Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator

•A hybrid block integrator for solving second order two-point boundary value problems is presented.•A theoretical analysis of the method has been done.•Some numerical experiments have been presented in order to illustrate good performance of the integrator. This article deals with the development of...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 421; p. 126960
Main Authors Ramos, Higinio, Singh, Gurjinder
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A hybrid block integrator for solving second order two-point boundary value problems is presented.•A theoretical analysis of the method has been done.•Some numerical experiments have been presented in order to illustrate good performance of the integrator. This article deals with the development of an optimized third-derivative hybrid block method for integrating general second order two-point boundary value problems (BVPs) subject to different types of boundary conditions (BCs) such as Dirichlet, Neumann or Robin. A purely interpolation and collocation approach has been used in order to develop the method. A constructive approach has been applied in the development of the method to consider two off-step optimal points among an infinite number of possible choices in a two-step block corresponding to a generic interval of the form [xn,xn+2]. The obtained method simultaneously produces an approximate solution over the entire integration interval. Some numerical experiments have been presented that show the good performance of the presented scheme.
AbstractList •A hybrid block integrator for solving second order two-point boundary value problems is presented.•A theoretical analysis of the method has been done.•Some numerical experiments have been presented in order to illustrate good performance of the integrator. This article deals with the development of an optimized third-derivative hybrid block method for integrating general second order two-point boundary value problems (BVPs) subject to different types of boundary conditions (BCs) such as Dirichlet, Neumann or Robin. A purely interpolation and collocation approach has been used in order to develop the method. A constructive approach has been applied in the development of the method to consider two off-step optimal points among an infinite number of possible choices in a two-step block corresponding to a generic interval of the form [xn,xn+2]. The obtained method simultaneously produces an approximate solution over the entire integration interval. Some numerical experiments have been presented that show the good performance of the presented scheme.
ArticleNumber 126960
Author Singh, Gurjinder
Ramos, Higinio
Author_xml – sequence: 1
  givenname: Higinio
  surname: Ramos
  fullname: Ramos, Higinio
  email: higra@usal.es
  organization: Scientific Computing Group, Universidad de Salamanca, Plaza de la Merced 37008 Salamanca, Spain
– sequence: 2
  givenname: Gurjinder
  surname: Singh
  fullname: Singh, Gurjinder
  email: gurjinder@ptu.ac.in
  organization: Department of Mathematical Sciences, I. K. Gujral Punjab Technical University, Jalandhar, Main Campus, Kapurthala 144603, Punjab, India
BookMark eNp9kM1KAzEURoMoWKsP4C4vMPVm_jrBlRT_oOBCXYfk5qZNnU5KJh3p2zulrly4upt7Pjjnip13oSPGbgXMBIj6bjPTW5zlkOczkdeyhjM2Ec28yKq6lOdsAiDrrAAoLtlV328AYF6LcsLCe2gH3614Txg6y0O0FHn6Dtku-C5xE_ad1fHAB93uie9iMC1te64R91Enag_cHLjmae2j5SPrB538QHx9MNFbbtqAX3xcotX4HuI1u3C67enm907Z59Pjx-IlW749vy4elhkWJaTMgZFgTJ7bSqO0JCVi6TAvGxRIVSMqVzUkrGhc5QCdkEZSAa5BV82bRhdTJk67GEPfR3JqF_12FFEC1LGY2qixmDoWU6diIzP_w6BPo03oUtS-_Ze8P5E0Kg2eourRU4dkfSRMygb_D_0DIP-LPg
CitedBy_id crossref_primary_10_1007_s00366_024_02078_9
crossref_primary_10_1016_j_matcom_2023_03_015
Cites_doi 10.1016/j.apm.2013.03.054
10.1090/S0025-5718-1979-0521281-7
10.1016/j.camwa.2008.09.033
10.1145/2427023.2427032
10.1007/BF01932148
10.1016/j.amc.2017.04.020
10.1016/j.amc.2014.08.046
10.1080/00207169108804026
10.1007/s11075-019-00753-3
10.1145/355945.355950
10.1093/imamat/22.2.203
10.1007/s11075-015-0081-8
10.1016/0045-7825(83)90075-0
10.3846/mma.2021.12940
10.1016/j.matcom.2019.03.003
10.1016/j.cam.2015.12.018
10.1016/j.apnum.2008.03.036
10.1080/00207160601025656
10.1155/2014/379829
10.1063/1.4912313
10.1016/j.cam.2020.112876
10.1016/S0377-0427(99)00093-X
10.7494/OpMath.2014.34.2.387
10.1016/j.cam.2021.113419
10.1016/j.amc.2018.03.098
10.1016/S0898-1221(98)80028-X
10.1016/j.mcm.2010.06.023
10.1016/j.aml.2016.08.012
10.1007/BF01932284
10.1016/j.amc.2007.02.027
10.1007/978-90-481-9981-5_2
10.1016/j.cam.2012.04.011
10.1007/BF01933410
10.1016/S0898-1221(01)00250-4
10.1016/j.cpc.2011.12.017
10.1090/S0025-5718-1969-0264854-5
10.1016/j.cam.2004.07.008
10.1016/0168-9274(95)00045-V
10.1016/S0893-9659(02)00039-3
10.1016/j.camwa.2006.12.060
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2022.126960
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2022_126960
S0096300322000467
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
RIG
SEW
SSH
TAE
VH1
VOH
WUQ
ID FETCH-LOGICAL-c340t-f0b90bb22d5ac9de99cc4fc248c1ce5815f58e1d18f5f0cf19b9e30f8cf5788a3
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Tue Jul 01 01:36:24 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Fri Feb 23 02:38:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ordinary differential equations
Optimization strategy
Boundary value problems
Block scheme
Convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-f0b90bb22d5ac9de99cc4fc248c1ce5815f58e1d18f5f0cf19b9e30f8cf5788a3
OpenAccessLink http://hdl.handle.net/10366/156370
ParticipantIDs crossref_primary_10_1016_j_amc_2022_126960
crossref_citationtrail_10_1016_j_amc_2022_126960
elsevier_sciencedirect_doi_10_1016_j_amc_2022_126960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ascher, Christiansen, Russell (bib0008) 1979; 33
Fatunla (bib0037) 1991; 41
Lang, Xu (bib0017) 2012; 183
Ramos, Rufai (bib0043) 2018; 333
Modebei, Jator, Ramos (bib0052) 2020; 337
Mazzia, Cash (bib0027) 2015
Brugnano, Trigiante (bib0033) 1998
Chawla (bib0013) 1977; 17
Shampine, Gladwell, Thompson (bib0025) 2003
Ramos, Singh (bib0039) 2017; 310
Chawla (bib0014) 1978; 22
Caglar, Caglar (bib0018) 2009; 57
Manni, Mazzia, Sestini, Speleers (bib0031) 2015; 255
Ramos, Rufai (bib0044) 2020; 84
Milne (bib0035) 1953
Ramos, Momoh (bib0054) 2021; 26
Biala, Jator (bib0051) 2017
Cash, Hollevoet, Mazzia, Nagy (bib0010) 2013; 39
Brugnano, Trigiante (bib0048) 1995; 18
Amodio, Iavernaro, Trigiante (bib0046) 2002; vol. 2331
Coddington, Levinson (bib0001) 1955
Shampine, Watts (bib0036) 1969; 23
.
Jator, Sinkala (bib0024) 2007; 191
Cash, Mazzia (bib0028) 2011
Soetaert, Cash, Mazzia (bib0002) 2012
Ascher, Christiansen, Russell (bib0009) 1981; 7
Mazzia, Cash, Soetaert (bib0026) 2014; 34
Amodio, Segura (bib0007) 2005; 176
Cash, Hollevoet, Mazzia, Nagy (bib0029) 2013; 39
Mazzia, Sestini, Trigiante (bib0032) 2009; 59
Chawla (bib0015) 1977; 17
Ul-Islam, Aziz, Sarler (bib0020) 2010; 52
Lubich, Wanner (bib0047) 2002; vol. 31
Ramos, Kalogiratou, Monovasilis, Simos (bib0042) 2016; 72
See, Majid, Suleiman (bib0049) 2014
Amodio, Settanni (bib0011) 2012; 236
Keller (bib0003) 1968
Usmani (bib0016) 1973; 13
Jain, Aziz (bib0021) 1983; 39
Shampine, Muir, Xu (bib0030) 2006; 1
Lu (bib0023) 2007; 54
Ramos, Rufai (bib0038) 2019; 165
Ramos, Singh (bib0040) 2017; 64
Aceto, Trigiante (bib0045) 1999; 107
Thompson, Tisdell (bib0012) 2002; 15
Brugnano, Trigiante (bib0034) 1998; 36
Test set for BVP solvers, 2020.
Ha (bib0006) 2001; 42
Biala (bib0050) 2016
Lakestani, Dehghan (bib0022) 2006; 83
Ascher, Mattheij, Russel (bib0004) 1988
Dehghan, Nikpour (bib0019) 2013; 37
Ramos, Mehta, Vigo-Aguiar (bib0041) 2017; 318
Ramos, Rufai (bib0053) 2022; 404
Cash (10.1016/j.amc.2022.126960_bib0029) 2013; 39
Mazzia (10.1016/j.amc.2022.126960_bib0027) 2015
Shampine (10.1016/j.amc.2022.126960_bib0036) 1969; 23
Cash (10.1016/j.amc.2022.126960_bib0010) 2013; 39
See (10.1016/j.amc.2022.126960_bib0049) 2014
Ramos (10.1016/j.amc.2022.126960_bib0053) 2022; 404
Modebei (10.1016/j.amc.2022.126960_bib0052) 2020; 337
Amodio (10.1016/j.amc.2022.126960_bib0007) 2005; 176
Biala (10.1016/j.amc.2022.126960_bib0050) 2016
Ascher (10.1016/j.amc.2022.126960_bib0004) 1988
Ha (10.1016/j.amc.2022.126960_bib0006) 2001; 42
Ramos (10.1016/j.amc.2022.126960_bib0040) 2017; 64
Ramos (10.1016/j.amc.2022.126960_bib0041) 2017; 318
Usmani (10.1016/j.amc.2022.126960_bib0016) 1973; 13
Keller (10.1016/j.amc.2022.126960_bib0003) 1968
Fatunla (10.1016/j.amc.2022.126960_bib0037) 1991; 41
Milne (10.1016/j.amc.2022.126960_bib0035) 1953
Shampine (10.1016/j.amc.2022.126960_bib0030) 2006; 1
Ascher (10.1016/j.amc.2022.126960_bib0009) 1981; 7
Mazzia (10.1016/j.amc.2022.126960_bib0026) 2014; 34
Chawla (10.1016/j.amc.2022.126960_bib0015) 1977; 17
Chawla (10.1016/j.amc.2022.126960_bib0014) 1978; 22
Ramos (10.1016/j.amc.2022.126960_bib0039) 2017; 310
Biala (10.1016/j.amc.2022.126960_bib0051) 2017
Caglar (10.1016/j.amc.2022.126960_bib0018) 2009; 57
Ramos (10.1016/j.amc.2022.126960_bib0042) 2016; 72
Coddington (10.1016/j.amc.2022.126960_bib0001) 1955
Amodio (10.1016/j.amc.2022.126960_bib0011) 2012; 236
Lang (10.1016/j.amc.2022.126960_bib0017) 2012; 183
Ramos (10.1016/j.amc.2022.126960_bib0044) 2020; 84
Brugnano (10.1016/j.amc.2022.126960_bib0048) 1995; 18
Jator (10.1016/j.amc.2022.126960_bib0024) 2007; 191
Brugnano (10.1016/j.amc.2022.126960_bib0033) 1998
Ramos (10.1016/j.amc.2022.126960_bib0054) 2021; 26
Aceto (10.1016/j.amc.2022.126960_bib0045) 1999; 107
Lu (10.1016/j.amc.2022.126960_bib0023) 2007; 54
Soetaert (10.1016/j.amc.2022.126960_bib0002) 2012
Jain (10.1016/j.amc.2022.126960_bib0021) 1983; 39
Lakestani (10.1016/j.amc.2022.126960_bib0022) 2006; 83
Amodio (10.1016/j.amc.2022.126960_bib0046) 2002; vol. 2331
Shampine (10.1016/j.amc.2022.126960_bib0025) 2003
Cash (10.1016/j.amc.2022.126960_bib0028) 2011
Mazzia (10.1016/j.amc.2022.126960_bib0032) 2009; 59
Thompson (10.1016/j.amc.2022.126960_bib0012) 2002; 15
Chawla (10.1016/j.amc.2022.126960_bib0013) 1977; 17
Ul-Islam (10.1016/j.amc.2022.126960_bib0020) 2010; 52
Brugnano (10.1016/j.amc.2022.126960_bib0034) 1998; 36
10.1016/j.amc.2022.126960_bib0005
Manni (10.1016/j.amc.2022.126960_bib0031) 2015; 255
Lubich (10.1016/j.amc.2022.126960_bib0047) 2002; vol. 31
Dehghan (10.1016/j.amc.2022.126960_bib0019) 2013; 37
Ascher (10.1016/j.amc.2022.126960_bib0008) 1979; 33
Ramos (10.1016/j.amc.2022.126960_bib0038) 2019; 165
Ramos (10.1016/j.amc.2022.126960_bib0043) 2018; 333
References_xml – volume: 17
  start-page: 281
  year: 1977
  end-page: 285
  ident: bib0013
  article-title: An eighth order tridiagonal finite difference method for nonlinear two-point boundary value problems
  publication-title: BIT
– volume: 34
  start-page: 387
  year: 2014
  end-page: 403
  ident: bib0026
  article-title: Solving boundary value problems in the open source software R: package bvpSolve
  publication-title: Opuscula Math.
– volume: 176
  start-page: 59
  year: 2005
  end-page: 76
  ident: bib0007
  article-title: High-order finite difference schemes for the solution of second-order BVPs
  publication-title: J. Comput. Appl. Math.
– year: 2014
  ident: bib0049
  article-title: Three-step block method for solving nonlinear boundary value problems
  publication-title: Abst. Appl. Anal.
– volume: 17
  start-page: 128
  year: 1977
  end-page: 133
  ident: bib0015
  article-title: A sixth-order tri-diagonal finite difference method for non-linear two-point boundary value problems
  publication-title: BIT
– volume: 23
  start-page: 731
  year: 1969
  end-page: 740
  ident: bib0036
  article-title: Block implicit one-step methods
  publication-title: Math. Comp.
– volume: 37
  start-page: 8578
  year: 2013
  end-page: 8599
  ident: bib0019
  article-title: Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method
  publication-title: Appl. Math. Model.
– volume: 83
  start-page: 685
  year: 2006
  end-page: 694
  ident: bib0022
  article-title: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal b-spline wavelets
  publication-title: Int. J. Comput. Math.
– volume: 36
  start-page: 269
  year: 1998
  end-page: 284
  ident: bib0034
  article-title: Boundary value methods: the third way between linear multi-step and Runge-Kutta methods
  publication-title: Comput. Math. Appl.
– volume: 59
  start-page: 723
  year: 2009
  end-page: 738
  ident: bib0032
  article-title: The continuous extension of the b-spline linear multistep methods for BVPs on non-uniform meshes
  publication-title: Appl. Numer. Math.
– volume: 41
  start-page: 55
  year: 1991
  end-page: 63
  ident: bib0037
  article-title: Block methods for second order odes
  publication-title: Int. J. Comput. Math.
– reference: Test set for BVP solvers, 2020.
– year: 2003
  ident: bib0025
  article-title: Solving ODEs with MATLAB
– volume: 84
  start-page: 229
  year: 2020
  end-page: 251
  ident: bib0044
  article-title: Numerical solution of boundary value problems by using an optimized two-step block method
  publication-title: Numer. Algor.
– start-page: 1
  year: 2016
  end-page: 15
  ident: bib0050
  article-title: A computational study of the boundary value methods and the block unification methods for
  publication-title: Abst. Appl. Anal.
– volume: 318
  start-page: 550
  year: 2017
  end-page: 564
  ident: bib0041
  article-title: A unified approach for the development of
  publication-title: J. Comp. Appl. Math.
– volume: 7
  start-page: 209
  year: 1981
  end-page: 222
  ident: bib0009
  article-title: Collocation software for boundary-value ODEs
  publication-title: ACM Trans. Math. Software
– volume: 404
  start-page: 113419
  year: 2022
  ident: bib0053
  article-title: A two-step hybrid block method with fourth derivatives for solving third-order boundary value problems
  publication-title: J. Comp. Appl. Math.
– volume: 39
  start-page: 83
  year: 1983
  end-page: 91
  ident: bib0021
  article-title: Cubic spline solution of two-point boundary value problems with significant first derivatives
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 54
  start-page: 1133
  year: 2007
  end-page: 1138
  ident: bib0023
  article-title: Variational iteration method for solving a nonlinear system of second-order boundary value problems
  publication-title: Comput. Math. Appl.
– volume: 236
  start-page: 3869
  year: 2012
  end-page: 3879
  ident: bib0011
  article-title: A finite differences MATLAB code for the numerical solution of second order singular perturbation problems
  publication-title: J. Comp. Appl. Math.
– start-page: 1648
  year: 2015
  ident: bib0027
  article-title: A fortran test set for boundary value problem solvers
  publication-title: AIP Conference Proceedings
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib0051
  article-title: A family of boundary value methods for systems of second-order boundary value problems
  publication-title: Int. J. Diff. Eqs.
– volume: 39
  year: 2013
  ident: bib0029
  article-title: Algorithm 927: The MATLAB code bvptwp.m for the numerical solution of two point boundary value problems
  publication-title: ACM Trans. Math. Softw.
– volume: 255
  start-page: 147
  year: 2015
  end-page: 156
  ident: bib0031
  article-title: BS2 methods for semi-linear second order boundary value problems
  publication-title: Appl. Math. Comp.
– volume: 42
  start-page: 1411
  year: 2001
  end-page: 1420
  ident: bib0006
  article-title: A nonlinear shooting method for two-point boundary value problems
  publication-title: Comput. Math. Applics.
– volume: 72
  start-page: 1089
  year: 2016
  end-page: 1102
  ident: bib0042
  article-title: An optimized two-step hybrid block method for solving general second order initial-value problems
  publication-title: Numer. Algor.
– volume: 39
  start-page: 15.1
  year: 2013
  end-page: 15.12
  ident: bib0010
  article-title: The MATLAB code bvptwp.m for the numerical solution of two point boundary value problems
  publication-title: ACM Trans. Math. Softw.
– volume: 15
  start-page: 761
  year: 2002
  end-page: 766
  ident: bib0012
  article-title: Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations
  publication-title: Appl. Math. Lett.
– volume: 191
  start-page: 100
  year: 2007
  end-page: 116
  ident: bib0024
  article-title: A high order b-spline collocation method for linear boundary value problems
  publication-title: Appl. Math. Comp.
– volume: 13
  start-page: 458
  year: 1973
  end-page: 469
  ident: bib0016
  article-title: A method of high order accuracy for the numerical integration of boundary value problems
  publication-title: BIT
– volume: 26
  start-page: 267
  year: 2021
  end-page: 286
  ident: bib0054
  article-title: Development and implementation of a tenth-order hybrid block method for solving fifth-order boundary value problems
  publication-title: Math. Model. Anal.
– year: 2012
  ident: bib0002
  article-title: Solving Differential Equations in R
– volume: 165
  start-page: 139
  year: 2019
  end-page: 155
  ident: bib0038
  article-title: A third derivative two-step block Falkner-type method for solving general second order boundary-value problems
  publication-title: Math. Comput. Simul.
– volume: 107
  start-page: 257
  year: 1999
  end-page: 274
  ident: bib0045
  article-title: Symmetric schemes, time reversal symmetry and conservative methods for hamiltonian systems
  publication-title: J. Comput. Appl. Math.
– volume: 1
  start-page: 201
  year: 2006
  end-page: 217
  ident: bib0030
  article-title: A user-friendly fortran BVP solver
  publication-title: JNAIAM J. Numer. Anal. Ind. Appl. Math.
– year: 1955
  ident: bib0001
  article-title: Theory of ordinary differential equations
  publication-title: International Series in Pure and Applied Mathematics
– volume: 52
  start-page: 1577
  year: 2010
  end-page: 1590
  ident: bib0020
  article-title: The numerical solution of second-order boundary-value problems by collocation method with the haar wavelets
  publication-title: Math. Comp. Model.
– year: 1953
  ident: bib0035
  article-title: Numerical Solution of Differential Equations
– year: 1968
  ident: bib0003
  article-title: Numerical Methods for Two-Point Boundary Value Problems
– volume: 22
  start-page: 203
  year: 1978
  end-page: 209
  ident: bib0014
  article-title: High-accuracy tri-diagonal finite difference approximations for non-linear two-point boundary value problems
  publication-title: J. Inst. Maths. Appl.
– start-page: 23
  year: 2011
  end-page: 39
  ident: bib0028
  article-title: Efficient global methods for the numerical solution of nonlinear systems of two point boundary value problems
  publication-title: Recent Adv. Comput. Appl.Math.
– volume: 310
  start-page: 75
  year: 2017
  end-page: 88
  ident: bib0039
  article-title: A tenth-order a-stable two-step hybrid block method for solving initial value problems of ODEs
  publication-title: Appl. Math. Comp.
– year: 1988
  ident: bib0004
  article-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
– volume: vol. 2331
  year: 2002
  ident: bib0046
  article-title: Conservation properties of symmetric BVMs applied to linear Hamiltonian problems
  publication-title: Computational Science - ICCS 2002. ICCS 2002. Lecture Notes in Computer Science
– volume: 57
  start-page: 757
  year: 2009
  end-page: 762
  ident: bib0018
  article-title: B-spline method for solving linear system of second-order boundary value problems
  publication-title: Comput. Math. Appl.
– year: 1998
  ident: bib0033
  article-title: Solving Differential Problems by Multi-Step Initial and Boundary Value Methods
– volume: 18
  start-page: 79
  year: 1995
  end-page: 94
  ident: bib0048
  article-title: High-order multi-step methods for boundary value problems
  publication-title: Appl. Numer. Math.
– volume: 64
  start-page: 101
  year: 2017
  end-page: 107
  ident: bib0040
  article-title: A note on variable step-size formulation of a Simpson’s-type second derivative block method for solving stiff systems
  publication-title: Appl. Math. Lett.
– volume: vol. 31
  year: 2002
  ident: bib0047
  article-title: Geometric numerical integration structure-preserving algorithms for ordinary differential equations
  publication-title: Springer Series in Computational Mathematics
– reference: .
– volume: 337
  start-page: 112876
  year: 2020
  ident: bib0052
  article-title: Block hybrid method for the numerical solution of fourth order boundary value problems
  publication-title: J. Comp. Appl. Math.
– volume: 333
  start-page: 231
  year: 2018
  end-page: 245
  ident: bib0043
  article-title: Third derivative modification of
  publication-title: Appl. Math. Comp.
– volume: 33
  start-page: 659
  year: 1979
  end-page: 679
  ident: bib0008
  article-title: A collocation solver for mixed order systems of boundary value problems
  publication-title: Math. Comp.
– volume: 183
  start-page: 913
  year: 2012
  end-page: 921
  ident: bib0017
  article-title: Quintic b-spline collocation method for second order mixed boundary value problem
  publication-title: Comp. Phy. Comm.
– volume: 37
  start-page: 8578
  year: 2013
  ident: 10.1016/j.amc.2022.126960_bib0019
  article-title: Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.03.054
– year: 2003
  ident: 10.1016/j.amc.2022.126960_bib0025
– volume: 33
  start-page: 659
  issue: 146
  year: 1979
  ident: 10.1016/j.amc.2022.126960_bib0008
  article-title: A collocation solver for mixed order systems of boundary value problems
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1979-0521281-7
– volume: 57
  start-page: 757
  year: 2009
  ident: 10.1016/j.amc.2022.126960_bib0018
  article-title: B-spline method for solving linear system of second-order boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.09.033
– ident: 10.1016/j.amc.2022.126960_bib0005
– volume: 39
  issue: 2
  year: 2013
  ident: 10.1016/j.amc.2022.126960_bib0029
  article-title: Algorithm 927: The MATLAB code bvptwp.m for the numerical solution of two point boundary value problems
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2427023.2427032
– volume: 17
  start-page: 281
  year: 1977
  ident: 10.1016/j.amc.2022.126960_bib0013
  article-title: An eighth order tridiagonal finite difference method for nonlinear two-point boundary value problems
  publication-title: BIT
  doi: 10.1007/BF01932148
– volume: 310
  start-page: 75
  year: 2017
  ident: 10.1016/j.amc.2022.126960_bib0039
  article-title: A tenth-order a-stable two-step hybrid block method for solving initial value problems of ODEs
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2017.04.020
– volume: 255
  start-page: 147
  year: 2015
  ident: 10.1016/j.amc.2022.126960_bib0031
  article-title: BS2 methods for semi-linear second order boundary value problems
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2014.08.046
– year: 1955
  ident: 10.1016/j.amc.2022.126960_bib0001
  article-title: Theory of ordinary differential equations
– volume: 41
  start-page: 55
  year: 1991
  ident: 10.1016/j.amc.2022.126960_bib0037
  article-title: Block methods for second order odes
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207169108804026
– volume: 84
  start-page: 229
  issue: 1
  year: 2020
  ident: 10.1016/j.amc.2022.126960_bib0044
  article-title: Numerical solution of boundary value problems by using an optimized two-step block method
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-019-00753-3
– volume: 7
  start-page: 209
  issue: 2
  year: 1981
  ident: 10.1016/j.amc.2022.126960_bib0009
  article-title: Collocation software for boundary-value ODEs
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/355945.355950
– start-page: 1
  year: 2016
  ident: 10.1016/j.amc.2022.126960_bib0050
  article-title: A computational study of the boundary value methods and the block unification methods for y″=f(x,y,y′),
  publication-title: Abst. Appl. Anal.
– volume: 22
  start-page: 203
  year: 1978
  ident: 10.1016/j.amc.2022.126960_bib0014
  article-title: High-accuracy tri-diagonal finite difference approximations for non-linear two-point boundary value problems
  publication-title: J. Inst. Maths. Appl.
  doi: 10.1093/imamat/22.2.203
– volume: 72
  start-page: 1089
  issue: 4
  year: 2016
  ident: 10.1016/j.amc.2022.126960_bib0042
  article-title: An optimized two-step hybrid block method for solving general second order initial-value problems
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-015-0081-8
– start-page: 1
  year: 2017
  ident: 10.1016/j.amc.2022.126960_bib0051
  article-title: A family of boundary value methods for systems of second-order boundary value problems
  publication-title: Int. J. Diff. Eqs.
– volume: 39
  start-page: 83
  year: 1983
  ident: 10.1016/j.amc.2022.126960_bib0021
  article-title: Cubic spline solution of two-point boundary value problems with significant first derivatives
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(83)90075-0
– year: 1998
  ident: 10.1016/j.amc.2022.126960_bib0033
– volume: 39
  start-page: 15.1
  issue: 2
  year: 2013
  ident: 10.1016/j.amc.2022.126960_bib0010
  article-title: The MATLAB code bvptwp.m for the numerical solution of two point boundary value problems
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2427023.2427032
– volume: 26
  start-page: 267
  year: 2021
  ident: 10.1016/j.amc.2022.126960_bib0054
  article-title: Development and implementation of a tenth-order hybrid block method for solving fifth-order boundary value problems
  publication-title: Math. Model. Anal.
  doi: 10.3846/mma.2021.12940
– volume: 165
  start-page: 139
  year: 2019
  ident: 10.1016/j.amc.2022.126960_bib0038
  article-title: A third derivative two-step block Falkner-type method for solving general second order boundary-value problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.03.003
– volume: 318
  start-page: 550
  year: 2017
  ident: 10.1016/j.amc.2022.126960_bib0041
  article-title: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2015.12.018
– volume: 59
  start-page: 723
  issue: 3–4
  year: 2009
  ident: 10.1016/j.amc.2022.126960_bib0032
  article-title: The continuous extension of the b-spline linear multistep methods for BVPs on non-uniform meshes
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.036
– volume: vol. 2331
  year: 2002
  ident: 10.1016/j.amc.2022.126960_bib0046
  article-title: Conservation properties of symmetric BVMs applied to linear Hamiltonian problems
– volume: 83
  start-page: 685
  year: 2006
  ident: 10.1016/j.amc.2022.126960_bib0022
  article-title: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal b-spline wavelets
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160601025656
– year: 2014
  ident: 10.1016/j.amc.2022.126960_bib0049
  article-title: Three-step block method for solving nonlinear boundary value problems
  publication-title: Abst. Appl. Anal.
  doi: 10.1155/2014/379829
– start-page: 1648
  year: 2015
  ident: 10.1016/j.amc.2022.126960_bib0027
  article-title: A fortran test set for boundary value problem solvers
  doi: 10.1063/1.4912313
– volume: 337
  start-page: 112876
  year: 2020
  ident: 10.1016/j.amc.2022.126960_bib0052
  article-title: Block hybrid method for the numerical solution of fourth order boundary value problems
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2020.112876
– volume: 107
  start-page: 257
  year: 1999
  ident: 10.1016/j.amc.2022.126960_bib0045
  article-title: Symmetric schemes, time reversal symmetry and conservative methods for hamiltonian systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00093-X
– volume: 34
  start-page: 387
  issue: 2
  year: 2014
  ident: 10.1016/j.amc.2022.126960_bib0026
  article-title: Solving boundary value problems in the open source software R: package bvpSolve
  publication-title: Opuscula Math.
  doi: 10.7494/OpMath.2014.34.2.387
– volume: 404
  start-page: 113419
  year: 2022
  ident: 10.1016/j.amc.2022.126960_bib0053
  article-title: A two-step hybrid block method with fourth derivatives for solving third-order boundary value problems
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2021.113419
– volume: 333
  start-page: 231
  year: 2018
  ident: 10.1016/j.amc.2022.126960_bib0043
  article-title: Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2018.03.098
– volume: 36
  start-page: 269
  year: 1998
  ident: 10.1016/j.amc.2022.126960_bib0034
  article-title: Boundary value methods: the third way between linear multi-step and Runge-Kutta methods
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(98)80028-X
– volume: 52
  start-page: 1577
  year: 2010
  ident: 10.1016/j.amc.2022.126960_bib0020
  article-title: The numerical solution of second-order boundary-value problems by collocation method with the haar wavelets
  publication-title: Math. Comp. Model.
  doi: 10.1016/j.mcm.2010.06.023
– volume: vol. 31
  year: 2002
  ident: 10.1016/j.amc.2022.126960_bib0047
  article-title: Geometric numerical integration structure-preserving algorithms for ordinary differential equations
– volume: 64
  start-page: 101
  year: 2017
  ident: 10.1016/j.amc.2022.126960_bib0040
  article-title: A note on variable step-size formulation of a Simpson’s-type second derivative block method for solving stiff systems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2016.08.012
– volume: 17
  start-page: 128
  issue: 2
  year: 1977
  ident: 10.1016/j.amc.2022.126960_bib0015
  article-title: A sixth-order tri-diagonal finite difference method for non-linear two-point boundary value problems
  publication-title: BIT
  doi: 10.1007/BF01932284
– volume: 191
  start-page: 100
  year: 2007
  ident: 10.1016/j.amc.2022.126960_bib0024
  article-title: A high order b-spline collocation method for linear boundary value problems
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2007.02.027
– start-page: 23
  year: 2011
  ident: 10.1016/j.amc.2022.126960_bib0028
  article-title: Efficient global methods for the numerical solution of nonlinear systems of two point boundary value problems
  publication-title: Recent Adv. Comput. Appl.Math.
  doi: 10.1007/978-90-481-9981-5_2
– volume: 236
  start-page: 3869
  issue: 16
  year: 2012
  ident: 10.1016/j.amc.2022.126960_bib0011
  article-title: A finite differences MATLAB code for the numerical solution of second order singular perturbation problems
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2012.04.011
– year: 1988
  ident: 10.1016/j.amc.2022.126960_bib0004
– volume: 13
  start-page: 458
  year: 1973
  ident: 10.1016/j.amc.2022.126960_bib0016
  article-title: A method of high order accuracy for the numerical integration of boundary value problems
  publication-title: BIT
  doi: 10.1007/BF01933410
– year: 2012
  ident: 10.1016/j.amc.2022.126960_bib0002
– volume: 42
  start-page: 1411
  year: 2001
  ident: 10.1016/j.amc.2022.126960_bib0006
  article-title: A nonlinear shooting method for two-point boundary value problems
  publication-title: Comput. Math. Applics.
  doi: 10.1016/S0898-1221(01)00250-4
– volume: 183
  start-page: 913
  year: 2012
  ident: 10.1016/j.amc.2022.126960_bib0017
  article-title: Quintic b-spline collocation method for second order mixed boundary value problem
  publication-title: Comp. Phy. Comm.
  doi: 10.1016/j.cpc.2011.12.017
– volume: 23
  start-page: 731
  year: 1969
  ident: 10.1016/j.amc.2022.126960_bib0036
  article-title: Block implicit one-step methods
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1969-0264854-5
– volume: 176
  start-page: 59
  year: 2005
  ident: 10.1016/j.amc.2022.126960_bib0007
  article-title: High-order finite difference schemes for the solution of second-order BVPs
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.07.008
– year: 1968
  ident: 10.1016/j.amc.2022.126960_bib0003
– volume: 18
  start-page: 79
  year: 1995
  ident: 10.1016/j.amc.2022.126960_bib0048
  article-title: High-order multi-step methods for boundary value problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(95)00045-V
– volume: 1
  start-page: 201
  issue: 2
  year: 2006
  ident: 10.1016/j.amc.2022.126960_bib0030
  article-title: A user-friendly fortran BVP solver
  publication-title: JNAIAM J. Numer. Anal. Ind. Appl. Math.
– year: 1953
  ident: 10.1016/j.amc.2022.126960_bib0035
– volume: 15
  start-page: 761
  issue: 6
  year: 2002
  ident: 10.1016/j.amc.2022.126960_bib0012
  article-title: Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(02)00039-3
– volume: 54
  start-page: 1133
  year: 2007
  ident: 10.1016/j.amc.2022.126960_bib0023
  article-title: Variational iteration method for solving a nonlinear system of second-order boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.060
SSID ssj0007614
Score 2.4177217
Snippet •A hybrid block integrator for solving second order two-point boundary value problems is presented.•A theoretical analysis of the method has been done.•Some...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126960
SubjectTerms Block scheme
Boundary value problems
Convergence
Optimization strategy
Ordinary differential equations
Title Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator
URI https://dx.doi.org/10.1016/j.amc.2022.126960
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQLDAgTnFWHpiQ0tqx3dpjVVEVECyAxBb5FIXSVG0K6sJvx3YSDgkYGBPlSdGXl3ck3_seACfE5xCDiE2o850OldIkHLdlojki2nJnbGwUr67bgzt6cc_ul0CvnoUJtMoq9pcxPUbr6kyrQrM1GQ7DjK8IelHeI-MIZJgop7QTvLz59knz8G16qcQsAscLkfrPZuR4yeegYpimTZy2RVSp_CE3fck3_Q2wXhWKsFveyyZYsuMtsHb1obI62wb5TT4K3wPgLHS1BkYZTVi85skkH44LqOLKpOkCBkVvC6vdMTMotZ4HhYjRAqoFlLB4GE4N9LZx09mLhQ-LMMcFlU90T7AWlMinO-Cuf3bbGyTVAoVEE4qKxCElkFJpapjUwlghtKZOp5RrrC3jmDnGLTaYO-aQdlgoYQlyXDv_InNJdsHyOB_bPQCF1B3FlJEMGUqsFr6QMZhYD37qlG3vA1RDl-lKXTwsuRhlNY3sMfNoZwHtrER7H5x-mExKaY2_Lqb188i--UfmQ__vZgf_MzsEq-EosAQwOwLLxXRuj33xUahG9K4GWOmeXw6u3wE779s6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9VAEJ4gHNSDQdSIgu5BLiaF3e1u3-7BA0HJQ3hchIRb3Z_h6fP15b0i6cV_yn-Q3W2LkiAHE65tp9nOTGZ2ujPfB_AuDznE4txlzIdKhyllM0EKlRmBc-OEty4ViqPjYnjKPp_xsyX43c_CxLbKLva3MT1F6-7KTqfNndl4HGd8ZcSLCh6ZRiAHXWfloWsuQ922-HDwMRh5i9L9Tyd7w6yjFshMznCdeawl1ppSy5WR1klpDPOGMmGIcVwQ7rlwxBLhucfGE6mly7EXxgcXFyoP730AKyyEi0ibsP3rT1_JoGgBxcPqsri8_ig1NZWpHxE2kdJtQguZYDFvSYZ_Jbj9VXjS7UzRbvvxT2HJTdfg8ega1nXxDKov1ST-gECLWEZblHA7UX1ZZbNqPK2RThxN8wZFCHGHOrKaBVLGXERIikmDdIMUqs_Hc4uCbKJW--nQeRMHx5AOmfU76hEsqvlzOL0Xtb6A5Wk1dS8BSWUGmmurOLYsd0aGnZMluQvWpl67Yh1wr7rSdHDmkVVjUvZ9a9_KoO0yartstb0O769FZi2Wx10Ps94e5Q2HLEOu-bfYq_8TewsPhyejo_Lo4PjwNTyKd2KLAuEbsFzPL9xm2PnU-k3yNARf79u1rwB4Yxix
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+second+order+two-point+boundary+value+problems+accurately+by+a+third+derivative+hybrid+block+integrator&rft.jtitle=Applied+mathematics+and+computation&rft.au=Ramos%2C+Higinio&rft.au=Singh%2C+Gurjinder&rft.date=2022-05-15&rft.issn=0096-3003&rft.volume=421&rft.spage=126960&rft_id=info:doi/10.1016%2Fj.amc.2022.126960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2022_126960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon