A Local Macroscopic Conservative (LoMaC) Low Rank Tensor Method for the Vlasov Dynamics

In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our pre...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 101; no. 3; p. 61
Main Authors Guo, Wei, Qiu, Jing-Mei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Springer Science + Business Media
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics ( arXiv:2201.10397 ). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy.
AbstractList In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics ( arXiv:2201.10397 ). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy.
Abstract In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics ( <ext-link ext-link-type='uri' href='http://arxiv.org/abs/2201.10397'>arXiv:2201.10397</ext-link> ). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy.
In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics (arXiv:2201.10397). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy.
ArticleNumber 61
Author Guo, Wei
Qiu, Jing-Mei
Author_xml – sequence: 1
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Department of Mathematics and Statistics, Texas Tech University
– sequence: 2
  givenname: Jing-Mei
  orcidid: 0000-0002-3462-188X
  surname: Qiu
  fullname: Qiu, Jing-Mei
  email: jingqiu@udel.edu
  organization: Department of Mathematical Sciences, University of Delaware
BackLink https://www.osti.gov/biblio/2475010$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoMoWKt_wFPQix5Wk2yyyR7L-gktgvhxDNNs1m5tk5psK_33Rlfw5mGYOTzvy_AcoF3nnUXomJILSoi8jJSUVGSE8TSF4hndQQMqZJ7JoqS7aECUEpnkku-jgxjnhJBSlWyAXkd47A0s8ARM8NH4VWtw5V20YQNdu7H4bOwnUJ0n7BM_gnvHT9ZFH_DEdjNf4yad3czilwVEv8FXWwfL1sRDtNfAItqj3z1EzzfXT9VdNn64va9G48zknHYZNYWUBgjQGoySueIgrWKc2lIWUygaYKoWzEgrpixXQjashBoaMKSoOZT5EJ30vT52rY6m7ayZGe-cNZ1mXApCSYJOe2gV_Mfaxk7P_Tq49JfOKSOSiLIQiWI99S0iBtvoVWiXELaaEv1tWfeWdbKsfyxrmkJ5H4oJdm82_FX_k_oCIZx_4g
Cites_doi 10.1016/j.jcp.2022.111089
10.1016/j.jcp.2024.113055
10.1007/s00041-009-9094-9
10.1137/S0895479896305696
10.1142/7498
10.1137/090752286
10.1016/j.jcp.2022.111562
10.1137/07070111X
10.1137/090748330
10.2139/ssrn.4668132
10.1016/j.jcp.2019.109125
10.1016/j.jcp.2023.112060
10.1002/sapm192761164
10.1016/j.jcp.2013.09.013
10.1016/j.jcp.2021.110495
10.1137/18M1218686
10.1016/S0010-4655(02)00694-X
10.1137/22M1473960
10.1137/090764189
10.2139/ssrn.4408633
10.1007/BF02289464
10.1006/jcph.1995.1148
10.1007/BF02310791
10.1016/j.jcp.2019.109063
10.1016/j.jcp.2017.03.015
10.1137/140971270
10.1007/978-3-319-28262-6_7
10.1137/18M116383X
10.1137/110833142
10.1016/j.jcp.2020.109735
10.1016/0045-7930(94)90050-7
10.1137/16M1060017
10.1103/RevModPhys.55.403
10.1137/070679065
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
OTOTI
DOI 10.1007/s10915-024-02684-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 2475010
10_1007_s10915_024_02684_1
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: 2111383; 2111253
  funderid: http://dx.doi.org/10.13039/100000121
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-22-1-0390
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: U.S. Department of Energy
  grantid: DE-SC0023164
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
OTOTI
ID FETCH-LOGICAL-c341t-1c677ca0a1dac87384a7e8241e976ba6fa28d52c7e5b23857f29adafac06d4a93
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Mon Nov 04 02:34:36 EST 2024
Sat Jul 26 00:38:11 EDT 2025
Tue Jul 01 00:51:49 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hierarchical Tucker decomposition of tensors
Vlasov Dynamics
Energy conservation
Low rank
Conservative SVD
LoMaC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-1c677ca0a1dac87384a7e8241e976ba6fa28d52c7e5b23857f29adafac06d4a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0023164
USDOE
ORCID 0000-0002-3462-188X
000000023462188X
OpenAccessLink https://link.springer.com/10.1007/s10915-024-02684-1
PQID 3120705965
PQPubID 2043771
ParticipantIDs osti_scitechconnect_2475010
proquest_journals_3120705965
crossref_primary_10_1007_s10915_024_02684_1
springer_journals_10_1007_s10915_024_02684_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Science + Business Media
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Science + Business Media
References CarrollJDChangJ-JAnalysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decompositionPsychometrika197035328331910.1007/BF02310791
FilbetFSonnendruckerEComparison of Eulerian Vlasov solversComput. Phys. Commun.20031503247266197736610.1016/S0010-4655(02)00694-X
GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189
OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/090748330
EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686
XuKMartinelliLJamesonAGas-kinetic finite volume methods, flux-vector splitting, and artificial diffusionJ. Comput. Phys.199512014865134502810.1006/jcph.1995.1148
TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464
HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009155706722256378010.1007/s00041-009-9094-9
PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.109735
OseledetsITensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
OseledetsIVDolgovSVSolution of linear systems and matrix inversion in the TT-formatSIAM J. Sci. Comput.2012345A2718A2739302372310.1137/110833142
DektorAVenturiDDynamically orthogonal tensor methods for high-dimensional nonlinear PDEsJ. Comput. Phys.2020404109125404472810.1016/j.jcp.2019.109125
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
SmolyakSQuadrature and interpolation formulas for tensor products of certain classes of functionsIn Dokl. Akad. Nauk SSSR19634240243
TaoZGuoWChengYSparse grid discontinuous Galerkin methods for the Vlasov–Maxwell systemJ. Comput. Phys. X201931000224116077
de Dios, B. A., Hajian, S.: High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system (2012). arXiv preprint arXiv:1209.4025
Guo, W., Ema, J. F., Qiu, J.-M.: A local macroscopic conservative (LoMac) low rank tensor method with the discontinuous Galerkin method for the Vlasov dynamics (2022). arXiv preprint arXiv:2210.07208
GuoWChengYA sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulationsSIAM J. Sci. Comput.2016386A3381A3409356690810.1137/16M1060017
EinkemmerLJosephIA mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equationJ. Comput. Phys.2021443110495428024810.1016/j.jcp.2021.110495
EinkemmerLOstermannAScaloneCA robust and conservative dynamical low-rank algorithmJ. Comput. Phys.2023484112060456923110.1016/j.jcp.2023.112060
EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X
KormannKA semi-Lagrangian Vlasov solver in tensor train formatSIAM J. Sci. Comput.2015374B613B632337613710.1137/140971270
GuoWQiuJ-MA low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow mapsJ. Comput. Phys.2022458111089438974610.1016/j.jcp.2022.111089
GuoWQiuJ-MA conservative low rank tensor method for the Vlasov dynamicsSIAM J. Sci. Comput.2024461A232A263469577810.1137/22M1473960
DawsonJParticle simulation of plasmasRev. Mod. Phys.198355240310.1103/RevModPhys.55.403
Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (eds). Parallel algorithms for partial differential equations, volume 31 of Notes on numerical fluid mechanics, pp. 94–100 (1991)
EinkemmerLOstermannAPiazzolaCA low-rank projector-splitting integrator for the Vlasov–Maxwell equations with divergence correctionJ. Comput. Phys.2020403109063404522710.1016/j.jcp.2019.109063
GottliebSKetchesonDIShuC-WStrong stability preserving Runge–Kutta and multistep time discretizations2011SingaporeWorld Scientific10.1142/7498
Guo, W., Qiu, J.-M.: A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps (2021). arXiv preprint arXiv:2106.08834
Einkemmer, L., Kusch, J., Schotthöfer, S.: Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems (2023). arXiv preprint arXiv:2311.06399
Kormann, K., Sonnendrücker, E.: Sparse grids for the Vlasov–Poisson equation. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications-Stuttgart 2014, Lecture Notes in Computational Science and Engineering, vol. 109, pp. 163–190. Springer International Publishing Switzerland (2016)
De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696
Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990)
CoughlinJHuJShumlakURobust and conservative dynamical low-rank methods for the Vlasov equation via a novel macro-micro decompositionJ. Comput. Phys.2024509113055474143810.1016/j.jcp.2024.113055
MandalJDeshpandeSKinetic flux vector splitting for Euler equationsComput. Fluids1994232447478124805510.1016/0045-7930(94)90050-7
ShuC-WHigh order weighted essentially nonoscillatory schemes for convection dominated problemsSIAM Rev.200951182126248111210.1137/070679065
BirdsallCKLangdonABPlasma Physics via Computer Simulation2004Boca RatonCRC Press
Harshman, R. A., et al.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, pp. 1–84 (1970)
ChengYChristliebAJZhongXEnergy-conserving discontinuous Galerkin methods for the Vlasov–Ampere systemJ. Comput. Phys.2014256630655311742710.1016/j.jcp.2013.09.013
HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.192761–416418910.1002/sapm192761164
EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov–Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015
Allmann-Rahn, F., Grauer, R., Kormann, K.: A parallel low-rank solver for the six-dimensional Vlasov–Maxwell equations (2022). arXiv preprint arXiv:2201.03471
2684_CR1
L Einkemmer (2684_CR13) 2018; 40
K Kormann (2684_CR30) 2015; 37
2684_CR27
L Einkemmer (2684_CR15) 2020; 403
2684_CR7
Z Tao (2684_CR39) 2019; 3
J Coughlin (2684_CR5) 2024; 509
V Ehrlacher (2684_CR10) 2017; 339
JD Carroll (2684_CR3) 1970; 35
C-W Shu (2684_CR37) 2009; 51
J Mandal (2684_CR32) 1994; 23
A Dektor (2684_CR9) 2020; 404
Y Cheng (2684_CR4) 2014; 256
IV Oseledets (2684_CR35) 2009; 31
TG Kolda (2684_CR29) 2009; 51
W Guo (2684_CR21) 2016; 38
IV Oseledets (2684_CR34) 2012; 34
2684_CR20
2684_CR42
2684_CR22
2684_CR23
S Smolyak (2684_CR38) 1963; 4
W Guo (2684_CR24) 2022; 458
I Oseledets (2684_CR33) 2011; 33
CK Birdsall (2684_CR2) 2004
L Grasedyck (2684_CR19) 2010; 31
J Dawson (2684_CR6) 1983; 55
L Einkemmer (2684_CR16) 2023; 484
Z Peng (2684_CR36) 2020; 421
L Einkemmer (2684_CR14) 2019; 41
S Gottlieb (2684_CR18) 2011
L De Lathauwer (2684_CR8) 2000; 21
F Filbet (2684_CR17) 2003; 150
W Hackbusch (2684_CR26) 2009; 15
L Einkemmer (2684_CR11) 2021; 443
FL Hitchcock (2684_CR28) 1927; 6
W Guo (2684_CR25) 2024; 46
2684_CR31
LR Tucker (2684_CR40) 1966; 31
K Xu (2684_CR41) 1995; 120
2684_CR12
References_xml – reference: ChengYChristliebAJZhongXEnergy-conserving discontinuous Galerkin methods for the Vlasov–Ampere systemJ. Comput. Phys.2014256630655311742710.1016/j.jcp.2013.09.013
– reference: OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/090748330
– reference: Guo, W., Ema, J. F., Qiu, J.-M.: A local macroscopic conservative (LoMac) low rank tensor method with the discontinuous Galerkin method for the Vlasov dynamics (2022). arXiv preprint arXiv:2210.07208
– reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696
– reference: GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189
– reference: DawsonJParticle simulation of plasmasRev. Mod. Phys.198355240310.1103/RevModPhys.55.403
– reference: TaoZGuoWChengYSparse grid discontinuous Galerkin methods for the Vlasov–Maxwell systemJ. Comput. Phys. X201931000224116077
– reference: Allmann-Rahn, F., Grauer, R., Kormann, K.: A parallel low-rank solver for the six-dimensional Vlasov–Maxwell equations (2022). arXiv preprint arXiv:2201.03471
– reference: Einkemmer, L., Kusch, J., Schotthöfer, S.: Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems (2023). arXiv preprint arXiv:2311.06399
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
– reference: de Dios, B. A., Hajian, S.: High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system (2012). arXiv preprint arXiv:1209.4025
– reference: MandalJDeshpandeSKinetic flux vector splitting for Euler equationsComput. Fluids1994232447478124805510.1016/0045-7930(94)90050-7
– reference: HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.192761–416418910.1002/sapm192761164
– reference: OseledetsITensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
– reference: EinkemmerLOstermannAPiazzolaCA low-rank projector-splitting integrator for the Vlasov–Maxwell equations with divergence correctionJ. Comput. Phys.2020403109063404522710.1016/j.jcp.2019.109063
– reference: GuoWQiuJ-MA low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow mapsJ. Comput. Phys.2022458111089438974610.1016/j.jcp.2022.111089
– reference: CarrollJDChangJ-JAnalysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decompositionPsychometrika197035328331910.1007/BF02310791
– reference: Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990)
– reference: Kormann, K., Sonnendrücker, E.: Sparse grids for the Vlasov–Poisson equation. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications-Stuttgart 2014, Lecture Notes in Computational Science and Engineering, vol. 109, pp. 163–190. Springer International Publishing Switzerland (2016)
– reference: XuKMartinelliLJamesonAGas-kinetic finite volume methods, flux-vector splitting, and artificial diffusionJ. Comput. Phys.199512014865134502810.1006/jcph.1995.1148
– reference: KormannKA semi-Lagrangian Vlasov solver in tensor train formatSIAM J. Sci. Comput.2015374B613B632337613710.1137/140971270
– reference: EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X
– reference: GuoWChengYA sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulationsSIAM J. Sci. Comput.2016386A3381A3409356690810.1137/16M1060017
– reference: HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009155706722256378010.1007/s00041-009-9094-9
– reference: Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (eds). Parallel algorithms for partial differential equations, volume 31 of Notes on numerical fluid mechanics, pp. 94–100 (1991)
– reference: OseledetsIVDolgovSVSolution of linear systems and matrix inversion in the TT-formatSIAM J. Sci. Comput.2012345A2718A2739302372310.1137/110833142
– reference: EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686
– reference: EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov–Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015
– reference: Guo, W., Qiu, J.-M.: A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps (2021). arXiv preprint arXiv:2106.08834
– reference: GottliebSKetchesonDIShuC-WStrong stability preserving Runge–Kutta and multistep time discretizations2011SingaporeWorld Scientific10.1142/7498
– reference: ShuC-WHigh order weighted essentially nonoscillatory schemes for convection dominated problemsSIAM Rev.200951182126248111210.1137/070679065
– reference: EinkemmerLJosephIA mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equationJ. Comput. Phys.2021443110495428024810.1016/j.jcp.2021.110495
– reference: EinkemmerLOstermannAScaloneCA robust and conservative dynamical low-rank algorithmJ. Comput. Phys.2023484112060456923110.1016/j.jcp.2023.112060
– reference: PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.109735
– reference: CoughlinJHuJShumlakURobust and conservative dynamical low-rank methods for the Vlasov equation via a novel macro-micro decompositionJ. Comput. Phys.2024509113055474143810.1016/j.jcp.2024.113055
– reference: FilbetFSonnendruckerEComparison of Eulerian Vlasov solversComput. Phys. Commun.20031503247266197736610.1016/S0010-4655(02)00694-X
– reference: SmolyakSQuadrature and interpolation formulas for tensor products of certain classes of functionsIn Dokl. Akad. Nauk SSSR19634240243
– reference: Harshman, R. A., et al.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, pp. 1–84 (1970)
– reference: BirdsallCKLangdonABPlasma Physics via Computer Simulation2004Boca RatonCRC Press
– reference: GuoWQiuJ-MA conservative low rank tensor method for the Vlasov dynamicsSIAM J. Sci. Comput.2024461A232A263469577810.1137/22M1473960
– reference: DektorAVenturiDDynamically orthogonal tensor methods for high-dimensional nonlinear PDEsJ. Comput. Phys.2020404109125404472810.1016/j.jcp.2019.109125
– reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464
– ident: 2684_CR23
  doi: 10.1016/j.jcp.2022.111089
– volume: 509
  start-page: 113055
  year: 2024
  ident: 2684_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2024.113055
– volume: 15
  start-page: 706
  issue: 5
  year: 2009
  ident: 2684_CR26
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-009-9094-9
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 2684_CR8
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume-title: Strong stability preserving Runge–Kutta and multistep time discretizations
  year: 2011
  ident: 2684_CR18
  doi: 10.1142/7498
– volume: 458
  start-page: 111089
  year: 2022
  ident: 2684_CR24
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111089
– ident: 2684_CR27
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  ident: 2684_CR33
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– ident: 2684_CR1
  doi: 10.1016/j.jcp.2022.111562
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 2684_CR29
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 31
  start-page: 3744
  issue: 5
  year: 2009
  ident: 2684_CR35
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090748330
– ident: 2684_CR12
  doi: 10.2139/ssrn.4668132
– volume: 404
  start-page: 109125
  year: 2020
  ident: 2684_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109125
– volume: 484
  start-page: 112060
  year: 2023
  ident: 2684_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112060
– volume-title: Plasma Physics via Computer Simulation
  year: 2004
  ident: 2684_CR2
– volume: 6
  start-page: 164
  issue: 1–4
  year: 1927
  ident: 2684_CR28
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– volume: 256
  start-page: 630
  year: 2014
  ident: 2684_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.013
– volume: 443
  start-page: 110495
  year: 2021
  ident: 2684_CR11
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110495
– volume: 41
  start-page: B1061
  issue: 5
  year: 2019
  ident: 2684_CR14
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1218686
– volume: 150
  start-page: 247
  issue: 3
  year: 2003
  ident: 2684_CR17
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00694-X
– volume: 46
  start-page: A232
  issue: 1
  year: 2024
  ident: 2684_CR25
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/22M1473960
– volume: 31
  start-page: 2029
  issue: 4
  year: 2010
  ident: 2684_CR19
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090764189
– ident: 2684_CR22
  doi: 10.2139/ssrn.4408633
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 2684_CR40
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 120
  start-page: 48
  issue: 1
  year: 1995
  ident: 2684_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1148
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 2684_CR3
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 403
  start-page: 109063
  year: 2020
  ident: 2684_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109063
– ident: 2684_CR20
– volume: 339
  start-page: 285
  year: 2017
  ident: 2684_CR10
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.015
– volume: 37
  start-page: B613
  issue: 4
  year: 2015
  ident: 2684_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140971270
– ident: 2684_CR31
  doi: 10.1007/978-3-319-28262-6_7
– ident: 2684_CR7
– volume: 3
  start-page: 100022
  year: 2019
  ident: 2684_CR39
  publication-title: J. Comput. Phys. X
– volume: 40
  start-page: B1330
  issue: 5
  year: 2018
  ident: 2684_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M116383X
– volume: 4
  start-page: 240
  year: 1963
  ident: 2684_CR38
  publication-title: In Dokl. Akad. Nauk SSSR
– volume: 34
  start-page: A2718
  issue: 5
  year: 2012
  ident: 2684_CR34
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110833142
– volume: 421
  start-page: 109735
  year: 2020
  ident: 2684_CR36
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109735
– volume: 23
  start-page: 447
  issue: 2
  year: 1994
  ident: 2684_CR32
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)90050-7
– ident: 2684_CR42
– volume: 38
  start-page: A3381
  issue: 6
  year: 2016
  ident: 2684_CR21
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1060017
– volume: 55
  start-page: 403
  issue: 2
  year: 1983
  ident: 2684_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.55.403
– volume: 51
  start-page: 82
  issue: 1
  year: 2009
  ident: 2684_CR37
  publication-title: SIAM Rev.
  doi: 10.1137/070679065
SSID ssj0009892
Score 2.4151297
Snippet In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC...
Abstract In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 61
SubjectTerms Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Conservation
Energy conservation
Flux vector splitting
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Momentum
Simulation
Singular value decomposition
Tensors
Theoretical
Title A Local Macroscopic Conservative (LoMaC) Low Rank Tensor Method for the Vlasov Dynamics
URI https://link.springer.com/article/10.1007/s10915-024-02684-1
https://www.proquest.com/docview/3120705965
https://www.osti.gov/biblio/2475010
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWBAlA9RKJUHBhBESlJ_ZWxLCwLKgFook-U4joSQGkQK_H3OaUIBwcAQZYhlS2ef33N89w7gkFohI27bLkXZ92gqEk9aHnva-nEgbOQ0wF20xQ2_GNPLCZuUSWF5Fe1eXUkWO_WXZLcocNnEFB8uqYdnnhXmzu64isdhZyG1K4tSyOg-zEOyTMtUmd_7-AZHtQzd6hvV_HE7WoDOYAPWS7ZIOvPprcOSnW7C2vBTajXfhHrpnTk5KiWkj7fgvkOuHUiRoXbjmuz50RBXm3P-C_bNkqPrbKh7x9jsndzq6RMZ4Xk2eyHDoqI0QSpLcBByh-Q6eyNn87r1-TaMB_1R78IrSyh4BuFp5gWGC2G0r4NEGynakmphJaK2RRoSa57qUCYsNMKyGMGbiTSMdKJTbXyeUB21d6A2zaZ2F0gS-UyaBDfqIKGpdZklMXIJKeI0Nob5DTipLKme50oZaqGJ7Oyu0O6qsLsKGrDvjK0Q551YrXFRPWamQooMJsC-mtUcqNKnctUOQtyfWMRZA06reVl8_nusvf8134fV0K2QImalCbXZy6s9QOYxi1uw0hl0uzfuff5w1W_Bco_3WsXy-wDqHNDr
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHtSDEdSIoPbgAaJLttFfO5KpQd04GFBuTdd1iTFhBBD_fV_HkED04GGnNm3y2tfv6_re9xC6JoaLgJmOTVF2HZLx1BGGJY4ybuJxE1gNcBtt0We9IXka0VEpk2NzYbbe722KW-DZHGICHxPEgZvOLoGbsg3fC1m4FtgVRQFkcBrqAEUmZYLM72NsgFAlB2faIJhbb6IF1DwcocOSI-LuclGraMeMa-gg_hFYndVQtfTJGW6VwtHtY_TWxZGFJhwrO6_OJ-8a24qcyx-vC4NbUR6rsA3dvvCLGn_gAdxi8ymOizrSGAgshknwK1DqfIHvltXqZydo-HA_CHtOWTjB0QBKc8fTjHOtXOWlSgveEURxIwCrDZCPRLFM-SKlvuaGJgDZlGd-oFKVKe2ylKigc4oq43xszhBOA5cKncLx7KUkMzafJAEGIXiSJVpTt45uVpaUk6U-hlwrIVu7S7C7LOwuvTpqWGNLQHcrUattLI-eS58Ab_FgrOZqDWTpSTPZ8Xw4lWjAaB3drtZl3fz3XOf_636F9nqDOJLRY_-5gfZ9u1uKqJUmqsynn-YCuMc8uSw23Td5CcvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfQgrljrkoMHiw6dJdscpVpc2iLi0lvIJBkQYaa0o_59X2amVkUPHuaUkMBLXr4vk_e-h9ARsVzEzEYuRdn3SMqNJyxLPGX9JOA2dhrgLtpiyC4fyPWIjr5k8ZfR7rMnySqnwak0ZUVnbNLOl8S3OHCZxQQ-JogH959FuKmUD7Vd1p3L7oqyLDK4EvWAOJM6beb3Mb5BUyMHF_tGO3-8lJYA1FtDqzVzxGfVUq-jBZttoJXBp-zqdAOt1546xce1nHR7Ez2d4b4DLDxQbl6dj581dnU6q9-xbxYf9_OB6rah2zu-U9kLvoe7bT7Bg7K6NAZai2ES_AhEO3_D51UN--kWeuhd3HcvvbqcgqcBqgov0IxzrXwVGKUFjwRR3ApAcAuUJFEsVaEwNNTc0gSAnPI0jJVRqdI-M0TF0TZqZHlmdxA2sU-FNnBoB4ak1mWZJMArBE_SRGvqN9HJzJJyXKlmyLk-srO7BLvL0u4yaKKWM7YEzHfCtdpF-OhChgTYTABj7c3WQNb-NZVREMJZRWNGm-h0ti7z5r_n2v1f90O0dHvek_2r4U0LLYdus5ShLHuoUUxe7T4QkiI5KPfcByuu1Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Local+Macroscopic+Conservative+%28LoMaC%29+Low+Rank+Tensor+Method+for+the+Vlasov+Dynamics&rft.jtitle=Journal+of+scientific+computing&rft.au=Guo%2C+Wei&rft.au=Qiu%2C+Jing-Mei&rft.date=2024-12-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0885-7474&rft.volume=101&rft.issue=3&rft_id=info:doi/10.1007%2Fs10915-024-02684-1&rft.externalDocID=2475010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon