Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling

The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical mode...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 176-177; pp. 207 - 220
Main Authors Huang, Liuke, Liu, Jianjun, Zhang, Fengshou, Dontsov, Egor, Damjanac, Branko
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical model while regular particle assembly is used as the reference. The rock inherent heterogeneity mainly affects the hydraulic fracture net pressure in the viscosity dominated regime and the effect is more profound in the toughness dominated regime. In the toughness dominated regime, in addition to the increase of net pressure relative to the regular particle sample, the hydraulic fracture profiles in the random particle sample also show larger tortuosity and asymmetry caused by the local heterogeneity, and the fracture growth of one of the wings can be temporarily arrested. Numerical simulations show that the effective toughness of the random particle sample is larger than that of the regular particle sample. This is caused by tortuosity, in which case the net pressure in the random particle sample is also affected by the local geometrical arrangements of the particles. Also, the apparent toughness is influenced by the magnitude of initial stress, which comes in addition to the tensile strength of the contact bond and the particle radius. The effect of stress anisotropy has limited effect on the hydraulic fracture propagation for both the viscosity and toughness dominated regimes.
AbstractList The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical model while regular particle assembly is used as the reference. The rock inherent heterogeneity mainly affects the hydraulic fracture net pressure in the viscosity dominated regime and the effect is more profound in the toughness dominated regime. In the toughness dominated regime, in addition to the increase of net pressure relative to the regular particle sample, the hydraulic fracture profiles in the random particle sample also show larger tortuosity and asymmetry caused by the local heterogeneity, and the fracture growth of one of the wings can be temporarily arrested. Numerical simulations show that the effective toughness of the random particle sample is larger than that of the regular particle sample. This is caused by tortuosity, in which case the net pressure in the random particle sample is also affected by the local geometrical arrangements of the particles. Also, the apparent toughness is influenced by the magnitude of initial stress, which comes in addition to the tensile strength of the contact bond and the particle radius. The effect of stress anisotropy has limited effect on the hydraulic fracture propagation for both the viscosity and toughness dominated regimes.
Author Liu, Jianjun
Dontsov, Egor
Zhang, Fengshou
Damjanac, Branko
Huang, Liuke
Author_xml – sequence: 1
  givenname: Liuke
  surname: Huang
  fullname: Huang, Liuke
  organization: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
– sequence: 2
  givenname: Jianjun
  surname: Liu
  fullname: Liu, Jianjun
  organization: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
– sequence: 3
  givenname: Fengshou
  orcidid: 0000-0002-4998-6259
  surname: Zhang
  fullname: Zhang, Fengshou
  email: fengshou.zhang@tongji.edu.cn
  organization: Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
– sequence: 4
  givenname: Egor
  surname: Dontsov
  fullname: Dontsov, Egor
  organization: W.D. Von Gonten Laboratories, LLC, Houston, TX 77043, USA
– sequence: 5
  givenname: Branko
  surname: Damjanac
  fullname: Damjanac, Branko
  organization: Itasca Consulting Group, Inc., Minneapolis, MN 55041, USA
BookMark eNqFkUuLHCEURiXMQHoefyEIWVfl-mirGrJIGCYPGMgmsxZbb3VbqdaOWiEdyH-PNZ1sspmNgn7nu3K8IhchBiTkFYOWAVNvxtaPOU65pJYD27SgWmD9C7JifbdpOJPqgqwAODSd6sVLcpXzCABSbGBFft__PE4x-bCjZY_Uh2GaMVikcaAp2m_1ZI8JQ6F7LJjiDgP6cqImOLpLxgea_a-aDnR_csnMk7d0SMaW-alzzsvqfLap4hQnPCxdh-hwqjc35HIwU8bbv_s1efxw__XuU_Pw5ePnu_cPjRUSSjO4tdsas3XS9J0Tgm_A1Odzvha2WyvFJJdbKweQPbPcmo7BGpgxTIGxyIW4Jq_PvccUv8-Yix7jnEIdqTnvuRSie0qpc8qmmHPCQR-TP5h00gz0olqP-p9qvajWoHRVXcG3_4HWF1N8DKUqmp7H351xrAp-eEw6W798gvMJbdEu-ucq_gDMGKSI
CitedBy_id crossref_primary_10_3389_fenrg_2023_1309591
crossref_primary_10_1021_acsomega_3c06867
crossref_primary_10_3389_feart_2024_1470723
crossref_primary_10_1016_j_cma_2023_116653
crossref_primary_10_3389_fenrg_2023_1231958
crossref_primary_10_1016_j_engfracmech_2023_109570
crossref_primary_10_1016_j_jrmge_2024_11_018
crossref_primary_10_1007_s00603_024_03867_w
crossref_primary_10_1007_s00603_023_03554_2
crossref_primary_10_1016_j_compgeo_2024_106223
crossref_primary_10_1016_j_jrmge_2024_03_019
crossref_primary_10_1016_j_energy_2023_127434
crossref_primary_10_3390_w17050740
crossref_primary_10_1016_j_ijrmms_2021_104766
crossref_primary_10_1002_ese3_1808
crossref_primary_10_1016_j_geoen_2024_213415
crossref_primary_10_1016_j_enganabound_2021_08_003
crossref_primary_10_1007_s13369_022_07097_6
crossref_primary_10_1016_j_engfracmech_2022_108801
crossref_primary_10_3390_pr11113190
crossref_primary_10_1016_j_engfracmech_2021_107835
crossref_primary_10_1007_s12665_024_11648_5
crossref_primary_10_1007_s00603_024_04006_1
crossref_primary_10_1016_j_petsci_2022_08_003
crossref_primary_10_1016_j_compgeo_2022_104736
crossref_primary_10_1021_acsomega_3c07704
crossref_primary_10_1016_j_petsci_2024_08_004
crossref_primary_10_2139_ssrn_4127862
crossref_primary_10_1155_2023_1451823
crossref_primary_10_1155_2024_7883958
crossref_primary_10_3389_feart_2022_1116492
crossref_primary_10_1007_s00603_023_03374_4
crossref_primary_10_1080_15567036_2020_1757790
crossref_primary_10_1002_ese3_1664
crossref_primary_10_1007_s40948_024_00870_x
crossref_primary_10_1016_j_heliyon_2023_e22346
crossref_primary_10_1002_ese3_1782
crossref_primary_10_1016_j_engfracmech_2024_110039
crossref_primary_10_1155_2023_4758872
crossref_primary_10_1016_j_petrol_2022_110903
crossref_primary_10_1002_nag_3801
crossref_primary_10_1016_j_geoen_2023_212034
crossref_primary_10_1016_j_jseaes_2023_105908
crossref_primary_10_1016_j_engfracmech_2022_108912
crossref_primary_10_1021_acsomega_3c08547
crossref_primary_10_1007_s00603_021_02396_0
crossref_primary_10_1007_s00603_024_04267_w
crossref_primary_10_1155_2021_7092143
crossref_primary_10_1155_2023_6101374
crossref_primary_10_1016_j_jobe_2023_108390
crossref_primary_10_3389_feart_2023_1115054
crossref_primary_10_1016_j_ngib_2024_09_001
crossref_primary_10_1007_s00603_023_03752_y
crossref_primary_10_1016_j_engfracmech_2023_109274
crossref_primary_10_1007_s00603_023_03299_y
crossref_primary_10_1016_j_undsp_2023_03_006
crossref_primary_10_3390_su151914524
crossref_primary_10_1155_2024_8876708
crossref_primary_10_1021_acsomega_3c09992
crossref_primary_10_3389_fenrg_2024_1370970
crossref_primary_10_1016_j_geoen_2023_211856
crossref_primary_10_1016_j_jsg_2024_105111
crossref_primary_10_1002_ese3_1027
crossref_primary_10_3390_app13074218
crossref_primary_10_1007_s12517_021_07493_6
crossref_primary_10_3389_fphy_2023_1228006
crossref_primary_10_3389_fenrg_2024_1377400
crossref_primary_10_1016_j_geoen_2023_212025
crossref_primary_10_3389_feart_2023_1163295
crossref_primary_10_3389_fenrg_2023_1324934
crossref_primary_10_1016_j_geoen_2024_213119
crossref_primary_10_1016_j_tafmec_2023_103825
crossref_primary_10_2118_225433_PA
crossref_primary_10_1016_j_geoen_2025_213675
crossref_primary_10_1007_s13202_025_01939_3
crossref_primary_10_1016_j_engfracmech_2019_106837
crossref_primary_10_3390_en17184664
crossref_primary_10_1016_j_egyr_2020_07_004
crossref_primary_10_3389_fenrg_2023_1338428
crossref_primary_10_1007_s00603_024_03954_y
crossref_primary_10_1016_j_ijmecsci_2023_108171
crossref_primary_10_1007_s00603_023_03669_6
crossref_primary_10_1016_j_engfracmech_2022_109020
crossref_primary_10_1007_s00603_023_03290_7
crossref_primary_10_1016_j_marpetgeo_2023_106618
crossref_primary_10_1007_s00603_024_04108_w
crossref_primary_10_1007_s00603_021_02450_x
crossref_primary_10_1007_s11831_020_09501_6
crossref_primary_10_1155_2023_9509398
crossref_primary_10_3389_feart_2025_1567016
crossref_primary_10_3390_machines10020152
crossref_primary_10_1016_j_petrol_2020_107169
crossref_primary_10_1016_j_ijrmms_2023_105425
crossref_primary_10_1016_j_jrmge_2024_04_028
crossref_primary_10_3390_su151612625
crossref_primary_10_1007_s10064_024_03885_6
crossref_primary_10_1007_s13202_024_01872_x
crossref_primary_10_1007_s10704_022_00659_7
crossref_primary_10_35767_gscpgbull_71_2_143
crossref_primary_10_3389_fenrg_2023_1328236
crossref_primary_10_1007_s10064_021_02515_9
crossref_primary_10_3389_fenrg_2023_1342254
crossref_primary_10_3390_math11194197
crossref_primary_10_3390_su17052252
crossref_primary_10_1177_10812865221117553
crossref_primary_10_1007_s00603_021_02422_1
crossref_primary_10_1016_j_geoen_2023_211436
crossref_primary_10_2113_2022_9708300
crossref_primary_10_3390_app13137537
crossref_primary_10_1016_j_compgeo_2024_106425
crossref_primary_10_1063_5_0245827
crossref_primary_10_1007_s40948_023_00586_4
crossref_primary_10_1016_j_jgsce_2023_205186
crossref_primary_10_3389_fenrg_2023_1337069
crossref_primary_10_1007_s13202_023_01612_7
crossref_primary_10_1016_j_jngse_2022_104678
crossref_primary_10_1007_s10064_024_03897_2
crossref_primary_10_1016_j_compgeo_2019_103374
crossref_primary_10_1371_journal_pone_0303251
crossref_primary_10_1016_j_fuel_2023_129155
crossref_primary_10_1038_s41598_024_83632_9
crossref_primary_10_1063_5_0234922
crossref_primary_10_1155_2023_6178829
crossref_primary_10_1016_j_compgeo_2024_107004
crossref_primary_10_1016_j_ijsolstr_2021_111293
crossref_primary_10_1016_j_petsci_2021_09_014
crossref_primary_10_1016_j_geoen_2024_212659
crossref_primary_10_3389_fenrg_2023_1321853
crossref_primary_10_1016_j_geoen_2024_212777
crossref_primary_10_1016_j_geoen_2024_213106
crossref_primary_10_1016_j_conbuildmat_2022_127907
crossref_primary_10_1016_j_jrmge_2021_10_015
crossref_primary_10_1016_j_enggeo_2020_105510
crossref_primary_10_1016_j_jngse_2020_103479
crossref_primary_10_1061__ASCE_GM_1943_5622_0002622
crossref_primary_10_3389_feart_2023_1256150
crossref_primary_10_1007_s10596_019_09925_5
crossref_primary_10_3389_fenrg_2023_1339895
crossref_primary_10_1021_acsomega_3c02364
crossref_primary_10_1155_2023_3819799
crossref_primary_10_2118_199883_PA
crossref_primary_10_1016_j_petsci_2023_05_002
crossref_primary_10_3389_fenrg_2023_1272086
crossref_primary_10_1063_5_0251731
crossref_primary_10_1016_j_petsci_2024_07_014
crossref_primary_10_1016_j_energy_2023_128277
crossref_primary_10_1016_j_fuel_2023_129220
crossref_primary_10_3389_fphy_2023_1227917
crossref_primary_10_1007_s00603_024_04101_3
crossref_primary_10_1016_j_petsci_2021_09_026
crossref_primary_10_1007_s00603_023_03527_5
crossref_primary_10_1007_s00419_024_02754_8
crossref_primary_10_1016_j_engfracmech_2021_108227
crossref_primary_10_1016_j_jngse_2021_103887
crossref_primary_10_3389_fenrg_2024_1399477
crossref_primary_10_3390_app131810275
crossref_primary_10_1016_j_engfracmech_2020_107481
crossref_primary_10_3390_en13184718
crossref_primary_10_3389_feart_2024_1445254
crossref_primary_10_1016_j_compgeo_2023_105949
crossref_primary_10_1016_j_tust_2023_105263
crossref_primary_10_2118_214666_PA
crossref_primary_10_2118_223585_PA
crossref_primary_10_1016_j_engfracmech_2024_110259
crossref_primary_10_3390_app14146342
crossref_primary_10_1007_s10064_020_01865_0
crossref_primary_10_3389_fenrg_2023_1321114
crossref_primary_10_1016_j_compgeo_2023_105263
crossref_primary_10_1016_j_compgeo_2024_106251
crossref_primary_10_1016_j_ijsolstr_2021_111395
crossref_primary_10_1007_s10064_022_03027_w
crossref_primary_10_1016_j_geoen_2023_212337
crossref_primary_10_3390_en18030708
Cites_doi 10.1190/tle34060678.1
10.1029/2000JB900085
10.1016/j.engfracmech.2018.07.008
10.1061/(ASCE)EM.1943-7889.0000169
10.2118/197054-PA
10.1016/j.cma.2012.08.017
10.1016/j.jsg.2006.09.013
10.1016/S0894-9166(09)60295-0
10.1002/nag.2682
10.1016/j.ijrmms.2004.09.011
10.1007/s00603-019-01851-3
10.1016/j.compgeo.2015.06.007
10.1002/2016JB013365
10.1016/j.coal.2013.10.012
10.1016/j.ijrmms.2010.11.014
10.1016/j.compgeo.2015.09.009
10.1016/j.jngse.2017.10.012
10.1146/annurev-fluid-010814-014736
10.1016/j.cma.2015.09.021
10.1007/s40571-015-0081-4
10.1016/j.jngse.2017.07.008
10.1007/s10704-017-0192-4
10.2118/167626-PA
10.1016/j.apenergy.2015.03.023
10.1016/j.juogr.2014.07.001
10.2118/158935-PA
10.1115/1.4028192
10.1190/INT-2014-0274.1
10.1115/1.321162
10.1007/s10704-005-0154-0
10.1016/j.compgeo.2016.07.009
10.1007/s40571-015-0085-0
10.1016/j.petlm.2015.03.008
10.1002/jgrb.50204
10.1016/j.engfracmech.2018.01.011
10.1007/s10596-015-9532-5
10.1007/s00603-012-0359-2
10.1016/j.engfracmech.2011.11.012
10.1002/cnm.1111
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 30, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 30, 2019
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijsolstr.2019.06.018
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2146
EndPage 220
ExternalDocumentID 10_1016_j_ijsolstr_2019_06_018
S0020768319302951
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
XPP
ZMT
~02
~G-
29J
6TJ
AAFWJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SET
SEW
SMS
SSH
VH1
WUQ
ZY4
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-fd5dbaabd4a87d33290a4392253c75661424bc4f0481c2ca710501aa160ace233
IEDL.DBID IXB
ISSN 0020-7683
IngestDate Fri Jul 25 02:33:50 EDT 2025
Tue Jul 01 01:20:00 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Fri Feb 23 02:26:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grain size
Inherent heterogeneity
Hydraulic fracture
Propagation regimes
Discrete element modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-fd5dbaabd4a87d33290a4392253c75661424bc4f0481c2ca710501aa160ace233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4998-6259
PQID 2282433723
PQPubID 2045457
PageCount 14
ParticipantIDs proquest_journals_2282433723
crossref_primary_10_1016_j_ijsolstr_2019_06_018
crossref_citationtrail_10_1016_j_ijsolstr_2019_06_018
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2019_06_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-30
PublicationDateYYYYMMDD 2019-11-30
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-30
  day: 30
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of solids and structures
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Damjanac, Detournay, Cundall (bib0008) 2016; 3
Lecampion (bib0023) 2009; 25
King (bib0021) 2010
Lecampion, Bunger, Zhang (bib0024) 2018; 49
Bunger, Detournay, Garagash (bib0003) 2005; 134
Detournay (bib0009) 2016; 48
Meyer, Bazan (bib0030) 2011
Carrier, Granet (bib0004) 2012; 79
Mas Ivars, Pierce, Darcel, Reyes-Montes, Potyondy, Paul Young, Cundall (bib0027) 2011; 48
Li, Xing, Liu, Liu (bib0025) 2015; 1
Tang, Wu, Zuo, Xiao, Sun, Ehlig-Economides (bib0048) 2019
Weng, Kresse, Cohen, Wu, Gu (bib0040) 2011; 26
Zhang, Dontsov, Mack (bib0044) 2017; 41
Wu, Olson (bib0041) 2015; 20
Middleton, Carey, Currier, Hyman, Kang, Karra, Jiménez-Martínez, Porter, Viswanathan (bib0031) 2015; 147
Zhang, Jeffrey, Thiercelin (bib0046) 2007; 29
Economides, Nolte (bib0011) 2000
Warpinski, Mayerhofer, Agarwal, Du (bib0038) 2013; 18
Gordeliy, Peirce (bib0014) 2013; 253
Zhang, Mack (bib0045) 2017; 46
Bažant, Salviato, Chau, Visnawathan, Zubelewicz (bib0002) 2014; 81
Dahi Taleghani, Gonzalez, Shojaei (bib0006) 2016; 71
Maxwell, Zhang, Damjanac (bib0029) 2015; 34
Miehe, Mauthe (bib0032) 2016; 304
Ouchi, Katiyar, Foster, Sharma (bib0034) 2015
Dontsov (bib0010) 2017; 205
Weng (bib0039) 2015; 9
Wang, Zhou, Chen, Xiao, Li, Zhao (bib0037) 2014; 121
Ishida, Chen, Bennour, Yamashita, Inui, Nagaya, Naoi, Chen, Nakayama, Nagano (bib0018) 2016; 121
Profit, Dutko, Yu, Cole, Angus, Baird (bib0036) 2016; 3
Maxwell, Cipolla (bib0028) 2011
Hazzard, Young, Maxwell (bib0015) 2000; 105
Khristianovic, Zheltov (bib0020) 1955
Zhang, Damjanac, Maxwell (bib0047) 2019
Hu, Garagash (bib0016) 2010; 136
Kresse, Weng, Gu, Wu (bib0022) 2013; 46
Zhang, Damjanac, Huang (bib0042) 2013; 118
Garagash, Detournay (bib0012) 2000; 67
Jeffrey, Bunger, LeCampion, Zhang, Chen, van As, Allison, De Beer, Dudley, Siebrits, Thiercelin, Mainguy (bib0019) 2009
Zhang, Dontsov (bib0043) 2018; 199
Huang (bib0017) 1999
Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (bib0026) 2017; 81
Potyondy, Cundall (bib0035) 2004; 41
Damjanac, Cundall (bib0007) 2016; 71
Gonçalves da Silva, Einstein (bib0013) 2018
Mikelić, Wheeler, Wick (bib0033) 2015; 19
Chen, Bunger, Zhang, Jeffrey (bib0005) 2009; 22
Aimene, Ouenes (bib0001) 2015; 3
Wang (10.1016/j.ijsolstr.2019.06.018_bib0037) 2014; 121
Weng (10.1016/j.ijsolstr.2019.06.018_bib0040) 2011; 26
Huang (10.1016/j.ijsolstr.2019.06.018_bib0017) 1999
Hazzard (10.1016/j.ijsolstr.2019.06.018_bib0015) 2000; 105
Dontsov (10.1016/j.ijsolstr.2019.06.018_bib0010) 2017; 205
Lecampion (10.1016/j.ijsolstr.2019.06.018_bib0024) 2018; 49
Potyondy (10.1016/j.ijsolstr.2019.06.018_bib0035) 2004; 41
Aimene (10.1016/j.ijsolstr.2019.06.018_bib0001) 2015; 3
Gonçalves da Silva (10.1016/j.ijsolstr.2019.06.018_bib0013) 2018
Middleton (10.1016/j.ijsolstr.2019.06.018_bib0031) 2015; 147
King (10.1016/j.ijsolstr.2019.06.018_bib0021) 2010
Ouchi (10.1016/j.ijsolstr.2019.06.018_bib0034) 2015
Profit (10.1016/j.ijsolstr.2019.06.018_bib0036) 2016; 3
Carrier (10.1016/j.ijsolstr.2019.06.018_bib0004) 2012; 79
Detournay (10.1016/j.ijsolstr.2019.06.018_bib0009) 2016; 48
Jeffrey (10.1016/j.ijsolstr.2019.06.018_bib0019) 2009
Kresse (10.1016/j.ijsolstr.2019.06.018_bib0022) 2013; 46
Dahi Taleghani (10.1016/j.ijsolstr.2019.06.018_bib0006) 2016; 71
Damjanac (10.1016/j.ijsolstr.2019.06.018_bib0008) 2016; 3
Ishida (10.1016/j.ijsolstr.2019.06.018_bib0018) 2016; 121
Miehe (10.1016/j.ijsolstr.2019.06.018_bib0032) 2016; 304
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0045) 2017; 46
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0043) 2018; 199
Garagash (10.1016/j.ijsolstr.2019.06.018_bib0012) 2000; 67
Khristianovic (10.1016/j.ijsolstr.2019.06.018_bib0020) 1955
Gordeliy (10.1016/j.ijsolstr.2019.06.018_bib0014) 2013; 253
Warpinski (10.1016/j.ijsolstr.2019.06.018_bib0038) 2013; 18
Lecampion (10.1016/j.ijsolstr.2019.06.018_bib0023) 2009; 25
Mas Ivars (10.1016/j.ijsolstr.2019.06.018_bib0027) 2011; 48
Maxwell (10.1016/j.ijsolstr.2019.06.018_bib0028) 2011
Lisjak (10.1016/j.ijsolstr.2019.06.018_bib0026) 2017; 81
Economides (10.1016/j.ijsolstr.2019.06.018_bib0011) 2000
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0042) 2013; 118
Bažant (10.1016/j.ijsolstr.2019.06.018_bib0002) 2014; 81
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0047) 2019
Weng (10.1016/j.ijsolstr.2019.06.018_bib0039) 2015; 9
Maxwell (10.1016/j.ijsolstr.2019.06.018_bib0029) 2015; 34
Mikelić (10.1016/j.ijsolstr.2019.06.018_bib0033) 2015; 19
Meyer (10.1016/j.ijsolstr.2019.06.018_bib0030) 2011
Wu (10.1016/j.ijsolstr.2019.06.018_bib0041) 2015; 20
Tang (10.1016/j.ijsolstr.2019.06.018_bib0048) 2019
Bunger (10.1016/j.ijsolstr.2019.06.018_bib0003) 2005; 134
Hu (10.1016/j.ijsolstr.2019.06.018_bib0016) 2010; 136
Chen (10.1016/j.ijsolstr.2019.06.018_bib0005) 2009; 22
Damjanac (10.1016/j.ijsolstr.2019.06.018_bib0007) 2016; 71
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0046) 2007; 29
Li (10.1016/j.ijsolstr.2019.06.018_bib0025) 2015; 1
Zhang (10.1016/j.ijsolstr.2019.06.018_bib0044) 2017; 41
References_xml – volume: 3
  start-page: SU71
  year: 2015
  end-page: SU88
  ident: bib0001
  article-title: Geomechanical modeling of hydraulic fractures interacting with natural fractures — validation with microseismic and tracer data from the Marcellus and Eagle Ford
  publication-title: Interpretation
– volume: 105
  start-page: 16683
  year: 2000
  end-page: 16697
  ident: bib0015
  article-title: Micromechanical modeling of cracking and failure in brittle rocks
  publication-title: J. Geophys. Res. Solid Earth
– year: 2011
  ident: bib0028
  article-title: What does microseismicity tell us about hydraulic fracturing?
  publication-title: SPE Annu. Tech. Conf. Exhib
– volume: 121
  start-page: 8080
  year: 2016
  end-page: 8098
  ident: bib0018
  article-title: Features of CO
  publication-title: J. Geophys. Res. Solid Earth
– volume: 253
  start-page: 305
  year: 2013
  end-page: 322
  ident: bib0014
  article-title: Coupling schemes for modeling hydraulic fracture propagation using the XFEM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 20
  start-page: 337
  year: 2015
  end-page: 342
  ident: bib0041
  article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells
  publication-title: SPE J
– year: 2009
  ident: bib0019
  article-title: Measuring hydraulic fracture growth in naturally fractured rock
  publication-title: SPE Annual Technical Conference and Exhibition
– volume: 3
  start-page: 249
  year: 2016
  end-page: 261
  ident: bib0008
  article-title: Application of particle and lattice codes to simulation of hydraulic fracturing
  publication-title: Comput. Part. Mech.
– volume: 3
  start-page: 229
  year: 2016
  end-page: 248
  ident: bib0036
  article-title: Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs
  publication-title: Comput. Part. Mech.
– volume: 46
  start-page: 555
  year: 2013
  end-page: 568
  ident: bib0022
  article-title: Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations
  publication-title: Rock Mech. Rock Eng.
– volume: 134
  start-page: 175
  year: 2005
  end-page: 190
  ident: bib0003
  article-title: Toughness-dominated hydraulic fracture with leak-off
  publication-title: Int. J. Fract.
– volume: 48
  start-page: 219
  year: 2011
  end-page: 244
  ident: bib0027
  article-title: The synthetic rock mass approach for jointed rock mass modelling
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2019
  ident: bib0047
  article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling
  publication-title: Rock Mech. Rock Eng
– volume: 81
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib0026
  article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses
  publication-title: Comput. Geotech.
– volume: 34
  start-page: 678
  year: 2015
  end-page: 683
  ident: bib0029
  article-title: Geomechanical modeling of induced seismicity resulting from hydraulic fracturing
  publication-title: Lead. Edge
– volume: 46
  start-page: 16
  year: 2017
  end-page: 25
  ident: bib0045
  article-title: Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment
  publication-title: J. Nat. Gas Sci. Eng.
– year: 2000
  ident: bib0011
  article-title: Reservoir Stimulation
– year: 2015
  ident: bib0034
  article-title: A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs
  publication-title: SPE Hydraulic Fracturing Technology Conference
– volume: 81
  year: 2014
  ident: bib0002
  article-title: Why fracking works
  publication-title: J. Appl. Mech.
– volume: 49
  start-page: 66
  year: 2018
  end-page: 83
  ident: bib0024
  article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 205
  start-page: 221
  year: 2017
  end-page: 237
  ident: bib0010
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int. J. Fract.
– volume: 22
  start-page: 443
  year: 2009
  end-page: 452
  ident: bib0005
  article-title: Cohesive zone finite element-based modeling of hydraulic fractures
  publication-title: Acta Mech. Solida Sin.
– year: 1955
  ident: bib0020
  article-title: Formation of Vertical Fractures by Means of Highly Viscous Liquid
– volume: 19
  start-page: 1171
  year: 2015
  end-page: 1195
  ident: bib0033
  article-title: Phase-field modeling of a fluid-driven fracture in a poroelastic medium
  publication-title: Comput. Geosci.
– volume: 41
  start-page: 1329
  year: 2004
  end-page: 1364
  ident: bib0035
  article-title: A bonded-particle model for rock
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 25
  start-page: 121
  year: 2009
  end-page: 133
  ident: bib0023
  article-title: An extended finite element method for hydraulic fracture problems
  publication-title: Commun. Numer. Methods Eng.
– volume: 1
  start-page: 8
  year: 2015
  end-page: 15
  ident: bib0025
  article-title: A review on hydraulic fracturing of unconventional reservoir
  publication-title: Petroleum
– volume: 199
  start-page: 705
  year: 2018
  end-page: 720
  ident: bib0043
  article-title: Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop
  publication-title: Eng. Fract. Mech.
– volume: 71
  start-page: 283
  year: 2016
  end-page: 294
  ident: bib0007
  article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs
  publication-title: Comput. Geotech.
– year: 2018
  ident: bib0013
  article-title: Physical processes involved in the laboratory hydraulic fracturing of granite: visual observations and interpretation
  publication-title: Eng. Fract. Mech
– volume: 121
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0037
  article-title: Simulation of hydraulic fracturing using particle flow method and application in a coal mine
  publication-title: Int. J. Coal Geol.
– volume: 18
  year: 2013
  ident: bib0038
  article-title: Hydraulic-fracture geomechanics and microseismic-source mechanisms
  publication-title: SPE J.
– volume: 79
  start-page: 312
  year: 2012
  end-page: 328
  ident: bib0004
  article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model
  publication-title: Eng. Fract. Mech.
– volume: 147
  start-page: 500
  year: 2015
  end-page: 509
  ident: bib0031
  article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2
  publication-title: Appl. Energy
– volume: 118
  start-page: 2703
  year: 2013
  end-page: 2722
  ident: bib0042
  article-title: Coupled discrete element modeling of fluid injection into dense granular media
  publication-title: J. Geophys. Res. Solid Earth
– volume: 41
  start-page: 1430
  year: 2017
  end-page: 1452
  ident: bib0044
  article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 304
  start-page: 619
  year: 2016
  end-page: 655
  ident: bib0032
  article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 26
  start-page: 368
  year: 2011
  end-page: 380
  ident: bib0040
  article-title: Modeling of hydraulic-fracture-network propagation in a naturally fractured formation
  publication-title: SPE Prod. Oper.
– volume: 71
  start-page: 361
  year: 2016
  end-page: 368
  ident: bib0006
  article-title: Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations
  publication-title: Comput. Geotech.
– volume: 136
  start-page: 1152
  year: 2010
  end-page: 1166
  ident: bib0016
  article-title: Plane-strain propagation of a fluid-driven crack in a permeable rock with fracture toughness
  publication-title: J. Eng. Mech.
– year: 2010
  ident: bib0021
  article-title: Thirty years of gas shale fracturing: what have we learned?
  publication-title: SPE Annu. Tech. Conf. Exhib
– year: 1999
  ident: bib0017
  article-title: Discrete Element Modeling of Tool-Rock Interaction
– volume: 48
  start-page: 311
  year: 2016
  end-page: 339
  ident: bib0009
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu. Rev. Fluid Mech.
– year: 2019
  ident: bib0048
  article-title: Investigation of rupture and slip mechanisms of hydraulic fracture in multiple-layered formations
  publication-title: SPE J
– volume: 29
  start-page: 396
  year: 2007
  end-page: 410
  ident: bib0046
  article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation
  publication-title: J. Struct. Geol.
– year: 2011
  ident: bib0030
  article-title: A discrete fracture network model for hydraulically induced fractures - theory, parametric and case studies
  publication-title: SPE Hydraul. Fract. Technol. Conf
– volume: 67
  start-page: 183
  year: 2000
  end-page: 192
  ident: bib0012
  article-title: The tip region of a fluid-driven fracture in an elastic medium
  publication-title: J. Appl. Mech.
– volume: 9
  start-page: 114
  year: 2015
  end-page: 135
  ident: bib0039
  article-title: Modeling of complex hydraulic fractures in naturally fractured formation
  publication-title: J. Unconv. Oil Gas Resour.
– volume: 34
  start-page: 678
  issue: 6
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0029
  article-title: Geomechanical modeling of induced seismicity resulting from hydraulic fracturing
  publication-title: Lead. Edge
  doi: 10.1190/tle34060678.1
– volume: 105
  start-page: 16683
  year: 2000
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0015
  article-title: Micromechanical modeling of cracking and failure in brittle rocks
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2000JB900085
– volume: 199
  start-page: 705
  year: 2018
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0043
  article-title: Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.07.008
– volume: 136
  start-page: 1152
  year: 2010
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0016
  article-title: Plane-strain propagation of a fluid-driven crack in a permeable rock with fracture toughness
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000169
– year: 2019
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0048
  article-title: Investigation of rupture and slip mechanisms of hydraulic fracture in multiple-layered formations
  publication-title: SPE J
  doi: 10.2118/197054-PA
– volume: 253
  start-page: 305
  year: 2013
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0014
  article-title: Coupling schemes for modeling hydraulic fracture propagation using the XFEM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.08.017
– volume: 29
  start-page: 396
  issue: 3
  year: 2007
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0046
  article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2006.09.013
– volume: 22
  start-page: 443
  year: 2009
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0005
  article-title: Cohesive zone finite element-based modeling of hydraulic fractures
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1016/S0894-9166(09)60295-0
– volume: 41
  start-page: 1430
  year: 2017
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0044
  article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2682
– year: 2011
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0030
  article-title: A discrete fracture network model for hydraulically induced fractures - theory, parametric and case studies
  publication-title: SPE Hydraul. Fract. Technol. Conf
– volume: 41
  start-page: 1329
  year: 2004
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0035
  article-title: A bonded-particle model for rock
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2004.09.011
– year: 2019
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0047
  article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling
  publication-title: Rock Mech. Rock Eng
  doi: 10.1007/s00603-019-01851-3
– year: 1999
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0017
– year: 2009
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0019
  article-title: Measuring hydraulic fracture growth in naturally fractured rock
– volume: 71
  start-page: 283
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0007
  article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.06.007
– volume: 121
  start-page: 8080
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0018
  article-title: Features of CO 2 fracturing deduced from acoustic emission and microscopy in laboratory experiments
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013365
– volume: 121
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0037
  article-title: Simulation of hydraulic fracturing using particle flow method and application in a coal mine
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2013.10.012
– volume: 48
  start-page: 219
  year: 2011
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0027
  article-title: The synthetic rock mass approach for jointed rock mass modelling
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2010.11.014
– volume: 71
  start-page: 361
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0006
  article-title: Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.09.009
– volume: 49
  start-page: 66
  year: 2018
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0024
  article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.10.012
– volume: 48
  start-page: 311
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0009
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010814-014736
– volume: 304
  start-page: 619
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0032
  article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.09.021
– volume: 3
  start-page: 229
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0036
  article-title: Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-015-0081-4
– volume: 26
  start-page: 368
  year: 2011
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0040
  article-title: Modeling of hydraulic-fracture-network propagation in a naturally fractured formation
  publication-title: SPE Prod. Oper.
– volume: 46
  start-page: 16
  year: 2017
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0045
  article-title: Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.07.008
– volume: 205
  start-page: 221
  year: 2017
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0010
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-017-0192-4
– year: 1955
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0020
– volume: 20
  start-page: 337
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0041
  article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells
  publication-title: SPE J
  doi: 10.2118/167626-PA
– volume: 147
  start-page: 500
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0031
  article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.023
– volume: 9
  start-page: 114
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0039
  article-title: Modeling of complex hydraulic fractures in naturally fractured formation
  publication-title: J. Unconv. Oil Gas Resour.
  doi: 10.1016/j.juogr.2014.07.001
– volume: 18
  year: 2013
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0038
  article-title: Hydraulic-fracture geomechanics and microseismic-source mechanisms
  publication-title: SPE J.
  doi: 10.2118/158935-PA
– year: 2010
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0021
  article-title: Thirty years of gas shale fracturing: what have we learned?
  publication-title: SPE Annu. Tech. Conf. Exhib
– volume: 81
  year: 2014
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0002
  article-title: Why fracking works
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4028192
– volume: 3
  start-page: SU71
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0001
  article-title: Geomechanical modeling of hydraulic fractures interacting with natural fractures — validation with microseismic and tracer data from the Marcellus and Eagle Ford
  publication-title: Interpretation
  doi: 10.1190/INT-2014-0274.1
– volume: 67
  start-page: 183
  year: 2000
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0012
  article-title: The tip region of a fluid-driven fracture in an elastic medium
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.321162
– year: 2000
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0011
– year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0034
  article-title: A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs
– volume: 134
  start-page: 175
  year: 2005
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0003
  article-title: Toughness-dominated hydraulic fracture with leak-off
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-005-0154-0
– volume: 81
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0026
  article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.07.009
– volume: 3
  start-page: 249
  year: 2016
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0008
  article-title: Application of particle and lattice codes to simulation of hydraulic fracturing
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-015-0085-0
– volume: 1
  start-page: 8
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0025
  article-title: A review on hydraulic fracturing of unconventional reservoir
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2015.03.008
– year: 2011
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0028
  article-title: What does microseismicity tell us about hydraulic fracturing?
  publication-title: SPE Annu. Tech. Conf. Exhib
– volume: 118
  start-page: 2703
  year: 2013
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0042
  article-title: Coupled discrete element modeling of fluid injection into dense granular media
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50204
– year: 2018
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0013
  article-title: Physical processes involved in the laboratory hydraulic fracturing of granite: visual observations and interpretation
  publication-title: Eng. Fract. Mech
  doi: 10.1016/j.engfracmech.2018.01.011
– volume: 19
  start-page: 1171
  year: 2015
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0033
  article-title: Phase-field modeling of a fluid-driven fracture in a poroelastic medium
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9532-5
– volume: 46
  start-page: 555
  year: 2013
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0022
  article-title: Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-012-0359-2
– volume: 79
  start-page: 312
  year: 2012
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0004
  article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2011.11.012
– volume: 25
  start-page: 121
  year: 2009
  ident: 10.1016/j.ijsolstr.2019.06.018_bib0023
  article-title: An extended finite element method for hydraulic fracture problems
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1111
SSID ssj0004390
Score 2.6350098
Snippet The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms Anisotropy
Assembly
Bonding
Computer simulation
Contact stresses
Crack initiation
Crack propagation
Discrete element method
Discrete element modeling
Fracture mechanics
Fracture toughness
Grain size
Heterogeneity
Hydraulic fracture
Hydraulic fracturing
Hydraulics
Inherent heterogeneity
Initial stresses
Mathematical models
Numerical models
Propagation
Propagation regimes
Stress propagation
Tortuosity
Two dimensional models
Viscosity
Title Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling
URI https://dx.doi.org/10.1016/j.ijsolstr.2019.06.018
https://www.proquest.com/docview/2282433723
Volume 176-177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbo9gKHiqeg0JUPXMPGjyTOEVZFW6pyKtLeLNtx2Cwou9oNh1aC386Mk1CKKnHoLQ9PFHnGM-Nkvm8IOfVx7ATjLlLKZ5F0JYsU9yrKeFoy5qy1AR794zqd3MiraTLdIOMeC4NllZ3vb3168NbdlVE3m6NlVSHGl-NvJLAhEfM8wKiFVAHEN734g40U7XcW3Cbh6Fco4flZNQcFrxvkBWV54PHE5h__DlBvXHWIP5fb5FOXONLz9t12yIavd8nWKzrBPfL4UlBHIa2jVd9_hC5KCnHqDq7MEN3X0BkWwSzAdjwk4dTUBb3FVhF0Xf2G0TWd_SpW5uG-crREFFWAMlIskb-lCONdgTj1beE5Db104M4-ubn8-nM8ibr2CpETMm6iskgKa4wtpFFZIQTPYwOzBQtcuCzBuM2ldbJERhnHnYFcJImZMSyNjfNciAMyqBe1PyTUprJMnEvjXHGZFrkV3haZgiNmUeaIJP2catdxj2MLjHvdF5nNda8LjbrQWG3H1BEZvcgtW_aNdyXyXmX6LzvSECLelT3pday7lbzWHPakUoiMi8__8ehjsolnLWfkCRk0qwf_BbKZxg7Jh7MnNiQfz799n1wPg_E-A5VL-XI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADYhU7PnANjZdsR6hAZT2B1JtlOw5NqVLUhgNI_DszWcoiJA7cIscTRZ7xzDiZ94aQY-f7VjBuvTh2kSdtxryYu9iLeJgxZo0xFTz69i7sPcirftCfI90WC4NllY3vr3165a2bkU6zmp3nPEeML8ffSGBDwucJwqgXIBuIsH_DZf_sExwp6g8teE7C6V9gwsOTfAganpZIDMqSisgTu3_8HqF--OoqAF2skpUmc6Sn9cutkTlXrJPlL3yCG-R9VlFHIa-jeduAhI4zCoHqCUYGCO8r6QCrYMZgPA6ycKqLlD5irwg6zd9gdkEHr-lEv4xySzOEUVVYRoo18o8UcbwTEKeurjynVTMduLNJHi7O77s9r-mv4Fkh_dLL0iA1WptU6jhKheCJr2G1YIcLGwUYuLk0VmZIKWO51ZCMBD7TmoW-to4LsUXmi3Hhtgk1ocwCa0M_ibkM08QIZ9IohitmUGaHBO2aKtuQj2MPjJFqq8yGqtWFQl0oLLdj8Q7pzOSea_qNPyWSVmXqmyEpiBF_yu63OlbNVp4qDodSKUTExe4_Hn1EFnv3tzfq5vLueo8s4Z2aQHKfzJeTF3cAqU1pDivT_QBtZfoF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+influence+of+rock+inherent+heterogeneity+and+grain+size+on+hydraulic+fracturing+using+discrete+element+modeling&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Huang%2C+Liuke&rft.au=Liu%2C+Jianjun&rft.au=Zhang%2C+Fengshou&rft.au=Dontsov%2C+Egor&rft.date=2019-11-30&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.eissn=1879-2146&rft.volume=176-177&rft.spage=207&rft.epage=220&rft_id=info:doi/10.1016%2Fj.ijsolstr.2019.06.018&rft.externalDocID=S0020768319302951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon