Comprehensive Immunophenotyping of Cerebrospinal Fluid Cells in Patients with Neuroimmunological Diseases
We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 diffe...
Saved in:
Published in | The Journal of immunology (1950) Vol. 192; no. 6; pp. 2551 - 2563 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
15.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model where the CNS shapes intrathecal immune responses to provide effective protection against persistent viral infections, especially by memory T cells, plasmacytoid dendritic cells, and CD56bright NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease, and Aicardi–Goutières syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing–remitting patients as compared with patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment. |
---|---|
AbstractList | We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model where the CNS shapes intrathecal immune responses to provide effective protection against persistent viral infections, especially by memory T cells, plasmacytoid dendritic cells, and CD56(bright) NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease, and Aicardi-Goutières syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing-remitting patients as compared with patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment. We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model where the CNS shapes intrathecal immune responses to provide effective protection against persistent viral infections, especially by memory T cells, plasmacytoid dendritic cells, and CD56bright NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease, and Aicardi–Goutières syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing–remitting patients as compared with patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment. We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model where the CNS shapes intrathecal immune responses to provide effective protection against persistent viral infections, especially by memory T cells, plasmacytoid dendritic cells, and CD56(bright) NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease, and Aicardi-Goutières syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing-remitting patients as compared with patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment.We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of neuroimmunological disorders to obtain insight about disease-specific phenotypes of intrathecal immune responses. Quantification of 14 different immune cell subsets, coupled with the assessment of their activation status, revealed physiological differences between intrathecal and systemic immunity, irrespective of final diagnosis. Our data are consistent with a model where the CNS shapes intrathecal immune responses to provide effective protection against persistent viral infections, especially by memory T cells, plasmacytoid dendritic cells, and CD56(bright) NK cells. Our data also argue that CSF immune cells do not simply reflect cells recruited from the periphery. Instead, they represent a mixture of cells that are recruited from the blood, have been activated intrathecally and leave the CNS after performing effector functions. Diagnosis-specific differences provide mechanistic insight into the disease process in the defined subtypes of multiple sclerosis (MS), neonatal onset multisystem inflammatory disease, and Aicardi-Goutières syndrome. This analysis also determined that secondary-progressive MS patients are immunologically closer to relapsing-remitting patients as compared with patients with primary-progressive MS. Because CSF immunophenotyping captures the biology of the intrathecal inflammatory processes, it has the potential to guide optimal selection of immunomodulatory therapies in individual patients and monitor their efficacy. Our study adds to the increasing number of publications that demonstrate poor correlation between systemic and intrathecal inflammatory biomarkers in patients with neuroimmunological diseases and stresses the importance of studying immune responses directly in the intrathecal compartment. |
Author | Ohayon, Joan Williamson, Peter Salgado, Alan D Toro, Camilo Romm, Elena Wu, Tianxia Marques, Adriana Lin, Yen Chih Han, Sungpil Mexhitaj, Ina Goldbach-Mansky, Raphaela Wuest, Simone C Bielekova, Bibiana Cortese, Irene Vanderver, Adeline |
Author_xml | – sequence: 1 givenname: Sungpil surname: Han fullname: Han, Sungpil – sequence: 2 givenname: Yen Chih surname: Lin fullname: Lin, Yen Chih – sequence: 3 givenname: Tianxia surname: Wu fullname: Wu, Tianxia – sequence: 4 givenname: Alan D surname: Salgado fullname: Salgado, Alan D – sequence: 5 givenname: Ina surname: Mexhitaj fullname: Mexhitaj, Ina – sequence: 6 givenname: Simone C surname: Wuest fullname: Wuest, Simone C – sequence: 7 givenname: Elena surname: Romm fullname: Romm, Elena – sequence: 8 givenname: Joan surname: Ohayon fullname: Ohayon, Joan – sequence: 9 givenname: Raphaela surname: Goldbach-Mansky fullname: Goldbach-Mansky, Raphaela – sequence: 10 givenname: Adeline surname: Vanderver fullname: Vanderver, Adeline – sequence: 11 givenname: Adriana surname: Marques fullname: Marques, Adriana – sequence: 12 givenname: Camilo surname: Toro fullname: Toro, Camilo – sequence: 13 givenname: Peter surname: Williamson fullname: Williamson, Peter – sequence: 14 givenname: Irene surname: Cortese fullname: Cortese, Irene – sequence: 15 givenname: Bibiana surname: Bielekova fullname: Bielekova, Bibiana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24510966$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PxDAMxSMEguNgZ0IdWQpOmqTtiI5PCQEDzFGacyGoTUrSgvjvCdzdgsRk2fq9J9tvn2w775CQIwqnHHh99mb7fnK-O6UFsKriW2RGhYBcSpDbZAbAWE5LWe6R_RjfAEAC47tkj3FBoZZyRuzC90PAV3TRfmB2--s3pNaPX4N1L5lvswUGbIKPqddddtVNdplmXRcz67JHPVp0Y8w-7fia3eMU_Hop_2JN4i9sRB0xHpCdVncRD9d1Tp6vLp8WN_ndw_Xt4vwuNwWnY17QUjAUNYCRQjTYUFNhWTVco6GtLo0sdQtNpZe1XkqtUfBCNLwRyFgltSjm5GTlOwT_PmEcVW-jSetqh36KigqQnJa0Zgk9XqNT0-NSDcH2OnypzXsSIFeASefHgK0ydkwHezcGbTtFQf3koDY5qHUOSQh_hBvvfyXf4eKQRQ |
CitedBy_id | crossref_primary_10_1093_sleep_zsy223 crossref_primary_10_1002_acn3_293 crossref_primary_10_3389_fimmu_2021_624687 crossref_primary_10_1002_art_40055 crossref_primary_10_1111_cei_12985 crossref_primary_10_1016_j_it_2020_02_005 crossref_primary_10_3389_fimmu_2023_1071623 crossref_primary_10_1186_s12974_022_02667_9 crossref_primary_10_1371_journal_pone_0105434 crossref_primary_10_3390_ijms18061277 crossref_primary_10_1177_17562864211007687 crossref_primary_10_3389_fneur_2020_565957 crossref_primary_10_1016_j_spen_2017_08_001 crossref_primary_10_4049_jimmunol_1501960 crossref_primary_10_1155_2021_8813498 crossref_primary_10_2139_ssrn_3934614 crossref_primary_10_1002_cti2_1295 crossref_primary_10_1016_j_msard_2020_102434 crossref_primary_10_1126_sciimmunol_abb8786 crossref_primary_10_1093_brain_awab147 crossref_primary_10_1093_brain_awad404 crossref_primary_10_4049_jimmunol_1502570 crossref_primary_10_3390_biom13081204 crossref_primary_10_1007_s00401_023_02537_5 crossref_primary_10_1111_cei_12580 crossref_primary_10_1182_bloodadvances_2018027417 crossref_primary_10_1093_braincomms_fcab157 crossref_primary_10_1016_j_neurobiolaging_2014_08_008 crossref_primary_10_1093_braincomms_fcab155 crossref_primary_10_1186_s12987_022_00316_0 crossref_primary_10_1371_journal_pone_0186842 crossref_primary_10_1016_j_jneuroim_2023_578088 crossref_primary_10_1177_1352458515593821 crossref_primary_10_1093_cid_ciw739 crossref_primary_10_1186_s40478_020_0885_1 crossref_primary_10_15789_2220_7619_2016_1_33_44 crossref_primary_10_3389_fimmu_2020_00594 crossref_primary_10_1002_jcph_513 crossref_primary_10_1038_s12276_020_00505_7 crossref_primary_10_1016_j_celrep_2021_109201 crossref_primary_10_1128_mBio_01906_15 crossref_primary_10_3390_ijms251910459 crossref_primary_10_1016_j_crmeth_2023_100533 crossref_primary_10_1212_NXI_0000000000000560 crossref_primary_10_1007_s13365_023_01137_z crossref_primary_10_3389_fimmu_2018_03116 crossref_primary_10_1002_eji_201545921 crossref_primary_10_1016_j_jneuroim_2023_578128 crossref_primary_10_1111_1348_0421_12963 crossref_primary_10_3389_fgene_2022_914645 crossref_primary_10_3233_JPD_223212 crossref_primary_10_3389_fneur_2018_00554 crossref_primary_10_1038_s41467_019_14118_w crossref_primary_10_1038_s41577_022_00718_z crossref_primary_10_1186_s13024_021_00423_w crossref_primary_10_1038_s41531_024_00652_y crossref_primary_10_1186_s12974_015_0353_1 crossref_primary_10_1186_s12974_024_03040_8 crossref_primary_10_1186_s13073_022_01097_9 crossref_primary_10_1212_NXI_0000000000000595 crossref_primary_10_1212_NXI_0000000000000196 crossref_primary_10_1016_j_prp_2023_154880 crossref_primary_10_1016_j_immuni_2020_12_011 crossref_primary_10_3389_fimmu_2022_1063928 crossref_primary_10_1007_s00115_016_0219_5 crossref_primary_10_1177_1352458516679267 crossref_primary_10_1038_s41467_025_57002_6 crossref_primary_10_1371_journal_ppat_1004884 crossref_primary_10_3389_fneur_2017_00598 crossref_primary_10_1016_j_bbih_2021_100406 crossref_primary_10_1016_j_aquaculture_2025_742179 crossref_primary_10_1016_j_celrep_2024_113852 crossref_primary_10_1002_acn3_260 crossref_primary_10_1016_j_jneuroim_2023_578067 crossref_primary_10_1080_08830185_2017_1357719 crossref_primary_10_1002_acn3_181 crossref_primary_10_1515_revneuro_2022_0021 crossref_primary_10_1212_NXI_0000000000000943 crossref_primary_10_1016_j_imlet_2020_02_012 crossref_primary_10_1111_bpa_12600 crossref_primary_10_3390_diagnostics12010079 crossref_primary_10_3390_biomedicines10020335 crossref_primary_10_1038_s41590_021_00994_2 crossref_primary_10_1126_scitranslmed_adc9778 crossref_primary_10_5507_bp_2022_021 crossref_primary_10_1016_j_jim_2022_113344 crossref_primary_10_1002_ana_24408 crossref_primary_10_3390_biomedicines10040774 crossref_primary_10_3389_fimmu_2016_00606 crossref_primary_10_1002_ana_27157 crossref_primary_10_1177_1352458515573095 crossref_primary_10_3390_ijms21062046 crossref_primary_10_1111_ene_13909 crossref_primary_10_1111_cei_13122 |
Cites_doi | 10.1093/brain/awh680 10.1002/ana.22366 10.1016/S1474-4422(07)70243-0 10.1016/S0165-5728(00)00409-4 10.3390/v1030979 10.1146/annurev.immunol.25.022106.141553 10.1191/1352458504ms1027oa 10.1016/j.stem.2011.11.019 10.1038/nn.3469 10.1111/j.1365-2990.2008.00987.x 10.1093/brain/awh498 10.1093/brain/awh486 10.1016/j.clim.2013.03.016 10.1056/NEJMoa0706383 10.1016/B978-0-444-59565-2.00031-9 10.1111/j.1750-3639.1996.tb00854.x 10.1016/0022-510X(92)90193-O 10.4049/jimmunol.1103450 10.1002/ana.22230 10.1371/journal.pone.0048370 10.1084/jem.20041674 10.1038/nature11556 10.1093/brain/awq350 10.1002/eji.1830191005 10.1016/j.nbd.2004.09.019 10.1371/journal.pone.0017988 10.1007/s00018-013-1425-y 10.1093/brain/aws189 10.1073/pnas.0601335103 10.1371/journal.pone.0066188 10.1001/archneur.63.10.1383 10.1172/JCI63842 10.1128/JVI.01578-08 10.1002/ana.22054 10.1172/JCI28334 10.1084/jem.192.3.393 10.1186/1742-2094-10-10 10.1172/JCI28330 10.1093/hmg/ddp293 10.1002/cyto.b.20542 10.1093/brain/124.3.480 10.1002/ana.21867 10.1056/NEJMoa066092 10.1084/jem.20050011 10.1038/nature07591 10.1128/JVI.01762-07 10.1016/j.nbd.2007.05.006 10.1371/journal.pone.0002559 10.1146/annurev-immunol-031210-101345 10.1186/1742-2094-8-2 10.1093/brain/124.11.2169 10.1212/WNL.0b013e3181c5b457 10.1111/j.1471-4159.2012.07953.x 10.1016/j.jpsychires.2013.05.027 10.1186/1742-2094-9-93 10.1111/j.1600-0404.2005.00562.x 10.1159/000330242 10.1371/journal.pmed.0020124 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.4049/jimmunol.1302884 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 2563 |
ExternalDocumentID | 24510966 10_4049_jimmunol_1302884 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA NS003055 – fundername: Intramural NIH HHS grantid: Z99 NS999999 |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XJT XSW XTH YHG CGR CUY CVF ECM EIF KOP NPM 7X8 |
ID | FETCH-LOGICAL-c341t-31752e5900c655beb1c8e78b4aec1fa7c67af0b8ad9ad6aae5435b4b5e2286a53 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Fri Jul 11 06:59:17 EDT 2025 Mon Jul 21 05:53:11 EDT 2025 Sun Jul 06 05:03:13 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-31752e5900c655beb1c8e78b4aec1fa7c67af0b8ad9ad6aae5435b4b5e2286a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jimmunol.org/content/jimmunol/192/6/2551.full.pdf |
PMID | 24510966 |
PQID | 1506417192 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1506417192 pubmed_primary_24510966 crossref_citationtrail_10_4049_jimmunol_1302884 crossref_primary_10_4049_jimmunol_1302884 |
PublicationCentury | 2000 |
PublicationDate | 2014-03-15 2014-Mar-15 20140315 |
PublicationDateYYYYMMDD | 2014-03-15 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2014 |
References | Reizis (2025032404181442100_r50) 2011; 29 Sellebjerg (2025032404181442100_r45) 2009; 73 Hawker (2025032404181442100_r9) 2009; 66 Androdias (2025032404181442100_r7) 2010; 68 Hauser (2025032404181442100_r39) 2008; 358 Chew (2025032404181442100_r36) 2009; 1 Mahad (2025032404181442100_r3) 2008; 34 Stüve (2025032404181442100_r23) 2006; 63 Bettelli (2025032404181442100_r37) 2006; 116 Crow (2025032404181442100_r48) 2013; 113 Almeida de Jesus (2025032404181442100_r10) 2013; 147 Polman (2025032404181442100_r21) 2011; 69 Chofflon (2025032404181442100_r24) 1989; 19 Sedimbi (2025032404181442100_r47) 2013; 70 Krumbholz (2025032404181442100_r12) 2006; 129 Kowarik (2025032404181442100_r13) 2012; 9 de Graaf (2025032404181442100_r20) 2011; 80 Scolozzi (2025032404181442100_r19) 1992; 108 Pranzatelli (2025032404181442100_r55) 2013; 10 Choi (2025032404181442100_r6) 2012; 135 Lucchinetti (2025032404181442100_r1) 1996; 6 Lovato (2025032404181442100_r57) 2011; 134 Sastre-Garriga (2025032404181442100_r4) 2005; 128 Ioannidis (2025032404181442100_r58) 2005; 2 Pashenkov (2025032404181442100_r16) 2001; 124 Kotter (2025032404181442100_r29) 2005; 18 Cepok (2025032404181442100_r14) 2005; 128 Cepok (2025032404181442100_r11) 2001; 124 Ruckh (2025032404181442100_r30) 2012; 10 Hislop (2025032404181442100_r32) 2007; 25 Ho (2025032404181442100_r51) 2013; 8 Krishnamoorthy (2025032404181442100_r38) 2006; 116 Tsakiri (2025032404181442100_r41) 2012; 19 Amanna (2025032404181442100_r52) 2007; 357 Becker (2025032404181442100_r27) 2012; 123 Miron (2025032404181442100_r31) 2013; 16 Donaghy (2025032404181442100_r34) 2009; 83 Bielekova (2025032404181442100_r22) 2006; 103 Magliozzi (2025032404181442100_r8) 2010; 68 von Büdingen (2025032404181442100_r56) 2012; 122 Cross (2025032404181442100_r43) 2001; 112 Babbe (2025032404181442100_r40) 2000; 192 Kim (2025032404181442100_r35) 2012; 188 Lucchinetti (2025032404181442100_r5) 2004; 10 Bielekova (2025032404181442100_r46) 2012; 7 Kim (2025032404181442100_r28) 2009; 457 Miller (2025032404181442100_r2) 2007; 6 Grundtner (2025032404181442100_r26) 2007; 28 Stohlman (2025032404181442100_r33) 2008; 82 Crow (2025032404181442100_r49) 2009; 18 Kawakami (2025032404181442100_r25) 2005; 201 Heinrich (2025032404181442100_r18) 2006; 113 Kuehne (2025032404181442100_r54) 2013; 47 Landis (2025032404181442100_r53) 2012; 490 Kuenz (2025032404181442100_r15) 2008; 3 Krumbholz (2025032404181442100_r44) 2005; 201 Longhini (2025032404181442100_r17) 2011; 8 Fritzsching (2025032404181442100_r42) 2011; 6 |
References_xml | – volume: 129 start-page: 200 year: 2006 ident: 2025032404181442100_r12 article-title: Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment publication-title: Brain doi: 10.1093/brain/awh680 – volume: 69 start-page: 292 year: 2011 ident: 2025032404181442100_r21 article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria publication-title: Ann. Neurol. doi: 10.1002/ana.22366 – volume: 6 start-page: 903 year: 2007 ident: 2025032404181442100_r2 article-title: Primary-progressive multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70243-0 – volume: 112 start-page: 1 year: 2001 ident: 2025032404181442100_r43 article-title: B cells and antibodies in CNS demyelinating disease publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(00)00409-4 – volume: 1 start-page: 979 year: 2009 ident: 2025032404181442100_r36 article-title: Innate and adaptive immune responses to herpes simplex virus publication-title: Viruses doi: 10.3390/v1030979 – volume: 25 start-page: 587 year: 2007 ident: 2025032404181442100_r32 article-title: Cellular responses to viral infection in humans: lessons from Epstein-Barr virus publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.25.022106.141553 – volume: 10 start-page: S23 year: 2004 ident: 2025032404181442100_r5 article-title: The pathology of primary progressive multiple sclerosis publication-title: Mult. Scler. doi: 10.1191/1352458504ms1027oa – volume: 10 start-page: 96 year: 2012 ident: 2025032404181442100_r30 article-title: Rejuvenation of regeneration in the aging central nervous system publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.11.019 – volume: 16 start-page: 1211 year: 2013 ident: 2025032404181442100_r31 article-title: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination publication-title: Nat. Neurosci. doi: 10.1038/nn.3469 – volume: 34 start-page: 577 year: 2008 ident: 2025032404181442100_r3 article-title: Review: mitochondria and disease progression in multiple sclerosis publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.2008.00987.x – volume: 128 start-page: 1454 year: 2005 ident: 2025032404181442100_r4 article-title: Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study publication-title: Brain doi: 10.1093/brain/awh498 – volume: 128 start-page: 1667 year: 2005 ident: 2025032404181442100_r14 article-title: Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis publication-title: Brain doi: 10.1093/brain/awh486 – volume: 147 start-page: 155 year: 2013 ident: 2025032404181442100_r10 article-title: Monogenic autoinflammatory diseases: concept and clinical manifestations publication-title: Clin. Immunol. doi: 10.1016/j.clim.2013.03.016 – volume: 358 start-page: 676 year: 2008 ident: 2025032404181442100_r39 article-title: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0706383 – volume: 113 start-page: 1629 year: 2013 ident: 2025032404181442100_r48 article-title: Aicardi-Goutières syndrome publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-59565-2.00031-9 – volume: 6 start-page: 259 year: 1996 ident: 2025032404181442100_r1 article-title: Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.1996.tb00854.x – volume: 108 start-page: 93 year: 1992 ident: 2025032404181442100_r19 article-title: T-cell phenotypic profiles in the cerebrospinal fluid and peripheral blood of multiple sclerosis patients publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(92)90193-O – volume: 188 start-page: 4158 year: 2012 ident: 2025032404181442100_r35 article-title: Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.1103450 – volume: 68 start-page: 477 year: 2010 ident: 2025032404181442100_r8 article-title: A gradient of neuronal loss and meningeal inflammation in multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.22230 – volume: 7 start-page: e48370 year: 2012 ident: 2025032404181442100_r46 article-title: Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation publication-title: PLoS ONE doi: 10.1371/journal.pone.0048370 – volume: 201 start-page: 195 year: 2005 ident: 2025032404181442100_r44 article-title: BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma publication-title: J. Exp. Med. doi: 10.1084/jem.20041674 – volume: 490 start-page: 187 year: 2012 ident: 2025032404181442100_r53 article-title: A call for transparent reporting to optimize the predictive value of preclinical research publication-title: Nature doi: 10.1038/nature11556 – volume: 134 start-page: 534 year: 2011 ident: 2025032404181442100_r57 article-title: Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis publication-title: Brain doi: 10.1093/brain/awq350 – volume: 19 start-page: 1791 year: 1989 ident: 2025032404181442100_r24 article-title: Inflammatory cerebrospinal fluid T cells have activation requirements characteristic of CD4+CD45RA− T cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830191005 – volume: 18 start-page: 166 year: 2005 ident: 2025032404181442100_r29 article-title: Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2004.09.019 – volume: 6 start-page: e17988 year: 2011 ident: 2025032404181442100_r42 article-title: Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients publication-title: PLoS ONE doi: 10.1371/journal.pone.0017988 – volume: 70 start-page: 4795 year: 2013 ident: 2025032404181442100_r47 article-title: IL-18 in inflammatory and autoimmune disease publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1425-y – volume: 135 start-page: 2925 year: 2012 ident: 2025032404181442100_r6 article-title: Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis publication-title: Brain doi: 10.1093/brain/aws189 – volume: 103 start-page: 5941 year: 2006 ident: 2025032404181442100_r22 article-title: Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601335103 – volume: 8 start-page: e66188 year: 2013 ident: 2025032404181442100_r51 article-title: Cellular composition of cerebrospinal fluid in HIV-1 infected and uninfected subjects publication-title: PLoS ONE doi: 10.1371/journal.pone.0066188 – volume: 63 start-page: 1383 year: 2006 ident: 2025032404181442100_r23 article-title: Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis publication-title: Arch. Neurol. doi: 10.1001/archneur.63.10.1383 – volume: 122 start-page: 4533 year: 2012 ident: 2025032404181442100_r56 article-title: B cell exchange across the blood-brain barrier in multiple sclerosis publication-title: J. Clin. Invest. doi: 10.1172/JCI63842 – volume: 83 start-page: 1952 year: 2009 ident: 2025032404181442100_r34 article-title: Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection publication-title: J. Virol. doi: 10.1128/JVI.01578-08 – volume: 68 start-page: 465 year: 2010 ident: 2025032404181442100_r7 article-title: Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords publication-title: Ann. Neurol. doi: 10.1002/ana.22054 – volume: 116 start-page: 2393 year: 2006 ident: 2025032404181442100_r37 article-title: Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI28334 – volume: 192 start-page: 393 year: 2000 ident: 2025032404181442100_r40 article-title: Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction publication-title: J. Exp. Med. doi: 10.1084/jem.192.3.393 – volume: 10 start-page: 10 year: 2013 ident: 2025032404181442100_r55 article-title: BAFF/APRIL system in pediatric OMS: relation to severity, neuroinflammation, and immunotherapy publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-10-10 – volume: 116 start-page: 2385 year: 2006 ident: 2025032404181442100_r38 article-title: Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation publication-title: J. Clin. Invest. doi: 10.1172/JCI28330 – volume: 18 start-page: R130 year: 2009 ident: 2025032404181442100_r49 article-title: Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp293 – volume: 80 start-page: 43 year: 2011 ident: 2025032404181442100_r20 article-title: Central memory CD4+ T cells dominate the normal cerebrospinal fluid publication-title: Cytometry B Clin. Cytom. doi: 10.1002/cyto.b.20542 – volume: 124 start-page: 480 year: 2001 ident: 2025032404181442100_r16 article-title: Two subsets of dendritic cells are present in human cerebrospinal fluid publication-title: Brain doi: 10.1093/brain/124.3.480 – volume: 66 start-page: 460 year: 2009 ident: 2025032404181442100_r9 article-title: Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial publication-title: Ann. Neurol. doi: 10.1002/ana.21867 – volume: 357 start-page: 1903 year: 2007 ident: 2025032404181442100_r52 article-title: Duration of humoral immunity to common viral and vaccine antigens publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa066092 – volume: 201 start-page: 1805 year: 2005 ident: 2025032404181442100_r25 article-title: Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion publication-title: J. Exp. Med. doi: 10.1084/jem.20050011 – volume: 457 start-page: 191 year: 2009 ident: 2025032404181442100_r28 article-title: Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis publication-title: Nature doi: 10.1038/nature07591 – volume: 82 start-page: 2130 year: 2008 ident: 2025032404181442100_r33 article-title: CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus publication-title: J. Virol. doi: 10.1128/JVI.01762-07 – volume: 28 start-page: 261 year: 2007 ident: 2025032404181442100_r26 article-title: Transition from enhanced T cell infiltration to inflammation in the myelin-degenerative central nervous system publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2007.05.006 – volume: 3 start-page: e2559 year: 2008 ident: 2025032404181442100_r15 article-title: Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0002559 – volume: 29 start-page: 163 year: 2011 ident: 2025032404181442100_r50 article-title: Plasmacytoid dendritic cells: recent progress and open questions publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-031210-101345 – volume: 8 start-page: 2 year: 2011 ident: 2025032404181442100_r17 article-title: Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-8-2 – volume: 124 start-page: 2169 year: 2001 ident: 2025032404181442100_r11 article-title: Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis publication-title: Brain doi: 10.1093/brain/124.11.2169 – volume: 73 start-page: 2003 year: 2009 ident: 2025032404181442100_r45 article-title: Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS publication-title: Neurology doi: 10.1212/WNL.0b013e3181c5b457 – volume: 123 start-page: 148 year: 2012 ident: 2025032404181442100_r27 article-title: Activation of immune responses to brain antigens after stroke publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2012.07953.x – volume: 47 start-page: 1417 year: 2013 ident: 2025032404181442100_r54 article-title: Cerebrospinal fluid neopterin is brain-derived and not associated with blood-CSF barrier dysfunction in non-inflammatory affective and schizophrenic spectrum disorders publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2013.05.027 – volume: 9 start-page: 93 year: 2012 ident: 2025032404181442100_r13 article-title: CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-9-93 – volume: 113 start-page: 248 year: 2006 ident: 2025032404181442100_r18 article-title: Immunophenotypic patterns of T-cell activation in neuroinflammatory diseases publication-title: Acta Neurol. Scand. doi: 10.1111/j.1600-0404.2005.00562.x – volume: 19 start-page: 111 year: 2012 ident: 2025032404181442100_r41 article-title: Effector and regulatory T cells in patients with acute optic neuritis publication-title: Neuroimmunomodulation doi: 10.1159/000330242 – volume: 2 start-page: e124 year: 2005 ident: 2025032404181442100_r58 article-title: Why most published research findings are false publication-title: PLoS Med. doi: 10.1371/journal.pmed.0020124 |
SSID | ssj0006024 |
Score | 2.448131 |
Snippet | We performed unbiased, comprehensive immunophenotyping of cerebrospinal fluid (CSF) and blood leukocytes in 221 subjects referred for the diagnostic work-up of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2551 |
SubjectTerms | Adolescent Adult Aged Autoimmune Diseases of the Nervous System - blood Autoimmune Diseases of the Nervous System - cerebrospinal fluid Autoimmune Diseases of the Nervous System - immunology CD56 Antigen - immunology CD56 Antigen - metabolism Cell Count Dendritic Cells - immunology Dendritic Cells - metabolism Flow Cytometry Humans Immune System - cytology Immune System - immunology Immune System - metabolism Immunologic Memory - immunology Immunophenotyping - methods Inflammation - blood Inflammation - cerebrospinal fluid Inflammation - immunology Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Leukocytes - immunology Leukocytes - metabolism Middle Aged Multiple Sclerosis, Chronic Progressive - blood Multiple Sclerosis, Chronic Progressive - cerebrospinal fluid Multiple Sclerosis, Chronic Progressive - immunology Nervous System Malformations - blood Nervous System Malformations - cerebrospinal fluid Nervous System Malformations - immunology Prospective Studies T-Lymphocytes - immunology T-Lymphocytes - metabolism Young Adult |
Title | Comprehensive Immunophenotyping of Cerebrospinal Fluid Cells in Patients with Neuroimmunological Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24510966 https://www.proquest.com/docview/1506417192 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2ISZeEBtjlC8ZiReEwtLUdpJHxDZ10I0HWlGeIttxRKQprbpUYvz13MV22mxjGrxElVW7re_X89357neEvE0YVwOFaYOKpQHLJQuUMnEg8z7T2vAibq4Lzs7FcMI-T_l0Fcxpqktq9UH_vrWu5H-kCmMgV6yS_QfJtovCALwG-cITJAzPe8kY_8wL89PloJdY6oE0AdWsvpq7bGZtFuD1YnMQNDuLi2WZv8dgvU0ft6SqrsKtoba0i3iF6K5vLtdN2FUxmeWb8BOatAFs97oWXBi68CpolPkql2NkeQt-mAozQdp49PelBY-sfpXtYfENa01yV4sDuuhoPUzRZ5inZQs1vWbl4KeK0PFe3zLm1XEareGuo1y55aa9rvUZeDmo9d0PxgbXUWIbz3UJts-_ZieT0SgbH0_Hm2Q7As8Cm14cnX5pD28R2j7I_pvZm238hMPr63ctmb-4J42ZMn5MHjnB0I8WLLtkw1R75IHtOHq1R3bOXC7FE1J20ENvoIfOCtpBD23QQxv00LKiHj0U0UNvood69OyTycnx-NMwcI03Ag1GTR2gTRkZ7CerBecKjnOdmDhRTBrdL2SsRSyLUCUyT2UupDQcjG7FFDdRlAjJB0_JVjWrzDNCNawRhkoYIRUbiFwNigQ8dJVrhvGQtEcO_SZm2rHSY3OUiwy8U9z2zG975ra9R961M-aWkeWO977xcslAbeIGycrMlpcZEmuyfgxg65EDK7B2tYjBQZUK8fwes1-Qhyu0vyRb9WJpXoGZWqvXDbD-ACF6mqA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+immunophenotyping+of+cerebrospinal+fluid+cells+in+patients+with+neuroimmunological+diseases&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Han%2C+Sungpil&rft.au=Lin%2C+Yen+Chih&rft.au=Wu%2C+Tianxia&rft.au=Salgado%2C+Alan+D&rft.date=2014-03-15&rft.issn=1550-6606&rft.eissn=1550-6606&rft.volume=192&rft.issue=6&rft.spage=2551&rft_id=info:doi/10.4049%2Fjimmunol.1302884&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |