A Local Macroscopic Conservative (LoMaC) Low Rank Tensor Method for the Vlasov Dynamics
In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our pre...
Saved in:
Published in | Journal of scientific computing Vol. 101; no. 3; p. 61 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V Springer Science + Business Media |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics (
arXiv:2201.10397
). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy. |
---|---|
AbstractList | In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics (
arXiv:2201.10397
). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy. Abstract In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics ( <ext-link ext-link-type='uri' href='http://arxiv.org/abs/2201.10397'>arXiv:2201.10397</ext-link> ). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy. In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. This is a follow-up work of our previous development of a conservative low rank tensor approach for Vlasov dynamics (arXiv:2201.10397). In that work, we applied a low rank tensor method with a conservative singular value decomposition to the high dimensional VP system to mitigate the curse of dimensionality, while maintaining the local conservation of mass and momentum. However, energy conservation is not guaranteed, which is a critical property to avoid unphysical plasma self-heating or cooling. The new ingredient in the LoMaC low rank tensor algorithm is that we simultaneously evolve the macroscopic conservation laws of mass, momentum and energy using a flux-difference form with kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables by a conservative orthogonal projection. The algorithm is extended to the high dimensional problems by hierarchical Tuck decomposition of solution tensors and a corresponding conservative projection algorithm. Extensive numerical tests on the VP system are showcased for the algorithm’s efficacy. |
ArticleNumber | 61 |
Author | Guo, Wei Qiu, Jing-Mei |
Author_xml | – sequence: 1 givenname: Wei surname: Guo fullname: Guo, Wei organization: Department of Mathematics and Statistics, Texas Tech University – sequence: 2 givenname: Jing-Mei orcidid: 0000-0002-3462-188X surname: Qiu fullname: Qiu, Jing-Mei email: jingqiu@udel.edu organization: Department of Mathematical Sciences, University of Delaware |
BackLink | https://www.osti.gov/biblio/2475010$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoMoWKt_wFPQix5Wk2yyyR7L-gktgvhxDNNs1m5tk5psK_33Rlfw5mGYOTzvy_AcoF3nnUXomJILSoi8jJSUVGSE8TSF4hndQQMqZJ7JoqS7aECUEpnkku-jgxjnhJBSlWyAXkd47A0s8ARM8NH4VWtw5V20YQNdu7H4bOwnUJ0n7BM_gnvHT9ZFH_DEdjNf4yad3czilwVEv8FXWwfL1sRDtNfAItqj3z1EzzfXT9VdNn64va9G48zknHYZNYWUBgjQGoySueIgrWKc2lIWUygaYKoWzEgrpixXQjashBoaMKSoOZT5EJ30vT52rY6m7ayZGe-cNZ1mXApCSYJOe2gV_Mfaxk7P_Tq49JfOKSOSiLIQiWI99S0iBtvoVWiXELaaEv1tWfeWdbKsfyxrmkJ5H4oJdm82_FX_k_oCIZx_4g |
Cites_doi | 10.1016/j.jcp.2022.111089 10.1016/j.jcp.2024.113055 10.1007/s00041-009-9094-9 10.1137/S0895479896305696 10.1142/7498 10.1137/090752286 10.1016/j.jcp.2022.111562 10.1137/07070111X 10.1137/090748330 10.2139/ssrn.4668132 10.1016/j.jcp.2019.109125 10.1016/j.jcp.2023.112060 10.1002/sapm192761164 10.1016/j.jcp.2013.09.013 10.1016/j.jcp.2021.110495 10.1137/18M1218686 10.1016/S0010-4655(02)00694-X 10.1137/22M1473960 10.1137/090764189 10.2139/ssrn.4408633 10.1007/BF02289464 10.1006/jcph.1995.1148 10.1007/BF02310791 10.1016/j.jcp.2019.109063 10.1016/j.jcp.2017.03.015 10.1137/140971270 10.1007/978-3-319-28262-6_7 10.1137/18M116383X 10.1137/110833142 10.1016/j.jcp.2020.109735 10.1016/0045-7930(94)90050-7 10.1137/16M1060017 10.1103/RevModPhys.55.403 10.1137/070679065 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION JQ2 OTOTI |
DOI | 10.1007/s10915-024-02684-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
ExternalDocumentID | 2475010 10_1007_s10915_024_02684_1 |
GrantInformation_xml | – fundername: Division of Mathematical Sciences grantid: 2111383; 2111253 funderid: http://dx.doi.org/10.13039/100000121 – fundername: Air Force Office of Scientific Research grantid: FA9550-22-1-0390 funderid: http://dx.doi.org/10.13039/100000181 – fundername: U.S. Department of Energy grantid: DE-SC0023164 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 OTOTI |
ID | FETCH-LOGICAL-c341t-1c677ca0a1dac87384a7e8241e976ba6fa28d52c7e5b23857f29adafac06d4a93 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Mon Nov 04 02:34:36 EST 2024 Sat Jul 26 00:38:11 EDT 2025 Tue Jul 01 00:51:49 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Hierarchical Tucker decomposition of tensors Vlasov Dynamics Energy conservation Low rank Conservative SVD LoMaC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-1c677ca0a1dac87384a7e8241e976ba6fa28d52c7e5b23857f29adafac06d4a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0023164 USDOE |
ORCID | 0000-0002-3462-188X 000000023462188X |
OpenAccessLink | https://link.springer.com/10.1007/s10915-024-02684-1 |
PQID | 3120705965 |
PQPubID | 2043771 |
ParticipantIDs | osti_scitechconnect_2475010 proquest_journals_3120705965 crossref_primary_10_1007_s10915_024_02684_1 springer_journals_10_1007_s10915_024_02684_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer Science + Business Media |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Science + Business Media |
References | CarrollJDChangJ-JAnalysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decompositionPsychometrika197035328331910.1007/BF02310791 FilbetFSonnendruckerEComparison of Eulerian Vlasov solversComput. Phys. Commun.20031503247266197736610.1016/S0010-4655(02)00694-X GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189 OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/090748330 EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686 XuKMartinelliLJamesonAGas-kinetic finite volume methods, flux-vector splitting, and artificial diffusionJ. Comput. Phys.199512014865134502810.1006/jcph.1995.1148 TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464 HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009155706722256378010.1007/s00041-009-9094-9 PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.109735 OseledetsITensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 OseledetsIVDolgovSVSolution of linear systems and matrix inversion in the TT-formatSIAM J. Sci. Comput.2012345A2718A2739302372310.1137/110833142 DektorAVenturiDDynamically orthogonal tensor methods for high-dimensional nonlinear PDEsJ. Comput. Phys.2020404109125404472810.1016/j.jcp.2019.109125 KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X SmolyakSQuadrature and interpolation formulas for tensor products of certain classes of functionsIn Dokl. Akad. Nauk SSSR19634240243 TaoZGuoWChengYSparse grid discontinuous Galerkin methods for the Vlasov–Maxwell systemJ. Comput. Phys. X201931000224116077 de Dios, B. A., Hajian, S.: High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system (2012). arXiv preprint arXiv:1209.4025 Guo, W., Ema, J. F., Qiu, J.-M.: A local macroscopic conservative (LoMac) low rank tensor method with the discontinuous Galerkin method for the Vlasov dynamics (2022). arXiv preprint arXiv:2210.07208 GuoWChengYA sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulationsSIAM J. Sci. Comput.2016386A3381A3409356690810.1137/16M1060017 EinkemmerLJosephIA mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equationJ. Comput. Phys.2021443110495428024810.1016/j.jcp.2021.110495 EinkemmerLOstermannAScaloneCA robust and conservative dynamical low-rank algorithmJ. Comput. Phys.2023484112060456923110.1016/j.jcp.2023.112060 EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X KormannKA semi-Lagrangian Vlasov solver in tensor train formatSIAM J. Sci. Comput.2015374B613B632337613710.1137/140971270 GuoWQiuJ-MA low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow mapsJ. Comput. Phys.2022458111089438974610.1016/j.jcp.2022.111089 GuoWQiuJ-MA conservative low rank tensor method for the Vlasov dynamicsSIAM J. Sci. Comput.2024461A232A263469577810.1137/22M1473960 DawsonJParticle simulation of plasmasRev. Mod. Phys.198355240310.1103/RevModPhys.55.403 Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (eds). Parallel algorithms for partial differential equations, volume 31 of Notes on numerical fluid mechanics, pp. 94–100 (1991) EinkemmerLOstermannAPiazzolaCA low-rank projector-splitting integrator for the Vlasov–Maxwell equations with divergence correctionJ. Comput. Phys.2020403109063404522710.1016/j.jcp.2019.109063 GottliebSKetchesonDIShuC-WStrong stability preserving Runge–Kutta and multistep time discretizations2011SingaporeWorld Scientific10.1142/7498 Guo, W., Qiu, J.-M.: A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps (2021). arXiv preprint arXiv:2106.08834 Einkemmer, L., Kusch, J., Schotthöfer, S.: Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems (2023). arXiv preprint arXiv:2311.06399 Kormann, K., Sonnendrücker, E.: Sparse grids for the Vlasov–Poisson equation. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications-Stuttgart 2014, Lecture Notes in Computational Science and Engineering, vol. 109, pp. 163–190. Springer International Publishing Switzerland (2016) De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696 Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990) CoughlinJHuJShumlakURobust and conservative dynamical low-rank methods for the Vlasov equation via a novel macro-micro decompositionJ. Comput. Phys.2024509113055474143810.1016/j.jcp.2024.113055 MandalJDeshpandeSKinetic flux vector splitting for Euler equationsComput. Fluids1994232447478124805510.1016/0045-7930(94)90050-7 ShuC-WHigh order weighted essentially nonoscillatory schemes for convection dominated problemsSIAM Rev.200951182126248111210.1137/070679065 BirdsallCKLangdonABPlasma Physics via Computer Simulation2004Boca RatonCRC Press Harshman, R. A., et al.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, pp. 1–84 (1970) ChengYChristliebAJZhongXEnergy-conserving discontinuous Galerkin methods for the Vlasov–Ampere systemJ. Comput. Phys.2014256630655311742710.1016/j.jcp.2013.09.013 HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.192761–416418910.1002/sapm192761164 EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov–Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015 Allmann-Rahn, F., Grauer, R., Kormann, K.: A parallel low-rank solver for the six-dimensional Vlasov–Maxwell equations (2022). arXiv preprint arXiv:2201.03471 2684_CR1 L Einkemmer (2684_CR13) 2018; 40 K Kormann (2684_CR30) 2015; 37 2684_CR27 L Einkemmer (2684_CR15) 2020; 403 2684_CR7 Z Tao (2684_CR39) 2019; 3 J Coughlin (2684_CR5) 2024; 509 V Ehrlacher (2684_CR10) 2017; 339 JD Carroll (2684_CR3) 1970; 35 C-W Shu (2684_CR37) 2009; 51 J Mandal (2684_CR32) 1994; 23 A Dektor (2684_CR9) 2020; 404 Y Cheng (2684_CR4) 2014; 256 IV Oseledets (2684_CR35) 2009; 31 TG Kolda (2684_CR29) 2009; 51 W Guo (2684_CR21) 2016; 38 IV Oseledets (2684_CR34) 2012; 34 2684_CR20 2684_CR42 2684_CR22 2684_CR23 S Smolyak (2684_CR38) 1963; 4 W Guo (2684_CR24) 2022; 458 I Oseledets (2684_CR33) 2011; 33 CK Birdsall (2684_CR2) 2004 L Grasedyck (2684_CR19) 2010; 31 J Dawson (2684_CR6) 1983; 55 L Einkemmer (2684_CR16) 2023; 484 Z Peng (2684_CR36) 2020; 421 L Einkemmer (2684_CR14) 2019; 41 S Gottlieb (2684_CR18) 2011 L De Lathauwer (2684_CR8) 2000; 21 F Filbet (2684_CR17) 2003; 150 W Hackbusch (2684_CR26) 2009; 15 L Einkemmer (2684_CR11) 2021; 443 FL Hitchcock (2684_CR28) 1927; 6 W Guo (2684_CR25) 2024; 46 2684_CR31 LR Tucker (2684_CR40) 1966; 31 K Xu (2684_CR41) 1995; 120 2684_CR12 |
References_xml | – reference: ChengYChristliebAJZhongXEnergy-conserving discontinuous Galerkin methods for the Vlasov–Ampere systemJ. Comput. Phys.2014256630655311742710.1016/j.jcp.2013.09.013 – reference: OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use SVD in many dimensionsSIAM J. Sci. Comput.200931537443759255656010.1137/090748330 – reference: Guo, W., Ema, J. F., Qiu, J.-M.: A local macroscopic conservative (LoMac) low rank tensor method with the discontinuous Galerkin method for the Vlasov dynamics (2022). arXiv preprint arXiv:2210.07208 – reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696 – reference: GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189 – reference: DawsonJParticle simulation of plasmasRev. Mod. Phys.198355240310.1103/RevModPhys.55.403 – reference: TaoZGuoWChengYSparse grid discontinuous Galerkin methods for the Vlasov–Maxwell systemJ. Comput. Phys. X201931000224116077 – reference: Allmann-Rahn, F., Grauer, R., Kormann, K.: A parallel low-rank solver for the six-dimensional Vlasov–Maxwell equations (2022). arXiv preprint arXiv:2201.03471 – reference: Einkemmer, L., Kusch, J., Schotthöfer, S.: Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems (2023). arXiv preprint arXiv:2311.06399 – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X – reference: de Dios, B. A., Hajian, S.: High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system (2012). arXiv preprint arXiv:1209.4025 – reference: MandalJDeshpandeSKinetic flux vector splitting for Euler equationsComput. Fluids1994232447478124805510.1016/0045-7930(94)90050-7 – reference: HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.192761–416418910.1002/sapm192761164 – reference: OseledetsITensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 – reference: EinkemmerLOstermannAPiazzolaCA low-rank projector-splitting integrator for the Vlasov–Maxwell equations with divergence correctionJ. Comput. Phys.2020403109063404522710.1016/j.jcp.2019.109063 – reference: GuoWQiuJ-MA low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow mapsJ. Comput. Phys.2022458111089438974610.1016/j.jcp.2022.111089 – reference: CarrollJDChangJ-JAnalysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decompositionPsychometrika197035328331910.1007/BF02310791 – reference: Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990) – reference: Kormann, K., Sonnendrücker, E.: Sparse grids for the Vlasov–Poisson equation. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications-Stuttgart 2014, Lecture Notes in Computational Science and Engineering, vol. 109, pp. 163–190. Springer International Publishing Switzerland (2016) – reference: XuKMartinelliLJamesonAGas-kinetic finite volume methods, flux-vector splitting, and artificial diffusionJ. Comput. Phys.199512014865134502810.1006/jcph.1995.1148 – reference: KormannKA semi-Lagrangian Vlasov solver in tensor train formatSIAM J. Sci. Comput.2015374B613B632337613710.1137/140971270 – reference: EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X – reference: GuoWChengYA sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulationsSIAM J. Sci. Comput.2016386A3381A3409356690810.1137/16M1060017 – reference: HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009155706722256378010.1007/s00041-009-9094-9 – reference: Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (eds). Parallel algorithms for partial differential equations, volume 31 of Notes on numerical fluid mechanics, pp. 94–100 (1991) – reference: OseledetsIVDolgovSVSolution of linear systems and matrix inversion in the TT-formatSIAM J. Sci. Comput.2012345A2718A2739302372310.1137/110833142 – reference: EinkemmerLLubichCA quasi-conservative dynamical low-rank algorithm for the Vlasov equationSIAM J. Sci. Comput.2019415B1061B1081401613710.1137/18M1218686 – reference: EhrlacherVLombardiDA dynamical adaptive tensor method for the Vlasov–Poisson systemJ. Comput. Phys.2017339285306363265710.1016/j.jcp.2017.03.015 – reference: Guo, W., Qiu, J.-M.: A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps (2021). arXiv preprint arXiv:2106.08834 – reference: GottliebSKetchesonDIShuC-WStrong stability preserving Runge–Kutta and multistep time discretizations2011SingaporeWorld Scientific10.1142/7498 – reference: ShuC-WHigh order weighted essentially nonoscillatory schemes for convection dominated problemsSIAM Rev.200951182126248111210.1137/070679065 – reference: EinkemmerLJosephIA mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equationJ. Comput. Phys.2021443110495428024810.1016/j.jcp.2021.110495 – reference: EinkemmerLOstermannAScaloneCA robust and conservative dynamical low-rank algorithmJ. Comput. Phys.2023484112060456923110.1016/j.jcp.2023.112060 – reference: PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.109735 – reference: CoughlinJHuJShumlakURobust and conservative dynamical low-rank methods for the Vlasov equation via a novel macro-micro decompositionJ. Comput. Phys.2024509113055474143810.1016/j.jcp.2024.113055 – reference: FilbetFSonnendruckerEComparison of Eulerian Vlasov solversComput. Phys. Commun.20031503247266197736610.1016/S0010-4655(02)00694-X – reference: SmolyakSQuadrature and interpolation formulas for tensor products of certain classes of functionsIn Dokl. Akad. Nauk SSSR19634240243 – reference: Harshman, R. A., et al.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, pp. 1–84 (1970) – reference: BirdsallCKLangdonABPlasma Physics via Computer Simulation2004Boca RatonCRC Press – reference: GuoWQiuJ-MA conservative low rank tensor method for the Vlasov dynamicsSIAM J. Sci. Comput.2024461A232A263469577810.1137/22M1473960 – reference: DektorAVenturiDDynamically orthogonal tensor methods for high-dimensional nonlinear PDEsJ. Comput. Phys.2020404109125404472810.1016/j.jcp.2019.109125 – reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464 – ident: 2684_CR23 doi: 10.1016/j.jcp.2022.111089 – volume: 509 start-page: 113055 year: 2024 ident: 2684_CR5 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2024.113055 – volume: 15 start-page: 706 issue: 5 year: 2009 ident: 2684_CR26 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-009-9094-9 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 2684_CR8 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume-title: Strong stability preserving Runge–Kutta and multistep time discretizations year: 2011 ident: 2684_CR18 doi: 10.1142/7498 – volume: 458 start-page: 111089 year: 2022 ident: 2684_CR24 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111089 – ident: 2684_CR27 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 2684_CR33 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – ident: 2684_CR1 doi: 10.1016/j.jcp.2022.111562 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 2684_CR29 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 31 start-page: 3744 issue: 5 year: 2009 ident: 2684_CR35 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090748330 – ident: 2684_CR12 doi: 10.2139/ssrn.4668132 – volume: 404 start-page: 109125 year: 2020 ident: 2684_CR9 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109125 – volume: 484 start-page: 112060 year: 2023 ident: 2684_CR16 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112060 – volume-title: Plasma Physics via Computer Simulation year: 2004 ident: 2684_CR2 – volume: 6 start-page: 164 issue: 1–4 year: 1927 ident: 2684_CR28 publication-title: J. Math. Phys. doi: 10.1002/sapm192761164 – volume: 256 start-page: 630 year: 2014 ident: 2684_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.013 – volume: 443 start-page: 110495 year: 2021 ident: 2684_CR11 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110495 – volume: 41 start-page: B1061 issue: 5 year: 2019 ident: 2684_CR14 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1218686 – volume: 150 start-page: 247 issue: 3 year: 2003 ident: 2684_CR17 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00694-X – volume: 46 start-page: A232 issue: 1 year: 2024 ident: 2684_CR25 publication-title: SIAM J. Sci. Comput. doi: 10.1137/22M1473960 – volume: 31 start-page: 2029 issue: 4 year: 2010 ident: 2684_CR19 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090764189 – ident: 2684_CR22 doi: 10.2139/ssrn.4408633 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 2684_CR40 publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 120 start-page: 48 issue: 1 year: 1995 ident: 2684_CR41 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1148 – volume: 35 start-page: 283 issue: 3 year: 1970 ident: 2684_CR3 publication-title: Psychometrika doi: 10.1007/BF02310791 – volume: 403 start-page: 109063 year: 2020 ident: 2684_CR15 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109063 – ident: 2684_CR20 – volume: 339 start-page: 285 year: 2017 ident: 2684_CR10 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.015 – volume: 37 start-page: B613 issue: 4 year: 2015 ident: 2684_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140971270 – ident: 2684_CR31 doi: 10.1007/978-3-319-28262-6_7 – ident: 2684_CR7 – volume: 3 start-page: 100022 year: 2019 ident: 2684_CR39 publication-title: J. Comput. Phys. X – volume: 40 start-page: B1330 issue: 5 year: 2018 ident: 2684_CR13 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M116383X – volume: 4 start-page: 240 year: 1963 ident: 2684_CR38 publication-title: In Dokl. Akad. Nauk SSSR – volume: 34 start-page: A2718 issue: 5 year: 2012 ident: 2684_CR34 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110833142 – volume: 421 start-page: 109735 year: 2020 ident: 2684_CR36 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109735 – volume: 23 start-page: 447 issue: 2 year: 1994 ident: 2684_CR32 publication-title: Comput. Fluids doi: 10.1016/0045-7930(94)90050-7 – ident: 2684_CR42 – volume: 38 start-page: A3381 issue: 6 year: 2016 ident: 2684_CR21 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1060017 – volume: 55 start-page: 403 issue: 2 year: 1983 ident: 2684_CR6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.55.403 – volume: 51 start-page: 82 issue: 1 year: 2009 ident: 2684_CR37 publication-title: SIAM Rev. doi: 10.1137/070679065 |
SSID | ssj0009892 |
Score | 2.4151297 |
Snippet | In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The LoMaC... Abstract In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method for simulating the Vlasov-Poisson (VP) system. The... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 61 |
SubjectTerms | Algorithms Approximation Computational Mathematics and Numerical Analysis Conservation Energy conservation Flux vector splitting Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Momentum Simulation Singular value decomposition Tensors Theoretical |
Title | A Local Macroscopic Conservative (LoMaC) Low Rank Tensor Method for the Vlasov Dynamics |
URI | https://link.springer.com/article/10.1007/s10915-024-02684-1 https://www.proquest.com/docview/3120705965 https://www.osti.gov/biblio/2475010 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWBAlA9RKJUHBhBESlJ_ZWxLCwLKgFook-U4joSQGkQK_H3OaUIBwcAQZYhlS2ef33N89w7gkFohI27bLkXZ92gqEk9aHnva-nEgbOQ0wF20xQ2_GNPLCZuUSWF5Fe1eXUkWO_WXZLcocNnEFB8uqYdnnhXmzu64isdhZyG1K4tSyOg-zEOyTMtUmd_7-AZHtQzd6hvV_HE7WoDOYAPWS7ZIOvPprcOSnW7C2vBTajXfhHrpnTk5KiWkj7fgvkOuHUiRoXbjmuz50RBXm3P-C_bNkqPrbKh7x9jsndzq6RMZ4Xk2eyHDoqI0QSpLcBByh-Q6eyNn87r1-TaMB_1R78IrSyh4BuFp5gWGC2G0r4NEGynakmphJaK2RRoSa57qUCYsNMKyGMGbiTSMdKJTbXyeUB21d6A2zaZ2F0gS-UyaBDfqIKGpdZklMXIJKeI0Nob5DTipLKme50oZaqGJ7Oyu0O6qsLsKGrDvjK0Q551YrXFRPWamQooMJsC-mtUcqNKnctUOQtyfWMRZA06reVl8_nusvf8134fV0K2QImalCbXZy6s9QOYxi1uw0hl0uzfuff5w1W_Bco_3WsXy-wDqHNDr |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHtSDEdSIoPbgAaJLttFfO5KpQd04GFBuTdd1iTFhBBD_fV_HkED04GGnNm3y2tfv6_re9xC6JoaLgJmOTVF2HZLx1BGGJY4ybuJxE1gNcBtt0We9IXka0VEpk2NzYbbe722KW-DZHGICHxPEgZvOLoGbsg3fC1m4FtgVRQFkcBrqAEUmZYLM72NsgFAlB2faIJhbb6IF1DwcocOSI-LuclGraMeMa-gg_hFYndVQtfTJGW6VwtHtY_TWxZGFJhwrO6_OJ-8a24qcyx-vC4NbUR6rsA3dvvCLGn_gAdxi8ymOizrSGAgshknwK1DqfIHvltXqZydo-HA_CHtOWTjB0QBKc8fTjHOtXOWlSgveEURxIwCrDZCPRLFM-SKlvuaGJgDZlGd-oFKVKe2ylKigc4oq43xszhBOA5cKncLx7KUkMzafJAEGIXiSJVpTt45uVpaUk6U-hlwrIVu7S7C7LOwuvTpqWGNLQHcrUattLI-eS58Ab_FgrOZqDWTpSTPZ8Xw4lWjAaB3drtZl3fz3XOf_636F9nqDOJLRY_-5gfZ9u1uKqJUmqsynn-YCuMc8uSw23Td5CcvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfQgrljrkoMHiw6dJdscpVpc2iLi0lvIJBkQYaa0o_59X2amVkUPHuaUkMBLXr4vk_e-h9ARsVzEzEYuRdn3SMqNJyxLPGX9JOA2dhrgLtpiyC4fyPWIjr5k8ZfR7rMnySqnwak0ZUVnbNLOl8S3OHCZxQQ-JogH959FuKmUD7Vd1p3L7oqyLDK4EvWAOJM6beb3Mb5BUyMHF_tGO3-8lJYA1FtDqzVzxGfVUq-jBZttoJXBp-zqdAOt1546xce1nHR7Ez2d4b4DLDxQbl6dj581dnU6q9-xbxYf9_OB6rah2zu-U9kLvoe7bT7Bg7K6NAZai2ES_AhEO3_D51UN--kWeuhd3HcvvbqcgqcBqgov0IxzrXwVGKUFjwRR3ApAcAuUJFEsVaEwNNTc0gSAnPI0jJVRqdI-M0TF0TZqZHlmdxA2sU-FNnBoB4ak1mWZJMArBE_SRGvqN9HJzJJyXKlmyLk-srO7BLvL0u4yaKKWM7YEzHfCtdpF-OhChgTYTABj7c3WQNb-NZVREMJZRWNGm-h0ti7z5r_n2v1f90O0dHvek_2r4U0LLYdus5ShLHuoUUxe7T4QkiI5KPfcByuu1Bc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Local+Macroscopic+Conservative+%28LoMaC%29+Low+Rank+Tensor+Method+for+the+Vlasov+Dynamics&rft.jtitle=Journal+of+scientific+computing&rft.au=Guo%2C+Wei&rft.au=Qiu%2C+Jing-Mei&rft.date=2024-12-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0885-7474&rft.volume=101&rft.issue=3&rft_id=info:doi/10.1007%2Fs10915-024-02684-1&rft.externalDocID=2475010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |