A smart and less intrusive feedback request algorithm towards human-centered HVAC operation
There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliab...
Saved in:
Published in | Building and environment Vol. 184; p. 107190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 1873-684X |
DOI | 10.1016/j.buildenv.2020.107190 |
Cover
Abstract | There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants’ participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation.
•Integrated occupant comfort-related responses into personal thermal preference learning.•Conducted experiments to compare occupants' voluntary and requested thermal preference responses.•Incorporated occupants' participation –a type of behavior –in the model structure.•Developed a smart feedback request algorithm based on information gain. |
---|---|
AbstractList | There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants' participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation. There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real buildings is necessary for training and updating models. However, sufficient quantity and quality of data are required for developing reliable models, along with optimal model complexity, efficient updating modes and robust evaluation metrics. Therefore, long-term collection of occupant feedback is often needed, which might be intrusive and impractical. This paper presents a Bayesian modeling approach which incorporates voluntary feedback data (comfort-related responses), collected via participatory interfaces, along with requested feedback data, into the personal thermal preference learning framework. This is achieved by explicitly considering occupants’ participation –a type of behavior –in the model structure, i.e., integration of thermal preference-related feedback and occupant behavior. The approach was evaluated with two different datasets collected from two experimental setups with human test-subjects. A smart feedback request algorithm was developed, which determines whether to request feedback at any given time based on the quantified value (i.e., information gain) of the request. The value was computed using the expected Kullback-Leibler divergence between the current and updated posterior parameter distributions. In addition, a simulation study was conducted to evaluate the performance of the algorithm. The results show that the new algorithm learns individual thermal preferences with reduced feedback requests, i.e., effective but less-intrusive. Requesting occupant feedback only when truly needed is important for smart and practical human-centered HVAC operation. •Integrated occupant comfort-related responses into personal thermal preference learning.•Conducted experiments to compare occupants' voluntary and requested thermal preference responses.•Incorporated occupants' participation –a type of behavior –in the model structure.•Developed a smart feedback request algorithm based on information gain. |
ArticleNumber | 107190 |
Author | Tzempelikos, Athanasios Lee, Seungjae Karava, Panagiota Bilionis, Ilias |
Author_xml | – sequence: 1 givenname: Seungjae surname: Lee fullname: Lee, Seungjae organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA – sequence: 2 givenname: Panagiota surname: Karava fullname: Karava, Panagiota email: pkarava@purdue.edu organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA – sequence: 3 givenname: Athanasios orcidid: 0000-0001-6788-8372 surname: Tzempelikos fullname: Tzempelikos, Athanasios organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN, 47907, USA – sequence: 4 givenname: Ilias surname: Bilionis fullname: Bilionis, Ilias organization: School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA |
BookMark | eNqFkMtKAzEUhoNUsK2-ggRcT00mcyu4sBS1guBGRXARMskZm3Ga1CRT8e2d6ejGTVcHDv93Lt8EjYw1gNA5JTNKaHZZz8pWNwrMbhaTuG_mdE6O0JgWOYuyInkdoTFhGYkoi9kJmnhfkw6cs2SM3hbYb4QLWBiFG_AeaxNc6_UOcAWgSiE_sIPPFnyXad6t02G9wcF-Cac8XrcbYSIJJoADhVcviyW2W3AiaGtO0XElGg9nv3WKnm9vnpar6OHx7n65eIgkS0iIqozmgkhJlWA0TYQQZcWqpKAkrVQV50VKybyYKyYZKWmpZJZQShiouBSJTHM2RRfD3K2z-0N5bVtnupU8TjKSF0VM-lQ2pKSz3juo-Nbp7vVvTgnvRfKa_4nkvUg-iOzAq3-g1GH_YHBCN4fx6wGHTsFOg-NeajASlHYgA1dWHxrxA7rKlow |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_110445 crossref_primary_10_1016_j_buildenv_2022_109090 crossref_primary_10_1109_ACCESS_2024_3366453 crossref_primary_10_1016_j_buildenv_2025_112686 crossref_primary_10_1108_F_09_2022_0121 crossref_primary_10_1080_23744731_2021_1976017 crossref_primary_10_1016_j_enbuild_2024_113958 crossref_primary_10_1016_j_buildenv_2023_111129 crossref_primary_10_1016_j_enbuild_2023_112848 crossref_primary_10_1016_j_jclepro_2021_127685 crossref_primary_10_1080_23744731_2021_1877041 crossref_primary_10_1016_j_buildenv_2022_109458 crossref_primary_10_1016_j_buildenv_2021_108502 crossref_primary_10_1016_j_enbuild_2021_110790 crossref_primary_10_1016_j_buildenv_2021_108449 crossref_primary_10_1016_j_buildenv_2023_111053 crossref_primary_10_1016_j_enbuild_2021_111363 |
Cites_doi | 10.1016/j.apenergy.2017.11.021 10.1016/j.enbuild.2014.09.055 10.1016/j.buildenv.2010.06.011 10.1016/j.enbuild.2020.110172 10.1016/j.erss.2017.05.026 10.1016/j.enbuild.2019.04.016 10.1016/j.buildenv.2017.03.009 10.1016/j.buildenv.2018.04.040 10.1038/s41598-019-48963-y 10.1088/1742-6596/1343/1/012138 10.1214/aoms/1177729694 10.1016/j.jcp.2012.01.033 10.1016/j.enbuild.2015.01.038 10.1016/S0378-7788(97)00053-4 10.1017/S0266466600010781 10.1016/j.buildenv.2016.01.022 10.1016/j.buildenv.2015.04.017 10.1016/j.enbuild.2013.11.066 10.1016/j.buildenv.2015.12.008 10.1016/j.enbuild.2015.07.047 10.1016/j.enbuild.2006.12.005 10.1016/j.buildenv.2017.10.004 10.1061/(ASCE)CP.1943-5487.0000300 10.1016/j.buildenv.2016.09.005 10.1016/j.buildenv.2013.11.008 10.1016/j.buildenv.2018.10.027 10.1002/asjc.1587 10.4249/scholarpedia.4258 10.1016/j.buildenv.2019.106351 10.1016/j.buildenv.2015.12.025 10.1016/j.buildenv.2017.12.011 10.1080/19401493.2015.1102969 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Oct 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Oct 15, 2020 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.buildenv.2020.107190 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
ExternalDocumentID | 10_1016_j_buildenv_2020_107190 S036013232030562X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SAC SET SEW SSH VH1 WUQ ZMT 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c340t-f617a0cc1da3154aaabf3f48105fdf278510989d3c30b1bdc641103ed2ba4c573 |
IEDL.DBID | AIKHN |
ISSN | 0360-1323 |
IngestDate | Wed Aug 13 05:45:15 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Tue Jul 01 00:25:02 EDT 2025 Fri Feb 23 02:46:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Occupant centric Personalized comfort Occupant behaviour User interface Bayesian modeling Personalized environments Thermal preferences Human-in-the-loop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-f617a0cc1da3154aaabf3f48105fdf278510989d3c30b1bdc641103ed2ba4c573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6788-8372 |
PQID | 2460788207 |
PQPubID | 2045275 |
ParticipantIDs | proquest_journals_2460788207 crossref_primary_10_1016_j_buildenv_2020_107190 crossref_citationtrail_10_1016_j_buildenv_2020_107190 elsevier_sciencedirect_doi_10_1016_j_buildenv_2020_107190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Building and environment |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang, de Dear, Luo, Lin, He, Ghahramani, Zhu (bib6) 2018; 138 Chaloner, Verdinelli (bib37) 1995; 10 Lee, Karava (bib40) 2020 Hu, Li (bib23) 2016; 98 Erickson, Cerpa (bib8) 2012 Gao, Keshav (bib10) 2013 Kullback, Leibler (bib38) 1951; 22 Liu (bib43) 2001 Gunay, O'Brien, Beausoleil-Morrison (bib41) 2016; 9 Feldmeier, Paradiso (bib7) 2010 Ghahramani, Castro, Karvigh, Becerik-Gerber (bib25) 2018; 211 Huan, Marzouk (bib42) 2016 Bilionis, Koutsourelakis (bib36) 2012; 231 Daum, Haldi, Morel (bib18) 2011; 46 Rupp, Vásquez, Lamberts (bib5) 2015; 105 Ghahramani, Jazizadeh, Becerik-Gerber (bib13) 2014; 85 Fanger (bib4) 1967 Sadeghi, Karava, Konstantzos, Tzempelikos (bib45) 2016; 97 Lee, Karava, Tzempelikos, Bilionis (bib35) 2019; 148 Gao, Keshav (bib9) 2013 Ghahramani, Castro, Becerik-Gerber, Yu (bib31) 2016; 109 Jiang, Yao (bib24) 2016; 99 Jazizadeh, Ghahramani, Becerik-Gerber, Kichkaylo, Orosz (bib11) 2014; 70 (bib30) 2013 Sanguinetti, Pritoni, Salmon, Meier, Morejohn (bib33) 2017; 32 Brager, de Dear (bib2) 1998; 27 Li, Menassa, Kamat (bib15) 2017; 126 Sarkar C, Prasad (bib14) 2016 Liu, Lian, Zhao (bib17) 2007; 39 Kim, Zhou, Schiavon, Raftery, Brager (bib26) 2018; 129 Joyce (bib39) 2011 Lee, Bilionis, Karava, Tzempelikos (bib28) 2017; 118 Chinazzo, Wienold, Andersen (bib46) 2019; 9 Chen, Wang, Srebric (bib21) 2015; 91 Panzeri, Magri, Carraro (bib32) 2008; 3 Gupta, Kar, Mishra, Wen (bib27) 2018; 20 Ghahramani, Tang, Becerik-Gerber (bib22) 2015; 92 Fanger (bib1) 1970 Auffenberg, Stein, Rogers (bib20) 2015 Zhao, Zhao, Wang, Wang, Jiang, Zhang (bib19) 2014; 72 Lee, Karava, Tzempelikos, Bilionis (bib44) 2019; 1343 Park, Ouf, Gunay, Peng, O'Brien, Kjærgaard, Nagy (bib29) 2019; 165 de Dear, Brager (bib3) 1998 Lee, Joe, Karava, Bilionis, Tzempelikos (bib16) 2019; 194 Jazizadeh, Ghahramani, Becerik-Gerber, Kichkaylo, Orosz (bib12) 2014 Becker, Kennedy (bib34) 1992; 8 Wang (10.1016/j.buildenv.2020.107190_bib6) 2018; 138 Gao (10.1016/j.buildenv.2020.107190_bib10) 2013 Lee (10.1016/j.buildenv.2020.107190_bib44) 2019; 1343 de Dear (10.1016/j.buildenv.2020.107190_bib3) 1998; 104 Panzeri (10.1016/j.buildenv.2020.107190_bib32) 2008; 3 Ghahramani (10.1016/j.buildenv.2020.107190_bib31) 2016; 109 Gao (10.1016/j.buildenv.2020.107190_bib9) 2013 Huan (10.1016/j.buildenv.2020.107190_bib42) 2016 Kullback (10.1016/j.buildenv.2020.107190_bib38) 1951; 22 Daum (10.1016/j.buildenv.2020.107190_bib18) 2011; 46 Park (10.1016/j.buildenv.2020.107190_bib29) 2019; 165 Chaloner (10.1016/j.buildenv.2020.107190_bib37) 1995; 10 Lee (10.1016/j.buildenv.2020.107190_bib40) 2020 Brager (10.1016/j.buildenv.2020.107190_bib2) 1998; 27 Sanguinetti (10.1016/j.buildenv.2020.107190_bib33) 2017; 32 Ghahramani (10.1016/j.buildenv.2020.107190_bib22) 2015; 92 Gunay (10.1016/j.buildenv.2020.107190_bib41) 2016; 9 Erickson (10.1016/j.buildenv.2020.107190_bib8) 2012 Becker (10.1016/j.buildenv.2020.107190_bib34) 1992; 8 Ghahramani (10.1016/j.buildenv.2020.107190_bib25) 2018; 211 Sarkar C (10.1016/j.buildenv.2020.107190_bib14) 2016 Sadeghi (10.1016/j.buildenv.2020.107190_bib45) 2016; 97 Fanger (10.1016/j.buildenv.2020.107190_bib1) 1970 Lee (10.1016/j.buildenv.2020.107190_bib16) 2019; 194 Lee (10.1016/j.buildenv.2020.107190_bib28) 2017; 118 Chinazzo (10.1016/j.buildenv.2020.107190_bib46) 2019; 9 Auffenberg (10.1016/j.buildenv.2020.107190_bib20) 2015 Rupp (10.1016/j.buildenv.2020.107190_bib5) 2015; 105 Jazizadeh (10.1016/j.buildenv.2020.107190_bib12) 2014; 28 Ghahramani (10.1016/j.buildenv.2020.107190_bib13) 2014; 85 Joyce (10.1016/j.buildenv.2020.107190_bib39) 2011 Li (10.1016/j.buildenv.2020.107190_bib15) 2017; 126 Lee (10.1016/j.buildenv.2020.107190_bib35) 2019; 148 Fanger (10.1016/j.buildenv.2020.107190_bib4) 1967; 73 Chen (10.1016/j.buildenv.2020.107190_bib21) 2015; 91 Kim (10.1016/j.buildenv.2020.107190_bib26) 2018; 129 Bilionis (10.1016/j.buildenv.2020.107190_bib36) 2012; 231 Liu (10.1016/j.buildenv.2020.107190_bib43) 2001 Feldmeier (10.1016/j.buildenv.2020.107190_bib7) 2010 Gupta (10.1016/j.buildenv.2020.107190_bib27) 2018; 20 Jazizadeh (10.1016/j.buildenv.2020.107190_bib11) 2014; 70 Liu (10.1016/j.buildenv.2020.107190_bib17) 2007; 39 (10.1016/j.buildenv.2020.107190_bib30) 2013 Jiang (10.1016/j.buildenv.2020.107190_bib24) 2016; 99 Zhao (10.1016/j.buildenv.2020.107190_bib19) 2014; 72 Hu (10.1016/j.buildenv.2020.107190_bib23) 2016; 98 |
References_xml | – year: 1998 ident: bib3 article-title: Developing an adaptive model of thermal comfort and preference publication-title: Build. Eng. – volume: 129 start-page: 96 year: 2018 end-page: 106 ident: bib26 article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning publication-title: Build. Environ. – volume: 9 year: 2016 ident: bib41 article-title: Implementation and comparison of existing occupant behaviour models in EnergyPlus publication-title: J. Build. Perform. Simul. – volume: 138 year: 2018 ident: bib6 article-title: Individual difference in thermal comfort: a literature review publication-title: Build. Environ. – volume: 148 start-page: 714 year: 2019 end-page: 729 ident: bib35 article-title: Inference of thermal preference profiles for personalized thermal environments with actual building occupants publication-title: Build. Environ. – volume: 194 start-page: 301 year: 2019 end-page: 316 ident: bib16 article-title: Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use publication-title: Energy Build – start-page: 1 year: 2010 end-page: 8 ident: bib7 article-title: Personalized HVAC Control System – volume: 3 start-page: 4258 year: 2008 ident: bib32 article-title: Sampling bias publication-title: Scholarpedia – volume: 27 start-page: 83 year: 1998 end-page: 96 ident: bib2 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build – volume: 165 start-page: 106351 year: 2019 ident: bib29 article-title: A critical review of field implementations of occupant-centric building controls publication-title: Build. Environ. – volume: 10 start-page: 273 year: 1995 end-page: 304 ident: bib37 article-title: Bayesian experimental design: a review Stat publication-title: Science – volume: 99 start-page: 98 year: 2016 end-page: 106 ident: bib24 article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm publication-title: Build. Environ. Times – volume: 1343 year: 2019 ident: bib44 article-title: Integrating occupants' voluntary thermal preference responses into personalized thermal control in office buildings publication-title: J. Phys. Conf. Ser. – volume: 126 start-page: 304 year: 2017 end-page: 317 ident: bib15 article-title: Personalized human comfort in indoor building environments under diverse conditioning modes publication-title: Build. Environ. – volume: 118 start-page: 323 year: 2017 end-page: 343 ident: bib28 article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings publication-title: Build. Environ. – volume: 91 start-page: 187 year: 2015 end-page: 198 ident: bib21 article-title: A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings publication-title: Energy Build. – volume: 98 start-page: 107 year: 2016 end-page: 120 ident: bib23 article-title: Deducing the classification rules for thermal comfort controls using optimal method publication-title: Build. Environ. Times – volume: 231 start-page: 3849 year: 2012 end-page: 3870 ident: bib36 article-title: Free energy computations by minimization of Kullback–Leibler divergence: an efficient adaptive biasing potential method for sparse representations publication-title: J. Comput. Phys. – year: 2016 ident: bib14 article-title: iLTC: achieving individual comfort in shared spaces publication-title: International Conference on Embedded Wireless Systems and Networks (EWSN 2016) – start-page: 720 year: 2011 end-page: 722 ident: bib39 article-title: Kullback-Leibler Divergence BT - International Encyclopedia of Statistical Science – year: 2013 ident: bib30 article-title: ASHRAE 2013 ANSI/ASHRAE standard 55-2013 publication-title: Therm. Environ. Cond. Hum. Occup – volume: 109 start-page: 1 year: 2016 end-page: 11 ident: bib31 article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort publication-title: Build. Environ. – start-page: 1 year: 2013 end-page: 8 ident: bib9 article-title: Optimal personal comfort management using SPOT+ publication-title: Proc. 5th ACM Work. Embed. Syst. Energy-Efficient Build – year: 2013 ident: bib10 article-title: SPOT: a smart personalized office thermal control system publication-title: Proc. Fourth Int. Conf. Futur. Energy Syst. (E-Energy ’13) – start-page: 2547 year: 2015 end-page: 2553 ident: bib20 article-title: A personalised thermal comfort model using a Bayesian network publication-title: 24th Int. Conf. Artif. Intell – volume: 20 start-page: 386 year: 2018 end-page: 402 ident: bib27 article-title: Singular perturbation method for smart building temperature control using occupant feedback publication-title: Asian J. Contr. – volume: 70 start-page: 398 year: 2014 end-page: 410 ident: bib11 article-title: User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings publication-title: Energy Build. – start-page: 9 year: 2012 end-page: 16 ident: bib8 article-title: Thermovote: participatory sensing for efficient building hvac conditioning publication-title: Proceedings Of the Fourth ACMWorkshop On Embedded Sensing Systems For Energy-Efficiency In Buildings (BuildSys'12) – year: 2016 ident: bib42 article-title: Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming – year: 1967 ident: bib4 article-title: Calculation of thermal comfort: introduction of a basic comfort equation publication-title: Build. Eng. – volume: 211 start-page: 41 year: 2018 end-page: 49 ident: bib25 article-title: Towards unsupervised learning of thermal comfort using infrared thermography publication-title: Appl. Energy – volume: 39 start-page: 1115 year: 2007 end-page: 1122 ident: bib17 article-title: A neural network evaluation model for individual thermal comfort publication-title: Energy Build – volume: 85 start-page: 536 year: 2014 end-page: 548 ident: bib13 article-title: A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points publication-title: Energy Build. – volume: 46 start-page: 3 year: 2011 end-page: 11 ident: bib18 article-title: A personalized measure of thermal comfort for building controls publication-title: Build. Environ. – volume: 105 start-page: 178 year: 2015 end-page: 205 ident: bib5 article-title: A review of human thermal comfort in the built environment publication-title: Energy Build. – start-page: 110172 year: 2020 ident: bib40 article-title: Towards smart buildings with self-tuned indoor thermal environments- A critical review publication-title: Energy Build – volume: 97 start-page: 177 year: 2016 end-page: 195 ident: bib45 article-title: Occupant interactions with shading and lighting systems using different control interfaces: a pilot field study publication-title: Build. Environ. – start-page: 2 year: 2014 end-page: 16 ident: bib12 article-title: Human-building interaction framework for personalized thermal comfort-driven systems in office buildings publication-title: J. Comput. Civ. Eng. – volume: 72 start-page: 309 year: 2014 end-page: 318 ident: bib19 article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: from model to application publication-title: Build. Environ. – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: bib38 article-title: On information and sufficiency publication-title: Ann. Math. Stat. – year: 1970 ident: bib1 article-title: Thermal Comfort-Analysis and Applications in Environmental Engineering – volume: 92 start-page: 86 year: 2015 end-page: 96 ident: bib22 article-title: An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling publication-title: Build. Environ. – volume: 32 start-page: 44 year: 2017 end-page: 54 ident: bib33 article-title: Upscaling participatory thermal sensing: Lessons from an interdisciplinary case study at University of California for improving campus efficiency and comfort publication-title: Energy Res. Soc. Sci. – year: 2001 ident: bib43 article-title: Monte Carlo Strategies in Scientific Computing – volume: 8 start-page: 127 year: 1992 end-page: 131 ident: bib34 article-title: A graphical exposition of the ordered probit publication-title: Econom. Theor. – volume: 9 start-page: 13690 year: 2019 ident: bib46 article-title: Daylight affects human thermal perception publication-title: Sci. Rep. – volume: 211 start-page: 41 year: 2018 ident: 10.1016/j.buildenv.2020.107190_bib25 article-title: Towards unsupervised learning of thermal comfort using infrared thermography publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.021 – start-page: 2547 year: 2015 ident: 10.1016/j.buildenv.2020.107190_bib20 article-title: A personalised thermal comfort model using a Bayesian network – volume: 85 start-page: 536 year: 2014 ident: 10.1016/j.buildenv.2020.107190_bib13 article-title: A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.09.055 – year: 1970 ident: 10.1016/j.buildenv.2020.107190_bib1 – volume: 10 start-page: 273 year: 1995 ident: 10.1016/j.buildenv.2020.107190_bib37 article-title: Bayesian experimental design: a review Stat publication-title: Science – start-page: 720 year: 2011 ident: 10.1016/j.buildenv.2020.107190_bib39 article-title: Kullback-Leibler Divergence BT - International Encyclopedia of Statistical Science – volume: 46 start-page: 3 year: 2011 ident: 10.1016/j.buildenv.2020.107190_bib18 article-title: A personalized measure of thermal comfort for building controls publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.06.011 – start-page: 110172 year: 2020 ident: 10.1016/j.buildenv.2020.107190_bib40 article-title: Towards smart buildings with self-tuned indoor thermal environments- A critical review publication-title: Energy Build doi: 10.1016/j.enbuild.2020.110172 – year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib42 – volume: 32 start-page: 44 year: 2017 ident: 10.1016/j.buildenv.2020.107190_bib33 article-title: Upscaling participatory thermal sensing: Lessons from an interdisciplinary case study at University of California for improving campus efficiency and comfort publication-title: Energy Res. Soc. Sci. doi: 10.1016/j.erss.2017.05.026 – year: 2001 ident: 10.1016/j.buildenv.2020.107190_bib43 – start-page: 1 year: 2013 ident: 10.1016/j.buildenv.2020.107190_bib9 article-title: Optimal personal comfort management using SPOT+ – volume: 73 year: 1967 ident: 10.1016/j.buildenv.2020.107190_bib4 article-title: Calculation of thermal comfort: introduction of a basic comfort equation publication-title: Build. Eng. – volume: 194 start-page: 301 year: 2019 ident: 10.1016/j.buildenv.2020.107190_bib16 article-title: Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use publication-title: Energy Build doi: 10.1016/j.enbuild.2019.04.016 – volume: 118 start-page: 323 year: 2017 ident: 10.1016/j.buildenv.2020.107190_bib28 article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.03.009 – volume: 138 year: 2018 ident: 10.1016/j.buildenv.2020.107190_bib6 article-title: Individual difference in thermal comfort: a literature review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.04.040 – year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib14 article-title: iLTC: achieving individual comfort in shared spaces – volume: 9 start-page: 13690 year: 2019 ident: 10.1016/j.buildenv.2020.107190_bib46 article-title: Daylight affects human thermal perception publication-title: Sci. Rep. doi: 10.1038/s41598-019-48963-y – volume: 1343 year: 2019 ident: 10.1016/j.buildenv.2020.107190_bib44 article-title: Integrating occupants' voluntary thermal preference responses into personalized thermal control in office buildings publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1343/1/012138 – volume: 22 start-page: 79 year: 1951 ident: 10.1016/j.buildenv.2020.107190_bib38 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 104 year: 1998 ident: 10.1016/j.buildenv.2020.107190_bib3 article-title: Developing an adaptive model of thermal comfort and preference publication-title: Build. Eng. – year: 2013 ident: 10.1016/j.buildenv.2020.107190_bib10 article-title: SPOT: a smart personalized office thermal control system – volume: 231 start-page: 3849 year: 2012 ident: 10.1016/j.buildenv.2020.107190_bib36 article-title: Free energy computations by minimization of Kullback–Leibler divergence: an efficient adaptive biasing potential method for sparse representations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.033 – volume: 91 start-page: 187 year: 2015 ident: 10.1016/j.buildenv.2020.107190_bib21 article-title: A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.01.038 – volume: 27 start-page: 83 year: 1998 ident: 10.1016/j.buildenv.2020.107190_bib2 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build doi: 10.1016/S0378-7788(97)00053-4 – start-page: 9 year: 2012 ident: 10.1016/j.buildenv.2020.107190_bib8 article-title: Thermovote: participatory sensing for efficient building hvac conditioning – volume: 8 start-page: 127 year: 1992 ident: 10.1016/j.buildenv.2020.107190_bib34 article-title: A graphical exposition of the ordered probit publication-title: Econom. Theor. doi: 10.1017/S0266466600010781 – volume: 99 start-page: 98 year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib24 article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm publication-title: Build. Environ. Times doi: 10.1016/j.buildenv.2016.01.022 – volume: 92 start-page: 86 year: 2015 ident: 10.1016/j.buildenv.2020.107190_bib22 article-title: An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.017 – volume: 70 start-page: 398 year: 2014 ident: 10.1016/j.buildenv.2020.107190_bib11 article-title: User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.066 – volume: 97 start-page: 177 year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib45 article-title: Occupant interactions with shading and lighting systems using different control interfaces: a pilot field study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.12.008 – year: 2013 ident: 10.1016/j.buildenv.2020.107190_bib30 article-title: ASHRAE 2013 ANSI/ASHRAE standard 55-2013 publication-title: Therm. Environ. Cond. Hum. Occup – volume: 105 start-page: 178 year: 2015 ident: 10.1016/j.buildenv.2020.107190_bib5 article-title: A review of human thermal comfort in the built environment publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.07.047 – volume: 39 start-page: 1115 year: 2007 ident: 10.1016/j.buildenv.2020.107190_bib17 article-title: A neural network evaluation model for individual thermal comfort publication-title: Energy Build doi: 10.1016/j.enbuild.2006.12.005 – start-page: 1 year: 2010 ident: 10.1016/j.buildenv.2020.107190_bib7 – volume: 126 start-page: 304 year: 2017 ident: 10.1016/j.buildenv.2020.107190_bib15 article-title: Personalized human comfort in indoor building environments under diverse conditioning modes publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.10.004 – volume: 28 start-page: 2 year: 2014 ident: 10.1016/j.buildenv.2020.107190_bib12 article-title: Human-building interaction framework for personalized thermal comfort-driven systems in office buildings publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000300 – volume: 109 start-page: 1 year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib31 article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.09.005 – volume: 72 start-page: 309 year: 2014 ident: 10.1016/j.buildenv.2020.107190_bib19 article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: from model to application publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.008 – volume: 148 start-page: 714 year: 2019 ident: 10.1016/j.buildenv.2020.107190_bib35 article-title: Inference of thermal preference profiles for personalized thermal environments with actual building occupants publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.10.027 – volume: 20 start-page: 386 year: 2018 ident: 10.1016/j.buildenv.2020.107190_bib27 article-title: Singular perturbation method for smart building temperature control using occupant feedback publication-title: Asian J. Contr. doi: 10.1002/asjc.1587 – volume: 3 start-page: 4258 year: 2008 ident: 10.1016/j.buildenv.2020.107190_bib32 article-title: Sampling bias publication-title: Scholarpedia doi: 10.4249/scholarpedia.4258 – volume: 165 start-page: 106351 year: 2019 ident: 10.1016/j.buildenv.2020.107190_bib29 article-title: A critical review of field implementations of occupant-centric building controls publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106351 – volume: 98 start-page: 107 year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib23 article-title: Deducing the classification rules for thermal comfort controls using optimal method publication-title: Build. Environ. Times doi: 10.1016/j.buildenv.2015.12.025 – volume: 129 start-page: 96 year: 2018 ident: 10.1016/j.buildenv.2020.107190_bib26 article-title: Personal comfort models: predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.12.011 – volume: 9 year: 2016 ident: 10.1016/j.buildenv.2020.107190_bib41 article-title: Implementation and comparison of existing occupant behaviour models in EnergyPlus publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2015.1102969 |
SSID | ssj0016934 |
Score | 2.4209604 |
Snippet | There is an increasing number of recent studies about personalized thermal preferences and controls in office buildings. Data collection from occupants in real... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107190 |
SubjectTerms | Algorithms Bayesian analysis Bayesian modeling Buildings Data collection Feedback Human-in-the-loop HVAC Interfaces Mathematical models Occupant behaviour Occupant centric Office buildings Performance evaluation Personalized comfort Personalized environments Preferences Thermal preferences User interface |
Title | A smart and less intrusive feedback request algorithm towards human-centered HVAC operation |
URI | https://dx.doi.org/10.1016/j.buildenv.2020.107190 https://www.proquest.com/docview/2460788207 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BuLQH1FKq8ijygavJ-rG78TGKilKqcmmpIvVg-dkGwiYiUY_97Yx3vQgqJA697Voay5oZf_NZHs8AnLJYcVOMFLUsBCqdcdQ4a2nt8bTho5GsLZn_9bKaXsmLWTnbgkn_FialVWbs7zC9Res8MszaHK7m8-E3xN50USB4S4P5bBt2uFBVOYCd8ecv08uHy4RKiVxFqqBJ4NFD4eszm7pPh-YPHhV5GqxZgufnY9Q_aN2GoPM3sJu5Ixl3y3sLW6HZg9ePKgq-g59jsr7F9RPTeLJAFCPzJj2rQEwjEQOVNe6G3IV2emIWv5Z3883vW7Jpk2fXpO3YR1PCZmrhSaY_xhOyXIXOS_bh6vzT98mU5v4J1AlZbGhEdmIK55g3ApmSMcZGEeUIKVX0kddItgo1Ul44UVhmvaskkgERPLdGurIW72HQLJvwAYjlRVAjL2svmfReGFcHp_CTVZ4pGw-g7DWmXS4unnpcLHSfRXate03rpGndafoAhg9yq668xosSqjeIfuIoGmPAi7LHvQV13qprzWWFNAmJUH34H1Mfwav0l6IaK49hgKYNH5GubOwJbJ_9ZSfZKe8BdlTryw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Bcig9oLYUlUKpD72ajWMn2RxXK1B47aVQrcTB8hOWLtkVu-rv7zhxECAkDtwiR2NZY_ubb-R5APxiPk9VMiipZs5RYZShymhNC4vehvVKsKZk_sU4r67E6SSbrMGoy4UJYZUR-1tMb9A6jvSjNvuL6bT_G7E3PBTwtKHB6WQdNkSG3l4PNoYnZ9X48TEhL3msIpXQIPAkUfjuUIfu067-h65iGgYLFuD5dRv1Aq0bE3T8CbYidyTDdnmfYc3VX-Djk4qC23A9JMt7XD9RtSUzRDEyrUNaBWIa8WiotDJ_yYNrpidqdjN_mK5u78mqCZ5dkqZjHw0Bm6GFJ6n-DEdkvnDtKfkKV8dHl6OKxv4J1HCRrKhHdqISY5hVHJmSUkp77sUAKZW3Pi2QbCXloLTc8EQzbU0ukAxwZ1OthMkKvgO9el67b0B0mrhyYEVhBRPWcmUKZ0r8ZLllpfa7kHUakyYWFw89LmayiyK7k52mZdC0bDW9C_1HuUVbXuNNibLbEPnsoEi0AW_K7nc7KONVXcpU5EiTkAgV398x9U_4UF1enMvzk_HZHmyGP8HCsWwferjN7gdSl5U-iEfzPx5v7bo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+smart+and+less+intrusive+feedback+request+algorithm+towards+human-centered+HVAC+operation&rft.jtitle=Building+and+environment&rft.au=Lee%2C+Seungjae&rft.au=Karava%2C+Panagiota&rft.au=Tzempelikos%2C+Athanasios&rft.au=Bilionis%2C+Ilias&rft.date=2020-10-15&rft.pub=Elsevier+BV&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.buildenv.2020.107190&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |