The UV/H2O2 process based on H2O2 in-situ generation for water disinfection
[Display omitted] •UV/H2O2 with in-situ produced H2O2 was more effective than UV for disinfection.•The two-electron ORR activity can be intensified by avoiding calcination of CLs.•The calcination of CLs resulted in less oxygen functional groups.•The calcination of CLs deteriorated the conductivity a...
Saved in:
Published in | Journal of hazardous materials letters Vol. 2; p. 100020 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•UV/H2O2 with in-situ produced H2O2 was more effective than UV for disinfection.•The two-electron ORR activity can be intensified by avoiding calcination of CLs.•The calcination of CLs resulted in less oxygen functional groups.•The calcination of CLs deteriorated the conductivity and ORR reaction kinetics.
Till now, the unprecedented global spread of novel coronavirus disease (nCOVID-19) threatened human health, economy as well as ecosystem services gravely. An efficient disinfection technology is highly demanded. Ultraviolet (UV)/H2O2 process seems like a potential candidate, in which H2O2 is an indispensable oxidant for HO· species production. In this work, UV/H2O2, which coupled with in-situ generated H2O2, was demonstrated as an effective process for disinfection than UV, which would play a significant role in sterilization and disinfection for water treatment. In addition, we investigated the effects of catalyst layer (CL) calcination on the performance of two-electron oxygen reduction reaction (ORR) for H2O2 generation. It is found that the two-electron ORR activity can be intensified by avoiding calcination of CL, which can be mainly due to much oxygen functional groups (CO and CO) as well as higher conductivity and reaction kinetics. |
---|---|
AbstractList | Till now, the unprecedented global spread of novel coronavirus disease (nCOVID-19) threatened human health, economy as well as ecosystem services gravely. An efficient disinfection technology is highly demanded. Ultraviolet (UV)/H2O2 process seems like a potential candidate, in which H2O2 is an indispensable oxidant for HO· species production. In this work, UV/H2O2, which coupled with in-situ generated H2O2, was demonstrated as an effective process for disinfection than UV, which would play a significant role in sterilization and disinfection for water treatment. In addition, we investigated the effects of catalyst layer (CL) calcination on the performance of two-electron oxygen reduction reaction (ORR) for H2O2 generation. It is found that the two-electron ORR activity can be intensified by avoiding calcination of CL, which can be mainly due to much oxygen functional groups (CO and CO) as well as higher conductivity and reaction kinetics. [Display omitted] •UV/H2O2 with in-situ produced H2O2 was more effective than UV for disinfection.•The two-electron ORR activity can be intensified by avoiding calcination of CLs.•The calcination of CLs resulted in less oxygen functional groups.•The calcination of CLs deteriorated the conductivity and ORR reaction kinetics. Till now, the unprecedented global spread of novel coronavirus disease (nCOVID-19) threatened human health, economy as well as ecosystem services gravely. An efficient disinfection technology is highly demanded. Ultraviolet (UV)/H2O2 process seems like a potential candidate, in which H2O2 is an indispensable oxidant for HO· species production. In this work, UV/H2O2, which coupled with in-situ generated H2O2, was demonstrated as an effective process for disinfection than UV, which would play a significant role in sterilization and disinfection for water treatment. In addition, we investigated the effects of catalyst layer (CL) calcination on the performance of two-electron oxygen reduction reaction (ORR) for H2O2 generation. It is found that the two-electron ORR activity can be intensified by avoiding calcination of CL, which can be mainly due to much oxygen functional groups (CO and CO) as well as higher conductivity and reaction kinetics. |
ArticleNumber | 100020 |
Author | Li, Nan An, Jingkun Liao, Chengmei Zhao, Qian Tian, Lili Wang, Xin |
Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0003-3983-3782 surname: Zhao fullname: Zhao, Qian organization: MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China – sequence: 2 givenname: Nan surname: Li fullname: Li, Nan email: nli@tju.edu.cn organization: Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 3 givenname: Chengmei surname: Liao fullname: Liao, Chengmei organization: MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China – sequence: 4 givenname: Lili surname: Tian fullname: Tian, Lili organization: MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China – sequence: 5 givenname: Jingkun surname: An fullname: An, Jingkun organization: Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 6 givenname: Xin surname: Wang fullname: Wang, Xin email: xinwang1@nankai.edu.cn organization: MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China |
BookMark | eNp9kM1KAzEURoNUsNa-gKt5gan5a0zAjRS1xUI3rduQSe60GcZJSUZFn96ZVkRcdHXDId93uecSDZrQAELXBE8IJuKmmuzMVz2hmJIOYEzxGRpSIUSuCMGDP-8LNE6p6r9IQhjDQ_S83kG2ebmZ0xXN9jFYSCkrTAKXhSY7UN_kybdv2RYaiKb1HS9DzD5MCzFzPvmmBNvjK3RemjrB-GeO0ObxYT2b58vV02J2v8wt47jNS-sKZ60SjnBjSKkw4Y5ZSS3DtyDw1EnKLUynBTCjqDQOq5JwIYALyRhlI7Q49rpgKr2P_tXETx2M1wcQ4lab2HpbgxaSS2mZcqRQXGKjTCH6fUpKApS4roseu2wMKUUof_sI1r1dXeneru7t6qPdLiT_haxvD2baaHx9Onp3jEIn6N1D1Ml6aCw4HzuL3QX-VPwbvU-Umw |
CitedBy_id | crossref_primary_10_1039_D4GC00387J crossref_primary_10_1007_s11356_023_31572_8 crossref_primary_10_1016_j_seppur_2021_120351 crossref_primary_10_1016_j_jenvman_2025_124886 crossref_primary_10_1038_s41467_025_57116_x crossref_primary_10_3389_fenvs_2023_1059259 crossref_primary_10_1039_D3TA02346J crossref_primary_10_1149_1945_7111_ad1a1f crossref_primary_10_1021_acs_nanolett_3c00696 crossref_primary_10_1016_j_envpol_2023_121009 crossref_primary_10_3390_w14111749 crossref_primary_10_2166_wst_2024_311 crossref_primary_10_1021_acs_inorgchem_4c00627 crossref_primary_10_3390_s22218252 |
Cites_doi | 10.1007/s00339-019-3205-5 10.1002/anie.201502396 10.1002/aenm.201802936 10.1016/j.eswa.2020.113909 10.1016/j.watres.2018.06.062 10.1021/acs.est.0c03233 10.1039/D0EW00279H 10.1016/j.watres.2019.114933 10.1016/B978-1-4831-9716-6.50013-6 10.1016/j.apcatb.2019.01.071 10.1016/j.ijhydene.2020.05.227 10.1016/j.jpowsour.2013.12.114 10.1002/aenm.201801909 10.1016/j.jcat.2017.11.008 10.1021/acs.est.5b06097 10.1016/j.watres.2016.07.037 10.1021/acsami.9b09942 10.1016/j.envpol.2019.113119 10.1016/j.jclepro.2019.118666 10.1002/smll.201200861 10.1016/j.jpowsour.2013.01.036 10.1038/s41929-017-0017-x 10.1016/j.electacta.2019.135206 10.1039/C8TA07561A 10.1016/j.cej.2019.123184 10.1002/wer.1070 10.1021/acsami.9b07765 10.3390/nano9060848 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.hazl.2021.100020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-9110 |
ExternalDocumentID | oai_doaj_org_article_68488c39d1b9480a9ab690149881e21d 10_1016_j_hazl_2021_100020 S2666911021000083 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 AAFWJ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c340t-fcdbdcc96d14aa1f9014d3c82c307e605d824ce55be3a928ad09f1466e4683323 |
IEDL.DBID | DOA |
ISSN | 2666-9110 |
IngestDate | Wed Aug 27 01:29:33 EDT 2025 Tue Jul 01 01:31:44 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 Fri Feb 23 02:42:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Disinfectant Hydrogen peroxide (H2O2) UV Oxygen functional groups ORR |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-fcdbdcc96d14aa1f9014d3c82c307e605d824ce55be3a928ad09f1466e4683323 |
ORCID | 0000-0003-3983-3782 |
OpenAccessLink | https://doaj.org/article/68488c39d1b9480a9ab690149881e21d |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68488c39d1b9480a9ab690149881e21d crossref_primary_10_1016_j_hazl_2021_100020 crossref_citationtrail_10_1016_j_hazl_2021_100020 elsevier_sciencedirect_doi_10_1016_j_hazl_2021_100020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liu (bib0055) 2015; 54 Mohan (bib0065) 2021; 405 Zhao (bib0125) 2019; 11 Zhou (bib0150) 2020; 126 Zhao (bib0120) 2018; 357 Yu, Tao, Cao (bib0095) 2019; 255 Chandra (bib0015) 2021; 165 Sun, Tyree, Huang (bib0090) 2016; 50 Stefanos (bib0085) 2018; 143 Kordek (bib0050) 2019; 9 Gao (bib0035) 2020; 330 Setlow (bib0080) 1967; 27 Zhao (bib0135) 2019; 9 Sanchez-Montes (bib0075) 2020; 6 Crittenden (bib0025) 2012 Zhang (bib0110) 2019; 11 Jiang (bib0045) 2018; 8 Moreira (bib0070) 2019; 248 Zhang (bib0115) 2020; 383 Zheng (bib0145) 2012; 8 Zhang (bib0105) 2016; 103 Zhao (bib0140) 2020; 46 Chen, Li, Zhao (bib0020) 2014; 254 Lu (bib0060) 2018; 1 Gu, Wen, Wu (bib0040) 2018; 6 Zeng (bib0100) 2020; 243 Zhao (bib0130) 2019; 91 Dong (bib0030) 2013; 232 An (bib0005) 2019; 164 An (bib0010) 2020; 54 Chandra (10.1016/j.hazl.2021.100020_bib0015) 2021; 165 Chen (10.1016/j.hazl.2021.100020_bib0020) 2014; 254 An (10.1016/j.hazl.2021.100020_bib0005) 2019; 164 Sanchez-Montes (10.1016/j.hazl.2021.100020_bib0075) 2020; 6 Crittenden (10.1016/j.hazl.2021.100020_bib0025) 2012 Kordek (10.1016/j.hazl.2021.100020_bib0050) 2019; 9 Zhao (10.1016/j.hazl.2021.100020_bib0130) 2019; 91 Moreira (10.1016/j.hazl.2021.100020_bib0070) 2019; 248 Zhang (10.1016/j.hazl.2021.100020_bib0110) 2019; 11 Zhang (10.1016/j.hazl.2021.100020_bib0105) 2016; 103 Zhao (10.1016/j.hazl.2021.100020_bib0140) 2020; 46 Gao (10.1016/j.hazl.2021.100020_bib0035) 2020; 330 Sun (10.1016/j.hazl.2021.100020_bib0090) 2016; 50 Zhou (10.1016/j.hazl.2021.100020_bib0150) 2020; 126 Zeng (10.1016/j.hazl.2021.100020_bib0100) 2020; 243 Zhao (10.1016/j.hazl.2021.100020_bib0120) 2018; 357 Zhao (10.1016/j.hazl.2021.100020_bib0125) 2019; 11 Gu (10.1016/j.hazl.2021.100020_bib0040) 2018; 6 Liu (10.1016/j.hazl.2021.100020_bib0055) 2015; 54 Setlow (10.1016/j.hazl.2021.100020_bib0080) 1967; 27 Mohan (10.1016/j.hazl.2021.100020_bib0065) 2021; 405 Stefanos (10.1016/j.hazl.2021.100020_bib0085) 2018; 143 Dong (10.1016/j.hazl.2021.100020_bib0030) 2013; 232 An (10.1016/j.hazl.2021.100020_bib0010) 2020; 54 Zhao (10.1016/j.hazl.2021.100020_bib0135) 2019; 9 Zhang (10.1016/j.hazl.2021.100020_bib0115) 2020; 383 Jiang (10.1016/j.hazl.2021.100020_bib0045) 2018; 8 Yu (10.1016/j.hazl.2021.100020_bib0095) 2019; 255 Zheng (10.1016/j.hazl.2021.100020_bib0145) 2012; 8 Lu (10.1016/j.hazl.2021.100020_bib0060) 2018; 1 |
References_xml | – volume: 383 year: 2020 ident: bib0115 article-title: Selective H publication-title: Chem. Eng. J. – volume: 143 start-page: 334 year: 2018 end-page: 345 ident: bib0085 article-title: Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment publication-title: Water Res. – volume: 50 start-page: 4448 year: 2016 end-page: 4458 ident: bib0090 article-title: Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H publication-title: Environ. Sci. Technol. – volume: 11 start-page: 27846 year: 2019 end-page: 27853 ident: bib0110 article-title: Carbon black oxidized by air calcination for enhanced H publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 35410 year: 2019 end-page: 35419 ident: bib0125 article-title: Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces – volume: 254 start-page: 316 year: 2014 end-page: 322 ident: bib0020 article-title: Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment publication-title: J. Power Sources – volume: 1 start-page: 156 year: 2018 end-page: 162 ident: bib0060 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials publication-title: Nat. Catal. – volume: 405 start-page: 126893 year: 2021 ident: bib0065 article-title: SARS-CoV-2 in environmental perspective: occurrence, persistence, surveillance, inactivation and challenges publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996) – volume: 232 start-page: 132 year: 2013 end-page: 138 ident: bib0030 article-title: Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells publication-title: J. Power Sources – volume: 8 start-page: 1801909 year: 2018 ident: bib0045 article-title: Selective electrochemical H publication-title: Adv. Energy Mater. – volume: 46 start-page: 3204 year: 2020 end-page: 3219 ident: bib0140 article-title: In-situ hydrogen peroxide synthesis with environmental applications in bioelectrochemical systems: a state-of-the-art review publication-title: Int. J. Hydrogen Energy – volume: 255 year: 2019 ident: bib0095 article-title: High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals publication-title: Environ. Pollut. – volume: 91 start-page: 598 year: 2019 end-page: 605 ident: bib0130 article-title: Heterotopic formaldehyde biodegradation through UV/H publication-title: Water Environ. Res. – volume: 8 start-page: 3550 year: 2012 end-page: 3566 ident: bib0145 article-title: Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction publication-title: Small – volume: 164 year: 2019 ident: bib0005 article-title: Highly efficient electro-generation of H publication-title: Water Res. – year: 2012 ident: bib0025 article-title: MWH’s Water Treatment: Principles and Design – volume: 27 start-page: 157 year: 1967 end-page: 209 ident: bib0080 article-title: The Effects of Ultraviolet Radiation and Photoreactivation* publication-title: Comprehensive Biochem. – volume: 54 start-page: 10916 year: 2020 end-page: 10925 ident: bib0010 article-title: Revealing decay mechanisms of H publication-title: Environ. Sci. Technol. – volume: 54 start-page: 6837 year: 2015 end-page: 6841 ident: bib0055 article-title: High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon publication-title: Angewandte Chemie-International Edition – volume: 243 year: 2020 ident: bib0100 article-title: Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation, UV/Hydrogen peroxide and UV/Peroxymonosulfate: efficiency and mechanism publication-title: J. Clean. Prod. – volume: 6 start-page: 2553 year: 2020 end-page: 2566 ident: bib0075 article-title: UVC-based advanced oxidation processes for simultaneous removal of microcontaminants and pathogens from simulated municipal wastewater at pilot plant scale publication-title: Environ. Sci.-Water Res. Technol. – volume: 357 start-page: 118 year: 2018 end-page: 126 ident: bib0120 article-title: Enhanced H publication-title: J. Catal. – volume: 330 year: 2020 ident: bib0035 article-title: Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process publication-title: Electrochim. Acta – volume: 248 start-page: 95 year: 2019 end-page: 107 ident: bib0070 article-title: Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: quinones and azo compounds employed as redox modifiers publication-title: Applied Catal. B-Environ. – volume: 103 start-page: 283 year: 2016 end-page: 292 ident: bib0105 article-title: Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H publication-title: Water Res. – volume: 165 start-page: 113909 year: 2021 ident: bib0015 article-title: Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble publication-title: Expert Syst. Appl. – volume: 9 start-page: 1802936 year: 2019 ident: bib0050 article-title: Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc–air batteries publication-title: Adv. Energy Mater. – volume: 126 year: 2020 ident: bib0150 article-title: Titanium nitride (TiN)-polytetrafluoroethylene (PTFE)-modified carbon paper used in PEM fuel cells: characterization and corrosion-resistant mechanism publication-title: Appl. Phys. A-Mater. Sci. Process. – volume: 9 year: 2019 ident: bib0135 article-title: Effect of sputtering temperature on fluorocarbon films: surface nanostructure and fluorine/carbon ratio publication-title: Nanomaterials – volume: 6 start-page: 21078 year: 2018 end-page: 21086 ident: bib0040 article-title: Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors publication-title: J. Mater. Chem. A – volume: 126 issue: 1 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0150 article-title: Titanium nitride (TiN)-polytetrafluoroethylene (PTFE)-modified carbon paper used in PEM fuel cells: characterization and corrosion-resistant mechanism publication-title: Appl. Phys. A-Mater. Sci. Process. doi: 10.1007/s00339-019-3205-5 – volume: 54 start-page: 6837 issue: 23 year: 2015 ident: 10.1016/j.hazl.2021.100020_bib0055 article-title: High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.201502396 – volume: 9 start-page: 1802936 issue: 4 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0050 article-title: Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc–air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802936 – volume: 165 start-page: 113909 year: 2021 ident: 10.1016/j.hazl.2021.100020_bib0015 article-title: Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113909 – volume: 143 start-page: 334 year: 2018 ident: 10.1016/j.hazl.2021.100020_bib0085 article-title: Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment publication-title: Water Res. doi: 10.1016/j.watres.2018.06.062 – volume: 54 start-page: 10916 issue: 17 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0010 article-title: Revealing decay mechanisms of H2O2-based electrochemical advanced oxidation processes after long-term operation for phenol degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c03233 – year: 2012 ident: 10.1016/j.hazl.2021.100020_bib0025 – volume: 6 start-page: 2553 issue: 9 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0075 article-title: UVC-based advanced oxidation processes for simultaneous removal of microcontaminants and pathogens from simulated municipal wastewater at pilot plant scale publication-title: Environ. Sci.-Water Res. Technol. doi: 10.1039/D0EW00279H – volume: 164 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0005 article-title: Highly efficient electro-generation of H2O2 by adjusting liquid-gas solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction publication-title: Water Res. doi: 10.1016/j.watres.2019.114933 – volume: 27 start-page: 157 year: 1967 ident: 10.1016/j.hazl.2021.100020_bib0080 article-title: The Effects of Ultraviolet Radiation and Photoreactivation* publication-title: Comprehensive Biochem. doi: 10.1016/B978-1-4831-9716-6.50013-6 – volume: 405 start-page: 126893 year: 2021 ident: 10.1016/j.hazl.2021.100020_bib0065 article-title: SARS-CoV-2 in environmental perspective: occurrence, persistence, surveillance, inactivation and challenges publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996) – volume: 248 start-page: 95 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0070 article-title: Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: quinones and azo compounds employed as redox modifiers publication-title: Applied Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.071 – volume: 46 start-page: 3204 issue: 4 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0140 article-title: In-situ hydrogen peroxide synthesis with environmental applications in bioelectrochemical systems: a state-of-the-art review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.227 – volume: 254 start-page: 316 year: 2014 ident: 10.1016/j.hazl.2021.100020_bib0020 article-title: Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.114 – volume: 8 start-page: 1801909 issue: 31 year: 2018 ident: 10.1016/j.hazl.2021.100020_bib0045 article-title: Selective electrochemical H2O2 production through two-electron oxygen electrochemistry publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801909 – volume: 357 start-page: 118 year: 2018 ident: 10.1016/j.hazl.2021.100020_bib0120 article-title: Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon publication-title: J. Catal. doi: 10.1016/j.jcat.2017.11.008 – volume: 50 start-page: 4448 issue: 8 year: 2016 ident: 10.1016/j.hazl.2021.100020_bib0090 article-title: Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/Peroxydisulfate advanced disinfection conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06097 – volume: 103 start-page: 283 year: 2016 ident: 10.1016/j.hazl.2021.100020_bib0105 article-title: Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS publication-title: Water Res. doi: 10.1016/j.watres.2016.07.037 – volume: 11 start-page: 35410 issue: 38 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0125 article-title: Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09942 – volume: 255 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0095 article-title: High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113119 – volume: 243 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0100 article-title: Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation, UV/Hydrogen peroxide and UV/Peroxymonosulfate: efficiency and mechanism publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118666 – volume: 8 start-page: 3550 issue: 23 year: 2012 ident: 10.1016/j.hazl.2021.100020_bib0145 article-title: Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction publication-title: Small doi: 10.1002/smll.201200861 – volume: 232 start-page: 132 year: 2013 ident: 10.1016/j.hazl.2021.100020_bib0030 article-title: Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.036 – volume: 1 start-page: 156 issue: 2 year: 2018 ident: 10.1016/j.hazl.2021.100020_bib0060 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials publication-title: Nat. Catal. doi: 10.1038/s41929-017-0017-x – volume: 330 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0035 article-title: Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135206 – volume: 6 start-page: 21078 issue: 42 year: 2018 ident: 10.1016/j.hazl.2021.100020_bib0040 article-title: Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07561A – volume: 383 year: 2020 ident: 10.1016/j.hazl.2021.100020_bib0115 article-title: Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123184 – volume: 91 start-page: 598 issue: 7 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0130 article-title: Heterotopic formaldehyde biodegradation through UV/H2O2 system with biosynthetic H2O2 publication-title: Water Environ. Res. doi: 10.1002/wer.1070 – volume: 11 start-page: 27846 issue: 31 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0110 article-title: Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07765 – volume: 9 issue: 6 year: 2019 ident: 10.1016/j.hazl.2021.100020_bib0135 article-title: Effect of sputtering temperature on fluorocarbon films: surface nanostructure and fluorine/carbon ratio publication-title: Nanomaterials doi: 10.3390/nano9060848 |
SSID | ssj0002811330 |
Score | 2.3805354 |
Snippet | [Display omitted]
•UV/H2O2 with in-situ produced H2O2 was more effective than UV for disinfection.•The two-electron ORR activity can be intensified by avoiding... Till now, the unprecedented global spread of novel coronavirus disease (nCOVID-19) threatened human health, economy as well as ecosystem services gravely. An... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100020 |
SubjectTerms | Disinfectant Hydrogen peroxide (H2O2) ORR Oxygen functional groups |
Title | The UV/H2O2 process based on H2O2 in-situ generation for water disinfection |
URI | https://dx.doi.org/10.1016/j.hazl.2021.100020 https://doaj.org/article/68488c39d1b9480a9ab690149881e21d |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAmxebRmhxVXBZFvbjireRVrUhX3Irgwd_uTNMuPa0XD-0h5FG-STLfpJMZQo6D80aGIJPUpjaRpZEJ1MwSINdScc1sZvFo4PYun0zl9VP2NEj1hT5hMTxwBO40VzDFnNCeWWidGm0s5lCSWikWOPO4-4LOGxhTr-2REQPjCw9YQAHluKLT7sZMdO56Md_434Ez9BJIMdn3QCu1wfsHymmgcMYbZL1jivQ8fuEmWQn1FrkBsdLp4-mE33P6Hp38KWoiT2c1bUurOplXzSd9bgNKI-4UiCn9AlL5QX01792v6m0yHV89XE6SLh9C4oRMm6R03nrndO6ZNIaVCIMXTnEHCzWAXeIVly5kmQ3CaK6MT3UJO2EeZK6E4GKHrNazOuwSqgFGZ52UooRHl0blHte3EY6npTobEdbjUbguWDjmrHgreq-w1wIxLBDDImI4IieLNu8xVMbS2hcI86ImhrluC0D4RSf84i_hj0jWC6noGENkAtBVtWTwvf8YfJ-sYZfxYuIBWW0-PsMhMJTGHrWTEd63P1e_b0Xesg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+UV%2FH2O2+process+based+on+H2O2+in-situ+generation+for+water+disinfection&rft.jtitle=Journal+of+hazardous+materials+letters&rft.au=Zhao%2C+Qian&rft.au=Li%2C+Nan&rft.au=Liao%2C+Chengmei&rft.au=Tian%2C+Lili&rft.date=2021-11-01&rft.issn=2666-9110&rft.eissn=2666-9110&rft.volume=2&rft.spage=100020&rft_id=info:doi/10.1016%2Fj.hazl.2021.100020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hazl_2021_100020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9110&client=summon |