A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete

•A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 103; pp. 124 - 137
Main Authors Lu, Dechun, Wang, Guosheng, Du, Xiuli, Wang, Yang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic strength of concrete.•The recommended parameters are obtained to predict the strength of concrete that lack dynamic test data. The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates.
AbstractList The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates.
•A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic strength properties of concrete.•The proposed criterion is capable of describing the actual dynamic strength and reflecting the ultimate dynamic strength of concrete.•The recommended parameters are obtained to predict the strength of concrete that lack dynamic test data. The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do not distinguish between the actual dynamic strength related to the strain rate effects and the additional resistance caused by inertial effects. However, an ultimate strength of concrete exists at a strain rate exceeding a certain value. This paper proposes a nonlinear dynamic uniaxial strength criterion for concrete based on an analysis of the physical mechanisms governing the strain-rate-dependent behavior of concrete strength. The proposed criterion is able to describe the actual dynamic strength and to reflect the ultimate strength at a high strain rate of concrete. The results from two groups of dynamic uniaxial compressive tests and two groups of dynamic uniaxial tensile tests are used to verify the criterion. Moreover, the recommended physical parameters in the criterion are obtained by analyzing the statistical test results of dynamic uniaxial compression and tension. The recommended parameters can be used in the criterion to study the dynamic strength of concrete when dynamic tests are not feasible, and to predict the dynamic strength at high strain rates when tests are performed at lower strain rates.
Author Wang, Yang
Wang, Guosheng
Du, Xiuli
Lu, Dechun
Author_xml – sequence: 1
  givenname: Dechun
  surname: Lu
  fullname: Lu, Dechun
  email: dechun@bjut.edu.cn
– sequence: 2
  givenname: Guosheng
  surname: Wang
  fullname: Wang, Guosheng
  email: wangguosheng-12345@163.com
– sequence: 3
  givenname: Xiuli
  surname: Du
  fullname: Du, Xiuli
  email: duxiuli@bjut.edu.cn
– sequence: 4
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  email: wangyang@mails.bjut.edu.cn
BookMark eNqFkE1LAzEURYNUsK3-BRlwPWMyX5kBF5biFwhuFNyFJPNiM0yTmmTE_ntTql24KTwID-65j5wZmhhrAKFLgjOCSX3dZ7rX6w2YjyzHhGaYxCEnaEoa2qZFhdsJmmJalCkti_czNPO-xzGIKzxFq0US6wZtgLuk2xq-1jIZjebfmg-JDy7WhlUinQ7gtDVJWPGQSGu87sD5uEIyDkGveYADf8Cs2kWlgwDn6FTxwcPF7ztHb_d3r8vH9Pnl4Wm5eE5lUeKQKilFSUWVcwK5IkJ2lWokJZQrAWULoslbURPFBeCKCt7VAvKc8g7XlWxLXMzR1b534-znCD6w3o7OxJOMtAWtm6bOaUzV-5R01nsHim1c_IPbMoLZzirr2Z9VtrPKMIlDInjzD5Q68BDNBMf1cBy_3eMQFXxpcMxLDUZCpx3IwDqrj1X8AEy5nd4
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2025_140382
crossref_primary_10_1080_15376494_2024_2361447
crossref_primary_10_1061_JENMDT_EMENG_7143
crossref_primary_10_1088_1755_1315_371_4_042037
crossref_primary_10_3390_su16177544
crossref_primary_10_1061_JMCEE7_MTENG_17503
crossref_primary_10_1016_j_coldregions_2024_104361
crossref_primary_10_1016_j_istruc_2024_107931
crossref_primary_10_1016_j_mtcomm_2024_109946
crossref_primary_10_1016_j_jobe_2021_102466
crossref_primary_10_1080_15376494_2024_2372699
crossref_primary_10_1080_15376494_2024_2370034
crossref_primary_10_1016_j_cemconres_2022_106825
crossref_primary_10_3390_min12070851
crossref_primary_10_1016_j_engstruct_2024_118472
crossref_primary_10_1061__ASCE_EM_1943_7889_0001918
crossref_primary_10_1038_s41598_017_15700_2
crossref_primary_10_1016_j_tafmec_2019_102420
crossref_primary_10_1016_j_jobe_2023_107986
crossref_primary_10_1016_j_cscm_2023_e02531
crossref_primary_10_1016_j_ijimpeng_2023_104736
crossref_primary_10_1061_IJGNAI_GMENG_7735
crossref_primary_10_1007_s00603_023_03326_y
crossref_primary_10_1080_15376494_2024_2439545
crossref_primary_10_1016_j_engfracmech_2022_108985
crossref_primary_10_1016_j_cscm_2025_e04254
crossref_primary_10_1016_j_engstruct_2024_118647
crossref_primary_10_1007_s11709_021_0790_0
crossref_primary_10_1016_j_ijrmms_2020_104394
crossref_primary_10_1016_j_engfailanal_2025_109369
crossref_primary_10_1016_j_conbuildmat_2018_07_203
crossref_primary_10_1088_2053_1591_abde12
crossref_primary_10_1002_ese3_1825
crossref_primary_10_1007_s43452_021_00248_w
crossref_primary_10_1016_j_heliyon_2024_e36841
crossref_primary_10_1016_j_conbuildmat_2018_08_121
crossref_primary_10_1038_s41598_024_64204_3
crossref_primary_10_1515_rams_2025_0097
crossref_primary_10_3390_buildings14113392
crossref_primary_10_1061__ASCE_CF_1943_5509_0001591
crossref_primary_10_3390_buildings14061740
crossref_primary_10_1061__ASCE_EM_1943_7889_0001854
crossref_primary_10_1016_j_istruc_2023_105502
crossref_primary_10_1080_15376494_2024_2361053
crossref_primary_10_3390_ma18010139
crossref_primary_10_1016_j_cemconcomp_2022_104471
crossref_primary_10_3390_ma18010015
crossref_primary_10_1016_j_geoen_2023_212411
crossref_primary_10_3390_ma15010210
crossref_primary_10_1134_S1029959923010071
crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_1155_2017_4106970
crossref_primary_10_1016_j_ijimpeng_2019_04_006
crossref_primary_10_1155_2021_5567019
crossref_primary_10_3390_ma15155164
crossref_primary_10_1016_j_susmat_2024_e01060
crossref_primary_10_1016_j_ijplas_2024_104211
crossref_primary_10_1016_j_cscm_2024_e03817
crossref_primary_10_1155_2022_4559169
crossref_primary_10_1016_j_prostr_2017_11_051
crossref_primary_10_1016_j_cscm_2024_e04182
crossref_primary_10_1016_j_compstruct_2023_117525
crossref_primary_10_1016_j_compstruct_2023_116677
crossref_primary_10_1016_j_conbuildmat_2024_138834
crossref_primary_10_1080_15376494_2024_2368669
crossref_primary_10_1061__ASCE_MT_1943_5533_0003594
crossref_primary_10_1007_s41062_024_01671_7
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_cemconcomp_2021_104034
crossref_primary_10_1016_j_ijimpeng_2024_104915
crossref_primary_10_1016_j_jobe_2023_107666
crossref_primary_10_1016_j_istruc_2021_02_005
crossref_primary_10_1016_j_cscm_2024_e03763
crossref_primary_10_1007_s10163_023_01811_8
crossref_primary_10_1016_j_engstruct_2024_119138
crossref_primary_10_1061__ASCE_EM_1943_7889_0001428
crossref_primary_10_1007_s00603_023_03429_6
crossref_primary_10_1088_1742_6596_2478_11_112016
crossref_primary_10_1016_j_cemconcomp_2018_10_009
crossref_primary_10_1016_j_cemconres_2019_105890
crossref_primary_10_1016_j_engfailanal_2021_105368
crossref_primary_10_1016_j_conbuildmat_2022_128270
crossref_primary_10_3389_fmats_2024_1502003
crossref_primary_10_1061_JENMDT_EMENG_7206
crossref_primary_10_1680_jmacr_23_00274
crossref_primary_10_1615_IntJMultCompEng_2023049685
crossref_primary_10_1016_j_cscm_2021_e00528
crossref_primary_10_1680_jmacr_24_00012
crossref_primary_10_1016_j_enbuild_2024_115159
crossref_primary_10_1016_j_mtcomm_2024_109920
crossref_primary_10_1061_JMCEE7_MTENG_19543
crossref_primary_10_1080_15376494_2024_2448302
crossref_primary_10_1016_j_conbuildmat_2025_139897
crossref_primary_10_1007_s11709_019_0588_5
crossref_primary_10_1080_15376494_2024_2313150
crossref_primary_10_1016_j_ijimpeng_2022_104306
crossref_primary_10_1016_j_ijimpeng_2019_04_019
crossref_primary_10_1016_j_ijimpeng_2018_09_018
crossref_primary_10_1016_j_jobe_2024_110540
crossref_primary_10_1016_j_engfracmech_2022_108772
crossref_primary_10_1016_j_ijimpeng_2017_07_007
crossref_primary_10_1016_j_engfailanal_2024_108607
crossref_primary_10_1016_j_ijimpeng_2017_07_006
crossref_primary_10_1016_j_coldregions_2022_103597
crossref_primary_10_3389_fbioe_2024_1511099
crossref_primary_10_1142_S2047684117500269
crossref_primary_10_1002_suco_202301092
crossref_primary_10_1111_ffe_13162
crossref_primary_10_1016_j_compstruc_2024_107515
crossref_primary_10_1016_j_cscm_2023_e01827
crossref_primary_10_3390_buildings14103312
crossref_primary_10_1016_j_conbuildmat_2024_138538
crossref_primary_10_1016_j_istruc_2024_107741
crossref_primary_10_1016_j_istruc_2024_107982
crossref_primary_10_3390_ma15092995
crossref_primary_10_1016_j_compositesb_2018_10_044
crossref_primary_10_1016_j_ijimpeng_2020_103763
crossref_primary_10_1016_j_cscm_2024_e03869
crossref_primary_10_1016_j_jmrt_2024_11_244
crossref_primary_10_1016_j_tafmec_2023_103757
Cites_doi 10.1016/j.engfracmech.2004.01.012
10.1016/S0020-7683(02)00526-7
10.1016/S1365-1609(00)00049-6
10.1016/j.ijimpeng.2013.04.008
10.1088/0022-3727/24/8/041
10.1016/S0734-743X(97)00023-7
10.1016/j.conbuildmat.2013.05.063
10.1016/0013-7944(93)90024-M
10.1016/j.mechmat.2009.01.014
10.1016/j.ijsolstr.2013.08.030
10.1016/j.mechmat.2011.05.002
10.1016/j.ijsolstr.2003.09.019
10.1016/j.cemconcomp.2014.07.011
10.1016/j.ijimpeng.2010.10.030
10.1007/BF02472016
10.1007/s00603-013-0463-y
10.1016/j.compstruc.2015.10.003
10.1007/s00603-013-0408-5
10.1260/2041-4196.2.2.177
10.1016/S0734-743X(01)00020-3
10.12989/cac.2014.14.6.675
10.1007/BF02486201
10.1016/j.ijimpeng.2012.05.002
10.1088/0022-3727/22/12/014
10.1109/ICETCE.2011.5775828
10.1016/j.ijsolstr.2011.01.033
10.1016/j.ijimpeng.2009.04.009
10.1680/macr.1972.24.78.25
10.1016/j.ijimpeng.2005.05.008
10.1016/j.ijimpeng.2009.04.008
10.1007/s00419-012-0676-7
10.1016/j.mechmat.2009.05.008
10.1016/j.cemconres.2013.05.008
10.1080/14786437008238397
10.1016/j.ijsolstr.2008.04.002
10.1016/j.compositesb.2016.01.044
10.1260/2041-4196.1.4.443
10.1016/j.ijimpeng.2010.10.028
10.1016/j.conbuildmat.2013.07.022
10.4028/www.scientific.net/AMM.438-439.215
10.1016/j.mechmat.2005.06.004
10.1016/j.engfracmech.2015.09.002
10.1016/S0997-7538(98)80052-1
10.1016/S0167-6636(98)00015-5
10.1617/s11527-014-0322-7
10.1016/j.conbuildmat.2012.11.012
10.1115/1.2842350
10.1016/S0734-743X(00)00050-6
10.1061/(ASCE)CF.1943-5509.0000586
10.1590/S1679-78252013000400010
10.1061/(ASCE)EM.1943-7889.0000055
10.1680/macr.2007.59.1.45
10.1016/0001-6160(53)90029-7
10.1061/(ASCE)0733-9399(2004)130:12(1428)
10.1016/j.engfracmech.2005.01.012
10.1016/j.ijimpeng.2013.04.005
10.1016/j.ijimpeng.2006.10.013
10.1007/BF02473020
10.1016/0148-9062(89)90002-8
10.1007/BF00016585
10.1016/j.conbuildmat.2014.05.076
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV May 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV May 2017
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.01.011
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 137
ExternalDocumentID 10_1016_j_ijimpeng_2017_01_011
S0734743X16303748
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
SSH
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-fccb47b52a1e2f1bcd5f8c717afbe49eb829b61fabe057bad6be227ad065c9403
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 25 07:44:36 EDT 2025
Thu Jul 17 06:04:21 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 23 02:28:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords S criterion
Concrete
Actual dynamic strength
Physical mechanism
Strain rate effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-fccb47b52a1e2f1bcd5f8c717afbe49eb829b61fabe057bad6be227ad065c9403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1937688627
PQPubID 2045463
PageCount 14
ParticipantIDs proquest_journals_1937688627
crossref_primary_10_1016_j_ijimpeng_2017_01_011
crossref_citationtrail_10_1016_j_ijimpeng_2017_01_011
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_01_011
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zheng, Li, Wang (bib0039) 2005; 72
Liu, Ning (bib0015) 2009; 41
Zhang, Wu, Li, Huang (bib0055) 2009; 36
Hong, Kang (bib0012) 2015
Mu, Dancygier, Zhang, Yankelevsky (bib0052) 2012; 49
Reinhardt, Rossi, van Mier (bib0074) 1990; 23
Shi, Wang, Song, Shen (bib0021) 2014; 66
Hao, Hao (bib0033) 2013; 48
Du, Lu, Gong, Zhao (bib0061) 2010; 136
Grady (bib0040) 1995; Volume 370
Grady (bib0071) 1998; 29
Fujikake, Mori, Uebayashi, Ohno, Mizuno (bib0035) 2000; 8
Klepaczko, Brara (bib0005) 2001; 25
Zhou, Hao (bib0031) 2008; 45
Brara, Klepaczko (bib0008) 2006; 38
Lu, Li (bib0009) 2011; 38
Bažant, Bai, Ravindra (bib0044) 1993; 45
Hao, Hao (bib0032) 2011; 2
Hartmann, Pietzsch, Gebbeken (bib0036) 2010; 1
Ross, Tedesco, Kuennen (bib0004) 1995; 92
Wu, Zhang, Huang, Jin (bib0007) 2005; 32
Shen, Jimenez, Karakus, Xu (bib0072) 2014; 47
Antoun (bib0069) 1991
Li, Meng (bib0006) 2003; 40
Shang, Song (bib0019) 2013; 40
Zhang, Chen, Wang (bib0065) 2015; 37
Ožbolt, Bošnjak, Sola (bib0046) 2013; 50
Chen, Wu, Zhou (bib0010) 2015; 29
Lu, Xu (bib0075) 2004; 41
Su, Li, Wu, Wu, Li (bib0014) 2016; 91
Hao, Hao, Li (bib0050) 2013; 60
Stolarski (bib0023) 2004; 130
Yu, Lu, Cai (bib0041) 2013; 10
Ožbolt, Sharma, Reinhardt (bib0045) 2011; 48
Erzar, Forquin (bib0070) 2011; 43
Katayama, Itoh, Tamura, Beppu, Ohno (bib0037) 2007; 34
Hao, Hao, Jiang, Zhou (bib0027) 2013; 52
Martin, Chen, Song, Akers (bib0067) 2009; 41
Ožbolt, Bede, Sharma, Mayer (bib0025) 2015; 148
Cusatis (bib0024) 2011; 38
Campbell (bib0034) 1953; 1
Malvern, Ross (bib0068) 1985
Swan, Cook, Bruce, Meehan (bib0042) 1989; 26
Qi, Wang, Qian (bib0049) 2009; 36
Grote, Park, Zhou (bib0030) 2001; 25
Pajak (bib0057) 2011; 39
Yan, Lin, Chen (bib0020) 2009
Lu, Du, Wang, Zhou, Li (bib0062) 2016; 163
Chen, Li, Guan (bib0054) 2013; 438-439
Hughes, Gregory (bib0003) 1972; 24
Al-Salloum, Alsayed, Almusallam, Lbrahim, Abbas (bib0051) 2014; 14
Gary, Bailly (bib0016) 1998; 17
Tedesco, Ross (bib0029) 1998; 120
The International Federation for Structural Concrete (bib0022) 1990
Jones, Richart (bib0001) 1936; Volume 36
Kotsovos (bib0053) 2012; 82
Xu, Wen (bib0028) 2013; 60
Watstein (bib0002) 1953; 49
Zhang, Zhao (bib0043) 2014; 47
Zhao (bib0066) 2000; 37
Feng, Ruan, Pan, Collins, Bai, Wang (bib0011) 2015; 48
Rossi, Toutlemonde (bib0047) 1996; 29
Ross, Jerome, Tedesco, Hughes (bib0058) 1996; 93-M33
Yan, Lin (bib0017) 2007; 59
Bischoff, Perry (bib0073) 1991; 24
Al-Salloum, Almusallam, Ibrahim, Abbas, Alsayed (bib0013) 2015; 55
Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. In: International conference IEEE. Electric; 2011 technology and civil engineering, pp. 753–755.
Kipp, Grady, Chen (bib0048) 1980; 16
Gebbeken, Greulich (bib0038) 2003
Chen, Wu, Zhou (bib0056) 2013; 47
Malvar, Crawford, Wesevich, Simons (bib0026) 1997; 19
Zheng, Li (bib0060) 2004; 71
Campbell, Ferguson (bib0059) 1970; 21
Gorham (bib0064) 1991; 24
Gorham (bib0063) 1989; 22
Al-Salloum (10.1016/j.ijimpeng.2017.01.011_bib0013) 2015; 55
Liu (10.1016/j.ijimpeng.2017.01.011_bib0015) 2009; 41
Zhang (10.1016/j.ijimpeng.2017.01.011_bib0065) 2015; 37
Hughes (10.1016/j.ijimpeng.2017.01.011_bib0003) 1972; 24
Swan (10.1016/j.ijimpeng.2017.01.011_bib0042) 1989; 26
Bažant (10.1016/j.ijimpeng.2017.01.011_bib0044) 1993; 45
Shen (10.1016/j.ijimpeng.2017.01.011_bib0072) 2014; 47
Grote (10.1016/j.ijimpeng.2017.01.011_bib0030) 2001; 25
Hartmann (10.1016/j.ijimpeng.2017.01.011_bib0036) 2010; 1
Du (10.1016/j.ijimpeng.2017.01.011_bib0061) 2010; 136
Lu (10.1016/j.ijimpeng.2017.01.011_bib0009) 2011; 38
Campbell (10.1016/j.ijimpeng.2017.01.011_bib0059) 1970; 21
Reinhardt (10.1016/j.ijimpeng.2017.01.011_bib0074) 1990; 23
Li (10.1016/j.ijimpeng.2017.01.011_bib0006) 2003; 40
Yan (10.1016/j.ijimpeng.2017.01.011_bib0017) 2007; 59
Rossi (10.1016/j.ijimpeng.2017.01.011_bib0047) 1996; 29
Hong (10.1016/j.ijimpeng.2017.01.011_bib0012) 2015
Chen (10.1016/j.ijimpeng.2017.01.011_bib0010) 2015; 29
Zhang (10.1016/j.ijimpeng.2017.01.011_bib0043) 2014; 47
Brara (10.1016/j.ijimpeng.2017.01.011_bib0008) 2006; 38
Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0025) 2015; 148
Qi (10.1016/j.ijimpeng.2017.01.011_bib0049) 2009; 36
Zheng (10.1016/j.ijimpeng.2017.01.011_bib0060) 2004; 71
Malvar (10.1016/j.ijimpeng.2017.01.011_bib0026) 1997; 19
Gorham (10.1016/j.ijimpeng.2017.01.011_bib0064) 1991; 24
Gary (10.1016/j.ijimpeng.2017.01.011_bib0016) 1998; 17
Grady (10.1016/j.ijimpeng.2017.01.011_bib0071) 1998; 29
Yan (10.1016/j.ijimpeng.2017.01.011_bib0020) 2009
The International Federation for Structural Concrete (10.1016/j.ijimpeng.2017.01.011_bib0022) 1990
Al-Salloum (10.1016/j.ijimpeng.2017.01.011_bib0051) 2014; 14
Kotsovos (10.1016/j.ijimpeng.2017.01.011_bib0053) 2012; 82
Shi (10.1016/j.ijimpeng.2017.01.011_bib0021) 2014; 66
Malvern (10.1016/j.ijimpeng.2017.01.011_bib0068) 1985
Su (10.1016/j.ijimpeng.2017.01.011_bib0014) 2016; 91
Erzar (10.1016/j.ijimpeng.2017.01.011_bib0070) 2011; 43
Stolarski (10.1016/j.ijimpeng.2017.01.011_bib0023) 2004; 130
Tedesco (10.1016/j.ijimpeng.2017.01.011_bib0029) 1998; 120
Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0046) 2013; 50
Lu (10.1016/j.ijimpeng.2017.01.011_bib0075) 2004; 41
Grady (10.1016/j.ijimpeng.2017.01.011_bib0040) 1995; Volume 370
Lu (10.1016/j.ijimpeng.2017.01.011_bib0062) 2016; 163
Feng (10.1016/j.ijimpeng.2017.01.011_bib0011) 2015; 48
Gorham (10.1016/j.ijimpeng.2017.01.011_bib0063) 1989; 22
Shang (10.1016/j.ijimpeng.2017.01.011_bib0019) 2013; 40
Fujikake (10.1016/j.ijimpeng.2017.01.011_bib0035) 2000; 8
Jones (10.1016/j.ijimpeng.2017.01.011_bib0001) 1936; Volume 36
Hao (10.1016/j.ijimpeng.2017.01.011_bib0050) 2013; 60
Zhang (10.1016/j.ijimpeng.2017.01.011_bib0055) 2009; 36
Wu (10.1016/j.ijimpeng.2017.01.011_bib0007) 2005; 32
Hao (10.1016/j.ijimpeng.2017.01.011_bib0027) 2013; 52
Watstein (10.1016/j.ijimpeng.2017.01.011_bib0002) 1953; 49
Yu (10.1016/j.ijimpeng.2017.01.011_bib0041) 2013; 10
Hao (10.1016/j.ijimpeng.2017.01.011_bib0032) 2011; 2
Ross (10.1016/j.ijimpeng.2017.01.011_bib0058) 1996; 93-M33
Ross (10.1016/j.ijimpeng.2017.01.011_bib0004) 1995; 92
Bischoff (10.1016/j.ijimpeng.2017.01.011_bib0073) 1991; 24
Kipp (10.1016/j.ijimpeng.2017.01.011_bib0048) 1980; 16
Cusatis (10.1016/j.ijimpeng.2017.01.011_bib0024) 2011; 38
Mu (10.1016/j.ijimpeng.2017.01.011_bib0052) 2012; 49
10.1016/j.ijimpeng.2017.01.011_bib0018
Katayama (10.1016/j.ijimpeng.2017.01.011_bib0037) 2007; 34
Antoun (10.1016/j.ijimpeng.2017.01.011_bib0069) 1991
Campbell (10.1016/j.ijimpeng.2017.01.011_bib0034) 1953; 1
Chen (10.1016/j.ijimpeng.2017.01.011_bib0054) 2013; 438-439
Martin (10.1016/j.ijimpeng.2017.01.011_bib0067) 2009; 41
Pajak (10.1016/j.ijimpeng.2017.01.011_bib0057) 2011; 39
Chen (10.1016/j.ijimpeng.2017.01.011_bib0056) 2013; 47
Zhao (10.1016/j.ijimpeng.2017.01.011_bib0066) 2000; 37
Xu (10.1016/j.ijimpeng.2017.01.011_bib0028) 2013; 60
Hao (10.1016/j.ijimpeng.2017.01.011_bib0033) 2013; 48
Ožbolt (10.1016/j.ijimpeng.2017.01.011_bib0045) 2011; 48
Zhou (10.1016/j.ijimpeng.2017.01.011_bib0031) 2008; 45
Klepaczko (10.1016/j.ijimpeng.2017.01.011_bib0005) 2001; 25
Gebbeken (10.1016/j.ijimpeng.2017.01.011_bib0038) 2003
Zheng (10.1016/j.ijimpeng.2017.01.011_bib0039) 2005; 72
References_xml – start-page: 230
  year: 1991
  ident: bib0069
  article-title: Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy
– volume: 66
  start-page: 181
  year: 2014
  end-page: 191
  ident: bib0021
  article-title: Dynamic multiaxial strength and failure criterion of dam concrete
  publication-title: Construction Build Mater
– volume: 52
  start-page: 63
  year: 2013
  end-page: 70
  ident: bib0027
  article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests
  publication-title: Cem Concr Res
– volume: 48
  start-page: 521
  year: 2013
  end-page: 532
  ident: bib0033
  article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests
  publication-title: Construction Build Mater
– volume: 45
  start-page: 393
  year: 1993
  end-page: 398
  ident: bib0044
  article-title: Fracture of rock: effect of loading rate
  publication-title: Eng Fracture Mech
– year: 1985
  ident: bib0068
  article-title: Dynamic response of concrete and concrete structures
– volume: 47
  start-page: 357
  year: 2014
  end-page: 369
  ident: bib0072
  article-title: A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength
  publication-title: Rock Mech Rock Eng
– volume: 91
  start-page: 595
  year: 2016
  end-page: 609
  ident: bib0014
  article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete
  publication-title: Composites Part B
– volume: 29
  year: 2015
  ident: bib0010
  article-title: Compressive strength of concrete cores under high strain rates
  publication-title: J Perform Constr Facil
– volume: 24
  start-page: 25
  year: 1972
  end-page: 36
  ident: bib0003
  article-title: Concrete subjected to high rates of loading in compression
  publication-title: Mag Concr Res
– volume: 148
  start-page: 27
  year: 2015
  end-page: 41
  ident: bib0025
  article-title: Dynamic fracture of concrete
  publication-title: Eng Fract Mech
– volume: 25
  start-page: 387
  year: 2001
  end-page: 409
  ident: bib0005
  article-title: An experimental method for dynamic tensile testing of concrete by spalling
  publication-title: Int J Impact Eng
– volume: 24
  start-page: 1489
  year: 1991
  end-page: 1492
  ident: bib0064
  article-title: The effect of specimen dimensions on high strain rate compression measurements of copper
  publication-title: J Phys D
– volume: 8
  start-page: 511
  year: 2000
  end-page: 522
  ident: bib0035
  article-title: Dynamic properties of concrete materials with high rates of tri-axial compressive loads
  publication-title: Struct Under Shock Impact
– volume: 34
  start-page: 1546
  year: 2007
  end-page: 1561
  ident: bib0037
  article-title: Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials
  publication-title: Int J Impact Eng
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib0012
  article-title: Dynamic mechanical responses of concrete under the influence of extreme loads
  publication-title: Adv Civil Env Mater Res
– volume: 19
  start-page: 847
  year: 1997
  end-page: 873
  ident: bib0026
  article-title: A plasticity concrete material model for DYNA3D
  publication-title: Int J Impact Eng
– volume: 60
  start-page: 76
  year: 2013
  end-page: 81
  ident: bib0028
  article-title: Semi-empirical equations for the dynamic strength enhancement of concrete-like materials
  publication-title: Int J Impact Eng.
– volume: 29
  start-page: 116
  year: 1996
  end-page: 118
  ident: bib0047
  article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms
  publication-title: Mat Struct
– volume: 93-M33
  start-page: 293
  year: 1996
  end-page: 298
  ident: bib0058
  article-title: Moisture and strain rate effects on concrete strength
  publication-title: ACI Mater J
– volume: 60
  start-page: 82
  year: 2013
  end-page: 106
  ident: bib0050
  article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate
  publication-title: Int J Impact Eng.
– volume: 47
  start-page: 419
  year: 2013
  end-page: 430
  ident: bib0056
  article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete
  publication-title: Constr Build Mater
– volume: 38
  start-page: 253
  year: 2006
  end-page: 267
  ident: bib0008
  article-title: Experimental characterization of concrete in dynamic tension
  publication-title: Mech Mater
– volume: 48
  start-page: 671
  year: 2015
  end-page: 681
  ident: bib0011
  article-title: Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings
  publication-title: Mater Struct
– volume: 41
  start-page: 1298
  year: 2009
  end-page: 1308
  ident: bib0015
  article-title: Mechanical behavior of reinforced concrete subjected to impact loading
  publication-title: Mech Mater
– reference: Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. In: International conference IEEE. Electric; 2011 technology and civil engineering, pp. 753–755.
– volume: 41
  start-page: 131
  year: 2004
  end-page: 143
  ident: bib0075
  article-title: Modelling of dynamic behaviour of concrete materials under blast loading
  publication-title: Int J Solids Struct
– volume: 10
  start-page: 833
  year: 2013
  end-page: 844
  ident: bib0041
  article-title: The strain-rate effect of engineering materials and its unified model
  publication-title: Lat Am J solids struct
– volume: Volume 36
  start-page: 380
  year: 1936
  end-page: 392
  ident: bib0001
  article-title: The effect of testing speed on strength and elastic properties of concrete
  publication-title: Proceedings of the american society for testing materials
– volume: 21
  start-page: 63
  year: 1970
  end-page: 82
  ident: bib0059
  article-title: The temperature and strain-rate dependence of the shear strength of mild steel
  publication-title: Philos Mag
– volume: 71
  start-page: 2319
  year: 2004
  end-page: 2327
  ident: bib0060
  article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity
  publication-title: Eng Fract Mech
– volume: 36
  start-page: 1355
  year: 2009
  end-page: 1364
  ident: bib0049
  article-title: Strain-rate effects on the strength and fragmentation size of rocks
  publication-title: Int J Impact Eng.
– volume: 50
  start-page: 4270
  year: 2013
  end-page: 4278
  ident: bib0046
  article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study
  publication-title: Int J Solids Struct
– year: 1990
  ident: bib0022
  article-title: CEB FIP model code
– volume: 14
  start-page: 675
  year: 2014
  end-page: 694
  ident: bib0051
  article-title: Investigations on the influence of radial confinement in the impact response of concrete
  publication-title: Comp Concr
– volume: 49
  start-page: 91
  year: 2012
  end-page: 102
  ident: bib0052
  article-title: Revisiting the dynamic compressive behavior of concrete-like materials
  publication-title: Int J Impact Eng
– volume: 43
  start-page: 505
  year: 2011
  end-page: 527
  ident: bib0070
  article-title: Experiments and mesoscopic modelling of dynamic testing of concrete
  publication-title: Mech Mater
– volume: 32
  start-page: 605
  year: 2005
  end-page: 617
  ident: bib0007
  article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete
  publication-title: Int J Impact Eng
– volume: 38
  start-page: 171
  year: 2011
  end-page: 180
  ident: bib0009
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int J Impact Eng
– volume: 49
  start-page: 729
  year: 1953
  end-page: 744
  ident: bib0002
  article-title: Effect of straining rate on the compressive strength and elastic properties of concrete
  publication-title: Aci Mater J
– volume: 25
  start-page: 869
  year: 2001
  end-page: 886
  ident: bib0030
  article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization
  publication-title: Int J Impact Eng
– volume: 1
  start-page: 706
  year: 1953
  end-page: 710
  ident: bib0034
  article-title: The dynamic yielding of mild steel
  publication-title: Acta Metallurgica
– volume: 1
  start-page: 443
  year: 2010
  end-page: 468
  ident: bib0036
  article-title: A hydrocode material model for concrete
  publication-title: Int J Protective Struct
– volume: 47
  start-page: 1411
  year: 2014
  end-page: 1478
  ident: bib0043
  article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials
  publication-title: Rock Mech Rock Eng
– volume: 438-439
  start-page: 215
  year: 2013
  end-page: 219
  ident: bib0054
  article-title: Effect of radial inertia confinement on dynamic compressive strength of concrete in SHPB tests
  publication-title: Appl Mech Mater
– volume: Volume 370
  start-page: 9
  year: 1995
  end-page: 20
  ident: bib0040
  article-title: Shock-wave properties of brittle solids
  publication-title: Proceedings of the conference of the American Physical Society Topical Group on shock compression of condensed matter
– volume: 55
  start-page: 34
  year: 2015
  end-page: 44
  ident: bib0013
  article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments
  publication-title: Cem Concr Composites
– volume: 23
  start-page: 213
  year: 1990
  end-page: 216
  ident: bib0074
  article-title: Joint investigation of concrete at high rates of loading
  publication-title: Mater Struct
– volume: 45
  start-page: 4648
  year: 2008
  end-page: 4661
  ident: bib0031
  article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate
  publication-title: Int J Solids Struct
– volume: 82
  start-page: 1439
  year: 2012
  end-page: 1459
  ident: bib0053
  article-title: Structural-concrete analysis and design: need for a sound underlying theory
  publication-title: Arch Appl Mech
– volume: 37
  start-page: 1115
  year: 2000
  end-page: 1121
  ident: bib0066
  article-title: Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock
  publication-title: Int J Rock Mech Min
– volume: 26
  start-page: 135
  year: 1989
  end-page: 149
  ident: bib0042
  article-title: Strain rate effects in Kimmeridge bay shale
  publication-title: Int J Rock Mech Mining Sci Geomechanics Abstr
– volume: 136
  start-page: 51
  year: 2010
  end-page: 59
  ident: bib0061
  article-title: Nonlinear unified strength criterion for concrete under three dimensional stress states
  publication-title: J Eng Mech
– volume: 38
  start-page: 162
  year: 2011
  end-page: 170
  ident: bib0024
  article-title: Strain-rate effects on concrete behavior
  publication-title: Int J Impact Eng
– volume: 41
  start-page: 786
  year: 2009
  end-page: 798
  ident: bib0067
  article-title: Moisture effects on the high strain-rate behavior of sand
  publication-title: Mech Mater
– volume: 72
  start-page: 2316
  year: 2005
  end-page: 2327
  ident: bib0039
  article-title: A microscopic approach to rate effect on compressive strength of concrete
  publication-title: Eng Fract Mech
– volume: 48
  start-page: 1534
  year: 2011
  end-page: 1543
  ident: bib0045
  article-title: Dynamic fracture of concrete-compact tension specimen
  publication-title: Int J Solids Struct
– volume: 40
  start-page: 343
  year: 2003
  end-page: 360
  ident: bib0006
  article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test
  publication-title: Int J Solids Struct
– volume: 37
  start-page: 131
  year: 2015
  end-page: 136
  ident: bib0065
  article-title: Test study on the dynamic behavior of dry sands subjected to impact loading
  publication-title: Chin Earthq Eng J
– volume: 130
  start-page: 1428
  year: 2004
  end-page: 1435
  ident: bib0023
  article-title: Dynamic strength criterion for concrete
  publication-title: J Eng Mech
– volume: 36
  start-page: 1327
  year: 2009
  end-page: 1334
  ident: bib0055
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments
  publication-title: Int J Impact Eng
– volume: 22
  start-page: 1888
  year: 1989
  end-page: 1893
  ident: bib0063
  article-title: Specimen inertia in high strain-rate compression
  publication-title: J Phys D
– start-page: 89
  year: 2009
  end-page: 94
  ident: bib0020
  article-title: Dynamic properties of plain concrete in triaxial stress state
  publication-title: Aci Mater J
– volume: 24
  start-page: 425
  year: 1991
  end-page: 450
  ident: bib0073
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater Struct
– volume: 17
  start-page: 403
  year: 1998
  end-page: 420
  ident: bib0016
  article-title: Behaviour of quasi-brittle material at high strain rate. Experiment and modelling
  publication-title: Eur J Mech A Solids
– volume: 29
  start-page: 181
  year: 1998
  end-page: 203
  ident: bib0071
  article-title: Shock-wave compression of brittle solids
  publication-title: Mech Mater
– volume: 163
  start-page: 41
  year: 2016
  end-page: 55
  ident: bib0062
  article-title: A three-dimensional elastoplastic constitutive model for concrete
  publication-title: Comput Struct
– volume: 120
  start-page: 398
  year: 1998
  end-page: 405
  ident: bib0029
  article-title: Strain-rate-dependent constitutive equations for concrete
  publication-title: J Pressure Vessel Technol
– volume: 92
  start-page: 37
  year: 1995
  end-page: 47
  ident: bib0004
  article-title: Effects of strain rate on concrete strength
  publication-title: Aci Mater J
– start-page: 1
  year: 2003
  end-page: 16
  ident: bib0038
  article-title: A new material model for SFRC under high dynamic loadings
  publication-title: International conference on interaction of the effects of munitions with structures
– volume: 40
  start-page: 322
  year: 2013
  end-page: 329
  ident: bib0019
  article-title: Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete
  publication-title: Construction Build Mater
– volume: 2
  start-page: 177
  year: 2011
  end-page: 206
  ident: bib0032
  article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate
  publication-title: Int J Protective Struct
– volume: 59
  start-page: 45
  year: 2007
  end-page: 52
  ident: bib0017
  article-title: Dynamic behaviour of concrete in biaxial compression
  publication-title: Mag Concr Res
– volume: 16
  start-page: 471
  year: 1980
  end-page: 478
  ident: bib0048
  article-title: Strain-rate dependent fracture initiation
  publication-title: Int J Fract
– volume: 39
  start-page: 423
  year: 2011
  end-page: 428
  ident: bib0057
  article-title: The influence of the strain rate on the strength of concrete taking into account the experimental techniques
  publication-title: Arch Civil Eng Environ
– volume: 71
  start-page: 2319
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0060
  article-title: An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2004.01.012
– volume: 40
  start-page: 343
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0006
  article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(02)00526-7
– volume: 37
  start-page: 1115
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0066
  article-title: Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(00)00049-6
– volume: 60
  start-page: 82
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0050
  article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate
  publication-title: Int J Impact Eng.
  doi: 10.1016/j.ijimpeng.2013.04.008
– volume: 24
  start-page: 1489
  year: 1991
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0064
  article-title: The effect of specimen dimensions on high strain rate compression measurements of copper
  publication-title: J Phys D
  doi: 10.1088/0022-3727/24/8/041
– volume: 19
  start-page: 847
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0026
  article-title: A plasticity concrete material model for DYNA3D
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00023-7
– volume: 47
  start-page: 419
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0056
  article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2013.05.063
– volume: 45
  start-page: 393
  year: 1993
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0044
  article-title: Fracture of rock: effect of loading rate
  publication-title: Eng Fracture Mech
  doi: 10.1016/0013-7944(93)90024-M
– volume: 41
  start-page: 786
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0067
  article-title: Moisture effects on the high strain-rate behavior of sand
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2009.01.014
– volume: Volume 36
  start-page: 380
  year: 1936
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0001
  article-title: The effect of testing speed on strength and elastic properties of concrete
– volume: 50
  start-page: 4270
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0046
  article-title: Dynamic fracture of concrete compact tension specimen: experimental and numerical study
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.08.030
– volume: Volume 370
  start-page: 9
  year: 1995
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0040
  article-title: Shock-wave properties of brittle solids
– volume: 43
  start-page: 505
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0070
  article-title: Experiments and mesoscopic modelling of dynamic testing of concrete
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2011.05.002
– volume: 41
  start-page: 131
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0075
  article-title: Modelling of dynamic behaviour of concrete materials under blast loading
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2003.09.019
– volume: 55
  start-page: 34
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0013
  article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments
  publication-title: Cem Concr Composites
  doi: 10.1016/j.cemconcomp.2014.07.011
– volume: 38
  start-page: 162
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0024
  article-title: Strain-rate effects on concrete behavior
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2010.10.030
– volume: 24
  start-page: 425
  year: 1991
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0073
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater Struct
  doi: 10.1007/BF02472016
– volume: 8
  start-page: 511
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0035
  article-title: Dynamic properties of concrete materials with high rates of tri-axial compressive loads
  publication-title: Struct Under Shock Impact
– volume: 47
  start-page: 1411
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0043
  article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0463-y
– volume: 37
  start-page: 131
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0065
  article-title: Test study on the dynamic behavior of dry sands subjected to impact loading
  publication-title: Chin Earthq Eng J
– volume: 163
  start-page: 41
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0062
  article-title: A three-dimensional elastoplastic constitutive model for concrete
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2015.10.003
– volume: 47
  start-page: 357
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0072
  article-title: A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0408-5
– volume: 2
  start-page: 177
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0032
  article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.2.2.177
– volume: 25
  start-page: 869
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0030
  article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(01)00020-3
– volume: 14
  start-page: 675
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0051
  article-title: Investigations on the influence of radial confinement in the impact response of concrete
  publication-title: Comp Concr
  doi: 10.12989/cac.2014.14.6.675
– volume: 29
  start-page: 116
  year: 1996
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0047
  article-title: Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms
  publication-title: Mat Struct
  doi: 10.1007/BF02486201
– volume: 39
  start-page: 423
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0057
  article-title: The influence of the strain rate on the strength of concrete taking into account the experimental techniques
  publication-title: Arch Civil Eng Environ
– volume: 49
  start-page: 91
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0052
  article-title: Revisiting the dynamic compressive behavior of concrete-like materials
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.05.002
– volume: 22
  start-page: 1888
  year: 1989
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0063
  article-title: Specimen inertia in high strain-rate compression
  publication-title: J Phys D
  doi: 10.1088/0022-3727/22/12/014
– ident: 10.1016/j.ijimpeng.2017.01.011_bib0018
  doi: 10.1109/ICETCE.2011.5775828
– volume: 48
  start-page: 1534
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0045
  article-title: Dynamic fracture of concrete-compact tension specimen
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.01.033
– volume: 36
  start-page: 1327
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0055
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.009
– volume: 24
  start-page: 25
  year: 1972
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0003
  article-title: Concrete subjected to high rates of loading in compression
  publication-title: Mag Concr Res
  doi: 10.1680/macr.1972.24.78.25
– volume: 32
  start-page: 605
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0007
  article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2005.05.008
– volume: 36
  start-page: 1355
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0049
  article-title: Strain-rate effects on the strength and fragmentation size of rocks
  publication-title: Int J Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.04.008
– volume: 82
  start-page: 1439
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0053
  article-title: Structural-concrete analysis and design: need for a sound underlying theory
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-012-0676-7
– volume: 41
  start-page: 1298
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0015
  article-title: Mechanical behavior of reinforced concrete subjected to impact loading
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2009.05.008
– start-page: 89
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0020
  article-title: Dynamic properties of plain concrete in triaxial stress state
  publication-title: Aci Mater J
– volume: 93-M33
  start-page: 293
  year: 1996
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0058
  article-title: Moisture and strain rate effects on concrete strength
  publication-title: ACI Mater J
– volume: 52
  start-page: 63
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0027
  article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2013.05.008
– volume: 21
  start-page: 63
  year: 1970
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0059
  article-title: The temperature and strain-rate dependence of the shear strength of mild steel
  publication-title: Philos Mag
  doi: 10.1080/14786437008238397
– volume: 45
  start-page: 4648
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0031
  article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.04.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0012
  article-title: Dynamic mechanical responses of concrete under the influence of extreme loads
  publication-title: Adv Civil Env Mater Res
– start-page: 230
  year: 1991
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0069
– volume: 91
  start-page: 595
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0014
  article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2016.01.044
– volume: 1
  start-page: 443
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0036
  article-title: A hydrocode material model for concrete
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.1.4.443
– volume: 38
  start-page: 171
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0009
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2010.10.028
– volume: 48
  start-page: 521
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0033
  article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests
  publication-title: Construction Build Mater
  doi: 10.1016/j.conbuildmat.2013.07.022
– start-page: 1
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0038
  article-title: A new material model for SFRC under high dynamic loadings
– volume: 438-439
  start-page: 215
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0054
  article-title: Effect of radial inertia confinement on dynamic compressive strength of concrete in SHPB tests
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.438-439.215
– volume: 38
  start-page: 253
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0008
  article-title: Experimental characterization of concrete in dynamic tension
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2005.06.004
– volume: 148
  start-page: 27
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0025
  article-title: Dynamic fracture of concrete l-specimen: experimental and numerical study
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.09.002
– volume: 17
  start-page: 403
  year: 1998
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0016
  article-title: Behaviour of quasi-brittle material at high strain rate. Experiment and modelling
  publication-title: Eur J Mech A Solids
  doi: 10.1016/S0997-7538(98)80052-1
– volume: 29
  start-page: 181
  year: 1998
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0071
  article-title: Shock-wave compression of brittle solids
  publication-title: Mech Mater
  doi: 10.1016/S0167-6636(98)00015-5
– volume: 48
  start-page: 671
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0011
  article-title: Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings
  publication-title: Mater Struct
  doi: 10.1617/s11527-014-0322-7
– volume: 40
  start-page: 322
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0019
  article-title: Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete
  publication-title: Construction Build Mater
  doi: 10.1016/j.conbuildmat.2012.11.012
– volume: 120
  start-page: 398
  year: 1998
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0029
  article-title: Strain-rate-dependent constitutive equations for concrete
  publication-title: J Pressure Vessel Technol
  doi: 10.1115/1.2842350
– volume: 25
  start-page: 387
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0005
  article-title: An experimental method for dynamic tensile testing of concrete by spalling
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(00)00050-6
– volume: 29
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0010
  article-title: Compressive strength of concrete cores under high strain rates
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000586
– year: 1990
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0022
– volume: 10
  start-page: 833
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0041
  article-title: The strain-rate effect of engineering materials and its unified model
  publication-title: Lat Am J solids struct
  doi: 10.1590/S1679-78252013000400010
– year: 1985
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0068
– volume: 136
  start-page: 51
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0061
  article-title: Nonlinear unified strength criterion for concrete under three dimensional stress states
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0000055
– volume: 59
  start-page: 45
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0017
  article-title: Dynamic behaviour of concrete in biaxial compression
  publication-title: Mag Concr Res
  doi: 10.1680/macr.2007.59.1.45
– volume: 1
  start-page: 706
  year: 1953
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0034
  article-title: The dynamic yielding of mild steel
  publication-title: Acta Metallurgica
  doi: 10.1016/0001-6160(53)90029-7
– volume: 92
  start-page: 37
  year: 1995
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0004
  article-title: Effects of strain rate on concrete strength
  publication-title: Aci Mater J
– volume: 130
  start-page: 1428
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0023
  article-title: Dynamic strength criterion for concrete
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2004)130:12(1428)
– volume: 72
  start-page: 2316
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0039
  article-title: A microscopic approach to rate effect on compressive strength of concrete
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2005.01.012
– volume: 60
  start-page: 76
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0028
  article-title: Semi-empirical equations for the dynamic strength enhancement of concrete-like materials
  publication-title: Int J Impact Eng.
  doi: 10.1016/j.ijimpeng.2013.04.005
– volume: 34
  start-page: 1546
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0037
  article-title: Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2006.10.013
– volume: 49
  start-page: 729
  year: 1953
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0002
  article-title: Effect of straining rate on the compressive strength and elastic properties of concrete
  publication-title: Aci Mater J
– volume: 23
  start-page: 213
  year: 1990
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0074
  article-title: Joint investigation of concrete at high rates of loading
  publication-title: Mater Struct
  doi: 10.1007/BF02473020
– volume: 26
  start-page: 135
  year: 1989
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0042
  article-title: Strain rate effects in Kimmeridge bay shale
  publication-title: Int J Rock Mech Mining Sci Geomechanics Abstr
  doi: 10.1016/0148-9062(89)90002-8
– volume: 16
  start-page: 471
  year: 1980
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0048
  article-title: Strain-rate dependent fracture initiation
  publication-title: Int J Fract
  doi: 10.1007/BF00016585
– volume: 66
  start-page: 181
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.01.011_bib0021
  article-title: Dynamic multiaxial strength and failure criterion of dam concrete
  publication-title: Construction Build Mater
  doi: 10.1016/j.conbuildmat.2014.05.076
SSID ssj0017050
Score 2.5435688
Snippet •A dynamic uniaxial strength criterion for concrete is proposed.•The physical mechanisms governing the strain rate effect are given to describe the dynamic...
The existing test results and semi-empirical equations of the rate-dependent concrete strength have overestimated the actual dynamic strength because they do...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124
SubjectTerms Actual dynamic strength
Analysis
Civil engineering
Compression tests
Concrete
Criteria
Dynamic tests
Empirical equations
Feasibility studies
High strain rate
Nonlinear systems
Physical mechanism
Physical properties
S criterion
Strain rate
Strain rate effect
Tensile tests
Ultimate tensile strength
Title A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.01.011
https://www.proquest.com/docview/1937688627
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPaWtlDrzHZuMmao0jFttRLK3hbdje7GilRNEJP_e2dzQtbKB4KuSTshGR2MvNNmPkGoQcpZEj6oudQQmOHxp5yJJPGAbBhiSGZVDnt4uskHE_p8yyYNdCw6oWxZZWl7y98eu6tyytuqU13nSTuGxgnhfg3A0SRk6jYDnbKrJV3v-oyD8sWk_9ngcWOXb3XJbzsJssEwGk6tyVeLKfvJOSvAPXLVefxZ3SGTkvgiAfFs52jhk4v0MkeneAlWgxwWjBfiA2Oi1HzeJcm4hOMDNuukHSeLTD4CUvQvEpxthAZVuXIzi2camzrCwHE6lq-FlsZuxRAZqav0HT0-D4cO-UkBUf1qJc5RilJmQx8QbRviFRxYPoKMjlhpKaRln0_gj0zQmrAb1LEodS-z0QMAEVF1Otdoya8gL5BOGA9FkehNExCai2UBZgkjAF3GcFERFsoqNTHVUkzbqddfPCqnmzJK7Vzq3buEThIC7m13Log2jgoEVW7w3-YDIdocFC2XW0nLz_aLQcsC8kXpHjs9h-3vkPH9qwoimyjZrbZ6XsALpns5JbZQUeDp5fx5BvxN_FR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8QD-rB-BlR1B68DujoVnYkRIIKXISEW9N2LYyYQWAknvzbfd0HQRPDwWSXbX3L9vr63u8tr7-H0JMU0ict0XQooaFDw4ZyJJPGAbBhiSGZVCnt4mDo98b0deJNSqhT7IWxZZW57898euqt8yv1XJv1ZRTV38E4KcS_CSCKlETlAB1SWL62jUHta1vnYeli0h8tMNqxw3e2Cc9r0TwCdBpPbY0XS_k7CfkrQv3y1WkA6p6h0xw54nb2cueopOMLdLLDJ3iJZm0cZ9QXYoXDrNc83sSR-AQrw3ZbSDxNZhgchWVoXsQ4mYkEq7xn5xpONbYFhoBi9VZ-K7YwdiigzERfoXH3edTpOXkrBUc1aSNxjFKSMum5gmjXEKlCz7QUpHLCSE0DLVtuAJNmhNQA4KQIfaldl4kQEIoKaKN5jcrwAfoGYY81WRj40jAJubVQFmESPwTgZQQTAa0gr1AfVznPuG138cGLgrI5L9TOrdp5g8BBKqi-lVtmTBt7JYJidvgPm-EQDvbKVovp5PmqXXMAs5B9QY7Hbv_x6Ed01BsN-rz_Mny7Q8f2TlYhWUXlZLXR94BiEvmQWuk3dgXy3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlinear+dynamic+uniaxial+strength+criterion+that+considers+the+ultimate+dynamic+strength+of+concrete&rft.jtitle=International+journal+of+impact+engineering&rft.au=Lu%2C+Dechun&rft.au=Wang%2C+Guosheng&rft.au=Du%2C+Xiuli&rft.au=Wang%2C+Yang&rft.date=2017-05-01&rft.issn=0734-743X&rft.volume=103&rft.spage=124&rft.epage=137&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2017_01_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon