Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study
Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, t...
Saved in:
Published in | International journal of applied mathematics and computer science Vol. 28; no. 4; pp. 735 - 744 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Zielona Góra
Sciendo
01.12.2018
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2083-8492 1641-876X 2083-8492 |
DOI | 10.2478/amcs-2018-0056 |
Cover
Loading…
Abstract | Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected. |
---|---|
AbstractList | Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected. |
Author | Koziarski, Michał Cyganek, Bogusław |
Author_xml | – sequence: 1 givenname: Michał surname: Koziarski fullname: Koziarski, Michał email: michal.koziarski@agh.edu.pl organization: Department of Electronics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland – sequence: 2 givenname: Bogusław surname: Cyganek fullname: Cyganek, Bogusław organization: Department of Electronics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland |
BookMark | eNp1UU1r3DAQFSWFJmmvPRtydirry7Mll5CPdmFpoR_XClkebbzxWq4ks91_Xznb0FAaGJjhzbzHY94JORr8gIS8reg5EzW8M1sbS0YrKCmV6gU5ZhR4CWLBjp7Mr8hJjBtK2YLW_Jj8WG5HY1PhXbHyu-ILRt9PqfNDkWu5NWvMmPXroXsAd126K64Rx-ITTsH0uaWdD_fxfXE5FDe_RgzdFoeUN1_T1O5fk5fO9BHf_Omn5Pvtzberj-Xq84fl1eWqtFxUsmyolIqBrRgHpxQ3DioHTjJEaGsrGyWFrC13FJlqqLAKa-4ax2oLFCjyU7I86LbebPSYTZiw1950-gHwYa1NSJ3tUWO7kIoDE7zmooWmYVyCQ-OaxjIrXNY6O2iNwf-cMCa98VMYsn3NKgVAKRWLfCUOVzb4GAM6bbtk5ielYLpeV1TPqeg5FT2noudUMu38H9qj2WcJFwfCzvQJQ4vrMO3z8NfU_4kMRM0l_w2L2KTl |
CitedBy_id | crossref_primary_10_3390_s25030880 crossref_primary_10_1016_j_jhydrol_2022_128167 crossref_primary_10_1109_ACCESS_2021_3086499 crossref_primary_10_1038_s41598_021_84219_4 crossref_primary_10_3389_frai_2024_1394386 crossref_primary_10_1016_j_aiia_2025_02_005 crossref_primary_10_1111_exsy_12746 crossref_primary_10_3390_rs14133143 crossref_primary_10_32604_csse_2022_022206 crossref_primary_10_3390_jimaging10060137 crossref_primary_10_1016_j_camwa_2022_03_013 crossref_primary_10_1109_TGRS_2022_3209340 crossref_primary_10_1016_j_cageo_2020_104584 crossref_primary_10_1016_j_asoc_2021_107496 crossref_primary_10_1109_JSEN_2020_3015932 crossref_primary_10_1016_j_compag_2022_107518 crossref_primary_10_1109_TGRS_2024_3473992 crossref_primary_10_3103_S1060992X2001004X crossref_primary_10_1016_j_rsase_2024_101333 crossref_primary_10_1038_s41598_024_78509_w crossref_primary_10_1063_5_0087381 crossref_primary_10_3390_jimaging11010028 crossref_primary_10_3390_diagnostics12082002 crossref_primary_10_1016_j_ibmed_2020_100022 crossref_primary_10_1016_j_pnucene_2020_103528 crossref_primary_10_1007_s40998_023_00618_5 crossref_primary_10_1177_00220345211032524 crossref_primary_10_1016_j_energy_2024_130866 crossref_primary_10_1016_j_sigpro_2023_109303 crossref_primary_10_1016_j_eswa_2023_119588 crossref_primary_10_5334_jcaa_145 crossref_primary_10_3390_electronics13163241 crossref_primary_10_1002_jemt_24775 crossref_primary_10_3390_rs11242939 crossref_primary_10_3390_app12115504 crossref_primary_10_1016_j_csi_2024_103906 crossref_primary_10_1016_j_eswa_2022_118836 crossref_primary_10_1016_j_neucom_2025_129645 crossref_primary_10_1055_s_0043_1762574 crossref_primary_10_1016_j_prosdent_2024_11_018 crossref_primary_10_1109_ACCESS_2024_3469155 crossref_primary_10_1109_JSTARS_2023_3270384 crossref_primary_10_1007_s11063_023_11261_w crossref_primary_10_3390_jimaging9110240 crossref_primary_10_1016_j_imavis_2023_104696 crossref_primary_10_3390_s21062013 crossref_primary_10_3390_diagnostics14070694 |
Cites_doi | 10.1109/CVPR.2015.7299156 10.1007/978-3-319-10593-2_13 10.1007/978-3-642-27413-8_47 10.3233/ICA-160516 10.1007/s11263-015-0816-y 10.1109/CVPR.2017.298 10.1007/978-3-319-16817-3_8 10.1016/j.neunet.2014.09.003 10.1109/CVPR.2016.207 10.1007/978-3-319-24574-4_28 10.5244/C.26.135 10.1007/978-3-319-46475-6_25 10.1109/CVPR.2015.7298965 10.1109/BIOSIG.2016.7736924 10.3233/ICA-170551 10.1109/CVPR.2015.7299003 10.1109/CVPR.2016.182 10.1109/ICIP.2016.7533047 10.1109/TIP.2011.2162423 10.1109/CVPR.2013.446 10.1109/CVPR.2016.90 10.1109/QoMEX.2016.7498955 10.1109/CVPR.2016.494 10.1109/38.988747 10.1109/TIP.2010.2050625 10.1109/CVPR.2017.19 10.1109/CVPRW.2017.151 |
ContentType | Journal Article |
Copyright | 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BYOGL CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W DOA |
DOI | 10.2478/amcs-2018-0056 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection East Europe, Central Europe Database ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2083-8492 |
EndPage | 744 |
ExternalDocumentID | oai_doaj_org_article_ed95638243734d8bb2358feafbbc2c4f 10_2478_amcs_2018_0056 10_2478_amcs_2018_0056284735 |
GroupedDBID | .DC 0R~ 29J 2WC 4.4 5GY 5VS 8FE 8FG 9WM ABFKT ABJCF ABUWG ACGFS ACIWK ADBBV ADBLJ AENEX AFKRA AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ BYOGL CCPQU CS3 DWQXO E0C E3Z EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ HZ~ K6V K7- KQ8 L6V LO0 M7S O-U O9- OVT P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QD8 S0W SA. SLJYH TR2 XSB Y2W AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c3415-b055628c1238f663af81f8f52ee8d7c5b65457c3f0e26b04c6e73fbf27c8080e3 |
IEDL.DBID | BENPR |
ISSN | 2083-8492 1641-876X |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Fri Jul 25 10:21:36 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 02:12:47 EDT 2025 Thu Jul 10 10:38:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3415-b055628c1238f663af81f8f52ee8d7c5b65457c3f0e26b04c6e73fbf27c8080e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2168800049?pq-origsite=%requestingapplication% |
PQID | 2168800049 |
PQPubID | 2026573 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed95638243734d8bb2358feafbbc2c4f proquest_journals_2168800049 crossref_citationtrail_10_2478_amcs_2018_0056 crossref_primary_10_2478_amcs_2018_0056 walterdegruyter_journals_10_2478_amcs_2018_0056284735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Zielona Góra |
PublicationPlace_xml | – name: Zielona Góra |
PublicationTitle | International journal of applied mathematics and computer science |
PublicationYear | 2018 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2023050302350462737_j_amcs-2018-0056_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa 2023050302350462737_j_amcs-2018-0056_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa 2023050302350462737_j_amcs-2018-0056_ref_026_w2aab3b7b9b1b6b1ab1ac26Aa 2023050302350462737_j_amcs-2018-0056_ref_039_w2aab3b7b9b1b6b1ab1ac39Aa 2023050302350462737_j_amcs-2018-0056_ref_017_w2aab3b7b9b1b6b1ab1ac17Aa 2023050302350462737_j_amcs-2018-0056_ref_022_w2aab3b7b9b1b6b1ab1ac22Aa 2023050302350462737_j_amcs-2018-0056_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa 2023050302350462737_j_amcs-2018-0056_ref_031_w2aab3b7b9b1b6b1ab1ac31Aa 2023050302350462737_j_amcs-2018-0056_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa 2023050302350462737_j_amcs-2018-0056_ref_034_w2aab3b7b9b1b6b1ab1ac34Aa 2023050302350462737_j_amcs-2018-0056_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa 2023050302350462737_j_amcs-2018-0056_ref_025_w2aab3b7b9b1b6b1ab1ac25Aa 2023050302350462737_j_amcs-2018-0056_ref_038_w2aab3b7b9b1b6b1ab1ac38Aa 2023050302350462737_j_amcs-2018-0056_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa 2023050302350462737_j_amcs-2018-0056_ref_023_w2aab3b7b9b1b6b1ab1ac23Aa 2023050302350462737_j_amcs-2018-0056_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa 2023050302350462737_j_amcs-2018-0056_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa 2023050302350462737_j_amcs-2018-0056_ref_035_w2aab3b7b9b1b6b1ab1ac35Aa 2023050302350462737_j_amcs-2018-0056_ref_029_w2aab3b7b9b1b6b1ab1ac29Aa 2023050302350462737_j_amcs-2018-0056_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa 2023050302350462737_j_amcs-2018-0056_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa 2023050302350462737_j_amcs-2018-0056_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa 2023050302350462737_j_amcs-2018-0056_ref_028_w2aab3b7b9b1b6b1ab1ac28Aa 2023050302350462737_j_amcs-2018-0056_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa 2023050302350462737_j_amcs-2018-0056_ref_037_w2aab3b7b9b1b6b1ab1ac37Aa 2023050302350462737_j_amcs-2018-0056_ref_032_w2aab3b7b9b1b6b1ab1ac32Aa 2023050302350462737_j_amcs-2018-0056_ref_020_w2aab3b7b9b1b6b1ab1ac20Aa 2023050302350462737_j_amcs-2018-0056_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa 2023050302350462737_j_amcs-2018-0056_ref_019_w2aab3b7b9b1b6b1ab1ac19Aa 2023050302350462737_j_amcs-2018-0056_ref_027_w2aab3b7b9b1b6b1ab1ac27Aa 2023050302350462737_j_amcs-2018-0056_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa 2023050302350462737_j_amcs-2018-0056_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa 2023050302350462737_j_amcs-2018-0056_ref_036_w2aab3b7b9b1b6b1ab1ac36Aa 2023050302350462737_j_amcs-2018-0056_ref_021_w2aab3b7b9b1b6b1ab1ac21Aa 2023050302350462737_j_amcs-2018-0056_ref_030_w2aab3b7b9b1b6b1ab1ac30Aa 2023050302350462737_j_amcs-2018-0056_ref_018_w2aab3b7b9b1b6b1ab1ac18Aa 2023050302350462737_j_amcs-2018-0056_ref_033_w2aab3b7b9b1b6b1ab1ac33Aa 2023050302350462737_j_amcs-2018-0056_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa 2023050302350462737_j_amcs-2018-0056_ref_024_w2aab3b7b9b1b6b1ab1ac24Aa |
References_xml | – ident: 2023050302350462737_j_amcs-2018-0056_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa doi: 10.1109/CVPR.2015.7299156 – ident: 2023050302350462737_j_amcs-2018-0056_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa doi: 10.1007/978-3-319-10593-2_13 – ident: 2023050302350462737_j_amcs-2018-0056_ref_017_w2aab3b7b9b1b6b1ab1ac17Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_038_w2aab3b7b9b1b6b1ab1ac38Aa doi: 10.1007/978-3-642-27413-8_47 – ident: 2023050302350462737_j_amcs-2018-0056_ref_019_w2aab3b7b9b1b6b1ab1ac19Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_028_w2aab3b7b9b1b6b1ab1ac28Aa doi: 10.3233/ICA-160516 – ident: 2023050302350462737_j_amcs-2018-0056_ref_027_w2aab3b7b9b1b6b1ab1ac27Aa doi: 10.1007/s11263-015-0816-y – ident: 2023050302350462737_j_amcs-2018-0056_ref_034_w2aab3b7b9b1b6b1ab1ac34Aa doi: 10.1109/CVPR.2017.298 – ident: 2023050302350462737_j_amcs-2018-0056_ref_035_w2aab3b7b9b1b6b1ab1ac35Aa doi: 10.1007/978-3-319-16817-3_8 – ident: 2023050302350462737_j_amcs-2018-0056_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_036_w2aab3b7b9b1b6b1ab1ac36Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_029_w2aab3b7b9b1b6b1ab1ac29Aa doi: 10.1016/j.neunet.2014.09.003 – ident: 2023050302350462737_j_amcs-2018-0056_ref_031_w2aab3b7b9b1b6b1ab1ac31Aa doi: 10.1109/CVPR.2016.207 – ident: 2023050302350462737_j_amcs-2018-0056_ref_026_w2aab3b7b9b1b6b1ab1ac26Aa doi: 10.1007/978-3-319-24574-4_28 – ident: 2023050302350462737_j_amcs-2018-0056_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa doi: 10.5244/C.26.135 – ident: 2023050302350462737_j_amcs-2018-0056_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa doi: 10.1007/978-3-319-46475-6_25 – ident: 2023050302350462737_j_amcs-2018-0056_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_022_w2aab3b7b9b1b6b1ab1ac22Aa doi: 10.1109/CVPR.2015.7298965 – ident: 2023050302350462737_j_amcs-2018-0056_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa doi: 10.1109/BIOSIG.2016.7736924 – ident: 2023050302350462737_j_amcs-2018-0056_ref_018_w2aab3b7b9b1b6b1ab1ac18Aa doi: 10.3233/ICA-170551 – ident: 2023050302350462737_j_amcs-2018-0056_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_024_w2aab3b7b9b1b6b1ab1ac24Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_030_w2aab3b7b9b1b6b1ab1ac30Aa doi: 10.1109/CVPR.2015.7299003 – ident: 2023050302350462737_j_amcs-2018-0056_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa doi: 10.1109/CVPR.2016.182 – ident: 2023050302350462737_j_amcs-2018-0056_ref_025_w2aab3b7b9b1b6b1ab1ac25Aa doi: 10.1109/ICIP.2016.7533047 – ident: 2023050302350462737_j_amcs-2018-0056_ref_032_w2aab3b7b9b1b6b1ab1ac32Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa – ident: 2023050302350462737_j_amcs-2018-0056_ref_039_w2aab3b7b9b1b6b1ab1ac39Aa doi: 10.1109/TIP.2011.2162423 – ident: 2023050302350462737_j_amcs-2018-0056_ref_033_w2aab3b7b9b1b6b1ab1ac33Aa doi: 10.1109/CVPR.2013.446 – ident: 2023050302350462737_j_amcs-2018-0056_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa doi: 10.1109/CVPR.2016.90 – ident: 2023050302350462737_j_amcs-2018-0056_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa doi: 10.1109/QoMEX.2016.7498955 – ident: 2023050302350462737_j_amcs-2018-0056_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa doi: 10.1109/CVPR.2016.494 – ident: 2023050302350462737_j_amcs-2018-0056_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa doi: 10.1109/38.988747 – ident: 2023050302350462737_j_amcs-2018-0056_ref_037_w2aab3b7b9b1b6b1ab1ac37Aa doi: 10.1109/TIP.2010.2050625 – ident: 2023050302350462737_j_amcs-2018-0056_ref_020_w2aab3b7b9b1b6b1ab1ac20Aa doi: 10.1109/CVPR.2017.19 – ident: 2023050302350462737_j_amcs-2018-0056_ref_021_w2aab3b7b9b1b6b1ab1ac21Aa doi: 10.1109/CVPRW.2017.151 – ident: 2023050302350462737_j_amcs-2018-0056_ref_023_w2aab3b7b9b1b6b1ab1ac23Aa |
SSID | ssj0029073 ssib017385104 ssib044740420 |
Score | 2.41661 |
Snippet | Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | Artificial neural networks Classification Computer vision convolutional neural networks deep neural networks Human performance Image classification Image quality image recognition Image resolution low resolution Neural networks Object recognition State of the art super-resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Sk5f6xmqVHARPS9skm029VW1pRXsQCz25bLKJF_ugD0r_vTPZ3VpF8SLsKQybMPmSmUkm3xByFYLP7RKdBMpJCFAiUQ-aRkdBkgpmHOPcGDzQf-rL7kA8DMPhVqkvzAnL6IEzxdVsCn_jCnnzuEiV1vi209nEaW2YEQ53X7B5RTCVh1oQ8vGMopGJSNWSkZkDHhoqQOrLLybIM_V_cS_LK39Rndq32XK9KC5Gvb3p7JNy7ijSVjbAA7Jjx4dkryjCQPM1eURee_6dI504-jhZUTyOz8BE4euNYLugz0WSELTguSu9t3ZKkZYDOuhneeDzG9oa0_YW3z_FFMP1MRl02i933SAvmhAYMEhhoJEdhykDFgnUL3niVMMpFzJrVRqZUEvwmSLDXd0yqevCSBtxpx2LDFJMWn5CSuPJ2J4S2mwyx2UkbD1JhDTcB4ypU0zzUHApKiQo9BibnFEcC1u8xxBZoN5j1HuMeo9R7xVyvZGfZlwav0re4rRspJAD2zcAMuIcGfFfyKiQajGpcb4woYuGhB0L46IKCb9N9KfUz6NCS87Ds_8Y2znZ9XD0eTFVUlrMlvYCvJuFvvRA_gBQmfhe priority: 102 providerName: Directory of Open Access Journals |
Title | Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study |
URI | https://www.degruyter.com/doi/10.2478/amcs-2018-0056 https://www.proquest.com/docview/2168800049 https://doaj.org/article/ed95638243734d8bb2358feafbbc2c4f |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8acNmFjX1oHazyYdJOFo3tOC6XCbYWmEY1oaH1tCh2bC6j6doixH-_9xynwMQmRTlEVhI9__y-_Px7AO9z9LlDZStugsYApVADPnS24FWthAtCSucooX820ScX6ss0n6aE2zKVVXY6MSrqunGUI98XmUaokUP7cf6bU9co2l1NLTQ2YAtVsMHga-toNPl23iEqI66WewGHop9R5CClkAxDw1iCr1VGemHa0joKVZj96sotEUOZ4USX-cBsRXb_By7p9k3c3K795eL6dtVtpkYbNX4O28m5ZIctGnbgiZ-9gGdd4waW1vFL-Hkaz0ayJrCvzQ2jFH4LQIbX6RWqGHbeFRbhE8rVss_ezxlReeAHJm3t-PKAHc7Y6F6PAEZlibev4GI8-v7phKdGC9yhEcu5JUYdYRxaMZwyLatgsmBCLrw3deFyq9HPKpwMAy80StFpX8hggygc0VJ6-Ro2Z83MvwE2HIogdaH8oKqUdjIGmXUwwspcSa16wDs5li6xkFMzjF8lRiMk95LkXpLcS5J7Dz6sx89b_o1_jjyiaVmPIt7s-KBZXJZpGZa-RmxKQyyMUtXGWjopHHwVrHXCqdCDvW5Sy7SY8RNr6PUg_2ui70Y9_ldk_WX-9v-v3YWnEWixSmYPNleLa_8OfZ2V7cOGGR_jffjjrJ_A3Y95gz-UTfxP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2V7QEuLZ9iSwEfQJzSbmzH8SJxaGnLLt0uEmql5UIaO3YPtLvVfmi1_BX-Cj-OGSdZ2gq4VULKybKcxHnzMmOP3wC8StDn9rnJI-0VBiipbEVta9IoLyS3ngthLS3oH_VV50R-HCSDFfhRn4WhtMqaEwNRFyNLa-TbPFYINXJoqwzKQ7eYY3w2edfdw4_5mvOD_eP3nagqIRBZpOckMqQVw7VFfsaHUSL3OvbaJ9w5XaQ2MQo9iNQK33JcmZa0yqXCG89TS4KLTuC4d2AVowqeNGB198unD70arjEJwVyJZiS9qSTvq4r3MO4M-f1KxkQ6g1IzkstUb-cXdoIAjXVEWpzX_omhdMA1f3dtHnbOC3c2ni2m9U5t-AEerMPPeurKvJdvW7Op2bLfb6hK_qdzex_WKseb7ZSW8gBW3PAhrNdFLVjFcY_gazecG2Ujz3qjOaPtjdI4GV7dC6Rf9rlOusIWWsdme85dMpI5wRv0y7z6yVu2M2T7V-onMErZXDyGk1t5yyfQGI6G7imwdpt7oVLpWnkulRUhAC-85kYkUijZhKiGQWYrhXYqFHKeYaRGsMkINhnBJiPYNOHNsv9lqU3y1567hKplL9IUDw2j8VlWUVTmCrRboUmhUshCG0OnqL3LvTGWW-mbsFmjJ6uIDm-xhE4Tkhs4_d3rz09FnpFINv497Eu42zk-6mW9bv_wGdwLNhOyiTahMR3P3HP0CafmRWWbDE5vG7K_ALsWaNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKiEu5a2mFPABidOqid_hlj5CAiUgoFJPWGuv3UubRGmqqv-eGe9u2qJyQdqTNZZXM2PPfPb4M8B7hTl3Kn1Z2KQRoBjZKwbBm6KsJA-JCxECbeh_nerxsfx8ok4aoEh3YfK6X-XTyt1FlXKpsjR2tzwPF2jRvi2IvPIhbBg14KoDG8Pxp5_f1hALoZ6oqRnv6XUn9GSG_jtp5eZVPqCu4uny8nrVHojmODN6CptNgsiGtUWfwYM4ew5P2scXWDMXX8DvSb7fyOaJHc2vGG3D107E8Juc4zLBfrTFQdhC-63sIMYFIzoOHGBa139ffGTDGTu8xfPPqLTw-iUcjw5_7Y-L5rGEImAgUoUnVhxuA0YiVLsWZbL9ZJPiMdrKBOU15komiNSLXPueDDoakXziJhC1ZBSvoDObz-IWsMGAJ6GNjL2ylDqIDBSrZLkXSgotu1C0enShYRKnBy3OHCIK0rsjvTvSuyO9d-HDWn5Rc2j8U3KPzLKWIu7r3DBfnrpmKrlYoX8JS0yKQlbWe7rtm2KZvA88yNSFndaorpmQOERf40pFeKgL6i9D30jd_1cUwYXa_s9-7-DR94ORO5pMv7yGx9kZczXMDnRWy8v4BnOalX_bOPIfqeLyng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Low+Resolution+on+Image+Recognition+with+Deep+Neural+Networks%3A+An+Experimental+Study&rft.jtitle=International+journal+of+applied+mathematics+and+computer+science&rft.au=Koziarski%2C+Micha%C5%82&rft.au=Cyganek%2C+Bogus%C5%82aw&rft.date=2018-12-01&rft.issn=2083-8492&rft.eissn=2083-8492&rft.volume=28&rft.issue=4&rft.spage=735&rft.epage=744&rft_id=info:doi/10.2478%2Famcs-2018-0056&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amcs_2018_0056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-8492&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-8492&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-8492&client=summon |