Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling
The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical mode...
Saved in:
Published in | International journal of solids and structures Vol. 176-177; pp. 207 - 220 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical model while regular particle assembly is used as the reference. The rock inherent heterogeneity mainly affects the hydraulic fracture net pressure in the viscosity dominated regime and the effect is more profound in the toughness dominated regime. In the toughness dominated regime, in addition to the increase of net pressure relative to the regular particle sample, the hydraulic fracture profiles in the random particle sample also show larger tortuosity and asymmetry caused by the local heterogeneity, and the fracture growth of one of the wings can be temporarily arrested. Numerical simulations show that the effective toughness of the random particle sample is larger than that of the regular particle sample. This is caused by tortuosity, in which case the net pressure in the random particle sample is also affected by the local geometrical arrangements of the particles. Also, the apparent toughness is influenced by the magnitude of initial stress, which comes in addition to the tensile strength of the contact bond and the particle radius. The effect of stress anisotropy has limited effect on the hydraulic fracture propagation for both the viscosity and toughness dominated regimes. |
---|---|
AbstractList | The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated through two dimensional discrete element modeling. Random particle assembly is used to mimic rock inherent heterogeneity in the numerical model while regular particle assembly is used as the reference. The rock inherent heterogeneity mainly affects the hydraulic fracture net pressure in the viscosity dominated regime and the effect is more profound in the toughness dominated regime. In the toughness dominated regime, in addition to the increase of net pressure relative to the regular particle sample, the hydraulic fracture profiles in the random particle sample also show larger tortuosity and asymmetry caused by the local heterogeneity, and the fracture growth of one of the wings can be temporarily arrested. Numerical simulations show that the effective toughness of the random particle sample is larger than that of the regular particle sample. This is caused by tortuosity, in which case the net pressure in the random particle sample is also affected by the local geometrical arrangements of the particles. Also, the apparent toughness is influenced by the magnitude of initial stress, which comes in addition to the tensile strength of the contact bond and the particle radius. The effect of stress anisotropy has limited effect on the hydraulic fracture propagation for both the viscosity and toughness dominated regimes. |
Author | Liu, Jianjun Dontsov, Egor Zhang, Fengshou Damjanac, Branko Huang, Liuke |
Author_xml | – sequence: 1 givenname: Liuke surname: Huang fullname: Huang, Liuke organization: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China – sequence: 2 givenname: Jianjun surname: Liu fullname: Liu, Jianjun organization: School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China – sequence: 3 givenname: Fengshou orcidid: 0000-0002-4998-6259 surname: Zhang fullname: Zhang, Fengshou email: fengshou.zhang@tongji.edu.cn organization: Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China – sequence: 4 givenname: Egor surname: Dontsov fullname: Dontsov, Egor organization: W.D. Von Gonten Laboratories, LLC, Houston, TX 77043, USA – sequence: 5 givenname: Branko surname: Damjanac fullname: Damjanac, Branko organization: Itasca Consulting Group, Inc., Minneapolis, MN 55041, USA |
BookMark | eNqFkUuLHCEURiXMQHoefyEIWVfl-mirGrJIGCYPGMgmsxZbb3VbqdaOWiEdyH-PNZ1sspmNgn7nu3K8IhchBiTkFYOWAVNvxtaPOU65pJYD27SgWmD9C7JifbdpOJPqgqwAODSd6sVLcpXzCABSbGBFft__PE4x-bCjZY_Uh2GaMVikcaAp2m_1ZI8JQ6F7LJjiDgP6cqImOLpLxgea_a-aDnR_csnMk7d0SMaW-alzzsvqfLap4hQnPCxdh-hwqjc35HIwU8bbv_s1efxw__XuU_Pw5ePnu_cPjRUSSjO4tdsas3XS9J0Tgm_A1Odzvha2WyvFJJdbKweQPbPcmo7BGpgxTIGxyIW4Jq_PvccUv8-Yix7jnEIdqTnvuRSie0qpc8qmmHPCQR-TP5h00gz0olqP-p9qvajWoHRVXcG3_4HWF1N8DKUqmp7H351xrAp-eEw6W798gvMJbdEu-ucq_gDMGKSI |
CitedBy_id | crossref_primary_10_3389_fenrg_2023_1309591 crossref_primary_10_1021_acsomega_3c06867 crossref_primary_10_3389_feart_2024_1470723 crossref_primary_10_1016_j_cma_2023_116653 crossref_primary_10_3389_fenrg_2023_1231958 crossref_primary_10_1016_j_engfracmech_2023_109570 crossref_primary_10_1016_j_jrmge_2024_11_018 crossref_primary_10_1007_s00603_024_03867_w crossref_primary_10_1007_s00603_023_03554_2 crossref_primary_10_1016_j_compgeo_2024_106223 crossref_primary_10_1016_j_jrmge_2024_03_019 crossref_primary_10_1016_j_energy_2023_127434 crossref_primary_10_3390_w17050740 crossref_primary_10_1016_j_ijrmms_2021_104766 crossref_primary_10_1002_ese3_1808 crossref_primary_10_1016_j_geoen_2024_213415 crossref_primary_10_1016_j_enganabound_2021_08_003 crossref_primary_10_1007_s13369_022_07097_6 crossref_primary_10_1016_j_engfracmech_2022_108801 crossref_primary_10_3390_pr11113190 crossref_primary_10_1016_j_engfracmech_2021_107835 crossref_primary_10_1007_s12665_024_11648_5 crossref_primary_10_1007_s00603_024_04006_1 crossref_primary_10_1016_j_petsci_2022_08_003 crossref_primary_10_1016_j_compgeo_2022_104736 crossref_primary_10_1021_acsomega_3c07704 crossref_primary_10_1016_j_petsci_2024_08_004 crossref_primary_10_2139_ssrn_4127862 crossref_primary_10_1155_2023_1451823 crossref_primary_10_1155_2024_7883958 crossref_primary_10_3389_feart_2022_1116492 crossref_primary_10_1007_s00603_023_03374_4 crossref_primary_10_1080_15567036_2020_1757790 crossref_primary_10_1002_ese3_1664 crossref_primary_10_1007_s40948_024_00870_x crossref_primary_10_1016_j_heliyon_2023_e22346 crossref_primary_10_1002_ese3_1782 crossref_primary_10_1016_j_engfracmech_2024_110039 crossref_primary_10_1155_2023_4758872 crossref_primary_10_1016_j_petrol_2022_110903 crossref_primary_10_1002_nag_3801 crossref_primary_10_1016_j_geoen_2023_212034 crossref_primary_10_1016_j_jseaes_2023_105908 crossref_primary_10_1016_j_engfracmech_2022_108912 crossref_primary_10_1021_acsomega_3c08547 crossref_primary_10_1007_s00603_021_02396_0 crossref_primary_10_1007_s00603_024_04267_w crossref_primary_10_1155_2021_7092143 crossref_primary_10_1155_2023_6101374 crossref_primary_10_1016_j_jobe_2023_108390 crossref_primary_10_3389_feart_2023_1115054 crossref_primary_10_1016_j_ngib_2024_09_001 crossref_primary_10_1007_s00603_023_03752_y crossref_primary_10_1016_j_engfracmech_2023_109274 crossref_primary_10_1007_s00603_023_03299_y crossref_primary_10_1016_j_undsp_2023_03_006 crossref_primary_10_3390_su151914524 crossref_primary_10_1155_2024_8876708 crossref_primary_10_1021_acsomega_3c09992 crossref_primary_10_3389_fenrg_2024_1370970 crossref_primary_10_1016_j_geoen_2023_211856 crossref_primary_10_1016_j_jsg_2024_105111 crossref_primary_10_1002_ese3_1027 crossref_primary_10_3390_app13074218 crossref_primary_10_1007_s12517_021_07493_6 crossref_primary_10_3389_fphy_2023_1228006 crossref_primary_10_3389_fenrg_2024_1377400 crossref_primary_10_1016_j_geoen_2023_212025 crossref_primary_10_3389_feart_2023_1163295 crossref_primary_10_3389_fenrg_2023_1324934 crossref_primary_10_1016_j_geoen_2024_213119 crossref_primary_10_1016_j_tafmec_2023_103825 crossref_primary_10_2118_225433_PA crossref_primary_10_1016_j_geoen_2025_213675 crossref_primary_10_1007_s13202_025_01939_3 crossref_primary_10_1016_j_engfracmech_2019_106837 crossref_primary_10_3390_en17184664 crossref_primary_10_1016_j_egyr_2020_07_004 crossref_primary_10_3389_fenrg_2023_1338428 crossref_primary_10_1007_s00603_024_03954_y crossref_primary_10_1016_j_ijmecsci_2023_108171 crossref_primary_10_1007_s00603_023_03669_6 crossref_primary_10_1016_j_engfracmech_2022_109020 crossref_primary_10_1007_s00603_023_03290_7 crossref_primary_10_1016_j_marpetgeo_2023_106618 crossref_primary_10_1007_s00603_024_04108_w crossref_primary_10_1007_s00603_021_02450_x crossref_primary_10_1007_s11831_020_09501_6 crossref_primary_10_1155_2023_9509398 crossref_primary_10_3389_feart_2025_1567016 crossref_primary_10_3390_machines10020152 crossref_primary_10_1016_j_petrol_2020_107169 crossref_primary_10_1016_j_ijrmms_2023_105425 crossref_primary_10_1016_j_jrmge_2024_04_028 crossref_primary_10_3390_su151612625 crossref_primary_10_1007_s10064_024_03885_6 crossref_primary_10_1007_s13202_024_01872_x crossref_primary_10_1007_s10704_022_00659_7 crossref_primary_10_35767_gscpgbull_71_2_143 crossref_primary_10_3389_fenrg_2023_1328236 crossref_primary_10_1007_s10064_021_02515_9 crossref_primary_10_3389_fenrg_2023_1342254 crossref_primary_10_3390_math11194197 crossref_primary_10_3390_su17052252 crossref_primary_10_1177_10812865221117553 crossref_primary_10_1007_s00603_021_02422_1 crossref_primary_10_1016_j_geoen_2023_211436 crossref_primary_10_2113_2022_9708300 crossref_primary_10_3390_app13137537 crossref_primary_10_1016_j_compgeo_2024_106425 crossref_primary_10_1063_5_0245827 crossref_primary_10_1007_s40948_023_00586_4 crossref_primary_10_1016_j_jgsce_2023_205186 crossref_primary_10_3389_fenrg_2023_1337069 crossref_primary_10_1007_s13202_023_01612_7 crossref_primary_10_1016_j_jngse_2022_104678 crossref_primary_10_1007_s10064_024_03897_2 crossref_primary_10_1016_j_compgeo_2019_103374 crossref_primary_10_1371_journal_pone_0303251 crossref_primary_10_1016_j_fuel_2023_129155 crossref_primary_10_1038_s41598_024_83632_9 crossref_primary_10_1063_5_0234922 crossref_primary_10_1155_2023_6178829 crossref_primary_10_1016_j_compgeo_2024_107004 crossref_primary_10_1016_j_ijsolstr_2021_111293 crossref_primary_10_1016_j_petsci_2021_09_014 crossref_primary_10_1016_j_geoen_2024_212659 crossref_primary_10_3389_fenrg_2023_1321853 crossref_primary_10_1016_j_geoen_2024_212777 crossref_primary_10_1016_j_geoen_2024_213106 crossref_primary_10_1016_j_conbuildmat_2022_127907 crossref_primary_10_1016_j_jrmge_2021_10_015 crossref_primary_10_1016_j_enggeo_2020_105510 crossref_primary_10_1016_j_jngse_2020_103479 crossref_primary_10_1061__ASCE_GM_1943_5622_0002622 crossref_primary_10_3389_feart_2023_1256150 crossref_primary_10_1007_s10596_019_09925_5 crossref_primary_10_3389_fenrg_2023_1339895 crossref_primary_10_1021_acsomega_3c02364 crossref_primary_10_1155_2023_3819799 crossref_primary_10_2118_199883_PA crossref_primary_10_1016_j_petsci_2023_05_002 crossref_primary_10_3389_fenrg_2023_1272086 crossref_primary_10_1063_5_0251731 crossref_primary_10_1016_j_petsci_2024_07_014 crossref_primary_10_1016_j_energy_2023_128277 crossref_primary_10_1016_j_fuel_2023_129220 crossref_primary_10_3389_fphy_2023_1227917 crossref_primary_10_1007_s00603_024_04101_3 crossref_primary_10_1016_j_petsci_2021_09_026 crossref_primary_10_1007_s00603_023_03527_5 crossref_primary_10_1007_s00419_024_02754_8 crossref_primary_10_1016_j_engfracmech_2021_108227 crossref_primary_10_1016_j_jngse_2021_103887 crossref_primary_10_3389_fenrg_2024_1399477 crossref_primary_10_3390_app131810275 crossref_primary_10_1016_j_engfracmech_2020_107481 crossref_primary_10_3390_en13184718 crossref_primary_10_3389_feart_2024_1445254 crossref_primary_10_1016_j_compgeo_2023_105949 crossref_primary_10_1016_j_tust_2023_105263 crossref_primary_10_2118_214666_PA crossref_primary_10_2118_223585_PA crossref_primary_10_1016_j_engfracmech_2024_110259 crossref_primary_10_3390_app14146342 crossref_primary_10_1007_s10064_020_01865_0 crossref_primary_10_3389_fenrg_2023_1321114 crossref_primary_10_1016_j_compgeo_2023_105263 crossref_primary_10_1016_j_compgeo_2024_106251 crossref_primary_10_1016_j_ijsolstr_2021_111395 crossref_primary_10_1007_s10064_022_03027_w crossref_primary_10_1016_j_geoen_2023_212337 crossref_primary_10_3390_en18030708 |
Cites_doi | 10.1190/tle34060678.1 10.1029/2000JB900085 10.1016/j.engfracmech.2018.07.008 10.1061/(ASCE)EM.1943-7889.0000169 10.2118/197054-PA 10.1016/j.cma.2012.08.017 10.1016/j.jsg.2006.09.013 10.1016/S0894-9166(09)60295-0 10.1002/nag.2682 10.1016/j.ijrmms.2004.09.011 10.1007/s00603-019-01851-3 10.1016/j.compgeo.2015.06.007 10.1002/2016JB013365 10.1016/j.coal.2013.10.012 10.1016/j.ijrmms.2010.11.014 10.1016/j.compgeo.2015.09.009 10.1016/j.jngse.2017.10.012 10.1146/annurev-fluid-010814-014736 10.1016/j.cma.2015.09.021 10.1007/s40571-015-0081-4 10.1016/j.jngse.2017.07.008 10.1007/s10704-017-0192-4 10.2118/167626-PA 10.1016/j.apenergy.2015.03.023 10.1016/j.juogr.2014.07.001 10.2118/158935-PA 10.1115/1.4028192 10.1190/INT-2014-0274.1 10.1115/1.321162 10.1007/s10704-005-0154-0 10.1016/j.compgeo.2016.07.009 10.1007/s40571-015-0085-0 10.1016/j.petlm.2015.03.008 10.1002/jgrb.50204 10.1016/j.engfracmech.2018.01.011 10.1007/s10596-015-9532-5 10.1007/s00603-012-0359-2 10.1016/j.engfracmech.2011.11.012 10.1002/cnm.1111 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 30, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 30, 2019 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijsolstr.2019.06.018 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2146 |
EndPage | 220 |
ExternalDocumentID | 10_1016_j_ijsolstr_2019_06_018 S0020768319302951 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABVKL ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSZ T5K TN5 TR2 XPP ZMT ~02 ~G- 29J 6TJ AAFWJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SET SEW SMS SSH VH1 WUQ ZY4 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-fd5dbaabd4a87d33290a4392253c75661424bc4f0481c2ca710501aa160ace233 |
IEDL.DBID | IXB |
ISSN | 0020-7683 |
IngestDate | Fri Jul 25 02:33:50 EDT 2025 Tue Jul 01 01:20:00 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Fri Feb 23 02:26:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Grain size Inherent heterogeneity Hydraulic fracture Propagation regimes Discrete element modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-fd5dbaabd4a87d33290a4392253c75661424bc4f0481c2ca710501aa160ace233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4998-6259 |
PQID | 2282433723 |
PQPubID | 2045457 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2282433723 crossref_primary_10_1016_j_ijsolstr_2019_06_018 crossref_citationtrail_10_1016_j_ijsolstr_2019_06_018 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2019_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-30 |
PublicationDateYYYYMMDD | 2019-11-30 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of solids and structures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Damjanac, Detournay, Cundall (bib0008) 2016; 3 Lecampion (bib0023) 2009; 25 King (bib0021) 2010 Lecampion, Bunger, Zhang (bib0024) 2018; 49 Bunger, Detournay, Garagash (bib0003) 2005; 134 Detournay (bib0009) 2016; 48 Meyer, Bazan (bib0030) 2011 Carrier, Granet (bib0004) 2012; 79 Mas Ivars, Pierce, Darcel, Reyes-Montes, Potyondy, Paul Young, Cundall (bib0027) 2011; 48 Li, Xing, Liu, Liu (bib0025) 2015; 1 Tang, Wu, Zuo, Xiao, Sun, Ehlig-Economides (bib0048) 2019 Weng, Kresse, Cohen, Wu, Gu (bib0040) 2011; 26 Zhang, Dontsov, Mack (bib0044) 2017; 41 Wu, Olson (bib0041) 2015; 20 Middleton, Carey, Currier, Hyman, Kang, Karra, Jiménez-Martínez, Porter, Viswanathan (bib0031) 2015; 147 Zhang, Jeffrey, Thiercelin (bib0046) 2007; 29 Economides, Nolte (bib0011) 2000 Warpinski, Mayerhofer, Agarwal, Du (bib0038) 2013; 18 Gordeliy, Peirce (bib0014) 2013; 253 Zhang, Mack (bib0045) 2017; 46 Bažant, Salviato, Chau, Visnawathan, Zubelewicz (bib0002) 2014; 81 Dahi Taleghani, Gonzalez, Shojaei (bib0006) 2016; 71 Maxwell, Zhang, Damjanac (bib0029) 2015; 34 Miehe, Mauthe (bib0032) 2016; 304 Ouchi, Katiyar, Foster, Sharma (bib0034) 2015 Dontsov (bib0010) 2017; 205 Weng (bib0039) 2015; 9 Wang, Zhou, Chen, Xiao, Li, Zhao (bib0037) 2014; 121 Ishida, Chen, Bennour, Yamashita, Inui, Nagaya, Naoi, Chen, Nakayama, Nagano (bib0018) 2016; 121 Profit, Dutko, Yu, Cole, Angus, Baird (bib0036) 2016; 3 Maxwell, Cipolla (bib0028) 2011 Hazzard, Young, Maxwell (bib0015) 2000; 105 Khristianovic, Zheltov (bib0020) 1955 Zhang, Damjanac, Maxwell (bib0047) 2019 Hu, Garagash (bib0016) 2010; 136 Kresse, Weng, Gu, Wu (bib0022) 2013; 46 Zhang, Damjanac, Huang (bib0042) 2013; 118 Garagash, Detournay (bib0012) 2000; 67 Jeffrey, Bunger, LeCampion, Zhang, Chen, van As, Allison, De Beer, Dudley, Siebrits, Thiercelin, Mainguy (bib0019) 2009 Zhang, Dontsov (bib0043) 2018; 199 Huang (bib0017) 1999 Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (bib0026) 2017; 81 Potyondy, Cundall (bib0035) 2004; 41 Damjanac, Cundall (bib0007) 2016; 71 Gonçalves da Silva, Einstein (bib0013) 2018 Mikelić, Wheeler, Wick (bib0033) 2015; 19 Chen, Bunger, Zhang, Jeffrey (bib0005) 2009; 22 Aimene, Ouenes (bib0001) 2015; 3 Wang (10.1016/j.ijsolstr.2019.06.018_bib0037) 2014; 121 Weng (10.1016/j.ijsolstr.2019.06.018_bib0040) 2011; 26 Huang (10.1016/j.ijsolstr.2019.06.018_bib0017) 1999 Hazzard (10.1016/j.ijsolstr.2019.06.018_bib0015) 2000; 105 Dontsov (10.1016/j.ijsolstr.2019.06.018_bib0010) 2017; 205 Lecampion (10.1016/j.ijsolstr.2019.06.018_bib0024) 2018; 49 Potyondy (10.1016/j.ijsolstr.2019.06.018_bib0035) 2004; 41 Aimene (10.1016/j.ijsolstr.2019.06.018_bib0001) 2015; 3 Gonçalves da Silva (10.1016/j.ijsolstr.2019.06.018_bib0013) 2018 Middleton (10.1016/j.ijsolstr.2019.06.018_bib0031) 2015; 147 King (10.1016/j.ijsolstr.2019.06.018_bib0021) 2010 Ouchi (10.1016/j.ijsolstr.2019.06.018_bib0034) 2015 Profit (10.1016/j.ijsolstr.2019.06.018_bib0036) 2016; 3 Carrier (10.1016/j.ijsolstr.2019.06.018_bib0004) 2012; 79 Detournay (10.1016/j.ijsolstr.2019.06.018_bib0009) 2016; 48 Jeffrey (10.1016/j.ijsolstr.2019.06.018_bib0019) 2009 Kresse (10.1016/j.ijsolstr.2019.06.018_bib0022) 2013; 46 Dahi Taleghani (10.1016/j.ijsolstr.2019.06.018_bib0006) 2016; 71 Damjanac (10.1016/j.ijsolstr.2019.06.018_bib0008) 2016; 3 Ishida (10.1016/j.ijsolstr.2019.06.018_bib0018) 2016; 121 Miehe (10.1016/j.ijsolstr.2019.06.018_bib0032) 2016; 304 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0045) 2017; 46 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0043) 2018; 199 Garagash (10.1016/j.ijsolstr.2019.06.018_bib0012) 2000; 67 Khristianovic (10.1016/j.ijsolstr.2019.06.018_bib0020) 1955 Gordeliy (10.1016/j.ijsolstr.2019.06.018_bib0014) 2013; 253 Warpinski (10.1016/j.ijsolstr.2019.06.018_bib0038) 2013; 18 Lecampion (10.1016/j.ijsolstr.2019.06.018_bib0023) 2009; 25 Mas Ivars (10.1016/j.ijsolstr.2019.06.018_bib0027) 2011; 48 Maxwell (10.1016/j.ijsolstr.2019.06.018_bib0028) 2011 Lisjak (10.1016/j.ijsolstr.2019.06.018_bib0026) 2017; 81 Economides (10.1016/j.ijsolstr.2019.06.018_bib0011) 2000 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0042) 2013; 118 Bažant (10.1016/j.ijsolstr.2019.06.018_bib0002) 2014; 81 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0047) 2019 Weng (10.1016/j.ijsolstr.2019.06.018_bib0039) 2015; 9 Maxwell (10.1016/j.ijsolstr.2019.06.018_bib0029) 2015; 34 Mikelić (10.1016/j.ijsolstr.2019.06.018_bib0033) 2015; 19 Meyer (10.1016/j.ijsolstr.2019.06.018_bib0030) 2011 Wu (10.1016/j.ijsolstr.2019.06.018_bib0041) 2015; 20 Tang (10.1016/j.ijsolstr.2019.06.018_bib0048) 2019 Bunger (10.1016/j.ijsolstr.2019.06.018_bib0003) 2005; 134 Hu (10.1016/j.ijsolstr.2019.06.018_bib0016) 2010; 136 Chen (10.1016/j.ijsolstr.2019.06.018_bib0005) 2009; 22 Damjanac (10.1016/j.ijsolstr.2019.06.018_bib0007) 2016; 71 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0046) 2007; 29 Li (10.1016/j.ijsolstr.2019.06.018_bib0025) 2015; 1 Zhang (10.1016/j.ijsolstr.2019.06.018_bib0044) 2017; 41 |
References_xml | – volume: 3 start-page: SU71 year: 2015 end-page: SU88 ident: bib0001 article-title: Geomechanical modeling of hydraulic fractures interacting with natural fractures — validation with microseismic and tracer data from the Marcellus and Eagle Ford publication-title: Interpretation – volume: 105 start-page: 16683 year: 2000 end-page: 16697 ident: bib0015 article-title: Micromechanical modeling of cracking and failure in brittle rocks publication-title: J. Geophys. Res. Solid Earth – year: 2011 ident: bib0028 article-title: What does microseismicity tell us about hydraulic fracturing? publication-title: SPE Annu. Tech. Conf. Exhib – volume: 121 start-page: 8080 year: 2016 end-page: 8098 ident: bib0018 article-title: Features of CO publication-title: J. Geophys. Res. Solid Earth – volume: 253 start-page: 305 year: 2013 end-page: 322 ident: bib0014 article-title: Coupling schemes for modeling hydraulic fracture propagation using the XFEM publication-title: Comput. Methods Appl. Mech. Eng. – volume: 20 start-page: 337 year: 2015 end-page: 342 ident: bib0041 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells publication-title: SPE J – year: 2009 ident: bib0019 article-title: Measuring hydraulic fracture growth in naturally fractured rock publication-title: SPE Annual Technical Conference and Exhibition – volume: 3 start-page: 249 year: 2016 end-page: 261 ident: bib0008 article-title: Application of particle and lattice codes to simulation of hydraulic fracturing publication-title: Comput. Part. Mech. – volume: 3 start-page: 229 year: 2016 end-page: 248 ident: bib0036 article-title: Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs publication-title: Comput. Part. Mech. – volume: 46 start-page: 555 year: 2013 end-page: 568 ident: bib0022 article-title: Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations publication-title: Rock Mech. Rock Eng. – volume: 134 start-page: 175 year: 2005 end-page: 190 ident: bib0003 article-title: Toughness-dominated hydraulic fracture with leak-off publication-title: Int. J. Fract. – volume: 48 start-page: 219 year: 2011 end-page: 244 ident: bib0027 article-title: The synthetic rock mass approach for jointed rock mass modelling publication-title: Int. J. Rock Mech. Min. Sci. – year: 2019 ident: bib0047 article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling publication-title: Rock Mech. Rock Eng – volume: 81 start-page: 1 year: 2017 end-page: 18 ident: bib0026 article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses publication-title: Comput. Geotech. – volume: 34 start-page: 678 year: 2015 end-page: 683 ident: bib0029 article-title: Geomechanical modeling of induced seismicity resulting from hydraulic fracturing publication-title: Lead. Edge – volume: 46 start-page: 16 year: 2017 end-page: 25 ident: bib0045 article-title: Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment publication-title: J. Nat. Gas Sci. Eng. – year: 2000 ident: bib0011 article-title: Reservoir Stimulation – year: 2015 ident: bib0034 article-title: A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs publication-title: SPE Hydraulic Fracturing Technology Conference – volume: 81 year: 2014 ident: bib0002 article-title: Why fracking works publication-title: J. Appl. Mech. – volume: 49 start-page: 66 year: 2018 end-page: 83 ident: bib0024 article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends publication-title: J. Nat. Gas Sci. Eng. – volume: 205 start-page: 221 year: 2017 end-page: 237 ident: bib0010 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int. J. Fract. – volume: 22 start-page: 443 year: 2009 end-page: 452 ident: bib0005 article-title: Cohesive zone finite element-based modeling of hydraulic fractures publication-title: Acta Mech. Solida Sin. – year: 1955 ident: bib0020 article-title: Formation of Vertical Fractures by Means of Highly Viscous Liquid – volume: 19 start-page: 1171 year: 2015 end-page: 1195 ident: bib0033 article-title: Phase-field modeling of a fluid-driven fracture in a poroelastic medium publication-title: Comput. Geosci. – volume: 41 start-page: 1329 year: 2004 end-page: 1364 ident: bib0035 article-title: A bonded-particle model for rock publication-title: Int. J. Rock Mech. Min. Sci. – volume: 25 start-page: 121 year: 2009 end-page: 133 ident: bib0023 article-title: An extended finite element method for hydraulic fracture problems publication-title: Commun. Numer. Methods Eng. – volume: 1 start-page: 8 year: 2015 end-page: 15 ident: bib0025 article-title: A review on hydraulic fracturing of unconventional reservoir publication-title: Petroleum – volume: 199 start-page: 705 year: 2018 end-page: 720 ident: bib0043 article-title: Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop publication-title: Eng. Fract. Mech. – volume: 71 start-page: 283 year: 2016 end-page: 294 ident: bib0007 article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs publication-title: Comput. Geotech. – year: 2018 ident: bib0013 article-title: Physical processes involved in the laboratory hydraulic fracturing of granite: visual observations and interpretation publication-title: Eng. Fract. Mech – volume: 121 start-page: 1 year: 2014 end-page: 13 ident: bib0037 article-title: Simulation of hydraulic fracturing using particle flow method and application in a coal mine publication-title: Int. J. Coal Geol. – volume: 18 year: 2013 ident: bib0038 article-title: Hydraulic-fracture geomechanics and microseismic-source mechanisms publication-title: SPE J. – volume: 79 start-page: 312 year: 2012 end-page: 328 ident: bib0004 article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model publication-title: Eng. Fract. Mech. – volume: 147 start-page: 500 year: 2015 end-page: 509 ident: bib0031 article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2 publication-title: Appl. Energy – volume: 118 start-page: 2703 year: 2013 end-page: 2722 ident: bib0042 article-title: Coupled discrete element modeling of fluid injection into dense granular media publication-title: J. Geophys. Res. Solid Earth – volume: 41 start-page: 1430 year: 2017 end-page: 1452 ident: bib0044 article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 304 start-page: 619 year: 2016 end-page: 655 ident: bib0032 article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media publication-title: Comput. Methods Appl. Mech. Eng. – volume: 26 start-page: 368 year: 2011 end-page: 380 ident: bib0040 article-title: Modeling of hydraulic-fracture-network propagation in a naturally fractured formation publication-title: SPE Prod. Oper. – volume: 71 start-page: 361 year: 2016 end-page: 368 ident: bib0006 article-title: Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations publication-title: Comput. Geotech. – volume: 136 start-page: 1152 year: 2010 end-page: 1166 ident: bib0016 article-title: Plane-strain propagation of a fluid-driven crack in a permeable rock with fracture toughness publication-title: J. Eng. Mech. – year: 2010 ident: bib0021 article-title: Thirty years of gas shale fracturing: what have we learned? publication-title: SPE Annu. Tech. Conf. Exhib – year: 1999 ident: bib0017 article-title: Discrete Element Modeling of Tool-Rock Interaction – volume: 48 start-page: 311 year: 2016 end-page: 339 ident: bib0009 article-title: Mechanics of hydraulic fractures publication-title: Annu. Rev. Fluid Mech. – year: 2019 ident: bib0048 article-title: Investigation of rupture and slip mechanisms of hydraulic fracture in multiple-layered formations publication-title: SPE J – volume: 29 start-page: 396 year: 2007 end-page: 410 ident: bib0046 article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation publication-title: J. Struct. Geol. – year: 2011 ident: bib0030 article-title: A discrete fracture network model for hydraulically induced fractures - theory, parametric and case studies publication-title: SPE Hydraul. Fract. Technol. Conf – volume: 67 start-page: 183 year: 2000 end-page: 192 ident: bib0012 article-title: The tip region of a fluid-driven fracture in an elastic medium publication-title: J. Appl. Mech. – volume: 9 start-page: 114 year: 2015 end-page: 135 ident: bib0039 article-title: Modeling of complex hydraulic fractures in naturally fractured formation publication-title: J. Unconv. Oil Gas Resour. – volume: 34 start-page: 678 issue: 6 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0029 article-title: Geomechanical modeling of induced seismicity resulting from hydraulic fracturing publication-title: Lead. Edge doi: 10.1190/tle34060678.1 – volume: 105 start-page: 16683 year: 2000 ident: 10.1016/j.ijsolstr.2019.06.018_bib0015 article-title: Micromechanical modeling of cracking and failure in brittle rocks publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2000JB900085 – volume: 199 start-page: 705 year: 2018 ident: 10.1016/j.ijsolstr.2019.06.018_bib0043 article-title: Modeling hydraulic fracture propagation and proppant transport in a two-layer formation with stress drop publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.07.008 – volume: 136 start-page: 1152 year: 2010 ident: 10.1016/j.ijsolstr.2019.06.018_bib0016 article-title: Plane-strain propagation of a fluid-driven crack in a permeable rock with fracture toughness publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000169 – year: 2019 ident: 10.1016/j.ijsolstr.2019.06.018_bib0048 article-title: Investigation of rupture and slip mechanisms of hydraulic fracture in multiple-layered formations publication-title: SPE J doi: 10.2118/197054-PA – volume: 253 start-page: 305 year: 2013 ident: 10.1016/j.ijsolstr.2019.06.018_bib0014 article-title: Coupling schemes for modeling hydraulic fracture propagation using the XFEM publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.08.017 – volume: 29 start-page: 396 issue: 3 year: 2007 ident: 10.1016/j.ijsolstr.2019.06.018_bib0046 article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2006.09.013 – volume: 22 start-page: 443 year: 2009 ident: 10.1016/j.ijsolstr.2019.06.018_bib0005 article-title: Cohesive zone finite element-based modeling of hydraulic fractures publication-title: Acta Mech. Solida Sin. doi: 10.1016/S0894-9166(09)60295-0 – volume: 41 start-page: 1430 year: 2017 ident: 10.1016/j.ijsolstr.2019.06.018_bib0044 article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2682 – year: 2011 ident: 10.1016/j.ijsolstr.2019.06.018_bib0030 article-title: A discrete fracture network model for hydraulically induced fractures - theory, parametric and case studies publication-title: SPE Hydraul. Fract. Technol. Conf – volume: 41 start-page: 1329 year: 2004 ident: 10.1016/j.ijsolstr.2019.06.018_bib0035 article-title: A bonded-particle model for rock publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2004.09.011 – year: 2019 ident: 10.1016/j.ijsolstr.2019.06.018_bib0047 article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling publication-title: Rock Mech. Rock Eng doi: 10.1007/s00603-019-01851-3 – year: 1999 ident: 10.1016/j.ijsolstr.2019.06.018_bib0017 – year: 2009 ident: 10.1016/j.ijsolstr.2019.06.018_bib0019 article-title: Measuring hydraulic fracture growth in naturally fractured rock – volume: 71 start-page: 283 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0007 article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.06.007 – volume: 121 start-page: 8080 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0018 article-title: Features of CO 2 fracturing deduced from acoustic emission and microscopy in laboratory experiments publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013365 – volume: 121 start-page: 1 year: 2014 ident: 10.1016/j.ijsolstr.2019.06.018_bib0037 article-title: Simulation of hydraulic fracturing using particle flow method and application in a coal mine publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2013.10.012 – volume: 48 start-page: 219 year: 2011 ident: 10.1016/j.ijsolstr.2019.06.018_bib0027 article-title: The synthetic rock mass approach for jointed rock mass modelling publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2010.11.014 – volume: 71 start-page: 361 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0006 article-title: Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.09.009 – volume: 49 start-page: 66 year: 2018 ident: 10.1016/j.ijsolstr.2019.06.018_bib0024 article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.10.012 – volume: 48 start-page: 311 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0009 article-title: Mechanics of hydraulic fractures publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010814-014736 – volume: 304 start-page: 619 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0032 article-title: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.09.021 – volume: 3 start-page: 229 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0036 article-title: Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs publication-title: Comput. Part. Mech. doi: 10.1007/s40571-015-0081-4 – volume: 26 start-page: 368 year: 2011 ident: 10.1016/j.ijsolstr.2019.06.018_bib0040 article-title: Modeling of hydraulic-fracture-network propagation in a naturally fractured formation publication-title: SPE Prod. Oper. – volume: 46 start-page: 16 year: 2017 ident: 10.1016/j.ijsolstr.2019.06.018_bib0045 article-title: Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.07.008 – volume: 205 start-page: 221 year: 2017 ident: 10.1016/j.ijsolstr.2019.06.018_bib0010 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int. J. Fract. doi: 10.1007/s10704-017-0192-4 – year: 1955 ident: 10.1016/j.ijsolstr.2019.06.018_bib0020 – volume: 20 start-page: 337 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0041 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells publication-title: SPE J doi: 10.2118/167626-PA – volume: 147 start-page: 500 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0031 article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.03.023 – volume: 9 start-page: 114 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0039 article-title: Modeling of complex hydraulic fractures in naturally fractured formation publication-title: J. Unconv. Oil Gas Resour. doi: 10.1016/j.juogr.2014.07.001 – volume: 18 year: 2013 ident: 10.1016/j.ijsolstr.2019.06.018_bib0038 article-title: Hydraulic-fracture geomechanics and microseismic-source mechanisms publication-title: SPE J. doi: 10.2118/158935-PA – year: 2010 ident: 10.1016/j.ijsolstr.2019.06.018_bib0021 article-title: Thirty years of gas shale fracturing: what have we learned? publication-title: SPE Annu. Tech. Conf. Exhib – volume: 81 year: 2014 ident: 10.1016/j.ijsolstr.2019.06.018_bib0002 article-title: Why fracking works publication-title: J. Appl. Mech. doi: 10.1115/1.4028192 – volume: 3 start-page: SU71 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0001 article-title: Geomechanical modeling of hydraulic fractures interacting with natural fractures — validation with microseismic and tracer data from the Marcellus and Eagle Ford publication-title: Interpretation doi: 10.1190/INT-2014-0274.1 – volume: 67 start-page: 183 year: 2000 ident: 10.1016/j.ijsolstr.2019.06.018_bib0012 article-title: The tip region of a fluid-driven fracture in an elastic medium publication-title: J. Appl. Mech. doi: 10.1115/1.321162 – year: 2000 ident: 10.1016/j.ijsolstr.2019.06.018_bib0011 – year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0034 article-title: A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs – volume: 134 start-page: 175 year: 2005 ident: 10.1016/j.ijsolstr.2019.06.018_bib0003 article-title: Toughness-dominated hydraulic fracture with leak-off publication-title: Int. J. Fract. doi: 10.1007/s10704-005-0154-0 – volume: 81 start-page: 1 year: 2017 ident: 10.1016/j.ijsolstr.2019.06.018_bib0026 article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.07.009 – volume: 3 start-page: 249 year: 2016 ident: 10.1016/j.ijsolstr.2019.06.018_bib0008 article-title: Application of particle and lattice codes to simulation of hydraulic fracturing publication-title: Comput. Part. Mech. doi: 10.1007/s40571-015-0085-0 – volume: 1 start-page: 8 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0025 article-title: A review on hydraulic fracturing of unconventional reservoir publication-title: Petroleum doi: 10.1016/j.petlm.2015.03.008 – year: 2011 ident: 10.1016/j.ijsolstr.2019.06.018_bib0028 article-title: What does microseismicity tell us about hydraulic fracturing? publication-title: SPE Annu. Tech. Conf. Exhib – volume: 118 start-page: 2703 year: 2013 ident: 10.1016/j.ijsolstr.2019.06.018_bib0042 article-title: Coupled discrete element modeling of fluid injection into dense granular media publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50204 – year: 2018 ident: 10.1016/j.ijsolstr.2019.06.018_bib0013 article-title: Physical processes involved in the laboratory hydraulic fracturing of granite: visual observations and interpretation publication-title: Eng. Fract. Mech doi: 10.1016/j.engfracmech.2018.01.011 – volume: 19 start-page: 1171 year: 2015 ident: 10.1016/j.ijsolstr.2019.06.018_bib0033 article-title: Phase-field modeling of a fluid-driven fracture in a poroelastic medium publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9532-5 – volume: 46 start-page: 555 year: 2013 ident: 10.1016/j.ijsolstr.2019.06.018_bib0022 article-title: Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0359-2 – volume: 79 start-page: 312 year: 2012 ident: 10.1016/j.ijsolstr.2019.06.018_bib0004 article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2011.11.012 – volume: 25 start-page: 121 year: 2009 ident: 10.1016/j.ijsolstr.2019.06.018_bib0023 article-title: An extended finite element method for hydraulic fracture problems publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1111 |
SSID | ssj0004390 |
Score | 2.6350098 |
Snippet | The effects of rock inherent heterogeneity and grain size on hydraulic fracture initiation and propagation for different propagation regimes are investigated... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | Anisotropy Assembly Bonding Computer simulation Contact stresses Crack initiation Crack propagation Discrete element method Discrete element modeling Fracture mechanics Fracture toughness Grain size Heterogeneity Hydraulic fracture Hydraulic fracturing Hydraulics Inherent heterogeneity Initial stresses Mathematical models Numerical models Propagation Propagation regimes Stress propagation Tortuosity Two dimensional models Viscosity |
Title | Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling |
URI | https://dx.doi.org/10.1016/j.ijsolstr.2019.06.018 https://www.proquest.com/docview/2282433723 |
Volume | 176-177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbo9gKHiqeg0JUPXMPGjyTOEVZFW6pyKtLeLNtx2Cwou9oNh1aC386Mk1CKKnHoLQ9PFHnGM-Nkvm8IOfVx7ATjLlLKZ5F0JYsU9yrKeFoy5qy1AR794zqd3MiraTLdIOMeC4NllZ3vb3168NbdlVE3m6NlVSHGl-NvJLAhEfM8wKiFVAHEN734g40U7XcW3Cbh6Fco4flZNQcFrxvkBWV54PHE5h__DlBvXHWIP5fb5FOXONLz9t12yIavd8nWKzrBPfL4UlBHIa2jVd9_hC5KCnHqDq7MEN3X0BkWwSzAdjwk4dTUBb3FVhF0Xf2G0TWd_SpW5uG-crREFFWAMlIskb-lCONdgTj1beE5Db104M4-ubn8-nM8ibr2CpETMm6iskgKa4wtpFFZIQTPYwOzBQtcuCzBuM2ldbJERhnHnYFcJImZMSyNjfNciAMyqBe1PyTUprJMnEvjXHGZFrkV3haZgiNmUeaIJP2catdxj2MLjHvdF5nNda8LjbrQWG3H1BEZvcgtW_aNdyXyXmX6LzvSECLelT3pday7lbzWHPakUoiMi8__8ehjsolnLWfkCRk0qwf_BbKZxg7Jh7MnNiQfz799n1wPg_E-A5VL-XI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADYhU7PnANjZdsR6hAZT2B1JtlOw5NqVLUhgNI_DszWcoiJA7cIscTRZ7xzDiZ94aQY-f7VjBuvTh2kSdtxryYu9iLeJgxZo0xFTz69i7sPcirftCfI90WC4NllY3vr3165a2bkU6zmp3nPEeML8ffSGBDwucJwqgXIBuIsH_DZf_sExwp6g8teE7C6V9gwsOTfAganpZIDMqSisgTu3_8HqF--OoqAF2skpUmc6Sn9cutkTlXrJPlL3yCG-R9VlFHIa-jeduAhI4zCoHqCUYGCO8r6QCrYMZgPA6ycKqLlD5irwg6zd9gdkEHr-lEv4xySzOEUVVYRoo18o8UcbwTEKeurjynVTMduLNJHi7O77s9r-mv4Fkh_dLL0iA1WptU6jhKheCJr2G1YIcLGwUYuLk0VmZIKWO51ZCMBD7TmoW-to4LsUXmi3Hhtgk1ocwCa0M_ibkM08QIZ9IohitmUGaHBO2aKtuQj2MPjJFqq8yGqtWFQl0oLLdj8Q7pzOSea_qNPyWSVmXqmyEpiBF_yu63OlbNVp4qDodSKUTExe4_Hn1EFnv3tzfq5vLueo8s4Z2aQHKfzJeTF3cAqU1pDivT_QBtZfoF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+influence+of+rock+inherent+heterogeneity+and+grain+size+on+hydraulic+fracturing+using+discrete+element+modeling&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Huang%2C+Liuke&rft.au=Liu%2C+Jianjun&rft.au=Zhang%2C+Fengshou&rft.au=Dontsov%2C+Egor&rft.date=2019-11-30&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.eissn=1879-2146&rft.volume=176-177&rft.spage=207&rft.epage=220&rft_id=info:doi/10.1016%2Fj.ijsolstr.2019.06.018&rft.externalDocID=S0020768319302951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |