A smart and less intrusive feedback request algorithm towards human-centered HVAC operation

There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliab...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 184; p. 107190
Main Authors Lee, Seungjae, Karava, Panagiota, Tzempelikos, Athanasios, Bilionis, Ilias
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.10.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-1323
1873-684X
DOI10.1016/j.buildenv.2020.107190

Cover

Abstract There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants’ participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation. •Integrated occupant comfort-related responses into personal thermal preference learning.•Conducted experiments to compare occupants' voluntary and requested thermal preference responses.•Incorporated occupants' participation –a type of behavior –in the model structure.•Developed a smart feedback request algorithm based on information gain.
AbstractList There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants' participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation.
There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants’ participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation. •Integrated occupant comfort-related responses into personal thermal preference learning.•Conducted experiments to compare occupants' voluntary and requested thermal preference responses.•Incorporated occupants' participation –a type of behavior –in the model structure.•Developed a smart feedback request algorithm based on information gain.
ArticleNumber 107190
Author Tzempelikos, Athanasios
Lee, Seungjae
Karava, Panagiota
Bilionis, Ilias
Author_xml – sequence: 1
  givenname: Seungjae
  surname: Lee
  fullname: Lee, Seungjae
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA
– sequence: 2
  givenname: Panagiota
  surname: Karava
  fullname: Karava, Panagiota
  email: pkarava@purdue.edu
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA
– sequence: 3
  givenname: Athanasios
  orcidid: 0000-0001-6788-8372
  surname: Tzempelikos
  fullname: Tzempelikos, Athanasios
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA
– sequence: 4
  givenname: Ilias
  surname: Bilionis
  fullname: Bilionis, Ilias
  organization: School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
BookMark eNqFkMtKAzEUhoNUsK2-ggRcT00mcyu4sBS1guBGRXARMskZm3Ga1CRT8e2d6ejGTVcHDv93Lt8EjYw1gNA5JTNKaHZZz8pWNwrMbhaTuG_mdE6O0JgWOYuyInkdoTFhGYkoi9kJmnhfkw6cs2SM3hbYb4QLWBiFG_AeaxNc6_UOcAWgSiE_sIPPFnyXad6t02G9wcF-Cac8XrcbYSIJJoADhVcviyW2W3AiaGtO0XElGg9nv3WKnm9vnpar6OHx7n65eIgkS0iIqozmgkhJlWA0TYQQZcWqpKAkrVQV50VKybyYKyYZKWmpZJZQShiouBSJTHM2RRfD3K2z-0N5bVtnupU8TjKSF0VM-lQ2pKSz3juo-Nbp7vVvTgnvRfKa_4nkvUg-iOzAq3-g1GH_YHBCN4fx6wGHTsFOg-NeajASlHYgA1dWHxrxA7rKlow
CitedBy_id crossref_primary_10_1016_j_jobe_2024_110445
crossref_primary_10_1016_j_buildenv_2022_109090
crossref_primary_10_1109_ACCESS_2024_3366453
crossref_primary_10_1016_j_buildenv_2025_112686
crossref_primary_10_1108_F_09_2022_0121
crossref_primary_10_1080_23744731_2021_1976017
crossref_primary_10_1016_j_enbuild_2024_113958
crossref_primary_10_1016_j_buildenv_2023_111129
crossref_primary_10_1016_j_enbuild_2023_112848
crossref_primary_10_1016_j_jclepro_2021_127685
crossref_primary_10_1080_23744731_2021_1877041
crossref_primary_10_1016_j_buildenv_2022_109458
crossref_primary_10_1016_j_buildenv_2021_108502
crossref_primary_10_1016_j_enbuild_2021_110790
crossref_primary_10_1016_j_buildenv_2021_108449
crossref_primary_10_1016_j_buildenv_2023_111053
crossref_primary_10_1016_j_enbuild_2021_111363
Cites_doi 10.1016/j.apenergy.2017.11.021
10.1016/j.enbuild.2014.09.055
10.1016/j.buildenv.2010.06.011
10.1016/j.enbuild.2020.110172
10.1016/j.erss.2017.05.026
10.1016/j.enbuild.2019.04.016
10.1016/j.buildenv.2017.03.009
10.1016/j.buildenv.2018.04.040
10.1038/s41598-019-48963-y
10.1088/1742-6596/1343/1/012138
10.1214/aoms/1177729694
10.1016/j.jcp.2012.01.033
10.1016/j.enbuild.2015.01.038
10.1016/S0378-7788(97)00053-4
10.1017/S0266466600010781
10.1016/j.buildenv.2016.01.022
10.1016/j.buildenv.2015.04.017
10.1016/j.enbuild.2013.11.066
10.1016/j.buildenv.2015.12.008
10.1016/j.enbuild.2015.07.047
10.1016/j.enbuild.2006.12.005
10.1016/j.buildenv.2017.10.004
10.1061/(ASCE)CP.1943-5487.0000300
10.1016/j.buildenv.2016.09.005
10.1016/j.buildenv.2013.11.008
10.1016/j.buildenv.2018.10.027
10.1002/asjc.1587
10.4249/scholarpedia.4258
10.1016/j.buildenv.2019.106351
10.1016/j.buildenv.2015.12.025
10.1016/j.buildenv.2017.12.011
10.1080/19401493.2015.1102969
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 15, 2020
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2020.107190
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2020_107190
S036013232030562X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
VH1
WUQ
ZMT
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c340t-f617a0cc1da3154aaabf3f48105fdf278510989d3c30b1bdc641103ed2ba4c573
IEDL.DBID AIKHN
ISSN 0360-1323
IngestDate Wed Aug 13 05:45:15 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Tue Jul 01 00:25:02 EDT 2025
Fri Feb 23 02:46:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Occupant centric
Personalized comfort
Occupant behaviour
User interface
Bayesian modeling
Personalized environments
Thermal preferences
Human-in-the-loop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-f617a0cc1da3154aaabf3f48105fdf278510989d3c30b1bdc641103ed2ba4c573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6788-8372
PQID 2460788207
PQPubID 2045275
ParticipantIDs proquest_journals_2460788207
crossref_primary_10_1016_j_buildenv_2020_107190
crossref_citationtrail_10_1016_j_buildenv_2020_107190
elsevier_sciencedirect_doi_10_1016_j_buildenv_2020_107190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, de Dear, Luo, Lin, He, Ghahramani, Zhu (bib6) 2018; 138
Chaloner, Verdinelli (bib37) 1995; 10
Lee, Karava (bib40) 2020
Hu, Li (bib23) 2016; 98
Erickson, Cerpa (bib8) 2012
Gao, Keshav (bib10) 2013
Kullback, Leibler (bib38) 1951; 22
Liu (bib43) 2001
Gunay, O'Brien, Beausoleil-Morrison (bib41) 2016; 9
Feldmeier, Paradiso (bib7) 2010
Ghahramani, Castro, Karvigh, Becerik-Gerber (bib25) 2018; 211
Huan, Marzouk (bib42) 2016
Bilionis, Koutsourelakis (bib36) 2012; 231
Daum, Haldi, Morel (bib18) 2011; 46
Rupp, Vásquez, Lamberts (bib5) 2015; 105
Ghahramani, Jazizadeh, Becerik-Gerber (bib13) 2014; 85
Fanger (bib4) 1967
Sadeghi, Karava, Konstantzos, Tzempelikos (bib45) 2016; 97
Lee, Karava, Tzempelikos, Bilionis (bib35) 2019; 148
Gao, Keshav (bib9) 2013
Ghahramani, Castro, Becerik-Gerber, Yu (bib31) 2016; 109
Jiang, Yao (bib24) 2016; 99
Jazizadeh, Ghahramani, Becerik-Gerber, Kichkaylo, Orosz (bib11) 2014; 70
(bib30) 2013
Sanguinetti, Pritoni, Salmon, Meier, Morejohn (bib33) 2017; 32
Brager, de Dear (bib2) 1998; 27
Li, Menassa, Kamat (bib15) 2017; 126
Sarkar C, Prasad (bib14) 2016
Liu, Lian, Zhao (bib17) 2007; 39
Kim, Zhou, Schiavon, Raftery, Brager (bib26) 2018; 129
Joyce (bib39) 2011
Lee, Bilionis, Karava, Tzempelikos (bib28) 2017; 118
Chinazzo, Wienold, Andersen (bib46) 2019; 9
Chen, Wang, Srebric (bib21) 2015; 91
Panzeri, Magri, Carraro (bib32) 2008; 3
Gupta, Kar, Mishra, Wen (bib27) 2018; 20
Ghahramani, Tang, Becerik-Gerber (bib22) 2015; 92
Fanger (bib1) 1970
Auffenberg, Stein, Rogers (bib20) 2015
Zhao, Zhao, Wang, Wang, Jiang, Zhang (bib19) 2014; 72
Lee, Karava, Tzempelikos, Bilionis (bib44) 2019; 1343
Park, Ouf, Gunay, Peng, O'Brien, Kjærgaard, Nagy (bib29) 2019; 165
de Dear, Brager (bib3) 1998
Lee, Joe, Karava, Bilionis, Tzempelikos (bib16) 2019; 194
Jazizadeh, Ghahramani, Becerik-Gerber, Kichkaylo, Orosz (bib12) 2014
Becker, Kennedy (bib34) 1992; 8
Wang (10.1016/j.buildenv.2020.107190_bib6) 2018; 138
Gao (10.1016/j.buildenv.2020.107190_bib10) 2013
Lee (10.1016/j.buildenv.2020.107190_bib44) 2019; 1343
de Dear (10.1016/j.buildenv.2020.107190_bib3) 1998; 104
Panzeri (10.1016/j.buildenv.2020.107190_bib32) 2008; 3
Ghahramani (10.1016/j.buildenv.2020.107190_bib31) 2016; 109
Gao (10.1016/j.buildenv.2020.107190_bib9) 2013
Huan (10.1016/j.buildenv.2020.107190_bib42) 2016
Kullback (10.1016/j.buildenv.2020.107190_bib38) 1951; 22
Daum (10.1016/j.buildenv.2020.107190_bib18) 2011; 46
Park (10.1016/j.buildenv.2020.107190_bib29) 2019; 165
Chaloner (10.1016/j.buildenv.2020.107190_bib37) 1995; 10
Lee (10.1016/j.buildenv.2020.107190_bib40) 2020
Brager (10.1016/j.buildenv.2020.107190_bib2) 1998; 27
Sanguinetti (10.1016/j.buildenv.2020.107190_bib33) 2017; 32
Ghahramani (10.1016/j.buildenv.2020.107190_bib22) 2015; 92
Gunay (10.1016/j.buildenv.2020.107190_bib41) 2016; 9
Erickson (10.1016/j.buildenv.2020.107190_bib8) 2012
Becker (10.1016/j.buildenv.2020.107190_bib34) 1992; 8
Ghahramani (10.1016/j.buildenv.2020.107190_bib25) 2018; 211
Sarkar C (10.1016/j.buildenv.2020.107190_bib14) 2016
Sadeghi (10.1016/j.buildenv.2020.107190_bib45) 2016; 97
Fanger (10.1016/j.buildenv.2020.107190_bib1) 1970
Lee (10.1016/j.buildenv.2020.107190_bib16) 2019; 194
Lee (10.1016/j.buildenv.2020.107190_bib28) 2017; 118
Chinazzo (10.1016/j.buildenv.2020.107190_bib46) 2019; 9
Auffenberg (10.1016/j.buildenv.2020.107190_bib20) 2015
Rupp (10.1016/j.buildenv.2020.107190_bib5) 2015; 105
Jazizadeh (10.1016/j.buildenv.2020.107190_bib12) 2014; 28
Ghahramani (10.1016/j.buildenv.2020.107190_bib13) 2014; 85
Joyce (10.1016/j.buildenv.2020.107190_bib39) 2011
Li (10.1016/j.buildenv.2020.107190_bib15) 2017; 126
Lee (10.1016/j.buildenv.2020.107190_bib35) 2019; 148
Fanger (10.1016/j.buildenv.2020.107190_bib4) 1967; 73
Chen (10.1016/j.buildenv.2020.107190_bib21) 2015; 91
Kim (10.1016/j.buildenv.2020.107190_bib26) 2018; 129
Bilionis (10.1016/j.buildenv.2020.107190_bib36) 2012; 231
Liu (10.1016/j.buildenv.2020.107190_bib43) 2001
Feldmeier (10.1016/j.buildenv.2020.107190_bib7) 2010
Gupta (10.1016/j.buildenv.2020.107190_bib27) 2018; 20
Jazizadeh (10.1016/j.buildenv.2020.107190_bib11) 2014; 70
Liu (10.1016/j.buildenv.2020.107190_bib17) 2007; 39
(10.1016/j.buildenv.2020.107190_bib30) 2013
Jiang (10.1016/j.buildenv.2020.107190_bib24) 2016; 99
Zhao (10.1016/j.buildenv.2020.107190_bib19) 2014; 72
Hu (10.1016/j.buildenv.2020.107190_bib23) 2016; 98
References_xml – year: 1998
  ident: bib3
  article-title: Developing an adaptive model of thermal comfort and preference
  publication-title: Build. Eng.
– volume: 129
  start-page: 96
  year: 2018
  end-page: 106
  ident: bib26
  article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
– volume: 9
  year: 2016
  ident: bib41
  article-title: Implementation and comparison of existing occupant behaviour models in EnergyPlus
  publication-title: J. Build. Perform. Simul.
– volume: 138
  year: 2018
  ident: bib6
  article-title: Individual difference in thermal comfort: a literature review
  publication-title: Build. Environ.
– volume: 148
  start-page: 714
  year: 2019
  end-page: 729
  ident: bib35
  article-title: Inference of thermal preference profiles for personalized thermal environments with actual building occupants
  publication-title: Build. Environ.
– volume: 194
  start-page: 301
  year: 2019
  end-page: 316
  ident: bib16
  article-title: Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use
  publication-title: Energy Build
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib7
  article-title: Personalized HVAC Control System
– volume: 3
  start-page: 4258
  year: 2008
  ident: bib32
  article-title: Sampling bias
  publication-title: Scholarpedia
– volume: 27
  start-page: 83
  year: 1998
  end-page: 96
  ident: bib2
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build
– volume: 165
  start-page: 106351
  year: 2019
  ident: bib29
  article-title: A critical review of field implementations of occupant-centric building controls
  publication-title: Build. Environ.
– volume: 10
  start-page: 273
  year: 1995
  end-page: 304
  ident: bib37
  article-title: Bayesian experimental design: a review Stat
  publication-title: Science
– volume: 99
  start-page: 98
  year: 2016
  end-page: 106
  ident: bib24
  article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm
  publication-title: Build. Environ. Times
– volume: 1343
  year: 2019
  ident: bib44
  article-title: Integrating occupants' voluntary thermal preference responses into personalized thermal control in office buildings
  publication-title: J. Phys. Conf. Ser.
– volume: 126
  start-page: 304
  year: 2017
  end-page: 317
  ident: bib15
  article-title: Personalized human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
– volume: 118
  start-page: 323
  year: 2017
  end-page: 343
  ident: bib28
  article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings
  publication-title: Build. Environ.
– volume: 91
  start-page: 187
  year: 2015
  end-page: 198
  ident: bib21
  article-title: A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings
  publication-title: Energy Build.
– volume: 98
  start-page: 107
  year: 2016
  end-page: 120
  ident: bib23
  article-title: Deducing the classification rules for thermal comfort controls using optimal method
  publication-title: Build. Environ. Times
– volume: 231
  start-page: 3849
  year: 2012
  end-page: 3870
  ident: bib36
  article-title: Free energy computations by minimization of Kullback–Leibler divergence: an efficient adaptive biasing potential method for sparse representations
  publication-title: J. Comput. Phys.
– year: 2016
  ident: bib14
  article-title: iLTC: achieving individual comfort in shared spaces
  publication-title: International Conference on Embedded Wireless Systems and Networks (EWSN 2016)
– start-page: 720
  year: 2011
  end-page: 722
  ident: bib39
  article-title: Kullback-Leibler Divergence BT - International Encyclopedia of Statistical Science
– year: 2013
  ident: bib30
  article-title: ASHRAE 2013 ANSI/ASHRAE standard 55-2013
  publication-title: Therm. Environ. Cond. Hum. Occup
– volume: 109
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib31
  article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort
  publication-title: Build. Environ.
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib9
  article-title: Optimal personal comfort management using SPOT+
  publication-title: Proc. 5th ACM Work. Embed. Syst. Energy-Efficient Build
– year: 2013
  ident: bib10
  article-title: SPOT: a smart personalized office thermal control system
  publication-title: Proc. Fourth Int. Conf. Futur. Energy Syst. (E-Energy ’13)
– start-page: 2547
  year: 2015
  end-page: 2553
  ident: bib20
  article-title: A personalised thermal comfort model using a Bayesian network
  publication-title: 24th Int. Conf. Artif. Intell
– volume: 20
  start-page: 386
  year: 2018
  end-page: 402
  ident: bib27
  article-title: Singular perturbation method for smart building temperature control using occupant feedback
  publication-title: Asian J. Contr.
– volume: 70
  start-page: 398
  year: 2014
  end-page: 410
  ident: bib11
  article-title: User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings
  publication-title: Energy Build.
– start-page: 9
  year: 2012
  end-page: 16
  ident: bib8
  article-title: Thermovote: participatory sensing for efficient building hvac conditioning
  publication-title: Proceedings Of the Fourth ACMWorkshop On Embedded Sensing Systems For Energy-Efficiency In Buildings (BuildSys'12)
– year: 2016
  ident: bib42
  article-title: Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming
– year: 1967
  ident: bib4
  article-title: Calculation of thermal comfort: introduction of a basic comfort equation
  publication-title: Build. Eng.
– volume: 211
  start-page: 41
  year: 2018
  end-page: 49
  ident: bib25
  article-title: Towards unsupervised learning of thermal comfort using infrared thermography
  publication-title: Appl. Energy
– volume: 39
  start-page: 1115
  year: 2007
  end-page: 1122
  ident: bib17
  article-title: A neural network evaluation model for individual thermal comfort
  publication-title: Energy Build
– volume: 85
  start-page: 536
  year: 2014
  end-page: 548
  ident: bib13
  article-title: A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points
  publication-title: Energy Build.
– volume: 46
  start-page: 3
  year: 2011
  end-page: 11
  ident: bib18
  article-title: A personalized measure of thermal comfort for building controls
  publication-title: Build. Environ.
– volume: 105
  start-page: 178
  year: 2015
  end-page: 205
  ident: bib5
  article-title: A review of human thermal comfort in the built environment
  publication-title: Energy Build.
– start-page: 110172
  year: 2020
  ident: bib40
  article-title: Towards smart buildings with self-tuned indoor thermal environments- A critical review
  publication-title: Energy Build
– volume: 97
  start-page: 177
  year: 2016
  end-page: 195
  ident: bib45
  article-title: Occupant interactions with shading and lighting systems using different control interfaces: a pilot field study
  publication-title: Build. Environ.
– start-page: 2
  year: 2014
  end-page: 16
  ident: bib12
  article-title: Human-building interaction framework for personalized thermal comfort-driven systems in office buildings
  publication-title: J. Comput. Civ. Eng.
– volume: 72
  start-page: 309
  year: 2014
  end-page: 318
  ident: bib19
  article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: from model to application
  publication-title: Build. Environ.
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: bib38
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– year: 1970
  ident: bib1
  article-title: Thermal Comfort-Analysis and Applications in Environmental Engineering
– volume: 92
  start-page: 86
  year: 2015
  end-page: 96
  ident: bib22
  article-title: An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling
  publication-title: Build. Environ.
– volume: 32
  start-page: 44
  year: 2017
  end-page: 54
  ident: bib33
  article-title: Upscaling participatory thermal sensing: Lessons from an interdisciplinary case study at University of California for improving campus efficiency and comfort
  publication-title: Energy Res. Soc. Sci.
– year: 2001
  ident: bib43
  article-title: Monte Carlo Strategies in Scientific Computing
– volume: 8
  start-page: 127
  year: 1992
  end-page: 131
  ident: bib34
  article-title: A graphical exposition of the ordered probit
  publication-title: Econom. Theor.
– volume: 9
  start-page: 13690
  year: 2019
  ident: bib46
  article-title: Daylight affects human thermal perception
  publication-title: Sci. Rep.
– volume: 211
  start-page: 41
  year: 2018
  ident: 10.1016/j.buildenv.2020.107190_bib25
  article-title: Towards unsupervised learning of thermal comfort using infrared thermography
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.021
– start-page: 2547
  year: 2015
  ident: 10.1016/j.buildenv.2020.107190_bib20
  article-title: A personalised thermal comfort model using a Bayesian network
– volume: 85
  start-page: 536
  year: 2014
  ident: 10.1016/j.buildenv.2020.107190_bib13
  article-title: A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.09.055
– year: 1970
  ident: 10.1016/j.buildenv.2020.107190_bib1
– volume: 10
  start-page: 273
  year: 1995
  ident: 10.1016/j.buildenv.2020.107190_bib37
  article-title: Bayesian experimental design: a review Stat
  publication-title: Science
– start-page: 720
  year: 2011
  ident: 10.1016/j.buildenv.2020.107190_bib39
  article-title: Kullback-Leibler Divergence BT - International Encyclopedia of Statistical Science
– volume: 46
  start-page: 3
  year: 2011
  ident: 10.1016/j.buildenv.2020.107190_bib18
  article-title: A personalized measure of thermal comfort for building controls
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.06.011
– start-page: 110172
  year: 2020
  ident: 10.1016/j.buildenv.2020.107190_bib40
  article-title: Towards smart buildings with self-tuned indoor thermal environments- A critical review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110172
– year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib42
– volume: 32
  start-page: 44
  year: 2017
  ident: 10.1016/j.buildenv.2020.107190_bib33
  article-title: Upscaling participatory thermal sensing: Lessons from an interdisciplinary case study at University of California for improving campus efficiency and comfort
  publication-title: Energy Res. Soc. Sci.
  doi: 10.1016/j.erss.2017.05.026
– year: 2001
  ident: 10.1016/j.buildenv.2020.107190_bib43
– start-page: 1
  year: 2013
  ident: 10.1016/j.buildenv.2020.107190_bib9
  article-title: Optimal personal comfort management using SPOT+
– volume: 73
  year: 1967
  ident: 10.1016/j.buildenv.2020.107190_bib4
  article-title: Calculation of thermal comfort: introduction of a basic comfort equation
  publication-title: Build. Eng.
– volume: 194
  start-page: 301
  year: 2019
  ident: 10.1016/j.buildenv.2020.107190_bib16
  article-title: Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.04.016
– volume: 118
  start-page: 323
  year: 2017
  ident: 10.1016/j.buildenv.2020.107190_bib28
  article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.03.009
– volume: 138
  year: 2018
  ident: 10.1016/j.buildenv.2020.107190_bib6
  article-title: Individual difference in thermal comfort: a literature review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.04.040
– year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib14
  article-title: iLTC: achieving individual comfort in shared spaces
– volume: 9
  start-page: 13690
  year: 2019
  ident: 10.1016/j.buildenv.2020.107190_bib46
  article-title: Daylight affects human thermal perception
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48963-y
– volume: 1343
  year: 2019
  ident: 10.1016/j.buildenv.2020.107190_bib44
  article-title: Integrating occupants' voluntary thermal preference responses into personalized thermal control in office buildings
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1343/1/012138
– volume: 22
  start-page: 79
  year: 1951
  ident: 10.1016/j.buildenv.2020.107190_bib38
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 104
  year: 1998
  ident: 10.1016/j.buildenv.2020.107190_bib3
  article-title: Developing an adaptive model of thermal comfort and preference
  publication-title: Build. Eng.
– year: 2013
  ident: 10.1016/j.buildenv.2020.107190_bib10
  article-title: SPOT: a smart personalized office thermal control system
– volume: 231
  start-page: 3849
  year: 2012
  ident: 10.1016/j.buildenv.2020.107190_bib36
  article-title: Free energy computations by minimization of Kullback–Leibler divergence: an efficient adaptive biasing potential method for sparse representations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.033
– volume: 91
  start-page: 187
  year: 2015
  ident: 10.1016/j.buildenv.2020.107190_bib21
  article-title: A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.01.038
– volume: 27
  start-page: 83
  year: 1998
  ident: 10.1016/j.buildenv.2020.107190_bib2
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(97)00053-4
– start-page: 9
  year: 2012
  ident: 10.1016/j.buildenv.2020.107190_bib8
  article-title: Thermovote: participatory sensing for efficient building hvac conditioning
– volume: 8
  start-page: 127
  year: 1992
  ident: 10.1016/j.buildenv.2020.107190_bib34
  article-title: A graphical exposition of the ordered probit
  publication-title: Econom. Theor.
  doi: 10.1017/S0266466600010781
– volume: 99
  start-page: 98
  year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib24
  article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm
  publication-title: Build. Environ. Times
  doi: 10.1016/j.buildenv.2016.01.022
– volume: 92
  start-page: 86
  year: 2015
  ident: 10.1016/j.buildenv.2020.107190_bib22
  article-title: An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.017
– volume: 70
  start-page: 398
  year: 2014
  ident: 10.1016/j.buildenv.2020.107190_bib11
  article-title: User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.066
– volume: 97
  start-page: 177
  year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib45
  article-title: Occupant interactions with shading and lighting systems using different control interfaces: a pilot field study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.12.008
– year: 2013
  ident: 10.1016/j.buildenv.2020.107190_bib30
  article-title: ASHRAE 2013 ANSI/ASHRAE standard 55-2013
  publication-title: Therm. Environ. Cond. Hum. Occup
– volume: 105
  start-page: 178
  year: 2015
  ident: 10.1016/j.buildenv.2020.107190_bib5
  article-title: A review of human thermal comfort in the built environment
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.07.047
– volume: 39
  start-page: 1115
  year: 2007
  ident: 10.1016/j.buildenv.2020.107190_bib17
  article-title: A neural network evaluation model for individual thermal comfort
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2006.12.005
– start-page: 1
  year: 2010
  ident: 10.1016/j.buildenv.2020.107190_bib7
– volume: 126
  start-page: 304
  year: 2017
  ident: 10.1016/j.buildenv.2020.107190_bib15
  article-title: Personalized human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.10.004
– volume: 28
  start-page: 2
  year: 2014
  ident: 10.1016/j.buildenv.2020.107190_bib12
  article-title: Human-building interaction framework for personalized thermal comfort-driven systems in office buildings
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000300
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib31
  article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.005
– volume: 72
  start-page: 309
  year: 2014
  ident: 10.1016/j.buildenv.2020.107190_bib19
  article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: from model to application
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.008
– volume: 148
  start-page: 714
  year: 2019
  ident: 10.1016/j.buildenv.2020.107190_bib35
  article-title: Inference of thermal preference profiles for personalized thermal environments with actual building occupants
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.027
– volume: 20
  start-page: 386
  year: 2018
  ident: 10.1016/j.buildenv.2020.107190_bib27
  article-title: Singular perturbation method for smart building temperature control using occupant feedback
  publication-title: Asian J. Contr.
  doi: 10.1002/asjc.1587
– volume: 3
  start-page: 4258
  year: 2008
  ident: 10.1016/j.buildenv.2020.107190_bib32
  article-title: Sampling bias
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.4258
– volume: 165
  start-page: 106351
  year: 2019
  ident: 10.1016/j.buildenv.2020.107190_bib29
  article-title: A critical review of field implementations of occupant-centric building controls
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106351
– volume: 98
  start-page: 107
  year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib23
  article-title: Deducing the classification rules for thermal comfort controls using optimal method
  publication-title: Build. Environ. Times
  doi: 10.1016/j.buildenv.2015.12.025
– volume: 129
  start-page: 96
  year: 2018
  ident: 10.1016/j.buildenv.2020.107190_bib26
  article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.12.011
– volume: 9
  year: 2016
  ident: 10.1016/j.buildenv.2020.107190_bib41
  article-title: Implementation and comparison of existing occupant behaviour models in EnergyPlus
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2015.1102969
SSID ssj0016934
Score 2.4209604
Snippet There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107190
SubjectTerms Algorithms
Bayesian analysis
Bayesian modeling
Buildings
Data collection
Feedback
Human-in-the-loop
HVAC
Interfaces
Mathematical models
Occupant behaviour
Occupant centric
Office buildings
Performance evaluation
Personalized comfort
Personalized environments
Preferences
Thermal preferences
User interface
Title A smart and less intrusive feedback request algorithm towards human-centered HVAC operation
URI https://dx.doi.org/10.1016/j.buildenv.2020.107190
https://www.proquest.com/docview/2460788207
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BuLQH1FKq8ijygavJ-rG78TGKilKqcmmpIvVg-dkGwiYiUY_97Yx3vQgqJA697Voay5oZf_NZHs8AnLJYcVOMFLUsBCqdcdQ4a2nt8bTho5GsLZn_9bKaXsmLWTnbgkn_FialVWbs7zC9Res8MszaHK7m8-E3xN50USB4S4P5bBt2uFBVOYCd8ecv08uHy4RKiVxFqqBJ4NFD4eszm7pPh-YPHhV5GqxZgufnY9Q_aN2GoPM3sJu5Ixl3y3sLW6HZg9ePKgq-g59jsr7F9RPTeLJAFCPzJj2rQEwjEQOVNe6G3IV2emIWv5Z3883vW7Jpk2fXpO3YR1PCZmrhSaY_xhOyXIXOS_bh6vzT98mU5v4J1AlZbGhEdmIK55g3ApmSMcZGEeUIKVX0kddItgo1Ul44UVhmvaskkgERPLdGurIW72HQLJvwAYjlRVAjL2svmfReGFcHp_CTVZ4pGw-g7DWmXS4unnpcLHSfRXate03rpGndafoAhg9yq668xosSqjeIfuIoGmPAi7LHvQV13qprzWWFNAmJUH34H1Mfwav0l6IaK49hgKYNH5GubOwJbJ_9ZSfZKe8BdlTryw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Bcig9oLYUlUKpD72ajWMn2RxXK1B47aVQrcTB8hOWLtkVu-rv7zhxECAkDtwiR2NZY_ubb-R5APxiPk9VMiipZs5RYZShymhNC4vehvVKsKZk_sU4r67E6SSbrMGoy4UJYZUR-1tMb9A6jvSjNvuL6bT_G7E3PBTwtKHB6WQdNkSG3l4PNoYnZ9X48TEhL3msIpXQIPAkUfjuUIfu067-h65iGgYLFuD5dRv1Aq0bE3T8CbYidyTDdnmfYc3VX-Djk4qC23A9JMt7XD9RtSUzRDEyrUNaBWIa8WiotDJ_yYNrpidqdjN_mK5u78mqCZ5dkqZjHw0Bm6GFJ6n-DEdkvnDtKfkKV8dHl6OKxv4J1HCRrKhHdqISY5hVHJmSUkp77sUAKZW3Pi2QbCXloLTc8EQzbU0ukAxwZ1OthMkKvgO9el67b0B0mrhyYEVhBRPWcmUKZ0r8ZLllpfa7kHUakyYWFw89LmayiyK7k52mZdC0bDW9C_1HuUVbXuNNibLbEPnsoEi0AW_K7nc7KONVXcpU5EiTkAgV398x9U_4UF1enMvzk_HZHmyGP8HCsWwferjN7gdSl5U-iEfzPx5v7bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+smart+and+less+intrusive+feedback+request+algorithm+towards+human-centered+HVAC+operation&rft.jtitle=Building+and+environment&rft.au=Lee%2C+Seungjae&rft.au=Karava%2C+Panagiota&rft.au=Tzempelikos%2C+Athanasios&rft.au=Bilionis%2C+Ilias&rft.date=2020-10-15&rft.pub=Elsevier+BV&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.buildenv.2020.107190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon