo (2022121408255950800_B49) 2017; 20 Relión (2022121408255950800_B33) 2019; 13 Smith (2022121408255950800_B38) 2013; 80 Qiu (2022121408255950800_B32) 2016; 78 Finn (2022121408255950800_B12) 2015; 18 Mazumder (2022121408255950800_B28) 2012; 6 Liang (2022121408255950800_B23) 2016; 37 Wang (2022121408255950800_B45) 2020; 225 Vogelstein (2022121408255950800_B43) 2012; 35 Watts (2022121408255950800_B48) 1998; 393 Griffanti (2022121408255950800_B16) 2014; 95 Solo (2022121408255950800_B41) 2018; 37 Wang (2022121408255950800_B47) 2019; 67 Csardi (2022121408255950800_B6) 2006; 1695 Ichimura (2022121408255950800_B20) 1993; 58 Nair (2022121408255950800_B31) 2013; 136 Danaher (2022121408255950800_B8) 2014; 76 Zhou (2022121408255950800_B53) 2013; 108 Ledoit (2022121408255950800_B22) 2004; 30 Xiao (2022121408255950800_B50) 2019; 13 Zeng (2022121408255950800_B51) 2012; 135 Greicius (2022121408255950800_B15) 2004; 101 Eilers (2022121408255950800_B9) 1996; 11 Feng (2022121408255950800_B10) 2020; 30 Bien (2022121408255950800_B1) 2011; 98 Dadi (2022121408255950800_B7) 2019; 192 Ruppert (2022121408255950800_B35) 2002; 11 Ryali (2022121408255950800_B36) 2012; 59 Jacob (2022121408255950800_B21) 2009 Filippi (2022121408255950800_B11) 2013; 34 Mazumder (2022121408255950800_B27) 2012; 13 Marrelec (2022121408255950800_B26) 2006; 32 Smith (2022121408255950800_B39) 2011; 54 Hearne (2022121408255950800_B19) 2016; 6 Wang (2022121408255950800_B46) 2009; 19 Boyd (2022121408255950800_B2) 2004 Ritchie (2022121408255950800_B34) 2018; 28 Härdle (2022121408255950800_B18) 1989; 84 Mejia (2022121408255950800_B30) 2018; 172 Carroll (2022121408255950800_B4) 1997; 92 Lynall (2022121408255950800_B25) 2010; 30 Boyd (2022121408255950800_B3) 2011; 3 Liu (2022121408255950800_B24) 2012; 38 Zhou (2022121408255950800_B52) 2014; 76 Glasser (2022121408255950800_B14) 2013; 80 Colclough (2022121408255950800_B5) 2018; 178 Smith (2022121408255950800_B40) 2013; 17 Zou (2022121408255950800_B54) 2005; 67 Guha (2022121408255950800_B17) 2020 Meier (2022121408255950800_B29) 2012; 60 |
References_xml | – volume: 178 start-page: 370 year: 2018 ident: 2022121408255950800_B5 article-title: Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.04.077 – volume: 11 start-page: 735 year: 2002 ident: 2022121408255950800_B35 article-title: Selecting the number of knots for penalized splines publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186002853 – volume: 76 start-page: 463 year: 2014 ident: 2022121408255950800_B52 article-title: Regularized matrix regression publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12031 – volume: 6 start-page: 168 year: 2012 ident: 2022121408255950800_B44 article-title: Efficient Gaussian graphical model determination under g-Wishart prior distributions publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS669 – volume: 92 start-page: 477 year: 1997 ident: 2022121408255950800_B4 article-title: Generalized partially linear single-index models publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1997.10474001 – volume: 101 start-page: 4637 year: 2004 ident: 2022121408255950800_B15 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.0308627101 – volume: 6 start-page: 32328 year: 2016 ident: 2022121408255950800_B19 article-title: Functional brain networks related to individual differences in human intelligence at rest publication-title: Scientific Reports doi: 10.1038/srep32328 – volume: 19 start-page: 765 year: 2009 ident: 2022121408255950800_B46 article-title: Spline estimation of single-index models publication-title: Statistica Sinica – volume: 58 start-page: 71 year: 1993 ident: 2022121408255950800_B20 article-title: Semiparametric least squares (SLS) and weighted SLS estimation of single-index models publication-title: Journal of Econometrics doi: 10.1016/0304-4076(93)90114-K – volume: 28 start-page: 2959 year: 2018 ident: 2022121408255950800_B34 article-title: Sex differences in the adult human brain: evidence from 5216 UK Biobank participants publication-title: Cerebral Cortex doi: 10.1093/cercor/bhy109 – volume: 95 start-page: 232 year: 2014 ident: 2022121408255950800_B16 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – start-page: 433 volume-title: Proceedings of the 26th Annual International Conference on Machine Learning year: 2009 ident: 2022121408255950800_B21 doi: 10.1145/1553374.1553431 – start-page: 2334 volume-title: Advances in Neural Information Processing Systems year: 2010 ident: 2022121408255950800_B42 – volume: 98 start-page: 807 year: 2011 ident: 2022121408255950800_B1 article-title: Sparse estimation of a covariance matrix publication-title: Biometrika doi: 10.1093/biomet/asr054 – volume: 13 start-page: 1648 year: 2019 ident: 2022121408255950800_B33 article-title: Network classification with applications to brain connectomics publication-title: The Annals of Applied Statistics – volume: 17 start-page: 666 year: 2013 ident: 2022121408255950800_B40 article-title: Functional connectomics from resting-state fMRI publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2013.09.016 – volume: 135 start-page: 1498 year: 2012 ident: 2022121408255950800_B51 article-title: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis publication-title: Brain doi: 10.1093/brain/aws059 – volume: 60 start-page: 601 year: 2012 ident: 2022121408255950800_B29 article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.052 – volume-title: Convex Optimization year: 2004 ident: 2022121408255950800_B2 doi: 10.1017/CBO9780511804441 – volume: 67 start-page: 1929 year: 2019 ident: 2022121408255950800_B47 article-title: Symmetric bilinear regression for signal subgraph estimation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2019.2899818 – volume: 192 start-page: 115 year: 2019 ident: 2022121408255950800_B7 article-title: Benchmarking functional connectome-based predictive models for resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.062 – volume: 18 start-page: 1664 year: 2015 ident: 2022121408255950800_B12 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neuroscience doi: 10.1038/nn.4135 – volume: 59 start-page: 3852 year: 2012 ident: 2022121408255950800_B36 article-title: Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.054 – volume: 3 start-page: 1 year: 2011 ident: 2022121408255950800_B3 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends® in Machine Learning doi: 10.1561/2200000016 – start-page: 1 year: 2020 ident: 2022121408255950800_B17 article-title: Bayesian regression with undirected network predictors with an application to brain connectome data publication-title: Journal of the American Statistical Association – volume: 37 start-page: 1162 year: 2016 ident: 2022121408255950800_B23 article-title: A novel joint sparse partial correlation method for estimating group functional networks publication-title: Human Brain Mapping doi: 10.1002/hbm.23092 – volume: 32 start-page: 228 year: 2006 ident: 2022121408255950800_B26 article-title: Partial correlation for functional brain interactivity investigation in functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.057 – volume: 35 start-page: 1539 year: 2012 ident: 2022121408255950800_B43 article-title: Graph classification using signal-subgraphs: applications in statistical connectomics publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.235 – volume: 13 start-page: 747 year: 2019 ident: 2022121408255950800_B50 article-title: Asymptotic theory of penalized splines publication-title: Electronic Journal of Statistics doi: 10.1214/19-EJS1541 – volume: 80 start-page: 144 year: 2013 ident: 2022121408255950800_B38 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 393 start-page: 440 year: 1998 ident: 2022121408255950800_B48 article-title: Collective dynamics of small-world networks publication-title: Nature doi: 10.1038/30918 – volume: 37 start-page: 1537 year: 2018 ident: 2022121408255950800_B41 article-title: Connectivity in fMRI: blind spots and breakthroughs publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2018.2831261 – volume: 9 start-page: 432 year: 2008 ident: 2022121408255950800_B13 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 76 start-page: 373 year: 2014 ident: 2022121408255950800_B8 article-title: The joint graphical lasso for inverse covariance estimation across multiple classes publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology doi: 10.1111/rssb.12033 – volume: 172 start-page: 478 year: 2018 ident: 2022121408255950800_B30 article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.01.029 – volume: 67 start-page: 301 year: 2005 ident: 2022121408255950800_B54 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 225 start-page: 117493 year: 2020 ident: 2022121408255950800_B45 article-title: Learning clique subgraphs in structural brain network classification with application to crystallized cognition publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117493 – volume: 38 year: 2012 ident: 2022121408255950800_B24 article-title: High-dimensional sparse precision matrix estimation via sparse column inverse operator publication-title: arXiv preprint arXiv:1203.3896 – volume: 54 start-page: 875 year: 2011 ident: 2022121408255950800_B39 article-title: Network modelling methods for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 11 start-page: 89 year: 1996 ident: 2022121408255950800_B9 article-title: Flexible smoothing with b-splines and penalties publication-title: Statistical Science doi: 10.1214/ss/1038425655 – volume: 13 start-page: 781 year: 2012 ident: 2022121408255950800_B27 article-title: Exact covariance thresholding into connected components for large-scale graphical lasso publication-title: Journal of Machine Learning Research – volume: 136 start-page: 1942 year: 2013 ident: 2022121408255950800_B31 article-title: Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity publication-title: Brain doi: 10.1093/brain/awt079 – volume: 30 start-page: 110 year: 2004 ident: 2022121408255950800_B22 article-title: Honey, I shrunk the sample covariance matrix publication-title: The Journal of Portfolio Management doi: 10.3905/jpm.2004.110 – volume: 49 start-page: 3110 year: 2010 ident: 2022121408255950800_B37 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.011 – volume: 1695 start-page: 1 year: 2006 ident: 2022121408255950800_B6 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 34 start-page: 1330 year: 2013 ident: 2022121408255950800_B11 article-title: The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects publication-title: Human Brain Mapping doi: 10.1002/hbm.21514 – volume: 30 start-page: 9477 year: 2010 ident: 2022121408255950800_B25 article-title: Functional connectivity and brain networks in schizophrenia publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 20 start-page: 365 year: 2017 ident: 2022121408255950800_B49 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nature Neuroscience doi: 10.1038/nn.4478 – volume: 80 start-page: 105 year: 2013 ident: 2022121408255950800_B14 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 30 start-page: 1 year: 2020 ident: 2022121408255950800_B10 article-title: Sparse single index models for multivariate responses publication-title: Journal of Computational and Graphical Statistics – volume: 84 start-page: 986 year: 1989 ident: 2022121408255950800_B18 article-title: Investigating smooth multiple regression by the method of average derivatives publication-title: Journal of the American Statistical Association – volume: 78 start-page: 487 year: 2016 ident: 2022121408255950800_B32 article-title: Joint estimation of multiple graphical models from high dimensional time series publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology doi: 10.1111/rssb.12123 – volume: 108 start-page: 540 year: 2013 ident: 2022121408255950800_B53 article-title: Tensor regression with applications in neuroimaging data analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2013.776499 – volume: 6 start-page: 2125 year: 2012 ident: 2022121408255950800_B28 article-title: The graphical lasso: new insights and alternatives publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS740 |
SSID | ssj0022363 |
Score | 2.3541017 |
Snippet | Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 52 |
SubjectTerms | Brain - diagnostic imaging Brain - physiology Computer Simulation Connectome - methods Humans Magnetic Resonance Imaging - methods Nerve Net - diagnostic imaging Nerve Net - physiology |
Title | Single-index models with functional connectivity network predictors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33948617 https://www.proquest.com/docview/2522397903 https://pubmed.ncbi.nlm.nih.gov/PMC9748592 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VK24oJa2dGmpgsQ1kNjOw0eEWlH6uBTE3iI7cdSIJUshi2h_PeNXNoFWfVycXWfjbPyNJx57vhmAHc6riuEIDCXP6pAR7QSgOAsTSfJcSVlHUrORP39JD0_Y0TSZLrNtGnZJJ3fLn7_klfwPqliHuGqW7D8g2zeKFfgZ8cUSEcbyrzD-iu-dmQpNxEOb08aR1fTbyi3yldqTpXQ5Ilrr9K0jA1SNSbQz2tRt5ppf5EI36zikN9713eX6GKwbnCpx7UmEMyV99bQRZvH102Le-_rg__u-aK48N6jTSyzD1QZiEp84P2dlNaSmauEcKxuqUEuDHomK1Yc2Ou09NW1DWMnhU-H3sxshI0vuHIB3cW7Qo5SzPLU8zzsRsv2ph_CIoLFgDOsPH3uzm9CUeu4Wp3uju-65e67CE9_KeIJyz-q46zw7mI0cP4U1Z0YE-1YmnsED1a7DY5tY9MdzOBhKRmAlI9CSESwlIxhKRuAkI1hKxgs4ef_u-OAwdOkywhKnIl2YqDLGsZUlLCZ1XkcqThQTTIgcVSsWGR7rVJCIVynFkUtqXnIWZ1HFVFolEX0JK-28Va8giGoS00xwwWKOFn_FVa23UJmSRPBcphNgvo-K0sWS1ylNZoX1aaDFqJcL18sT2O0vu7DBVP50wbYHoEC1p_eyRKvmi6uCoN2gt6QjOoENC0jfpEdyAtkIqv4HOqT6-EzbfDOh1dG6zhNONn_b5mtYXQ6LN7DSXS7UFk5LO_nWSN0t8OSXoQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-index+models+with+functional+connectivity+network+predictors&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Weaver%2C+Caleb&rft.au=Xiao%2C+Luo&rft.au=Lindquist%2C+Martin+A&rft.date=2022-12-12&rft.eissn=1468-4357&rft.volume=24&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxab015&rft_id=info%3Apmid%2F33948617&rft.externalDocID=33948617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |