A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete
•A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic...
Saved in:
Published in | International journal of impact engineering Vol. 103; pp. 124 - 137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic strength of concrete.•The recommended parameters are obtained to predict the strength of concrete that lack dynamic test data.
The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates. |
---|---|
AbstractList | The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates. •A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic strength of concrete.•The recommended parameters are obtained to predict the strength of concrete that lack dynamic test data. The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates. |
Author | Wang, Yang Wang, Guosheng Du, Xiuli Lu, Dechun |
Author_xml | – sequence: 1 givenname: Dechun surname: Lu fullname: Lu, Dechun email: dechun@bjut.edu.cn – sequence: 2 givenname: Guosheng surname: Wang fullname: Wang, Guosheng email: wangguosheng-12345@163.com – sequence: 3 givenname: Xiuli surname: Du fullname: Du, Xiuli email: duxiuli@bjut.edu.cn – sequence: 4 givenname: Yang surname: Wang fullname: Wang, Yang email: wangyang@mails.bjut.edu.cn |
BookMark | eNqFkE1LAzEURYNUsK3-BRlwPWMyX5kBF5biFwhuFNyFJPNiM0yTmmTE_ntTql24KTwID-65j5wZmhhrAKFLgjOCSX3dZ7rX6w2YjyzHhGaYxCEnaEoa2qZFhdsJmmJalCkti_czNPO-xzGIKzxFq0US6wZtgLuk2xq-1jIZjebfmg-JDy7WhlUinQ7gtDVJWPGQSGu87sD5uEIyDkGveYADf8Cs2kWlgwDn6FTxwcPF7ztHb_d3r8vH9Pnl4Wm5eE5lUeKQKilFSUWVcwK5IkJ2lWokJZQrAWULoslbURPFBeCKCt7VAvKc8g7XlWxLXMzR1b534-znCD6w3o7OxJOMtAWtm6bOaUzV-5R01nsHim1c_IPbMoLZzirr2Z9VtrPKMIlDInjzD5Q68BDNBMf1cBy_3eMQFXxpcMxLDUZCpx3IwDqrj1X8AEy5nd4 |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2025_140382 crossref_primary_10_1080_15376494_2024_2361447 crossref_primary_10_1061_JENMDT_EMENG_7143 crossref_primary_10_1088_1755_1315_371_4_042037 crossref_primary_10_3390_su16177544 crossref_primary_10_1061_JMCEE7_MTENG_17503 crossref_primary_10_1016_j_coldregions_2024_104361 crossref_primary_10_1016_j_istruc_2024_107931 crossref_primary_10_1016_j_mtcomm_2024_109946 crossref_primary_10_1016_j_jobe_2021_102466 crossref_primary_10_1080_15376494_2024_2372699 crossref_primary_10_1080_15376494_2024_2370034 crossref_primary_10_1016_j_cemconres_2022_106825 crossref_primary_10_3390_min12070851 crossref_primary_10_1016_j_engstruct_2024_118472 crossref_primary_10_1061__ASCE_EM_1943_7889_0001918 crossref_primary_10_1038_s41598_017_15700_2 crossref_primary_10_1016_j_tafmec_2019_102420 crossref_primary_10_1016_j_jobe_2023_107986 crossref_primary_10_1016_j_cscm_2023_e02531 crossref_primary_10_1016_j_ijimpeng_2023_104736 crossref_primary_10_1061_IJGNAI_GMENG_7735 crossref_primary_10_1007_s00603_023_03326_y crossref_primary_10_1080_15376494_2024_2439545 crossref_primary_10_1016_j_engfracmech_2022_108985 crossref_primary_10_1016_j_cscm_2025_e04254 crossref_primary_10_1016_j_engstruct_2024_118647 crossref_primary_10_1007_s11709_021_0790_0 crossref_primary_10_1016_j_ijrmms_2020_104394 crossref_primary_10_1016_j_engfailanal_2025_109369 crossref_primary_10_1016_j_conbuildmat_2018_07_203 crossref_primary_10_1088_2053_1591_abde12 crossref_primary_10_1002_ese3_1825 crossref_primary_10_1007_s43452_021_00248_w crossref_primary_10_1016_j_heliyon_2024_e36841 crossref_primary_10_1016_j_conbuildmat_2018_08_121 crossref_primary_10_1038_s41598_024_64204_3 crossref_primary_10_1515_rams_2025_0097 crossref_primary_10_3390_buildings14113392 crossref_primary_10_1061__ASCE_CF_1943_5509_0001591 crossref_primary_10_3390_buildings14061740 crossref_primary_10_1061__ASCE_EM_1943_7889_0001854 crossref_primary_10_1016_j_istruc_2023_105502 crossref_primary_10_1080_15376494_2024_2361053 crossref_primary_10_3390_ma18010139 crossref_primary_10_1016_j_cemconcomp_2022_104471 crossref_primary_10_3390_ma18010015 crossref_primary_10_1016_j_geoen_2023_212411 crossref_primary_10_3390_ma15010210 crossref_primary_10_1134_S1029959923010071 crossref_primary_10_1016_j_cscm_2024_e04112 crossref_primary_10_1155_2017_4106970 crossref_primary_10_1016_j_ijimpeng_2019_04_006 crossref_primary_10_1155_2021_5567019 crossref_primary_10_3390_ma15155164 crossref_primary_10_1016_j_susmat_2024_e01060 crossref_primary_10_1016_j_ijplas_2024_104211 crossref_primary_10_1016_j_cscm_2024_e03817 crossref_primary_10_1155_2022_4559169 crossref_primary_10_1016_j_prostr_2017_11_051 crossref_primary_10_1016_j_cscm_2024_e04182 crossref_primary_10_1016_j_compstruct_2023_117525 crossref_primary_10_1016_j_compstruct_2023_116677 crossref_primary_10_1016_j_conbuildmat_2024_138834 crossref_primary_10_1080_15376494_2024_2368669 crossref_primary_10_1061__ASCE_MT_1943_5533_0003594 crossref_primary_10_1007_s41062_024_01671_7 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_cemconcomp_2021_104034 crossref_primary_10_1016_j_ijimpeng_2024_104915 crossref_primary_10_1016_j_jobe_2023_107666 crossref_primary_10_1016_j_istruc_2021_02_005 crossref_primary_10_1016_j_cscm_2024_e03763 crossref_primary_10_1007_s10163_023_01811_8 crossref_primary_10_1016_j_engstruct_2024_119138 crossref_primary_10_1061__ASCE_EM_1943_7889_0001428 crossref_primary_10_1007_s00603_023_03429_6 crossref_primary_10_1088_1742_6596_2478_11_112016 crossref_primary_10_1016_j_cemconcomp_2018_10_009 crossref_primary_10_1016_j_cemconres_2019_105890 crossref_primary_10_1016_j_engfailanal_2021_105368 crossref_primary_10_1016_j_conbuildmat_2022_128270 crossref_primary_10_3389_fmats_2024_1502003 crossref_primary_10_1061_JENMDT_EMENG_7206 crossref_primary_10_1680_jmacr_23_00274 crossref_primary_10_1615_IntJMultCompEng_2023049685 crossref_primary_10_1016_j_cscm_2021_e00528 crossref_primary_10_1680_jmacr_24_00012 crossref_primary_10_1016_j_enbuild_2024_115159 crossref_primary_10_1016_j_mtcomm_2024_109920 crossref_primary_10_1061_JMCEE7_MTENG_19543 crossref_primary_10_1080_15376494_2024_2448302 crossref_primary_10_1016_j_conbuildmat_2025_139897 crossref_primary_10_1007_s11709_019_0588_5 crossref_primary_10_1080_15376494_2024_2313150 crossref_primary_10_1016_j_ijimpeng_2022_104306 crossref_primary_10_1016_j_ijimpeng_2019_04_019 crossref_primary_10_1016_j_ijimpeng_2018_09_018 crossref_primary_10_1016_j_jobe_2024_110540 crossref_primary_10_1016_j_engfracmech_2022_108772 crossref_primary_10_1016_j_ijimpeng_2017_07_007 crossref_primary_10_1016_j_engfailanal_2024_108607 crossref_primary_10_1016_j_ijimpeng_2017_07_006 crossref_primary_10_1016_j_coldregions_2022_103597 crossref_primary_10_3389_fbioe_2024_1511099 crossref_primary_10_1142_S2047684117500269 crossref_primary_10_1002_suco_202301092 crossref_primary_10_1111_ffe_13162 crossref_primary_10_1016_j_compstruc_2024_107515 crossref_primary_10_1016_j_cscm_2023_e01827 crossref_primary_10_3390_buildings14103312 crossref_primary_10_1016_j_conbuildmat_2024_138538 crossref_primary_10_1016_j_istruc_2024_107741 crossref_primary_10_1016_j_istruc_2024_107982 crossref_primary_10_3390_ma15092995 crossref_primary_10_1016_j_compositesb_2018_10_044 crossref_primary_10_1016_j_ijimpeng_2020_103763 crossref_primary_10_1016_j_cscm_2024_e03869 crossref_primary_10_1016_j_jmrt_2024_11_244 crossref_primary_10_1016_j_tafmec_2023_103757 |
Cites_doi | 10.1016/j.engfracmech.2004.01.012 10.1016/S0020-7683(02)00526-7 10.1016/S1365-1609(00)00049-6 10.1016/j.ijimpeng.2013.04.008 10.1088/0022-3727/24/8/041 10.1016/S0734-743X(97)00023-7 10.1016/j.conbuildmat.2013.05.063 10.1016/0013-7944(93)90024-M 10.1016/j.mechmat.2009.01.014 10.1016/j.ijsolstr.2013.08.030 10.1016/j.mechmat.2011.05.002 10.1016/j.ijsolstr.2003.09.019 10.1016/j.cemconcomp.2014.07.011 10.1016/j.ijimpeng.2010.10.030 10.1007/BF02472016 10.1007/s00603-013-0463-y 10.1016/j.compstruc.2015.10.003 10.1007/s00603-013-0408-5 10.1260/2041-4196.2.2.177 10.1016/S0734-743X(01)00020-3 10.12989/cac.2014.14.6.675 10.1007/BF02486201 10.1016/j.ijimpeng.2012.05.002 10.1088/0022-3727/22/12/014 10.1109/ICETCE.2011.5775828 10.1016/j.ijsolstr.2011.01.033 10.1016/j.ijimpeng.2009.04.009 10.1680/macr.1972.24.78.25 10.1016/j.ijimpeng.2005.05.008 10.1016/j.ijimpeng.2009.04.008 10.1007/s00419-012-0676-7 10.1016/j.mechmat.2009.05.008 10.1016/j.cemconres.2013.05.008 10.1080/14786437008238397 10.1016/j.ijsolstr.2008.04.002 10.1016/j.compositesb.2016.01.044 10.1260/2041-4196.1.4.443 10.1016/j.ijimpeng.2010.10.028 10.1016/j.conbuildmat.2013.07.022 10.4028/www.scientific.net/AMM.438-439.215 10.1016/j.mechmat.2005.06.004 10.1016/j.engfracmech.2015.09.002 10.1016/S0997-7538(98)80052-1 10.1016/S0167-6636(98)00015-5 10.1617/s11527-014-0322-7 10.1016/j.conbuildmat.2012.11.012 10.1115/1.2842350 10.1016/S0734-743X(00)00050-6 10.1061/(ASCE)CF.1943-5509.0000586 10.1590/S1679-78252013000400010 10.1061/(ASCE)EM.1943-7889.0000055 10.1680/macr.2007.59.1.45 10.1016/0001-6160(53)90029-7 10.1061/(ASCE)0733-9399(2004)130:12(1428) 10.1016/j.engfracmech.2005.01.012 10.1016/j.ijimpeng.2013.04.005 10.1016/j.ijimpeng.2006.10.013 10.1007/BF02473020 10.1016/0148-9062(89)90002-8 10.1007/BF00016585 10.1016/j.conbuildmat.2014.05.076 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV May 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV May 2017 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2017.01.011 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 137 |
ExternalDocumentID | 10_1016_j_ijimpeng_2017_01_011 S0734743X16303748 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS SSH 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-fccb47b52a1e2f1bcd5f8c717afbe49eb829b61fabe057bad6be227ad065c9403 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 25 07:44:36 EDT 2025 Thu Jul 17 06:04:21 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | S criterion Concrete Actual dynamic strength Physical mechanism Strain rate effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-fccb47b52a1e2f1bcd5f8c717afbe49eb829b61fabe057bad6be227ad065c9403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1937688627 |
PQPubID | 2045463 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1937688627 crossref_primary_10_1016_j_ijimpeng_2017_01_011 crossref_citationtrail_10_1016_j_ijimpeng_2017_01_011 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_01_011 |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zheng, Li, Wang (bib0039) 2005; 72 Liu, Ning (bib0015) 2009; 41 Zhang, Wu, Li, Huang (bib0055) 2009; 36 Hong, Kang (bib0012) 2015 Mu, Dancygier, Zhang, Yankelevsky (bib0052) 2012; 49 Reinhardt, Rossi, van Mier (bib0074) 1990; 23 Shi, Wang, Song, Shen (bib0021) 2014; 66 Hao, Hao (bib0033) 2013; 48 Du, Lu, Gong, Zhao (bib0061) 2010; 136 Grady (bib0040) 1995; Volume 370 Grady (bib0071) 1998; 29 Fujikake, Mori, Uebayashi, Ohno, Mizuno (bib0035) 2000; 8 Klepaczko, Brara (bib0005) 2001; 25 Zhou, Hao (bib0031) 2008; 45 Brara, Klepaczko (bib0008) 2006; 38 Lu, Li (bib0009) 2011; 38 Bažant, Bai, Ravindra (bib0044) 1993; 45 Hao, Hao (bib0032) 2011; 2 Hartmann, Pietzsch, Gebbeken (bib0036) 2010; 1 Ross, Tedesco, Kuennen (bib0004) 1995; 92 Wu, Zhang, Huang, Jin (bib0007) 2005; 32 Shen, Jimenez, Karakus, Xu (bib0072) 2014; 47 Antoun (bib0069) 1991 Li, Meng (bib0006) 2003; 40 Shang, Song (bib0019) 2013; 40 Zhang, Chen, Wang (bib0065) 2015; 37 Ožbolt, Bošnjak, Sola (bib0046) 2013; 50 Chen, Wu, Zhou (bib0010) 2015; 29 Lu, Xu (bib0075) 2004; 41 Su, Li, Wu, Wu, Li (bib0014) 2016; 91 Hao, Hao, Li (bib0050) 2013; 60 Stolarski (bib0023) 2004; 130 Yu, Lu, Cai (bib0041) 2013; 10 Ožbolt, Sharma, Reinhardt (bib0045) 2011; 48 Erzar, Forquin (bib0070) 2011; 43 Katayama, Itoh, Tamura, Beppu, Ohno (bib0037) 2007; 34 Hao, Hao, Jiang, Zhou (bib0027) 2013; 52 Martin, Chen, Song, Akers (bib0067) 2009; 41 Ožbolt, Bede, Sharma, Mayer (bib0025) 2015; 148 Cusatis (bib0024) 2011; 38 Campbell (bib0034) 1953; 1 Malvern, Ross (bib0068) 1985 Swan, Cook, Bruce, Meehan (bib0042) 1989; 26 Qi, Wang, Qian (bib0049) 2009; 36 Grote, Park, Zhou (bib0030) 2001; 25 Pajak (bib0057) 2011; 39 Yan, Lin, Chen (bib0020) 2009 Lu, Du, Wang, Zhou, Li (bib0062) 2016; 163 Chen, Li, Guan (bib0054) 2013; 438-439 Hughes, Gregory (bib0003) 1972; 24 Al-Salloum, Alsayed, Almusallam, Lbrahim, Abbas (bib0051) 2014; 14 Gary, Bailly (bib0016) 1998; 17 Tedesco, Ross (bib0029) 1998; 120 The International Federation for Structural Concrete (bib0022) 1990 Jones, Richart (bib0001) 1936; Volume 36 Kotsovos (bib0053) 2012; 82 Xu, Wen (bib0028) 2013; 60 Watstein (bib0002) 1953; 49 Zhang, Zhao (bib0043) 2014; 47 Zhao (bib0066) 2000; 37 Feng, Ruan, Pan, Collins, Bai, Wang (bib0011) 2015; 48 Rossi, Toutlemonde (bib0047) 1996; 29 Ross, Jerome, Tedesco, Hughes (bib0058) 1996; 93-M33 Yan, Lin (bib0017) 2007; 59 Bischoff, Perry (bib0073) 1991; 24 Al-Salloum, Almusallam, Ibrahim, Abbas, Alsayed (bib0013) 2015; 55 Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. In: International conference IEEE. Electric; 2011 technology and civil engineering, pp. 753–755. Kipp, Grady, Chen (bib0048) 1980; 16 Gebbeken, Greulich (bib0038) 2003 Chen, Wu, Zhou (bib0056) 2013; 47 Malvar, Crawford, Wesevich, Simons (bib0026) 1997; 19 Zheng, Li (bib0060) 2004; 71 Campbell, Ferguson (bib0059) 1970; 21 Gorham (bib0064) 1991; 24 Gorham (bib0063) 1989; 22 Al-Salloum (10.1016/j.ijimpeng.2017.01.011_bib0013) 2015; 55 Liu (10.1016/j.ijimpeng.2017.01.011_bib0015) 2009; 41 Zhang (10.1016/j.ijimpeng.2017.01.011_bib0065) 2015; 37 Hughes (10.1016/j.ijimpeng.2017.01.011_bib0003) 1972; 24 Swan (10.1016/j.ijimpeng.2017.01.011_bib0042) 1989; 26 Bažant (10.1016/j.ijimpeng.2017.01.011_bib0044) 1993; 45 Shen (10.1016/j.ijimpeng.2017.01.011_bib0072) 2014; 47 Grote (10.1016/j.ijimpeng.2017.01.011_bib0030) 2001; 25 Hartmann (10.1016/j.ijimpeng.2017.01.011_bib0036) 2010; 1 Du (10.1016/j.ijimpeng.2017.01.011_bib0061) 2010; 136 Lu (10.1016/j.ijimpeng.2017.01.011_bib0009) 2011; 38 Campbell (10.1016/j.ijimpeng.2017.01.011_bib0059) 1970; 21 Reinhardt (10.1016/j.ijimpeng.2017.01.011_bib0074) 1990; 23 Li (10.1016/j.ijimpeng.2017.01.011_bib0006) 2003; 40 Yan (10.1016/j.ijimpeng.2017.01.011_bib0017) 2007; 59 Rossi (10.1016/j.ijimpeng.2017.01.011_bib0047) 1996; 29 Hong (10.1016/j.ijimpeng.2017.01.011_bib0012) 2015 Chen (10.1016/j.ijimpeng.2017.01.011_bib0010) 2015; 29 Zhang (10.1016/j.ijimpeng.2017.01.011_bib0043) 2014; 47 Brara (10.1016/j.ijimpeng.2017.01.011_bib0008) 2006; 38 Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0025) 2015; 148 Qi (10.1016/j.ijimpeng.2017.01.011_bib0049) 2009; 36 Zheng (10.1016/j.ijimpeng.2017.01.011_bib0060) 2004; 71 Malvar (10.1016/j.ijimpeng.2017.01.011_bib0026) 1997; 19 Gorham (10.1016/j.ijimpeng.2017.01.011_bib0064) 1991; 24 Gary (10.1016/j.ijimpeng.2017.01.011_bib0016) 1998; 17 Grady (10.1016/j.ijimpeng.2017.01.011_bib0071) 1998; 29 Yan (10.1016/j.ijimpeng.2017.01.011_bib0020) 2009 The International Federation for Structural Concrete (10.1016/j.ijimpeng.2017.01.011_bib0022) 1990 Al-Salloum (10.1016/j.ijimpeng.2017.01.011_bib0051) 2014; 14 Kotsovos (10.1016/j.ijimpeng.2017.01.011_bib0053) 2012; 82 Shi (10.1016/j.ijimpeng.2017.01.011_bib0021) 2014; 66 Malvern (10.1016/j.ijimpeng.2017.01.011_bib0068) 1985 Su (10.1016/j.ijimpeng.2017.01.011_bib0014) 2016; 91 Erzar (10.1016/j.ijimpeng.2017.01.011_bib0070) 2011; 43 Stolarski (10.1016/j.ijimpeng.2017.01.011_bib0023) 2004; 130 Tedesco (10.1016/j.ijimpeng.2017.01.011_bib0029) 1998; 120 Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0046) 2013; 50 Lu (10.1016/j.ijimpeng.2017.01.011_bib0075) 2004; 41 Grady (10.1016/j.ijimpeng.2017.01.011_bib0040) 1995; Volume 370 Lu (10.1016/j.ijimpeng.2017.01.011_bib0062) 2016; 163 Feng (10.1016/j.ijimpeng.2017.01.011_bib0011) 2015; 48 Gorham (10.1016/j.ijimpeng.2017.01.011_bib0063) 1989; 22 Shang (10.1016/j.ijimpeng.2017.01.011_bib0019) 2013; 40 Fujikake (10.1016/j.ijimpeng.2017.01.011_bib0035) 2000; 8 Jones (10.1016/j.ijimpeng.2017.01.011_bib0001) 1936; Volume 36 Hao (10.1016/j.ijimpeng.2017.01.011_bib0050) 2013; 60 Zhang (10.1016/j.ijimpeng.2017.01.011_bib0055) 2009; 36 Wu (10.1016/j.ijimpeng.2017.01.011_bib0007) 2005; 32 Hao (10.1016/j.ijimpeng.2017.01.011_bib0027) 2013; 52 Watstein (10.1016/j.ijimpeng.2017.01.011_bib0002) 1953; 49 Yu (10.1016/j.ijimpeng.2017.01.011_bib0041) 2013; 10 Hao (10.1016/j.ijimpeng.2017.01.011_bib0032) 2011; 2 Ross (10.1016/j.ijimpeng.2017.01.011_bib0058) 1996; 93-M33 Ross (10.1016/j.ijimpeng.2017.01.011_bib0004) 1995; 92 Bischoff (10.1016/j.ijimpeng.2017.01.011_bib0073) 1991; 24 Kipp (10.1016/j.ijimpeng.2017.01.011_bib0048) 1980; 16 Cusatis (10.1016/j.ijimpeng.2017.01.011_bib0024) 2011; 38 Mu (10.1016/j.ijimpeng.2017.01.011_bib0052) 2012; 49 10.1016/j.ijimpeng.2017.01.011_bib0018 Katayama (10.1016/j.ijimpeng.2017.01.011_bib0037) 2007; 34 Antoun (10.1016/j.ijimpeng.2017.01.011_bib0069) 1991 Campbell (10.1016/j.ijimpeng.2017.01.011_bib0034) 1953; 1 Chen (10.1016/j.ijimpeng.2017.01.011_bib0054) 2013; 438-439 Martin (10.1016/j.ijimpeng.2017.01.011_bib0067) 2009; 41 Pajak (10.1016/j.ijimpeng.2017.01.011_bib0057) 2011; 39 Chen (10.1016/j.ijimpeng.2017.01.011_bib0056) 2013; 47 Zhao (10.1016/j.ijimpeng.2017.01.011_bib0066) 2000; 37 Xu (10.1016/j.ijimpeng.2017.01.011_bib0028) 2013; 60 Hao (10.1016/j.ijimpeng.2017.01.011_bib0033) 2013; 48 Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0045) 2011; 48 Zhou (10.1016/j.ijimpeng.2017.01.011_bib0031) 2008; 45 Klepaczko (10.1016/j.ijimpeng.2017.01.011_bib0005) 2001; 25 Gebbeken (10.1016/j.ijimpeng.2017.01.011_bib0038) 2003 Zheng (10.1016/j.ijimpeng.2017.01.011_bib0039) 2005; 72 |
References_xml | – start-page: 230 year: 1991 ident: bib0069 article-title: Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy – volume: 66 start-page: 181 year: 2014 end-page: 191 ident: bib0021 article-title: Dynamic multiaxial strength and failure criterion of dam concrete publication-title: Construction Build Mater – volume: 52 start-page: 63 year: 2013 end-page: 70 ident: bib0027 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cem Concr Res – volume: 48 start-page: 521 year: 2013 end-page: 532 ident: bib0033 article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests publication-title: Construction Build Mater – volume: 45 start-page: 393 year: 1993 end-page: 398 ident: bib0044 article-title: Fracture of rock: effect of loading rate publication-title: Eng Fracture Mech – year: 1985 ident: bib0068 article-title: Dynamic response of concrete and concrete structures – volume: 47 start-page: 357 year: 2014 end-page: 369 ident: bib0072 article-title: A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength publication-title: Rock Mech Rock Eng – volume: 91 start-page: 595 year: 2016 end-page: 609 ident: bib0014 article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete publication-title: Composites Part B – volume: 29 year: 2015 ident: bib0010 article-title: Compressive strength of concrete cores under high strain rates publication-title: J Perform Constr Facil – volume: 24 start-page: 25 year: 1972 end-page: 36 ident: bib0003 article-title: Concrete subjected to high rates of loading in compression publication-title: Mag Concr Res – volume: 148 start-page: 27 year: 2015 end-page: 41 ident: bib0025 article-title: Dynamic fracture of concrete publication-title: Eng Fract Mech – volume: 25 start-page: 387 year: 2001 end-page: 409 ident: bib0005 article-title: An experimental method for dynamic tensile testing of concrete by spalling publication-title: Int J Impact Eng – volume: 24 start-page: 1489 year: 1991 end-page: 1492 ident: bib0064 article-title: The effect of specimen dimensions on high strain rate compression measurements of copper publication-title: J Phys D – volume: 8 start-page: 511 year: 2000 end-page: 522 ident: bib0035 article-title: Dynamic properties of concrete materials with high rates of tri-axial compressive loads publication-title: Struct Under Shock Impact – volume: 34 start-page: 1546 year: 2007 end-page: 1561 ident: bib0037 article-title: Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials publication-title: Int J Impact Eng – start-page: 1 year: 2015 end-page: 5 ident: bib0012 article-title: Dynamic mechanical responses of concrete under the influence of extreme loads publication-title: Adv Civil Env Mater Res – volume: 19 start-page: 847 year: 1997 end-page: 873 ident: bib0026 article-title: A plasticity concrete material model for DYNA3D publication-title: Int J Impact Eng – volume: 60 start-page: 76 year: 2013 end-page: 81 ident: bib0028 article-title: Semi-empirical equations for the dynamic strength enhancement of concrete-like materials publication-title: Int J Impact Eng. – volume: 29 start-page: 116 year: 1996 end-page: 118 ident: bib0047 article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms publication-title: Mat Struct – volume: 93-M33 start-page: 293 year: 1996 end-page: 298 ident: bib0058 article-title: Moisture and strain rate effects on concrete strength publication-title: ACI Mater J – volume: 60 start-page: 82 year: 2013 end-page: 106 ident: bib0050 article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate publication-title: Int J Impact Eng. – volume: 47 start-page: 419 year: 2013 end-page: 430 ident: bib0056 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr Build Mater – volume: 38 start-page: 253 year: 2006 end-page: 267 ident: bib0008 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech Mater – volume: 48 start-page: 671 year: 2015 end-page: 681 ident: bib0011 article-title: Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings publication-title: Mater Struct – volume: 41 start-page: 1298 year: 2009 end-page: 1308 ident: bib0015 article-title: Mechanical behavior of reinforced concrete subjected to impact loading publication-title: Mech Mater – reference: Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. In: International conference IEEE. Electric; 2011 technology and civil engineering, pp. 753–755. – volume: 41 start-page: 131 year: 2004 end-page: 143 ident: bib0075 article-title: Modelling of dynamic behaviour of concrete materials under blast loading publication-title: Int J Solids Struct – volume: 10 start-page: 833 year: 2013 end-page: 844 ident: bib0041 article-title: The strain-rate effect of engineering materials and its unified model publication-title: Lat Am J solids struct – volume: Volume 36 start-page: 380 year: 1936 end-page: 392 ident: bib0001 article-title: The effect of testing speed on strength and elastic properties of concrete publication-title: Proceedings of the american society for testing materials – volume: 21 start-page: 63 year: 1970 end-page: 82 ident: bib0059 article-title: The temperature and strain-rate dependence of the shear strength of mild steel publication-title: Philos Mag – volume: 71 start-page: 2319 year: 2004 end-page: 2327 ident: bib0060 article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity publication-title: Eng Fract Mech – volume: 36 start-page: 1355 year: 2009 end-page: 1364 ident: bib0049 article-title: Strain-rate effects on the strength and fragmentation size of rocks publication-title: Int J Impact Eng. – volume: 50 start-page: 4270 year: 2013 end-page: 4278 ident: bib0046 article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study publication-title: Int J Solids Struct – year: 1990 ident: bib0022 article-title: CEB FIP model code – volume: 14 start-page: 675 year: 2014 end-page: 694 ident: bib0051 article-title: Investigations on the influence of radial confinement in the impact response of concrete publication-title: Comp Concr – volume: 49 start-page: 91 year: 2012 end-page: 102 ident: bib0052 article-title: Revisiting the dynamic compressive behavior of concrete-like materials publication-title: Int J Impact Eng – volume: 43 start-page: 505 year: 2011 end-page: 527 ident: bib0070 article-title: Experiments and mesoscopic modelling of dynamic testing of concrete publication-title: Mech Mater – volume: 32 start-page: 605 year: 2005 end-page: 617 ident: bib0007 article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete publication-title: Int J Impact Eng – volume: 38 start-page: 171 year: 2011 end-page: 180 ident: bib0009 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int J Impact Eng – volume: 49 start-page: 729 year: 1953 end-page: 744 ident: bib0002 article-title: Effect of straining rate on the compressive strength and elastic properties of concrete publication-title: Aci Mater J – volume: 25 start-page: 869 year: 2001 end-page: 886 ident: bib0030 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng – volume: 1 start-page: 706 year: 1953 end-page: 710 ident: bib0034 article-title: The dynamic yielding of mild steel publication-title: Acta Metallurgica – volume: 1 start-page: 443 year: 2010 end-page: 468 ident: bib0036 article-title: A hydrocode material model for concrete publication-title: Int J Protective Struct – volume: 47 start-page: 1411 year: 2014 end-page: 1478 ident: bib0043 article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials publication-title: Rock Mech Rock Eng – volume: 438-439 start-page: 215 year: 2013 end-page: 219 ident: bib0054 article-title: Effect of radial inertia confinement on dynamic compressive strength of concrete in SHPB tests publication-title: Appl Mech Mater – volume: Volume 370 start-page: 9 year: 1995 end-page: 20 ident: bib0040 article-title: Shock-wave properties of brittle solids publication-title: Proceedings of the conference of the American Physical Society Topical Group on shock compression of condensed matter – volume: 55 start-page: 34 year: 2015 end-page: 44 ident: bib0013 article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments publication-title: Cem Concr Composites – volume: 23 start-page: 213 year: 1990 end-page: 216 ident: bib0074 article-title: Joint investigation of concrete at high rates of loading publication-title: Mater Struct – volume: 45 start-page: 4648 year: 2008 end-page: 4661 ident: bib0031 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct – volume: 82 start-page: 1439 year: 2012 end-page: 1459 ident: bib0053 article-title: Structural-concrete analysis and design: need for a sound underlying theory publication-title: Arch Appl Mech – volume: 37 start-page: 1115 year: 2000 end-page: 1121 ident: bib0066 article-title: Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock publication-title: Int J Rock Mech Min – volume: 26 start-page: 135 year: 1989 end-page: 149 ident: bib0042 article-title: Strain rate effects in Kimmeridge bay shale publication-title: Int J Rock Mech Mining Sci Geomechanics Abstr – volume: 136 start-page: 51 year: 2010 end-page: 59 ident: bib0061 article-title: Nonlinear unified strength criterion for concrete under three dimensional stress states publication-title: J Eng Mech – volume: 38 start-page: 162 year: 2011 end-page: 170 ident: bib0024 article-title: Strain-rate effects on concrete behavior publication-title: Int J Impact Eng – volume: 41 start-page: 786 year: 2009 end-page: 798 ident: bib0067 article-title: Moisture effects on the high strain-rate behavior of sand publication-title: Mech Mater – volume: 72 start-page: 2316 year: 2005 end-page: 2327 ident: bib0039 article-title: A microscopic approach to rate effect on compressive strength of concrete publication-title: Eng Fract Mech – volume: 48 start-page: 1534 year: 2011 end-page: 1543 ident: bib0045 article-title: Dynamic fracture of concrete-compact tension specimen publication-title: Int J Solids Struct – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: bib0006 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct – volume: 37 start-page: 131 year: 2015 end-page: 136 ident: bib0065 article-title: Test study on the dynamic behavior of dry sands subjected to impact loading publication-title: Chin Earthq Eng J – volume: 130 start-page: 1428 year: 2004 end-page: 1435 ident: bib0023 article-title: Dynamic strength criterion for concrete publication-title: J Eng Mech – volume: 36 start-page: 1327 year: 2009 end-page: 1334 ident: bib0055 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments publication-title: Int J Impact Eng – volume: 22 start-page: 1888 year: 1989 end-page: 1893 ident: bib0063 article-title: Specimen inertia in high strain-rate compression publication-title: J Phys D – start-page: 89 year: 2009 end-page: 94 ident: bib0020 article-title: Dynamic properties of plain concrete in triaxial stress state publication-title: Aci Mater J – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: bib0073 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct – volume: 17 start-page: 403 year: 1998 end-page: 420 ident: bib0016 article-title: Behaviour of quasi-brittle material at high strain rate. Experiment and modelling publication-title: Eur J Mech A Solids – volume: 29 start-page: 181 year: 1998 end-page: 203 ident: bib0071 article-title: Shock-wave compression of brittle solids publication-title: Mech Mater – volume: 163 start-page: 41 year: 2016 end-page: 55 ident: bib0062 article-title: A three-dimensional elastoplastic constitutive model for concrete publication-title: Comput Struct – volume: 120 start-page: 398 year: 1998 end-page: 405 ident: bib0029 article-title: Strain-rate-dependent constitutive equations for concrete publication-title: J Pressure Vessel Technol – volume: 92 start-page: 37 year: 1995 end-page: 47 ident: bib0004 article-title: Effects of strain rate on concrete strength publication-title: Aci Mater J – start-page: 1 year: 2003 end-page: 16 ident: bib0038 article-title: A new material model for SFRC under high dynamic loadings publication-title: International conference on interaction of the effects of munitions with structures – volume: 40 start-page: 322 year: 2013 end-page: 329 ident: bib0019 article-title: Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete publication-title: Construction Build Mater – volume: 2 start-page: 177 year: 2011 end-page: 206 ident: bib0032 article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate publication-title: Int J Protective Struct – volume: 59 start-page: 45 year: 2007 end-page: 52 ident: bib0017 article-title: Dynamic behaviour of concrete in biaxial compression publication-title: Mag Concr Res – volume: 16 start-page: 471 year: 1980 end-page: 478 ident: bib0048 article-title: Strain-rate dependent fracture initiation publication-title: Int J Fract – volume: 39 start-page: 423 year: 2011 end-page: 428 ident: bib0057 article-title: The influence of the strain rate on the strength of concrete taking into account the experimental techniques publication-title: Arch Civil Eng Environ – volume: 71 start-page: 2319 year: 2004 ident: 10.1016/j.ijimpeng.2017.01.011_bib0060 article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2004.01.012 – volume: 40 start-page: 343 year: 2003 ident: 10.1016/j.ijimpeng.2017.01.011_bib0006 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00526-7 – volume: 37 start-page: 1115 year: 2000 ident: 10.1016/j.ijimpeng.2017.01.011_bib0066 article-title: Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(00)00049-6 – volume: 60 start-page: 82 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0050 article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate publication-title: Int J Impact Eng. doi: 10.1016/j.ijimpeng.2013.04.008 – volume: 24 start-page: 1489 year: 1991 ident: 10.1016/j.ijimpeng.2017.01.011_bib0064 article-title: The effect of specimen dimensions on high strain rate compression measurements of copper publication-title: J Phys D doi: 10.1088/0022-3727/24/8/041 – volume: 19 start-page: 847 year: 1997 ident: 10.1016/j.ijimpeng.2017.01.011_bib0026 article-title: A plasticity concrete material model for DYNA3D publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00023-7 – volume: 47 start-page: 419 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0056 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.05.063 – volume: 45 start-page: 393 year: 1993 ident: 10.1016/j.ijimpeng.2017.01.011_bib0044 article-title: Fracture of rock: effect of loading rate publication-title: Eng Fracture Mech doi: 10.1016/0013-7944(93)90024-M – volume: 41 start-page: 786 year: 2009 ident: 10.1016/j.ijimpeng.2017.01.011_bib0067 article-title: Moisture effects on the high strain-rate behavior of sand publication-title: Mech Mater doi: 10.1016/j.mechmat.2009.01.014 – volume: Volume 36 start-page: 380 year: 1936 ident: 10.1016/j.ijimpeng.2017.01.011_bib0001 article-title: The effect of testing speed on strength and elastic properties of concrete – volume: 50 start-page: 4270 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0046 article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.08.030 – volume: Volume 370 start-page: 9 year: 1995 ident: 10.1016/j.ijimpeng.2017.01.011_bib0040 article-title: Shock-wave properties of brittle solids – volume: 43 start-page: 505 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0070 article-title: Experiments and mesoscopic modelling of dynamic testing of concrete publication-title: Mech Mater doi: 10.1016/j.mechmat.2011.05.002 – volume: 41 start-page: 131 year: 2004 ident: 10.1016/j.ijimpeng.2017.01.011_bib0075 article-title: Modelling of dynamic behaviour of concrete materials under blast loading publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2003.09.019 – volume: 55 start-page: 34 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0013 article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments publication-title: Cem Concr Composites doi: 10.1016/j.cemconcomp.2014.07.011 – volume: 38 start-page: 162 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0024 article-title: Strain-rate effects on concrete behavior publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2010.10.030 – volume: 24 start-page: 425 year: 1991 ident: 10.1016/j.ijimpeng.2017.01.011_bib0073 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 8 start-page: 511 year: 2000 ident: 10.1016/j.ijimpeng.2017.01.011_bib0035 article-title: Dynamic properties of concrete materials with high rates of tri-axial compressive loads publication-title: Struct Under Shock Impact – volume: 47 start-page: 1411 year: 2014 ident: 10.1016/j.ijimpeng.2017.01.011_bib0043 article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0463-y – volume: 37 start-page: 131 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0065 article-title: Test study on the dynamic behavior of dry sands subjected to impact loading publication-title: Chin Earthq Eng J – volume: 163 start-page: 41 year: 2016 ident: 10.1016/j.ijimpeng.2017.01.011_bib0062 article-title: A three-dimensional elastoplastic constitutive model for concrete publication-title: Comput Struct doi: 10.1016/j.compstruc.2015.10.003 – volume: 47 start-page: 357 year: 2014 ident: 10.1016/j.ijimpeng.2017.01.011_bib0072 article-title: A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0408-5 – volume: 2 start-page: 177 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0032 article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate publication-title: Int J Protective Struct doi: 10.1260/2041-4196.2.2.177 – volume: 25 start-page: 869 year: 2001 ident: 10.1016/j.ijimpeng.2017.01.011_bib0030 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(01)00020-3 – volume: 14 start-page: 675 year: 2014 ident: 10.1016/j.ijimpeng.2017.01.011_bib0051 article-title: Investigations on the influence of radial confinement in the impact response of concrete publication-title: Comp Concr doi: 10.12989/cac.2014.14.6.675 – volume: 29 start-page: 116 year: 1996 ident: 10.1016/j.ijimpeng.2017.01.011_bib0047 article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms publication-title: Mat Struct doi: 10.1007/BF02486201 – volume: 39 start-page: 423 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0057 article-title: The influence of the strain rate on the strength of concrete taking into account the experimental techniques publication-title: Arch Civil Eng Environ – volume: 49 start-page: 91 year: 2012 ident: 10.1016/j.ijimpeng.2017.01.011_bib0052 article-title: Revisiting the dynamic compressive behavior of concrete-like materials publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.05.002 – volume: 22 start-page: 1888 year: 1989 ident: 10.1016/j.ijimpeng.2017.01.011_bib0063 article-title: Specimen inertia in high strain-rate compression publication-title: J Phys D doi: 10.1088/0022-3727/22/12/014 – ident: 10.1016/j.ijimpeng.2017.01.011_bib0018 doi: 10.1109/ICETCE.2011.5775828 – volume: 48 start-page: 1534 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0045 article-title: Dynamic fracture of concrete-compact tension specimen publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2011.01.033 – volume: 36 start-page: 1327 year: 2009 ident: 10.1016/j.ijimpeng.2017.01.011_bib0055 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.009 – volume: 24 start-page: 25 year: 1972 ident: 10.1016/j.ijimpeng.2017.01.011_bib0003 article-title: Concrete subjected to high rates of loading in compression publication-title: Mag Concr Res doi: 10.1680/macr.1972.24.78.25 – volume: 32 start-page: 605 year: 2005 ident: 10.1016/j.ijimpeng.2017.01.011_bib0007 article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.05.008 – volume: 36 start-page: 1355 year: 2009 ident: 10.1016/j.ijimpeng.2017.01.011_bib0049 article-title: Strain-rate effects on the strength and fragmentation size of rocks publication-title: Int J Impact Eng. doi: 10.1016/j.ijimpeng.2009.04.008 – volume: 82 start-page: 1439 year: 2012 ident: 10.1016/j.ijimpeng.2017.01.011_bib0053 article-title: Structural-concrete analysis and design: need for a sound underlying theory publication-title: Arch Appl Mech doi: 10.1007/s00419-012-0676-7 – volume: 41 start-page: 1298 year: 2009 ident: 10.1016/j.ijimpeng.2017.01.011_bib0015 article-title: Mechanical behavior of reinforced concrete subjected to impact loading publication-title: Mech Mater doi: 10.1016/j.mechmat.2009.05.008 – start-page: 89 year: 2009 ident: 10.1016/j.ijimpeng.2017.01.011_bib0020 article-title: Dynamic properties of plain concrete in triaxial stress state publication-title: Aci Mater J – volume: 93-M33 start-page: 293 year: 1996 ident: 10.1016/j.ijimpeng.2017.01.011_bib0058 article-title: Moisture and strain rate effects on concrete strength publication-title: ACI Mater J – volume: 52 start-page: 63 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0027 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.05.008 – volume: 21 start-page: 63 year: 1970 ident: 10.1016/j.ijimpeng.2017.01.011_bib0059 article-title: The temperature and strain-rate dependence of the shear strength of mild steel publication-title: Philos Mag doi: 10.1080/14786437008238397 – volume: 45 start-page: 4648 year: 2008 ident: 10.1016/j.ijimpeng.2017.01.011_bib0031 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.04.002 – start-page: 1 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0012 article-title: Dynamic mechanical responses of concrete under the influence of extreme loads publication-title: Adv Civil Env Mater Res – start-page: 230 year: 1991 ident: 10.1016/j.ijimpeng.2017.01.011_bib0069 – volume: 91 start-page: 595 year: 2016 ident: 10.1016/j.ijimpeng.2017.01.011_bib0014 article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete publication-title: Composites Part B doi: 10.1016/j.compositesb.2016.01.044 – volume: 1 start-page: 443 year: 2010 ident: 10.1016/j.ijimpeng.2017.01.011_bib0036 article-title: A hydrocode material model for concrete publication-title: Int J Protective Struct doi: 10.1260/2041-4196.1.4.443 – volume: 38 start-page: 171 year: 2011 ident: 10.1016/j.ijimpeng.2017.01.011_bib0009 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2010.10.028 – volume: 48 start-page: 521 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0033 article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests publication-title: Construction Build Mater doi: 10.1016/j.conbuildmat.2013.07.022 – start-page: 1 year: 2003 ident: 10.1016/j.ijimpeng.2017.01.011_bib0038 article-title: A new material model for SFRC under high dynamic loadings – volume: 438-439 start-page: 215 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0054 article-title: Effect of radial inertia confinement on dynamic compressive strength of concrete in SHPB tests publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.438-439.215 – volume: 38 start-page: 253 year: 2006 ident: 10.1016/j.ijimpeng.2017.01.011_bib0008 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech Mater doi: 10.1016/j.mechmat.2005.06.004 – volume: 148 start-page: 27 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0025 article-title: Dynamic fracture of concrete l-specimen: experimental and numerical study publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.09.002 – volume: 17 start-page: 403 year: 1998 ident: 10.1016/j.ijimpeng.2017.01.011_bib0016 article-title: Behaviour of quasi-brittle material at high strain rate. Experiment and modelling publication-title: Eur J Mech A Solids doi: 10.1016/S0997-7538(98)80052-1 – volume: 29 start-page: 181 year: 1998 ident: 10.1016/j.ijimpeng.2017.01.011_bib0071 article-title: Shock-wave compression of brittle solids publication-title: Mech Mater doi: 10.1016/S0167-6636(98)00015-5 – volume: 48 start-page: 671 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0011 article-title: Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings publication-title: Mater Struct doi: 10.1617/s11527-014-0322-7 – volume: 40 start-page: 322 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0019 article-title: Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete publication-title: Construction Build Mater doi: 10.1016/j.conbuildmat.2012.11.012 – volume: 120 start-page: 398 year: 1998 ident: 10.1016/j.ijimpeng.2017.01.011_bib0029 article-title: Strain-rate-dependent constitutive equations for concrete publication-title: J Pressure Vessel Technol doi: 10.1115/1.2842350 – volume: 25 start-page: 387 year: 2001 ident: 10.1016/j.ijimpeng.2017.01.011_bib0005 article-title: An experimental method for dynamic tensile testing of concrete by spalling publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(00)00050-6 – volume: 29 year: 2015 ident: 10.1016/j.ijimpeng.2017.01.011_bib0010 article-title: Compressive strength of concrete cores under high strain rates publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000586 – year: 1990 ident: 10.1016/j.ijimpeng.2017.01.011_bib0022 – volume: 10 start-page: 833 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0041 article-title: The strain-rate effect of engineering materials and its unified model publication-title: Lat Am J solids struct doi: 10.1590/S1679-78252013000400010 – year: 1985 ident: 10.1016/j.ijimpeng.2017.01.011_bib0068 – volume: 136 start-page: 51 year: 2010 ident: 10.1016/j.ijimpeng.2017.01.011_bib0061 article-title: Nonlinear unified strength criterion for concrete under three dimensional stress states publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000055 – volume: 59 start-page: 45 year: 2007 ident: 10.1016/j.ijimpeng.2017.01.011_bib0017 article-title: Dynamic behaviour of concrete in biaxial compression publication-title: Mag Concr Res doi: 10.1680/macr.2007.59.1.45 – volume: 1 start-page: 706 year: 1953 ident: 10.1016/j.ijimpeng.2017.01.011_bib0034 article-title: The dynamic yielding of mild steel publication-title: Acta Metallurgica doi: 10.1016/0001-6160(53)90029-7 – volume: 92 start-page: 37 year: 1995 ident: 10.1016/j.ijimpeng.2017.01.011_bib0004 article-title: Effects of strain rate on concrete strength publication-title: Aci Mater J – volume: 130 start-page: 1428 year: 2004 ident: 10.1016/j.ijimpeng.2017.01.011_bib0023 article-title: Dynamic strength criterion for concrete publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2004)130:12(1428) – volume: 72 start-page: 2316 year: 2005 ident: 10.1016/j.ijimpeng.2017.01.011_bib0039 article-title: A microscopic approach to rate effect on compressive strength of concrete publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2005.01.012 – volume: 60 start-page: 76 year: 2013 ident: 10.1016/j.ijimpeng.2017.01.011_bib0028 article-title: Semi-empirical equations for the dynamic strength enhancement of concrete-like materials publication-title: Int J Impact Eng. doi: 10.1016/j.ijimpeng.2013.04.005 – volume: 34 start-page: 1546 year: 2007 ident: 10.1016/j.ijimpeng.2017.01.011_bib0037 article-title: Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2006.10.013 – volume: 49 start-page: 729 year: 1953 ident: 10.1016/j.ijimpeng.2017.01.011_bib0002 article-title: Effect of straining rate on the compressive strength and elastic properties of concrete publication-title: Aci Mater J – volume: 23 start-page: 213 year: 1990 ident: 10.1016/j.ijimpeng.2017.01.011_bib0074 article-title: Joint investigation of concrete at high rates of loading publication-title: Mater Struct doi: 10.1007/BF02473020 – volume: 26 start-page: 135 year: 1989 ident: 10.1016/j.ijimpeng.2017.01.011_bib0042 article-title: Strain rate effects in Kimmeridge bay shale publication-title: Int J Rock Mech Mining Sci Geomechanics Abstr doi: 10.1016/0148-9062(89)90002-8 – volume: 16 start-page: 471 year: 1980 ident: 10.1016/j.ijimpeng.2017.01.011_bib0048 article-title: Strain-rate dependent fracture initiation publication-title: Int J Fract doi: 10.1007/BF00016585 – volume: 66 start-page: 181 year: 2014 ident: 10.1016/j.ijimpeng.2017.01.011_bib0021 article-title: Dynamic multiaxial strength and failure criterion of dam concrete publication-title: Construction Build Mater doi: 10.1016/j.conbuildmat.2014.05.076 |
SSID | ssj0017050 |
Score | 2.5435688 |
Snippet | •A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic... The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124 |
SubjectTerms | Actual dynamic strength Analysis Civil engineering Compression tests Concrete Criteria Dynamic tests Empirical equations Feasibility studies High strain rate Nonlinear systems Physical mechanism Physical properties S criterion Strain rate Strain rate effect Tensile tests Ultimate tensile strength |
Title | A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2017.01.011 https://www.proquest.com/docview/1937688627 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPaWtlDrzHZuMmao0jFttRLK3hbdje7GilRNEJP_e2dzQtbKB4KuSTshGR2MvNNmPkGoQcpZEj6oudQQmOHxp5yJJPGAbBhiSGZVDnt4uskHE_p8yyYNdCw6oWxZZWl7y98eu6tyytuqU13nSTuGxgnhfg3A0SRk6jYDnbKrJV3v-oyD8sWk_9ngcWOXb3XJbzsJssEwGk6tyVeLKfvJOSvAPXLVefxZ3SGTkvgiAfFs52jhk4v0MkeneAlWgxwWjBfiA2Oi1HzeJcm4hOMDNuukHSeLTD4CUvQvEpxthAZVuXIzi2camzrCwHE6lq-FlsZuxRAZqav0HT0-D4cO-UkBUf1qJc5RilJmQx8QbRviFRxYPoKMjlhpKaRln0_gj0zQmrAb1LEodS-z0QMAEVF1Otdoya8gL5BOGA9FkehNExCai2UBZgkjAF3GcFERFsoqNTHVUkzbqddfPCqnmzJK7Vzq3buEThIC7m13Log2jgoEVW7w3-YDIdocFC2XW0nLz_aLQcsC8kXpHjs9h-3vkPH9qwoimyjZrbZ6XsALpns5JbZQUeDp5fx5BvxN_FR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8QD-rB-BlR1B68DujoVnYkRIIKXISEW9N2LYyYQWAknvzbfd0HQRPDwWSXbX3L9vr63u8tr7-H0JMU0ict0XQooaFDw4ZyJJPGAbBhiSGZVCnt4mDo98b0deJNSqhT7IWxZZW57898euqt8yv1XJv1ZRTV38E4KcS_CSCKlETlAB1SWL62jUHta1vnYeli0h8tMNqxw3e2Cc9r0TwCdBpPbY0XS_k7CfkrQv3y1WkA6p6h0xw54nb2cueopOMLdLLDJ3iJZm0cZ9QXYoXDrNc83sSR-AQrw3ZbSDxNZhgchWVoXsQ4mYkEq7xn5xpONbYFhoBi9VZ-K7YwdiigzERfoXH3edTpOXkrBUc1aSNxjFKSMum5gmjXEKlCz7QUpHLCSE0DLVtuAJNmhNQA4KQIfaldl4kQEIoKaKN5jcrwAfoGYY81WRj40jAJubVQFmESPwTgZQQTAa0gr1AfVznPuG138cGLgrI5L9TOrdp5g8BBKqi-lVtmTBt7JYJidvgPm-EQDvbKVovp5PmqXXMAs5B9QY7Hbv_x6Ed01BsN-rz_Mny7Q8f2TlYhWUXlZLXR94BiEvmQWuk3dgXy3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlinear+dynamic+uniaxial+strength+criterion+that+considers+the+ultimate+dynamic+strength+of+concrete&rft.jtitle=International+journal+of+impact+engineering&rft.au=Lu%2C+Dechun&rft.au=Wang%2C+Guosheng&rft.au=Du%2C+Xiuli&rft.au=Wang%2C+Yang&rft.date=2017-05-01&rft.issn=0734-743X&rft.volume=103&rft.spage=124&rft.epage=137&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2017_01_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |