Wind Erosion Potential Influenced by Tillage in an Irrigated Potato–Sweet Corn Rotation in the Columbia Basin

Core Ideas Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed to reduce wind erosion.Wind erosion potential was lower for reduced than conventional tillage practices.Wind erosion was most apparent after...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 110; no. 3; pp. 842 - 849
Main Authors Sharratt, B. S., Collins, H. P.
Format Journal Article
LanguageEnglish
Published The American Society of Agronomy, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Core Ideas Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed to reduce wind erosion.Wind erosion potential was lower for reduced than conventional tillage practices.Wind erosion was most apparent after potato harvest in a potato–corn–corn rotation.Managing cover crops and tillage are key to minimizing wind erosion. Wind erosion is a concern within the Columbia Basin of the US Inland Pacific Northwest (PNW) due to soils being sandy and retaining little residue after harvest of vegetable crops like potato. This study assessed potential wind erosion of a 3‐yr irrigated potato (Solanum tuberosum L. ‘Ranger Russet’)–sweet corn (Zea mays L. ‘Triple Super Sweet’)–sweet corn rotation subject to conventional and reduced tillage. Sediment flux was measured inside a portable wind tunnel after primary tillage of potato in autumn 2009 and sowing potato and sweet corn in spring 2010. Soil and crop residue characteristics that influence wind erosion were measured concurrently with sediment flux. Soil loss differed among crops in autumn 2009 and between tillage treatments in spring 2010. Soil loss was greater from potato (approached 1 Mg ha−1 min−1) than first or second year corn (approached 0.1 Mg ha−1 min−1) and from conventional (approached 1 Mg ha−1 min−1) than reduced tillage (approached 0.3 Mg ha−1 min−1). Simulations by the Wind Erosion Prediction System (WEPS) showed most of the erosion over the 3‐yr rotation occurred after harvest of potato in September to the following March. Differences in soil loss among crop treatments or between tillage practices were likely due to differences in residue cover and/or silhouette area. Since wind erosion was most apparent after harvest of potato and from conventional tillage, cover crops should be established soon after harvest and reduced tillage practices adopted to protect the soil from wind erosion in the Columbia Basin.
AbstractList CORE IDEAS: Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed to reduce wind erosion.Wind erosion potential was lower for reduced than conventional tillage practices.Wind erosion was most apparent after potato harvest in a potato–corn–corn rotation.Managing cover crops and tillage are key to minimizing wind erosion. Wind erosion is a concern within the Columbia Basin of the US Inland Pacific Northwest (PNW) due to soils being sandy and retaining little residue after harvest of vegetable crops like potato. This study assessed potential wind erosion of a 3‐yr irrigated potato (Solanum tuberosum L. ‘Ranger Russet’)–sweet corn (Zea mays L. ‘Triple Super Sweet’)–sweet corn rotation subject to conventional and reduced tillage. Sediment flux was measured inside a portable wind tunnel after primary tillage of potato in autumn 2009 and sowing potato and sweet corn in spring 2010. Soil and crop residue characteristics that influence wind erosion were measured concurrently with sediment flux. Soil loss differed among crops in autumn 2009 and between tillage treatments in spring 2010. Soil loss was greater from potato (approached 1 Mg ha⁻¹ min⁻¹) than first or second year corn (approached 0.1 Mg ha⁻¹ min⁻¹) and from conventional (approached 1 Mg ha⁻¹ min⁻¹) than reduced tillage (approached 0.3 Mg ha⁻¹ min⁻¹). Simulations by the Wind Erosion Prediction System (WEPS) showed most of the erosion over the 3‐yr rotation occurred after harvest of potato in September to the following March. Differences in soil loss among crop treatments or between tillage practices were likely due to differences in residue cover and/or silhouette area. Since wind erosion was most apparent after harvest of potato and from conventional tillage, cover crops should be established soon after harvest and reduced tillage practices adopted to protect the soil from wind erosion in the Columbia Basin.
Core Ideas Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed to reduce wind erosion.Wind erosion potential was lower for reduced than conventional tillage practices.Wind erosion was most apparent after potato harvest in a potato–corn–corn rotation.Managing cover crops and tillage are key to minimizing wind erosion. Wind erosion is a concern within the Columbia Basin of the US Inland Pacific Northwest (PNW) due to soils being sandy and retaining little residue after harvest of vegetable crops like potato. This study assessed potential wind erosion of a 3‐yr irrigated potato (Solanum tuberosum L. ‘Ranger Russet’)–sweet corn (Zea mays L. ‘Triple Super Sweet’)–sweet corn rotation subject to conventional and reduced tillage. Sediment flux was measured inside a portable wind tunnel after primary tillage of potato in autumn 2009 and sowing potato and sweet corn in spring 2010. Soil and crop residue characteristics that influence wind erosion were measured concurrently with sediment flux. Soil loss differed among crops in autumn 2009 and between tillage treatments in spring 2010. Soil loss was greater from potato (approached 1 Mg ha−1 min−1) than first or second year corn (approached 0.1 Mg ha−1 min−1) and from conventional (approached 1 Mg ha−1 min−1) than reduced tillage (approached 0.3 Mg ha−1 min−1). Simulations by the Wind Erosion Prediction System (WEPS) showed most of the erosion over the 3‐yr rotation occurred after harvest of potato in September to the following March. Differences in soil loss among crop treatments or between tillage practices were likely due to differences in residue cover and/or silhouette area. Since wind erosion was most apparent after harvest of potato and from conventional tillage, cover crops should be established soon after harvest and reduced tillage practices adopted to protect the soil from wind erosion in the Columbia Basin.
Author Collins, H. P.
Sharratt, B. S.
Author_xml – sequence: 1
  givenname: B. S.
  surname: Sharratt
  fullname: Sharratt, B. S.
  email: Brenton.sharratt@ars.usda.gov
  organization: USDA‐ARS
– sequence: 2
  givenname: H. P.
  surname: Collins
  fullname: Collins, H. P.
  organization: USDA‐ARS
BookMark eNqNkMFO4zAQhi3EShSWF-DkI5cUj-Ok9rFboBQhWAGrPVpOMilGqQ12KtQb78Ab8iQ4FGmlPaz2NNI3__-P5t8nu847JOQI2JhDLk7MMnj3yBlMxsDHrJSwQ0Yg8iJjpSh2yYgxxjNQJd8j-zE-MgagBIyI_21dQ8-Cj9Y7-tP36HprOrpwbbdGV2NDqw29t11nlkito8bRRQh2afq0SnrT-_fXt7sXxJ7OfHD0dmBDWBL3D5hgt15V1tAfJlr3nXxrTRfx8GsekF_nZ_ezi-zqZr6YTa-yOhcAmSjbtmirRojalA1IyUQxgUYpljdV4jnWuWQTyVCCkYXiSqKYVKqFhrVY8vyAHG9zn4J_XmPs9crGGtMbDv06ai5yUAykKpOUb6V1aiEGbPVTsCsTNhqYHtrVf9rVwPXQbjLJv0y13f7dB2O7f1tPt9YX2-HmP47p6fyST-e3N9eXAwb-GfMBMJeZJA
CitedBy_id crossref_primary_10_1007_s12230_019_09742_7
crossref_primary_10_3390_agronomy11030534
crossref_primary_10_1007_s12665_019_8317_x
crossref_primary_10_1029_2019JD031104
crossref_primary_10_17221_149_2023_PSE
crossref_primary_10_1029_2021RG000763
crossref_primary_10_3390_agronomy12020457
crossref_primary_10_1016_j_jenvman_2020_110261
crossref_primary_10_2136_sssaj2018_01_0018
crossref_primary_10_1016_j_geomorph_2019_107019
Cites_doi 10.2134/agronj13.0384
10.2136/sssaj1962.03615995002600010002x
10.1016/j.still.2012.06.009
10.13031/2013.27710
10.2136/sssaj2015.12.0427
10.1016/j.aeolia.2013.01.002
10.2136/sssaj2008.0144
10.1002/esp.1425
10.13031/2013.27920
10.1080/00224561.2004.12435738
10.1016/j.aeolia.2010.03.003
10.4141/cjss93-057
10.2134/agronj2004.1182
10.1016/S1364-8152(03)00119-1
10.1016/0016-7061(92)90040-E
10.13031/2013.38702
10.2136/sssaj2003.4250
10.1175/1520-0450(1981)020<1400:DOEWIT>2.0.CO;2
10.1029/92JD02011
10.1016/j.aeolia.2014.08.002
10.1002/esp.1434
10.1002/esp.1812
10.2134/jeq2006.0212
ContentType Journal Article
Copyright Copyright © 2018 by the American Society of Agronomy, Inc.
Copyright_xml – notice: Copyright © 2018 by the American Society of Agronomy, Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.2134/agronj2017.12.0681
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 849
ExternalDocumentID 10_2134_agronj2017_12_0681
AGJ2AGRONJ2017120681
Genre article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
7S9
L.6
ID FETCH-LOGICAL-c3411-46ff5fbd44ca6d18804571d9903dbfbd3ec380780e81a859298e47b9f1d0fe623
ISSN 0002-1962
IngestDate Fri Jul 11 18:23:37 EDT 2025
Thu Jul 10 07:57:18 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Wed Jan 22 16:38:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3411-46ff5fbd44ca6d18804571d9903dbfbd3ec380780e81a859298e47b9f1d0fe623
Notes All rights reserved
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2431901896
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2431901896
crossref_primary_10_2134_agronj2017_12_0681
crossref_citationtrail_10_2134_agronj2017_12_0681
wiley_primary_10_2134_agronj2017_12_0681_AGJ2AGRONJ2017120681
PublicationCentury 2000
PublicationDate May–June 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May–June 2018
PublicationDecade 2010
PublicationTitle Agronomy journal
PublicationYear 2018
Publisher The American Society of Agronomy, Inc
Publisher_xml – name: The American Society of Agronomy, Inc
References 1996; 39
2012; 124
2011
1995; 38
2006; 35
2010
2006; 32
1966; 7
1998
1997
2007
1995
1994
2004
1942; 23
2007; 32
1993; 1
1981; 20
2013; 9
1970; 13
1992; 52
2009; 34
2004; 96
2014; 106
2009; 73
1993; 73
2004; 19
2004; 59
1993; 97
2014; 15
1962; 26
2017
2015
2016; 80
2010; 2
2003; 67
Papendick R.I. (e_1_2_6_16_1) 1998
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Papendick R.I. (e_1_2_6_17_1) 2004
Wantz J.W. (e_1_2_6_38_1) 1981; 20
Stetler L. (e_1_2_6_34_1) 1997
Chandler D. (e_1_2_6_6_1) 2004; 59
McGuire A. (e_1_2_6_15_1) 2011
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
Fryrear D.W. (e_1_2_6_12_1) 1998
Collins H.P. (e_1_2_6_9_1) 2010
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
Pitzer P.C. (e_1_2_6_19_1) 1994
Stern T. (e_1_2_6_33_1) 1993
Hagen L.J. (e_1_2_6_13_1) 1995
Allmaras R.R. (e_1_2_6_2_1) 1966; 7
Chepil W.S. (e_1_2_6_7_1) 1942; 23
Busacca A. (e_1_2_6_4_1) 1998
USDA Natural Resources Conservation Service. (e_1_2_6_36_1) 2015
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2011
– volume: 32
  start-page: 621
  year: 2007
  end-page: 630
  article-title: Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia Plateau
  publication-title: Earth Surface Processes Landforms
– start-page: 8
  year: 1998
  end-page: 11
– volume: 9
  start-page: 175
  year: 2013
  end-page: 182
  article-title: Threshold friction velocity influenced by wetness of soils within the Columbia Plateau
  publication-title: Aeolian Res.
– volume: 7
  start-page: 1
  year: 1966
  end-page: 22
  article-title: Total porosity and random roughness of the inter‐row zone as influenced by tillage
  publication-title: USDA Conservation Research Report
– volume: 15
  start-page: 227
  year: 2014
  end-page: 234
  article-title: Threshold friction velocity of crusted windblown soils in the Columbia Plateau
  publication-title: Aeolian Res.
– volume: 20
  start-page: 1400
  year: 1981
  end-page: 1411
  article-title: Distribution of extreme winds in the Bonneville Power Administration Service Area
  publication-title: J. Applied Meteorol.
– year: 2007
– volume: 73
  start-page: 1496
  year: 2009
  end-page: 1503
  article-title: Nitrogen management for irrigated potato production under conventional and reduced tillage
  publication-title: Soil Sci. Soc. Am. J.
– volume: 97
  start-page: 20559
  year: 1993
  end-page: 20564
  article-title: The overshoot and equilibration of saltation
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 710
  year: 1970
  end-page: 714
  article-title: The analysis of soil surface roughness
  publication-title: Trans. ASAE
– year: 1994
– year: 2010
– year: 1998
– volume: 124
  start-page: 219
  year: 2012
  end-page: 225
  article-title: Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region
  publication-title: Soil Tillage Res.
– volume: 1
  start-page: 1818
  year: 1993
  end-page: 1855
– volume: 73
  start-page: 579
  year: 1993
  end-page: 595
  article-title: Soil aggregation as influenced by cultural practices in Saskatchewan: I. Black Chernozemic soils
  publication-title: Can. J. Soil Sci.
– volume: 67
  start-page: 425
  year: 2003
  end-page: 436
  article-title: Aggregate‐mean diameter and wind‐erodible soil predictions using dry aggregate‐size distributions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  start-page: 171
  year: 2004
  end-page: 176
  article-title: Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields
  publication-title: Environ. Model. Softw.
– volume: 38
  start-page: 1031
  year: 1995
  end-page: 1038
  article-title: Wind erosion and its impact on off‐site air quality in the Columbia Plateau: An integrated research plan
  publication-title: Trans. ASAE
– volume: 52
  start-page: 251
  year: 1992
  end-page: 263
  article-title: Rates of weathering and soil formation
  publication-title: Geoderma
– volume: 32
  start-page: 743
  year: 2006
  end-page: 753
  article-title: Validation of WEPS for soil and PM10 loss from agricultural fields within the Columbia Plateau of the United States
  publication-title: Earth Surf. Process. Landf.
– volume: 23
  start-page: 154
  year: 1942
  end-page: 160
  article-title: Measurement of wind erosiveness by dry sieving procedure
  publication-title: Sci. Agric.
– year: 2004
– volume: 2
  start-page: 129
  year: 2010
  end-page: 134
  article-title: Windblown dust affected by tillage intensity during summer fallow
  publication-title: Aeolian Res.
– year: 1997
– year: 1995
– volume: 106
  start-page: 1147
  year: 2014
  end-page: 1152
  article-title: Windblown dust potential from oilseed cropping systems in the Pacific Northwest United States
  publication-title: Agron. J.
– volume: 80
  start-page: 704
  year: 2016
  end-page: 710
  article-title: Soil characteristics and wind erosion potential of wheat‐oilseed‐fallow cropping systems
  publication-title: Soil Sci. Soc. Am. J.
– volume: 59
  start-page: 184
  year: 2004
  end-page: 189
  article-title: Geospatial assessment of agricultural lands critical to air quality on the Columbia Plateau, Washington State
  publication-title: J. Soil Water Conserv.
– volume: 96
  start-page: 1182
  year: 2004
  end-page: 1187
  article-title: Cropping systems research in the world’s driest rainfed wheat region
  publication-title: Agron. J.
– volume: 34
  start-page: 1323
  year: 2009
  end-page: 1332
  article-title: Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA
  publication-title: Earth Surf. Process. Landf.
– volume: 26
  start-page: 4
  year: 1962
  end-page: 6
  article-title: A compact rotary sieve and the importance of dry sieving in physical soil analysis
  publication-title: Soil Sci. Soc. Am. J.
– year: 2017
– volume: 39
  start-page: 2075
  year: 1996
  end-page: 2083
  article-title: Design and aerodynamics of a portable wind tunnel for soil erosion and fugitive dust research
  publication-title: Trans. ASAE
– volume: 35
  start-page: 2011
  year: 2006
  end-page: 2016
  article-title: Particulate matter concentration and air quality affected by windblown dust in the Columbia Plateau
  publication-title: J. Environ. Qual.
– year: 2015
– ident: e_1_2_6_23_1
– ident: e_1_2_6_26_1
  doi: 10.2134/agronj13.0384
– ident: e_1_2_6_8_1
  doi: 10.2136/sssaj1962.03615995002600010002x
– ident: e_1_2_6_32_1
  doi: 10.1016/j.still.2012.06.009
– volume-title: Controlling early season wind erosion in Columbia Basin potato fields
  year: 2011
  ident: e_1_2_6_15_1
– ident: e_1_2_6_18_1
  doi: 10.13031/2013.27710
– ident: e_1_2_6_28_1
  doi: 10.2136/sssaj2015.12.0427
– ident: e_1_2_6_31_1
  doi: 10.1016/j.aeolia.2013.01.002
– ident: e_1_2_6_3_1
  doi: 10.2136/sssaj2008.0144
– ident: e_1_2_6_29_1
  doi: 10.1002/esp.1425
– ident: e_1_2_6_20_1
  doi: 10.13031/2013.27920
– volume: 59
  start-page: 184
  year: 2004
  ident: e_1_2_6_6_1
  article-title: Geospatial assessment of agricultural lands critical to air quality on the Columbia Plateau, Washington State
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2004.12435738
– volume-title: Grand Coulee: Harnessing a dream
  year: 1994
  ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
  doi: 10.1016/j.aeolia.2010.03.003
– start-page: 1818
  volume-title: Chief and chief traders: Indian relations at Fort Nez Perces
  year: 1993
  ident: e_1_2_6_33_1
– ident: e_1_2_6_5_1
  doi: 10.4141/cjss93-057
– volume-title: Proceedings of the American Society of Agricultural Engineers, Paper 97‐2031
  year: 1997
  ident: e_1_2_6_34_1
– ident: e_1_2_6_21_1
  doi: 10.2134/agronj2004.1182
– ident: e_1_2_6_14_1
  doi: 10.1016/S1364-8152(03)00119-1
– volume-title: Farming with the wind. Publ. MISC0208
  year: 1998
  ident: e_1_2_6_16_1
– ident: e_1_2_6_37_1
  doi: 10.1016/0016-7061(92)90040-E
– volume: 7
  start-page: 1
  year: 1966
  ident: e_1_2_6_2_1
  article-title: Total porosity and random roughness of the inter‐row zone as influenced by tillage
  publication-title: USDA Conservation Research Report
– ident: e_1_2_6_10_1
  doi: 10.13031/2013.38702
– volume-title: Proceedings from the WEPP/WEPS Symposium
  year: 1995
  ident: e_1_2_6_13_1
– volume: 23
  start-page: 154
  year: 1942
  ident: e_1_2_6_7_1
  article-title: Measurement of wind erosiveness by dry sieving procedure
  publication-title: Sci. Agric.
– start-page: 8
  volume-title: Dust aerosols, loess soils and global change
  year: 1998
  ident: e_1_2_6_4_1
– ident: e_1_2_6_39_1
  doi: 10.2136/sssaj2003.4250
– volume: 20
  start-page: 1400
  year: 1981
  ident: e_1_2_6_38_1
  article-title: Distribution of extreme winds in the Bonneville Power Administration Service Area
  publication-title: J. Applied Meteorol.
  doi: 10.1175/1520-0450(1981)020<1400:DOEWIT>2.0.CO;2
– ident: e_1_2_6_22_1
  doi: 10.1029/92JD02011
– ident: e_1_2_6_27_1
  doi: 10.1016/j.aeolia.2014.08.002
– volume-title: Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology
  year: 2015
  ident: e_1_2_6_36_1
– ident: e_1_2_6_35_1
– volume-title: Revised wind erosion equation (RWEQ). USDA Tech. Bull. 1. Wind Erosion and Water Conservation Research Unit
  year: 1998
  ident: e_1_2_6_12_1
– volume-title: Reduced tillage in an irrigated potation rotation. Center for Sustaining Agriculture and Natural Resources Research Rep. 2010‐001
  year: 2010
  ident: e_1_2_6_9_1
– ident: e_1_2_6_11_1
  doi: 10.1002/esp.1434
– volume-title: Farming with the wind: II. Publ. XB1042
  year: 2004
  ident: e_1_2_6_17_1
– ident: e_1_2_6_25_1
  doi: 10.1002/esp.1812
– ident: e_1_2_6_24_1
  doi: 10.2134/jeq2006.0212
SSID ssj0011941
Score 2.2789428
Snippet Core Ideas Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed...
CORE IDEAS: Irrigated agricultural lands in the Columbia Basin are highly susceptible to wind erosion.Alternatives to conventional tillage practices are needed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 842
SubjectTerms autumn
basins
conventional tillage
corn
cover crops
crop residues
crop rotation
irrigation
potatoes
prediction
reduced tillage
sediments
soil
Solanum tuberosum
sowing
spring
sweetcorn
United States
vegetable crops
wind erosion
wind tunnels
Zea mays
Title Wind Erosion Potential Influenced by Tillage in an Irrigated Potato–Sweet Corn Rotation in the Columbia Basin
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2017.12.0681
https://www.proquest.com/docview/2431901896
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxFOUl4zELUpYp87rwGG3WrZUolTdrthbFDf2qgglKNtqtZz4D_wY_g-_hBnbeZRdwQKXqHImcer5Mp6Jx98Q8pINeawACG6SiNjlAmLWLE-UCxEzV9Dmixz3O7-bhuNjPjkJTnq9752spc1aeMsvV-4r-RetQhvoFXfJ_oVmm5tCA_wG_cIRNAzHa-n4AwTUYMlK_OLlzMo1Zv5o7gxbeEQ7lwusK3SquUHgXX5bVUiqAadAHgLuOtlheHSOq9OjsiqceWlTEG0O5AgtmFhlzn52Zom6a97a00pvinC6j6sJH7MK6ZE1ejznyGuWOjQHuMbO2HNmXvejA4vbFD-v3rbWrCjV6aXoOdteL-VxasMLL7sxvNLYWvDUXKTL2zLGNsl11Q3WzbzM_e4sbYhOf50AkJ8OZzd8jo_w4JH-1huaqjDbbNuNdPBneUMQfDjx9w7n76cTFGQ-it0gOz7EJ36f7OwfTGfzZgGLJZzVkRf-b7NfCzt8dbmzbZ-oDXS64ZL2dxZ3yG0bqNA9g7q7pCeLe-QWDL0la5H3SYn4oxZ_tMEfbfFHxQW1-KOrgmYFbfBHDf5-fP2mkUcRebRGHgoD8miNPKqR94AcvzlYjMauLeDhLsE5Yi4PlQqUyDlfZmGOzH88iFgODtAwF9A-lEtd72BXxiyLA_DUY8kjkSiW7yoJjvlD0i_KQj4iVGSBxOKRgQoFcuqJUEoVRzyPwKSADzwgrB7CdGnZ7bHIyqcUolwc9rQd9pT5KQ77gDjNNZ8Nt8tvpV_UmknBBOO6WlbIcnOW-uCEg1sdJ-GAvNYqu8bt0qvg9Pg_r39CbrZv61PSX1cb-Qyc5rV4bgH6E2DfujY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Erosion+Potential+Influenced+by+Tillage+in+an+Irrigated+Potato%E2%80%93Sweet+Corn+Rotation+in+the+Columbia+Basin&rft.jtitle=Agronomy+journal&rft.au=Sharratt%2C+B.+S.&rft.au=Collins%2C+H.+P.&rft.date=2018-05-01&rft.pub=The+American+Society+of+Agronomy%2C+Inc&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=110&rft.issue=3&rft.spage=842&rft.epage=849&rft_id=info:doi/10.2134%2Fagronj2017.12.0681&rft.externalDBID=10.2134%252Fagronj2017.12.0681&rft.externalDocID=AGJ2AGRONJ2017120681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon