Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study

Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied mathematics and computer science Vol. 28; no. 4; pp. 735 - 744
Main Authors Koziarski, Michał, Cyganek, Bogusław
Format Journal Article
LanguageEnglish
Published Zielona Góra Sciendo 01.12.2018
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2083-8492
1641-876X
2083-8492
DOI10.2478/amcs-2018-0056

Cover

Loading…
Abstract Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected.
AbstractList Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected.
Author Koziarski, Michał
Cyganek, Bogusław
Author_xml – sequence: 1
  givenname: Michał
  surname: Koziarski
  fullname: Koziarski, Michał
  email: michal.koziarski@agh.edu.pl
  organization: Department of Electronics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
– sequence: 2
  givenname: Bogusław
  surname: Cyganek
  fullname: Cyganek, Bogusław
  organization: Department of Electronics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
BookMark eNp1UU1r3DAQFSWFJmmvPRtydirry7Mll5CPdmFpoR_XClkebbzxWq4ks91_Xznb0FAaGJjhzbzHY94JORr8gIS8reg5EzW8M1sbS0YrKCmV6gU5ZhR4CWLBjp7Mr8hJjBtK2YLW_Jj8WG5HY1PhXbHyu-ILRt9PqfNDkWu5NWvMmPXroXsAd126K64Rx-ITTsH0uaWdD_fxfXE5FDe_RgzdFoeUN1_T1O5fk5fO9BHf_Omn5Pvtzberj-Xq84fl1eWqtFxUsmyolIqBrRgHpxQ3DioHTjJEaGsrGyWFrC13FJlqqLAKa-4ax2oLFCjyU7I86LbebPSYTZiw1950-gHwYa1NSJ3tUWO7kIoDE7zmooWmYVyCQ-OaxjIrXNY6O2iNwf-cMCa98VMYsn3NKgVAKRWLfCUOVzb4GAM6bbtk5ielYLpeV1TPqeg5FT2noudUMu38H9qj2WcJFwfCzvQJQ4vrMO3z8NfU_4kMRM0l_w2L2KTl
CitedBy_id crossref_primary_10_3390_s25030880
crossref_primary_10_1016_j_jhydrol_2022_128167
crossref_primary_10_1109_ACCESS_2021_3086499
crossref_primary_10_1038_s41598_021_84219_4
crossref_primary_10_3389_frai_2024_1394386
crossref_primary_10_1016_j_aiia_2025_02_005
crossref_primary_10_1111_exsy_12746
crossref_primary_10_3390_rs14133143
crossref_primary_10_32604_csse_2022_022206
crossref_primary_10_3390_jimaging10060137
crossref_primary_10_1016_j_camwa_2022_03_013
crossref_primary_10_1109_TGRS_2022_3209340
crossref_primary_10_1016_j_cageo_2020_104584
crossref_primary_10_1016_j_asoc_2021_107496
crossref_primary_10_1109_JSEN_2020_3015932
crossref_primary_10_1016_j_compag_2022_107518
crossref_primary_10_1109_TGRS_2024_3473992
crossref_primary_10_3103_S1060992X2001004X
crossref_primary_10_1016_j_rsase_2024_101333
crossref_primary_10_1038_s41598_024_78509_w
crossref_primary_10_1063_5_0087381
crossref_primary_10_3390_jimaging11010028
crossref_primary_10_3390_diagnostics12082002
crossref_primary_10_1016_j_ibmed_2020_100022
crossref_primary_10_1016_j_pnucene_2020_103528
crossref_primary_10_1007_s40998_023_00618_5
crossref_primary_10_1177_00220345211032524
crossref_primary_10_1016_j_energy_2024_130866
crossref_primary_10_1016_j_sigpro_2023_109303
crossref_primary_10_1016_j_eswa_2023_119588
crossref_primary_10_5334_jcaa_145
crossref_primary_10_3390_electronics13163241
crossref_primary_10_1002_jemt_24775
crossref_primary_10_3390_rs11242939
crossref_primary_10_3390_app12115504
crossref_primary_10_1016_j_csi_2024_103906
crossref_primary_10_1016_j_eswa_2022_118836
crossref_primary_10_1016_j_neucom_2025_129645
crossref_primary_10_1055_s_0043_1762574
crossref_primary_10_1016_j_prosdent_2024_11_018
crossref_primary_10_1109_ACCESS_2024_3469155
crossref_primary_10_1109_JSTARS_2023_3270384
crossref_primary_10_1007_s11063_023_11261_w
crossref_primary_10_3390_jimaging9110240
crossref_primary_10_1016_j_imavis_2023_104696
crossref_primary_10_3390_s21062013
crossref_primary_10_3390_diagnostics14070694
Cites_doi 10.1109/CVPR.2015.7299156
10.1007/978-3-319-10593-2_13
10.1007/978-3-642-27413-8_47
10.3233/ICA-160516
10.1007/s11263-015-0816-y
10.1109/CVPR.2017.298
10.1007/978-3-319-16817-3_8
10.1016/j.neunet.2014.09.003
10.1109/CVPR.2016.207
10.1007/978-3-319-24574-4_28
10.5244/C.26.135
10.1007/978-3-319-46475-6_25
10.1109/CVPR.2015.7298965
10.1109/BIOSIG.2016.7736924
10.3233/ICA-170551
10.1109/CVPR.2015.7299003
10.1109/CVPR.2016.182
10.1109/ICIP.2016.7533047
10.1109/TIP.2011.2162423
10.1109/CVPR.2013.446
10.1109/CVPR.2016.90
10.1109/QoMEX.2016.7498955
10.1109/CVPR.2016.494
10.1109/38.988747
10.1109/TIP.2010.2050625
10.1109/CVPR.2017.19
10.1109/CVPRW.2017.151
ContentType Journal Article
Copyright 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOA
DOI 10.2478/amcs-2018-0056
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2083-8492
EndPage 744
ExternalDocumentID oai_doaj_org_article_ed95638243734d8bb2358feafbbc2c4f
10_2478_amcs_2018_0056
10_2478_amcs_2018_0056284735
GroupedDBID .DC
0R~
29J
2WC
4.4
5GY
5VS
8FE
8FG
9WM
ABFKT
ABJCF
ABUWG
ACGFS
ACIWK
ADBBV
ADBLJ
AENEX
AFKRA
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CS3
DWQXO
E0C
E3Z
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
K6V
K7-
KQ8
L6V
LO0
M7S
O-U
O9-
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QD8
S0W
SA.
SLJYH
TR2
XSB
Y2W
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c3415-b055628c1238f663af81f8f52ee8d7c5b65457c3f0e26b04c6e73fbf27c8080e3
IEDL.DBID BENPR
ISSN 2083-8492
1641-876X
IngestDate Wed Aug 27 01:27:10 EDT 2025
Fri Jul 25 10:21:36 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 02:12:47 EDT 2025
Thu Jul 10 10:38:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3415-b055628c1238f663af81f8f52ee8d7c5b65457c3f0e26b04c6e73fbf27c8080e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2168800049?pq-origsite=%requestingapplication%
PQID 2168800049
PQPubID 2026573
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ed95638243734d8bb2358feafbbc2c4f
proquest_journals_2168800049
crossref_citationtrail_10_2478_amcs_2018_0056
crossref_primary_10_2478_amcs_2018_0056
walterdegruyter_journals_10_2478_amcs_2018_0056284735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Zielona Góra
PublicationPlace_xml – name: Zielona Góra
PublicationTitle International journal of applied mathematics and computer science
PublicationYear 2018
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2023050302350462737_j_amcs-2018-0056_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa
2023050302350462737_j_amcs-2018-0056_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa
2023050302350462737_j_amcs-2018-0056_ref_026_w2aab3b7b9b1b6b1ab1ac26Aa
2023050302350462737_j_amcs-2018-0056_ref_039_w2aab3b7b9b1b6b1ab1ac39Aa
2023050302350462737_j_amcs-2018-0056_ref_017_w2aab3b7b9b1b6b1ab1ac17Aa
2023050302350462737_j_amcs-2018-0056_ref_022_w2aab3b7b9b1b6b1ab1ac22Aa
2023050302350462737_j_amcs-2018-0056_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa
2023050302350462737_j_amcs-2018-0056_ref_031_w2aab3b7b9b1b6b1ab1ac31Aa
2023050302350462737_j_amcs-2018-0056_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa
2023050302350462737_j_amcs-2018-0056_ref_034_w2aab3b7b9b1b6b1ab1ac34Aa
2023050302350462737_j_amcs-2018-0056_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa
2023050302350462737_j_amcs-2018-0056_ref_025_w2aab3b7b9b1b6b1ab1ac25Aa
2023050302350462737_j_amcs-2018-0056_ref_038_w2aab3b7b9b1b6b1ab1ac38Aa
2023050302350462737_j_amcs-2018-0056_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa
2023050302350462737_j_amcs-2018-0056_ref_023_w2aab3b7b9b1b6b1ab1ac23Aa
2023050302350462737_j_amcs-2018-0056_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa
2023050302350462737_j_amcs-2018-0056_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa
2023050302350462737_j_amcs-2018-0056_ref_035_w2aab3b7b9b1b6b1ab1ac35Aa
2023050302350462737_j_amcs-2018-0056_ref_029_w2aab3b7b9b1b6b1ab1ac29Aa
2023050302350462737_j_amcs-2018-0056_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa
2023050302350462737_j_amcs-2018-0056_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa
2023050302350462737_j_amcs-2018-0056_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa
2023050302350462737_j_amcs-2018-0056_ref_028_w2aab3b7b9b1b6b1ab1ac28Aa
2023050302350462737_j_amcs-2018-0056_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa
2023050302350462737_j_amcs-2018-0056_ref_037_w2aab3b7b9b1b6b1ab1ac37Aa
2023050302350462737_j_amcs-2018-0056_ref_032_w2aab3b7b9b1b6b1ab1ac32Aa
2023050302350462737_j_amcs-2018-0056_ref_020_w2aab3b7b9b1b6b1ab1ac20Aa
2023050302350462737_j_amcs-2018-0056_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa
2023050302350462737_j_amcs-2018-0056_ref_019_w2aab3b7b9b1b6b1ab1ac19Aa
2023050302350462737_j_amcs-2018-0056_ref_027_w2aab3b7b9b1b6b1ab1ac27Aa
2023050302350462737_j_amcs-2018-0056_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa
2023050302350462737_j_amcs-2018-0056_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa
2023050302350462737_j_amcs-2018-0056_ref_036_w2aab3b7b9b1b6b1ab1ac36Aa
2023050302350462737_j_amcs-2018-0056_ref_021_w2aab3b7b9b1b6b1ab1ac21Aa
2023050302350462737_j_amcs-2018-0056_ref_030_w2aab3b7b9b1b6b1ab1ac30Aa
2023050302350462737_j_amcs-2018-0056_ref_018_w2aab3b7b9b1b6b1ab1ac18Aa
2023050302350462737_j_amcs-2018-0056_ref_033_w2aab3b7b9b1b6b1ab1ac33Aa
2023050302350462737_j_amcs-2018-0056_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa
2023050302350462737_j_amcs-2018-0056_ref_024_w2aab3b7b9b1b6b1ab1ac24Aa
References_xml – ident: 2023050302350462737_j_amcs-2018-0056_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa
  doi: 10.1109/CVPR.2015.7299156
– ident: 2023050302350462737_j_amcs-2018-0056_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa
  doi: 10.1007/978-3-319-10593-2_13
– ident: 2023050302350462737_j_amcs-2018-0056_ref_017_w2aab3b7b9b1b6b1ab1ac17Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_038_w2aab3b7b9b1b6b1ab1ac38Aa
  doi: 10.1007/978-3-642-27413-8_47
– ident: 2023050302350462737_j_amcs-2018-0056_ref_019_w2aab3b7b9b1b6b1ab1ac19Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_028_w2aab3b7b9b1b6b1ab1ac28Aa
  doi: 10.3233/ICA-160516
– ident: 2023050302350462737_j_amcs-2018-0056_ref_027_w2aab3b7b9b1b6b1ab1ac27Aa
  doi: 10.1007/s11263-015-0816-y
– ident: 2023050302350462737_j_amcs-2018-0056_ref_034_w2aab3b7b9b1b6b1ab1ac34Aa
  doi: 10.1109/CVPR.2017.298
– ident: 2023050302350462737_j_amcs-2018-0056_ref_035_w2aab3b7b9b1b6b1ab1ac35Aa
  doi: 10.1007/978-3-319-16817-3_8
– ident: 2023050302350462737_j_amcs-2018-0056_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_036_w2aab3b7b9b1b6b1ab1ac36Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_029_w2aab3b7b9b1b6b1ab1ac29Aa
  doi: 10.1016/j.neunet.2014.09.003
– ident: 2023050302350462737_j_amcs-2018-0056_ref_031_w2aab3b7b9b1b6b1ab1ac31Aa
  doi: 10.1109/CVPR.2016.207
– ident: 2023050302350462737_j_amcs-2018-0056_ref_026_w2aab3b7b9b1b6b1ab1ac26Aa
  doi: 10.1007/978-3-319-24574-4_28
– ident: 2023050302350462737_j_amcs-2018-0056_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa
  doi: 10.5244/C.26.135
– ident: 2023050302350462737_j_amcs-2018-0056_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa
  doi: 10.1007/978-3-319-46475-6_25
– ident: 2023050302350462737_j_amcs-2018-0056_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_022_w2aab3b7b9b1b6b1ab1ac22Aa
  doi: 10.1109/CVPR.2015.7298965
– ident: 2023050302350462737_j_amcs-2018-0056_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa
  doi: 10.1109/BIOSIG.2016.7736924
– ident: 2023050302350462737_j_amcs-2018-0056_ref_018_w2aab3b7b9b1b6b1ab1ac18Aa
  doi: 10.3233/ICA-170551
– ident: 2023050302350462737_j_amcs-2018-0056_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_024_w2aab3b7b9b1b6b1ab1ac24Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_030_w2aab3b7b9b1b6b1ab1ac30Aa
  doi: 10.1109/CVPR.2015.7299003
– ident: 2023050302350462737_j_amcs-2018-0056_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa
  doi: 10.1109/CVPR.2016.182
– ident: 2023050302350462737_j_amcs-2018-0056_ref_025_w2aab3b7b9b1b6b1ab1ac25Aa
  doi: 10.1109/ICIP.2016.7533047
– ident: 2023050302350462737_j_amcs-2018-0056_ref_032_w2aab3b7b9b1b6b1ab1ac32Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa
– ident: 2023050302350462737_j_amcs-2018-0056_ref_039_w2aab3b7b9b1b6b1ab1ac39Aa
  doi: 10.1109/TIP.2011.2162423
– ident: 2023050302350462737_j_amcs-2018-0056_ref_033_w2aab3b7b9b1b6b1ab1ac33Aa
  doi: 10.1109/CVPR.2013.446
– ident: 2023050302350462737_j_amcs-2018-0056_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa
  doi: 10.1109/CVPR.2016.90
– ident: 2023050302350462737_j_amcs-2018-0056_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa
  doi: 10.1109/QoMEX.2016.7498955
– ident: 2023050302350462737_j_amcs-2018-0056_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa
  doi: 10.1109/CVPR.2016.494
– ident: 2023050302350462737_j_amcs-2018-0056_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa
  doi: 10.1109/38.988747
– ident: 2023050302350462737_j_amcs-2018-0056_ref_037_w2aab3b7b9b1b6b1ab1ac37Aa
  doi: 10.1109/TIP.2010.2050625
– ident: 2023050302350462737_j_amcs-2018-0056_ref_020_w2aab3b7b9b1b6b1ab1ac20Aa
  doi: 10.1109/CVPR.2017.19
– ident: 2023050302350462737_j_amcs-2018-0056_ref_021_w2aab3b7b9b1b6b1ab1ac21Aa
  doi: 10.1109/CVPRW.2017.151
– ident: 2023050302350462737_j_amcs-2018-0056_ref_023_w2aab3b7b9b1b6b1ab1ac23Aa
SSID ssj0029073
ssib017385104
ssib044740420
Score 2.41661
Snippet Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Artificial neural networks
Classification
Computer vision
convolutional neural networks
deep neural networks
Human performance
Image classification
Image quality
image recognition
Image resolution
low resolution
Neural networks
Object recognition
State of the art
super-resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Sk5f6xmqVHARPS9skm029VW1pRXsQCz25bLKJF_ugD0r_vTPZ3VpF8SLsKQybMPmSmUkm3xByFYLP7RKdBMpJCFAiUQ-aRkdBkgpmHOPcGDzQf-rL7kA8DMPhVqkvzAnL6IEzxdVsCn_jCnnzuEiV1vi209nEaW2YEQ53X7B5RTCVh1oQ8vGMopGJSNWSkZkDHhoqQOrLLybIM_V_cS_LK39Rndq32XK9KC5Gvb3p7JNy7ijSVjbAA7Jjx4dkryjCQPM1eURee_6dI504-jhZUTyOz8BE4euNYLugz0WSELTguSu9t3ZKkZYDOuhneeDzG9oa0_YW3z_FFMP1MRl02i933SAvmhAYMEhhoJEdhykDFgnUL3niVMMpFzJrVRqZUEvwmSLDXd0yqevCSBtxpx2LDFJMWn5CSuPJ2J4S2mwyx2UkbD1JhDTcB4ypU0zzUHApKiQo9BibnFEcC1u8xxBZoN5j1HuMeo9R7xVyvZGfZlwav0re4rRspJAD2zcAMuIcGfFfyKiQajGpcb4woYuGhB0L46IKCb9N9KfUz6NCS87Ds_8Y2znZ9XD0eTFVUlrMlvYCvJuFvvRA_gBQmfhe
  priority: 102
  providerName: Directory of Open Access Journals
Title Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study
URI https://www.degruyter.com/doi/10.2478/amcs-2018-0056
https://www.proquest.com/docview/2168800049
https://doaj.org/article/ed95638243734d8bb2358feafbbc2c4f
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8acNmFjX1oHazyYdJOFo3tOC6XCbYWmEY1oaH1tCh2bC6j6doixH-_9xynwMQmRTlEVhI9__y-_Px7AO9z9LlDZStugsYApVADPnS24FWthAtCSucooX820ScX6ss0n6aE2zKVVXY6MSrqunGUI98XmUaokUP7cf6bU9co2l1NLTQ2YAtVsMHga-toNPl23iEqI66WewGHop9R5CClkAxDw1iCr1VGemHa0joKVZj96sotEUOZ4USX-cBsRXb_By7p9k3c3K795eL6dtVtpkYbNX4O28m5ZIctGnbgiZ-9gGdd4waW1vFL-Hkaz0ayJrCvzQ2jFH4LQIbX6RWqGHbeFRbhE8rVss_ezxlReeAHJm3t-PKAHc7Y6F6PAEZlibev4GI8-v7phKdGC9yhEcu5JUYdYRxaMZwyLatgsmBCLrw3deFyq9HPKpwMAy80StFpX8hggygc0VJ6-Ro2Z83MvwE2HIogdaH8oKqUdjIGmXUwwspcSa16wDs5li6xkFMzjF8lRiMk95LkXpLcS5J7Dz6sx89b_o1_jjyiaVmPIt7s-KBZXJZpGZa-RmxKQyyMUtXGWjopHHwVrHXCqdCDvW5Sy7SY8RNr6PUg_2ui70Y9_ldk_WX-9v-v3YWnEWixSmYPNleLa_8OfZ2V7cOGGR_jffjjrJ_A3Y95gz-UTfxP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2V7QEuLZ9iSwEfQJzSbmzH8SJxaGnLLt0uEmql5UIaO3YPtLvVfmi1_BX-Cj-OGSdZ2gq4VULKybKcxHnzMmOP3wC8StDn9rnJI-0VBiipbEVta9IoLyS3ngthLS3oH_VV50R-HCSDFfhRn4WhtMqaEwNRFyNLa-TbPFYINXJoqwzKQ7eYY3w2edfdw4_5mvOD_eP3nagqIRBZpOckMqQVw7VFfsaHUSL3OvbaJ9w5XaQ2MQo9iNQK33JcmZa0yqXCG89TS4KLTuC4d2AVowqeNGB198unD70arjEJwVyJZiS9qSTvq4r3MO4M-f1KxkQ6g1IzkstUb-cXdoIAjXVEWpzX_omhdMA1f3dtHnbOC3c2ni2m9U5t-AEerMPPeurKvJdvW7Op2bLfb6hK_qdzex_WKseb7ZSW8gBW3PAhrNdFLVjFcY_gazecG2Ujz3qjOaPtjdI4GV7dC6Rf9rlOusIWWsdme85dMpI5wRv0y7z6yVu2M2T7V-onMErZXDyGk1t5yyfQGI6G7imwdpt7oVLpWnkulRUhAC-85kYkUijZhKiGQWYrhXYqFHKeYaRGsMkINhnBJiPYNOHNsv9lqU3y1567hKplL9IUDw2j8VlWUVTmCrRboUmhUshCG0OnqL3LvTGWW-mbsFmjJ6uIDm-xhE4Tkhs4_d3rz09FnpFINv497Eu42zk-6mW9bv_wGdwLNhOyiTahMR3P3HP0CafmRWWbDE5vG7K_ALsWaNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKiEu5a2mFPABidOqid_hlj5CAiUgoFJPWGuv3UubRGmqqv-eGe9u2qJyQdqTNZZXM2PPfPb4M8B7hTl3Kn1Z2KQRoBjZKwbBm6KsJA-JCxECbeh_nerxsfx8ok4aoEh3YfK6X-XTyt1FlXKpsjR2tzwPF2jRvi2IvPIhbBg14KoDG8Pxp5_f1hALoZ6oqRnv6XUn9GSG_jtp5eZVPqCu4uny8nrVHojmODN6CptNgsiGtUWfwYM4ew5P2scXWDMXX8DvSb7fyOaJHc2vGG3D107E8Juc4zLBfrTFQdhC-63sIMYFIzoOHGBa139ffGTDGTu8xfPPqLTw-iUcjw5_7Y-L5rGEImAgUoUnVhxuA0YiVLsWZbL9ZJPiMdrKBOU15komiNSLXPueDDoakXziJhC1ZBSvoDObz-IWsMGAJ6GNjL2ylDqIDBSrZLkXSgotu1C0enShYRKnBy3OHCIK0rsjvTvSuyO9d-HDWn5Rc2j8U3KPzLKWIu7r3DBfnrpmKrlYoX8JS0yKQlbWe7rtm2KZvA88yNSFndaorpmQOERf40pFeKgL6i9D30jd_1cUwYXa_s9-7-DR94ORO5pMv7yGx9kZczXMDnRWy8v4BnOalX_bOPIfqeLyng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Low+Resolution+on+Image+Recognition+with+Deep+Neural+Networks%3A+An+Experimental+Study&rft.jtitle=International+journal+of+applied+mathematics+and+computer+science&rft.au=Koziarski%2C+Micha%C5%82&rft.au=Cyganek%2C+Bogus%C5%82aw&rft.date=2018-12-01&rft.issn=2083-8492&rft.eissn=2083-8492&rft.volume=28&rft.issue=4&rft.spage=735&rft.epage=744&rft_id=info:doi/10.2478%2Famcs-2018-0056&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amcs_2018_0056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-8492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-8492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-8492&client=summon