An integrated EDIB model for probabilistic risk analysis of natural gas pipeline leakage accidents
Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic propert...
Saved in:
Published in | Journal of loss prevention in the process industries Vol. 83; p. 105027 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental damages, and even casualties. However, few models have been developed to describe the evolution process of natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB (ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hierarchical network, which can be employed to support the construction of a Bayesian network (BN) model. The prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occurrence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social influence is determined with respect to NGPLAs.
•This paper proposes a model for analyzing the natural gas pipeline leakage accidents.•This model can establish an accident environment similar to the actual situation and focuses on the analysis of key factor.•Diagnostic reasoning to determine the weights of evaluation indicators.•A combined multi-method model can comprehensively describe the evolution of an accident and predict its consequences. |
---|---|
AbstractList | Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental damages, and even casualties. However, few models have been developed to describe the evolution process of natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB (ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hierarchical network, which can be employed to support the construction of a Bayesian network (BN) model. The prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occurrence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social influence is determined with respect to NGPLAs.
•This paper proposes a model for analyzing the natural gas pipeline leakage accidents.•This model can establish an accident environment similar to the actual situation and focuses on the analysis of key factor.•Diagnostic reasoning to determine the weights of evaluation indicators.•A combined multi-method model can comprehensively describe the evolution of an accident and predict its consequences. |
ArticleNumber | 105027 |
Author | Reniers, Genserik Liu, Chun-xiang Chen, Xing-lin Yang, Fu-qiang Yuan, Shuai-qi Lin, Wei-dong Guo, Yong Li, Xin |
Author_xml | – sequence: 1 givenname: Xing-lin surname: Chen fullname: Chen, Xing-lin organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China – sequence: 2 givenname: Wei-dong surname: Lin fullname: Lin, Wei-dong organization: Fujian Provincial Institute of Architectural Design and Research CO. LTD., Fuzhou, 350001, China – sequence: 3 givenname: Chun-xiang surname: Liu fullname: Liu, Chun-xiang organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China – sequence: 4 givenname: Fu-qiang surname: Yang fullname: Yang, Fu-qiang email: yangfuqiang@fzu.edu.cn organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China – sequence: 5 givenname: Yong surname: Guo fullname: Guo, Yong organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China – sequence: 6 givenname: Xin surname: Li fullname: Li, Xin organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China – sequence: 7 givenname: Shuai-qi orcidid: 0000-0003-2758-546X surname: Yuan fullname: Yuan, Shuai-qi email: S.Yuan-2@tudelft.nl organization: Safety and Security Science Group, Faculty of Technology, Policy and Management, TU Delft, 2628 BX, Delft, the Netherlands – sequence: 8 givenname: Genserik surname: Reniers fullname: Reniers, Genserik organization: Safety and Security Science Group, Faculty of Technology, Policy and Management, TU Delft, 2628 BX, Delft, the Netherlands |
BookMark | eNp9kMFOAjEURbvAREA_wF1_AGw7M8wQV4ioJCRudN082lfyoHQmbTXh7x2CKxesXu7i3Nx3RmwQ2oCMPUgxlULOHvfTve-mSqiiz5VQ9YANxbwSk1IV4paNUtoLIWvR1EO2XQROIeMuQkbLVy_rZ35sLXru2si72G5hS55SJsMjpQOHAP6UKPHW8QD5O4LnO0i8ow49BeQe4QA75GAMWQw53bEbBz7h_d8ds6_X1efyfbL5eFsvF5uJKUqRJ9jYsimUkbO5tErZBpRBqMC6qnLgmjk4B7I2tS2NQjk3_bJi60pjytKVoi7GTF56TWxTiuh0F-kI8aSl0Gcxeq97MfosRl_E9Ez9jzGUIVMbcgTyV8mnC4n9Sz-EUSdDGAxaimiyti1doX8BhymD5g |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102585 crossref_primary_10_1016_j_ress_2024_110320 crossref_primary_10_1061_JPCFEV_CFENG_4700 crossref_primary_10_3390_app14178094 crossref_primary_10_3390_fire6080306 crossref_primary_10_1109_JSEN_2023_3334737 crossref_primary_10_1016_j_ijhydene_2024_11_234 crossref_primary_10_1016_j_oceaneng_2024_119295 crossref_primary_10_1016_j_ress_2024_110170 crossref_primary_10_1016_j_ijdrr_2024_104771 crossref_primary_10_1016_j_jlp_2024_105493 crossref_primary_10_1016_j_oceaneng_2024_120224 crossref_primary_10_1016_j_jlp_2024_105370 crossref_primary_10_1016_j_mseb_2023_116849 crossref_primary_10_1115_1_4066906 crossref_primary_10_1063_5_0235781 crossref_primary_10_1016_j_jnlssr_2024_03_001 crossref_primary_10_1109_ACCESS_2024_3398042 |
Cites_doi | 10.1109/3468.594909 10.1016/j.apor.2021.102764 10.1111/risa.12245 10.1016/j.oceaneng.2015.09.008 10.1016/j.ress.2023.109099 10.1016/j.jlp.2017.11.005 10.1111/risa.12283 10.1016/j.ress.2022.108507 10.1016/j.psep.2018.06.017 10.1016/j.engfailanal.2020.104446 10.1016/j.psep.2016.06.006 10.1016/j.envsoft.2012.01.011 10.1016/j.psep.2019.11.038 10.1016/j.psep.2012.01.005 10.1016/j.jclepro.2014.10.053 10.1016/j.ocecoaman.2022.106189 10.1016/j.ssci.2020.105101 10.1016/j.ress.2022.108613 10.1016/j.jlp.2011.06.018 10.1016/S0167-9236(03)00095-2 10.1016/j.psep.2017.08.040 10.1016/j.ress.2016.07.022 10.1016/j.ress.2015.06.013 10.1371/journal.pone.0160045 10.1016/j.ijpvp.2016.11.002 10.1016/j.jclepro.2020.123583 10.1109/PROC.1975.9765 10.1016/j.jlp.2017.01.025 10.1016/j.eswa.2022.117059 10.1016/j.jlp.2019.06.001 10.1016/j.jlp.2004.12.003 10.1016/j.jlp.2011.12.007 10.1016/j.jpse.2021.08.002 10.1016/j.ssci.2021.105647 10.1016/j.tust.2020.103473 10.1016/j.ssci.2018.01.012 10.1016/j.jngse.2018.07.019 10.1016/j.ress.2011.03.012 10.1016/j.ssci.2017.11.007 10.1016/j.jngse.2019.04.010 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jlp.2023.105027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jlp_2023_105027 S0950423023000578 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 M41 MO0 MS~ N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPCBC SSG SST SSZ T5K WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-e8d4832c1691d22d8a2cea5adf55faf89affa17c7d4c2e19cbab3bf4cc44f4073 |
IEDL.DBID | .~1 |
ISSN | 0950-4230 |
IngestDate | Thu Apr 24 22:52:00 EDT 2025 Tue Jul 01 03:25:52 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Probabilistic risk analysis Accident evolution analysis Natural gas pipeline Gas leakage Bayesian network |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-e8d4832c1691d22d8a2cea5adf55faf89affa17c7d4c2e19cbab3bf4cc44f4073 |
ORCID | 0000-0003-2758-546X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0950423023000578 |
ParticipantIDs | crossref_primary_10_1016_j_jlp_2023_105027 crossref_citationtrail_10_1016_j_jlp_2023_105027 elsevier_sciencedirect_doi_10_1016_j_jlp_2023_105027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of loss prevention in the process industries |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Biezma, Andres, Agudo (bib3) 2020; 110 (bib14) 2020 Sakar, Toz, Buber (bib47) 2021; 113 Huang, Chen, Wang (bib21) 2013; 9 Wang, Cao, Zhou (bib54) 2018; 103 Lavasani, Ramzali, Sabzalipour, Akyuz (bib29) 2015; 108 Mao, Long, Wu (bib36) 2015; 39 (bib50) 2019 Zhou, Fang, P, Wu (bib66) 2020; 103 (bib38) 1986 (bib10) 2015 Dong, H, Yu (bib13) 2005; 18 Gao (bib18) 2022; 29 Kjaerulff, van der Gaag (bib52) 2000 Dai (bib12) 2020; 51 Li, Chen, Zhu (bib30) 2016; 103 Zheng, Zhang, Kang (bib65) 2013; 31 Khorasane, Alimohammadlou, Klockner (bib26) 2022; 200 Pan, Jiang (bib43) 2002; 1 Chen, Li, Reniers (bib7) 2021; 279 Shan, Liu, Sun (bib49) 2017 Khakzad, Khan, Amyotte (bib24) 2011; 96 Tien, Der Kiureghian (bib51) 2016; 156 Yuan, Khakzad, Khan (bib61) 2015; 35 Chi, Jiang, Zhao (bib8) 2021; 17 Malone (bib35) 1975; 63 Ferdous, Khan, Sadiq (bib17) 2012; 25 Quan, Liang, Zhang, B (bib45) 2017; 36 Li, Wang, Chen (bib32) 2022 (bib42) 2020 Zhang, Wu, Hu (bib63) 2018; 117 Cui, Quddus, Mashuga (bib11) 2020; 134 Wang, Shen, Wang (bib53) 2017; 111 Zhang, Dong, Lei (bib64) 2020; 20 Zhu, Zhi, Li (bib67) 2019; 15 Hou, Gai, Cheng (bib20) 2021; 135 Ruiz-Tagle, Lewis, Schell (bib46) 2022; 223 Wang, Dong, Liu (bib56) 2019; 15 Chen, Zuo, L, Wu (bib6) 2020; 202 He, Ma, Qiao (bib19) 2022; 225 Badida, Balasubramaniam, Jayaprakash (bib2) 2019; 66 Castillo, Gutierrez, M, Hadi (bib4) 1997; 27 Shahriar, Sadiq, Tesfamariam (bib48) 2012; 25 Chang, Chen, Wu (bib5) 2018; 51 Yang, Chen, Jiang (bib60) 2011; 29 Nadkarni, Shenoy (bib41) 2004; 38 Liou, J (bib34) 2015; 103 (bib39) 2022 Wu, Yang, Chang (bib57) 2015; 142 Li, Wang, H, Dubljevic (bib31) 2019; 61 Kraidi, Shah, Matipa (bib27) 2021; 1 (bib9) 2021 Khakzad, Khan, Amyotte (bib25) 2013; 91 Wang, Wu, Kang, G (bib55) 2018; 104 Mokhtar, Chateauneuf, Laggoune (bib40) 2016; 148 Wu, Zhou, Xu (bib58) 2017; 46 Huang, Li, Zhu (bib22) 2021; 73 Fan, Su, Wang (bib15) 2022; 225 (bib23) 2008 Krueger, Page, Hubacek (bib28) 2012; 36 Li, Chen, Hong (bib33) 2023; 233 Martins, Schleder, Droguett (bib37) 2014; 34 Qiu, Liang, Zhang (bib44) 2018; 57 Yan, Xu, Yao (bib59) 2017; 11 Yuan, Yang, Reniers (bib62) 2022; 148 Gao (10.1016/j.jlp.2023.105027_bib18) 2022; 29 (10.1016/j.jlp.2023.105027_bib42) 2020 Wu (10.1016/j.jlp.2023.105027_bib57) 2015; 142 Li (10.1016/j.jlp.2023.105027_bib30) 2016; 103 Hou (10.1016/j.jlp.2023.105027_bib20) 2021; 135 Krueger (10.1016/j.jlp.2023.105027_bib28) 2012; 36 Biezma (10.1016/j.jlp.2023.105027_bib3) 2020; 110 Qiu (10.1016/j.jlp.2023.105027_bib44) 2018; 57 (10.1016/j.jlp.2023.105027_bib9) 2021 Quan (10.1016/j.jlp.2023.105027_bib45) 2017; 36 Malone (10.1016/j.jlp.2023.105027_bib35) 1975; 63 Wang (10.1016/j.jlp.2023.105027_bib56) 2019; 15 Pan (10.1016/j.jlp.2023.105027_bib43) 2002; 1 Shahriar (10.1016/j.jlp.2023.105027_bib48) 2012; 25 Kraidi (10.1016/j.jlp.2023.105027_bib27) 2021; 1 Lavasani (10.1016/j.jlp.2023.105027_bib29) 2015; 108 Yang (10.1016/j.jlp.2023.105027_bib60) 2011; 29 Zhu (10.1016/j.jlp.2023.105027_bib67) 2019; 15 Shan (10.1016/j.jlp.2023.105027_bib49) 2017 Khakzad (10.1016/j.jlp.2023.105027_bib25) 2013; 91 Yuan (10.1016/j.jlp.2023.105027_bib62) 2022; 148 Yan (10.1016/j.jlp.2023.105027_bib59) 2017; 11 Ferdous (10.1016/j.jlp.2023.105027_bib17) 2012; 25 Nadkarni (10.1016/j.jlp.2023.105027_bib41) 2004; 38 He (10.1016/j.jlp.2023.105027_bib19) 2022; 225 Li (10.1016/j.jlp.2023.105027_bib32) 2022 Yuan (10.1016/j.jlp.2023.105027_bib61) 2015; 35 Chen (10.1016/j.jlp.2023.105027_bib7) 2021; 279 (10.1016/j.jlp.2023.105027_bib14) 2020 Sakar (10.1016/j.jlp.2023.105027_bib47) 2021; 113 Mokhtar (10.1016/j.jlp.2023.105027_bib40) 2016; 148 Huang (10.1016/j.jlp.2023.105027_bib22) 2021; 73 Li (10.1016/j.jlp.2023.105027_bib33) 2023; 233 Chi (10.1016/j.jlp.2023.105027_bib8) 2021; 17 Tien (10.1016/j.jlp.2023.105027_bib51) 2016; 156 Cui (10.1016/j.jlp.2023.105027_bib11) 2020; 134 Wang (10.1016/j.jlp.2023.105027_bib54) 2018; 103 Zhang (10.1016/j.jlp.2023.105027_bib64) 2020; 20 Wu (10.1016/j.jlp.2023.105027_bib58) 2017; 46 Castillo (10.1016/j.jlp.2023.105027_bib4) 1997; 27 Huang (10.1016/j.jlp.2023.105027_bib21) 2013; 9 Khorasane (10.1016/j.jlp.2023.105027_bib26) 2022; 200 (10.1016/j.jlp.2023.105027_bib23) 2008 Liou (10.1016/j.jlp.2023.105027_bib34) 2015; 103 Martins (10.1016/j.jlp.2023.105027_bib37) 2014; 34 Ruiz-Tagle (10.1016/j.jlp.2023.105027_bib46) 2022; 223 Wang (10.1016/j.jlp.2023.105027_bib53) 2017; 111 Zhou (10.1016/j.jlp.2023.105027_bib66) 2020; 103 Khakzad (10.1016/j.jlp.2023.105027_bib24) 2011; 96 Mao (10.1016/j.jlp.2023.105027_bib36) 2015; 39 Dai (10.1016/j.jlp.2023.105027_bib12) 2020; 51 Badida (10.1016/j.jlp.2023.105027_bib2) 2019; 66 Chang (10.1016/j.jlp.2023.105027_bib5) 2018; 51 Dong (10.1016/j.jlp.2023.105027_bib13) 2005; 18 Kjaerulff (10.1016/j.jlp.2023.105027_bib52) 2000 (10.1016/j.jlp.2023.105027_bib50) 2019 Zheng (10.1016/j.jlp.2023.105027_bib65) 2013; 31 Chen (10.1016/j.jlp.2023.105027_bib6) 2020; 202 Wang (10.1016/j.jlp.2023.105027_bib55) 2018; 104 Zhang (10.1016/j.jlp.2023.105027_bib63) 2018; 117 Fan (10.1016/j.jlp.2023.105027_bib15) 2022; 225 (10.1016/j.jlp.2023.105027_bib39) 2022 Li (10.1016/j.jlp.2023.105027_bib31) 2019; 61 (10.1016/j.jlp.2023.105027_bib38) 1986 |
References_xml | – start-page: 1737 year: 2008 ident: bib23 article-title: Application of Pipeline Risk Assessment to Proposed Developments in the Vicinity of High Pressure Natural Gas Pipelines. IGEM/TD/2 Communication – volume: 279 year: 2021 ident: bib7 article-title: Safety and security of oil and gas pipeline transportation: a systematic analysis of research trends and future needs using WoS publication-title: J. Clean. Prod. – volume: 223 year: 2022 ident: bib46 article-title: BaNTERA: a Bayesian network for third-party excavation risk assessment publication-title: Reliab. Eng. Syst. Saf. – volume: 135 year: 2021 ident: bib20 article-title: Hazardous chemical leakage accidents and emergency evacuation response from 2009 to 2018 in China: a review publication-title: Saf. Sci. – year: 2022 ident: bib39 article-title: Statistical Yearbook of Urban Construction – volume: 36 start-page: 1001 year: 2017 end-page: 1006 ident: bib45 article-title: Risk analysis of Sichuan-to-East gas pipeline based on fault tree and Bayesian network publication-title: Oil Gas Storage Transp. – volume: 103 start-page: 353 year: 2015 end-page: 361 ident: bib34 article-title: Building an effective system for carbon reduction management publication-title: J. Clean. Prod. – volume: 142 start-page: 515 year: 2015 end-page: 524 ident: bib57 article-title: Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project publication-title: Reliab. Eng. Syst. Saf. – volume: 51 start-page: 70 year: 2020 end-page: 72 ident: bib12 article-title: Comparative analysis of domestic and foreign oil pipeline leakage cases disposal publication-title: Protection on Oil & Gas Pipelines – volume: 103 start-page: 51 year: 2018 end-page: 61 ident: bib54 article-title: Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM publication-title: Saf. Sci. – volume: 117 start-page: 694 year: 2018 end-page: 703 ident: bib63 article-title: A probabilistic analysis model of oil pipeline accidents based on an integrated Event-Evolution-Bayesian (EEB) model publication-title: Process Saf. Environ. Protect. – volume: 25 start-page: 8 year: 2012 end-page: 19 ident: bib17 article-title: Handling and updating uncertain information in bow-tie analysis publication-title: J. Loss Prev. Process. Ind. – volume: 91 start-page: 46 year: 2013 end-page: 53 ident: bib25 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf. Environ. Protect. – year: 2022 ident: bib32 article-title: A Machine Learning Methodology for Probabilistic Risk Assessment of Process Operations: A Case of Subsea Gas Pipeline Leak Accidents – volume: 51 start-page: 42 year: 2018 end-page: 53 ident: bib5 article-title: Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network publication-title: J. Loss Prev. Process. Ind. – year: 2021 ident: bib9 article-title: The Total Mileage of Oil and Gas Pipelines in China Has Reached 165000 Km – volume: 73 year: 2021 ident: bib22 article-title: Influencing factors and their influencing mechanisms on urban resilience in China publication-title: Sustain. Cities Soc. – volume: 15 start-page: 98 year: 2019 end-page: 103 ident: bib67 article-title: Risk analysis on operation of above-water lifting pipeline maintenance based on JSA-BN publication-title: Journal of Safety Science and Technology – volume: 31 start-page: 540 year: 2013 end-page: 543+565 ident: bib65 article-title: Natural gas pipeline environmental risk impact analysis publication-title: Energy Conserv. Technol. – volume: 225 year: 2022 ident: bib15 article-title: A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning publication-title: Reliab. Eng. Syst. Saf. – volume: 34 start-page: 2098 year: 2014 end-page: 2120 ident: bib37 article-title: A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas on board a floating storage and regasification unit publication-title: Risk Anal. – volume: 20 start-page: 1690 year: 2020 end-page: 1694 ident: bib64 article-title: Analysis for the pipeline leakage risk of the submarine crude oil based on the DEMATEL and logical tree publication-title: J. Saf. Environ. – volume: 61 start-page: 49 year: 2019 end-page: 57 ident: bib31 article-title: Analysis on accident-causing factors of urban buried gas pipeline network by combining DEMATEL, ISM and BN methods publication-title: J. Loss Prev. Process. Ind. – volume: 29 start-page: 45 year: 2011 end-page: 47 ident: bib60 article-title: Fault tree analysis on liquid natural gas leakage publication-title: Sci. Technol. Rev. – volume: 103 start-page: 163 year: 2016 end-page: 173 ident: bib30 article-title: Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network publication-title: Process Saf. Environ. Protect. – volume: 29 start-page: 53 year: 2022 end-page: 60 ident: bib18 article-title: New progress in China's oil and gas pipeline construction in 2021 publication-title: International Petroleum Economics – volume: 148 start-page: 46 year: 2016 end-page: 58 ident: bib40 article-title: Bayesian approach for the reliability assessment of corroded interdependent pipe networks publication-title: Int. J. Pres. Ves. Pip. – volume: 11 year: 2017 ident: bib59 article-title: Fuzzy bayesian network-bow-tie analysis of gas leakage during biomass gasification publication-title: PLoS One – year: 2019 ident: bib50 article-title: Report on Production Safety Accident and Regulations of Investigation and Treatment – volume: 104 start-page: 164 year: 2018 end-page: 178 ident: bib55 article-title: Work safety in China's thirteenth five-year plan period (2016-2020): current status, new challenges and future tasks publication-title: Saf. Sci. – volume: 108 start-page: 729 year: 2015 end-page: 737 ident: bib29 article-title: Utilisation of Fuzzy Fault Tree Analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells publication-title: Ocean. Eng. – volume: 96 start-page: 925 year: 2011 end-page: 932 ident: bib24 article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches publication-title: Reliab. Eng. Syst. Saf. – volume: 18 start-page: 83 year: 2005 end-page: 88 ident: bib13 article-title: Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis publication-title: J. Loss Prev. Process. Ind. – year: 2015 ident: bib10 article-title: What part of the time period do ‘day’ and ‘night’ refer to?” < – volume: 1 start-page: 105 year: 2002 end-page: 110 ident: bib43 article-title: Progress of accidental release source and mechanism models publication-title: Journal of Nanjing Tech University (Natural Science Edition) – volume: 25 start-page: 505 year: 2012 end-page: 523 ident: bib48 article-title: Risk analysis for oil & gas pipelines: a sustainability assessment approach using fuzzy based bow-tie analysis publication-title: Loss Prevention in the Process Industries – volume: 110 year: 2020 ident: bib3 article-title: Most fatal oil & gas pipeline accidents through history: a lessons learned approach publication-title: Eng. Fail. Anal. – year: 2017 ident: bib49 article-title: Risk analysis on leakage failure of natural gas pipelines by fuzzy bayesian network with a Bow-Tie model publication-title: Sci. Program. – volume: 113 year: 2021 ident: bib47 article-title: Risk analysis of grounding accidents by mapping a fault tree into a Bayesian network publication-title: Appl. Ocean Res. – volume: 17 start-page: 41 year: 2021 end-page: 47 ident: bib8 article-title: Analysis on leakage and explosion accidents in high consequence areas of gas pipeline based on UHBs publication-title: Journal of Safety Science and Technology – year: 1986 ident: bib38 article-title: Statistical Standard of Economic Losses from Injury-Fatal Accidents of Enterprise Staff and Workers – volume: 202 year: 2020 ident: bib6 publication-title: Short-term Supply Reliability Assessment of a Gas Pipeline System under Demand Variations – volume: 103 year: 2020 ident: bib66 article-title: A risk assessment model of a sewer pipeline in an underground utility tunnel based on a Bayesian network publication-title: Tunn. Undergr. Space Technol. – volume: 66 start-page: 284 year: 2019 end-page: 292 ident: bib2 article-title: Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis publication-title: J. Nat. Gas Sci. Eng. – start-page: 317 year: 2000 end-page: 325 ident: bib52 article-title: Making sensitivity analysis computationally efficient publication-title: Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000) – volume: 63 start-page: 397 year: 1975 end-page: 404 ident: bib35 article-title: An introduction to the application of interpretive structural modeling publication-title: Proc. IEEE – volume: 15 start-page: 55 year: 2019 end-page: 62 ident: bib56 article-title: Dynamic risk analysis of urban buried gas pipeline network based on Bayesian network publication-title: Journal of Safety Science and Technology – volume: 39 start-page: 38 year: 2015 end-page: 43 ident: bib36 article-title: Spatio-temporal changes of population density and exploration on urbanization pattern in China:2000-2010 publication-title: City Planning Review – volume: 38 start-page: 259 year: 2004 end-page: 281 ident: bib41 article-title: An influencing mapping approach to constructing Bayesian networks publication-title: Decis. Support Syst. – volume: 27 start-page: 412 year: 1997 end-page: 423 ident: bib4 article-title: Sensitivity analysis in discrete Bayesian networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. – volume: 200 year: 2022 ident: bib26 article-title: Identifying the influential contributing factors to micro-enterprises’ workplace accidents using a hybrid D-DEMATEL-IFISM method publication-title: Expert Syst. Appl. – volume: 233 year: 2023 ident: bib33 article-title: Exploring hazardous chemical explosion accidents with association rules and Bayesian networks publication-title: Reliab. Eng. Syst. Saf. – volume: 1 start-page: 349 year: 2021 end-page: 359 ident: bib27 article-title: An investigation of mitigating the safety and security risks allied with oil and gas pipeline projects publication-title: Journal of Pipeline Science and Engineering – volume: 225 year: 2022 ident: bib19 article-title: A methodology to assess the causation relationship of seafarers' unsafe acts for ship grounding accidents based on Bayesian SEM publication-title: Ocean Coast Manag. – volume: 134 start-page: 178 year: 2020 end-page: 188 ident: bib11 article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines publication-title: Process Saf. Environ. Protect. – volume: 156 start-page: 134 year: 2016 end-page: 147 ident: bib51 article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems publication-title: Reliab. Eng. Syst. Saf. – volume: 148 year: 2022 ident: bib62 article-title: Safety barriers in the chemical process industries: a state-of-the-art review on their classification, assessment, and management publication-title: Saf. Sci. – volume: 46 start-page: 126 year: 2017 end-page: 136 ident: bib58 article-title: Probabilistic analysis of natural gas pipeline network accident based on Bayesian network publication-title: J. Loss Prev. Process. Ind. – volume: 57 start-page: 339 year: 2018 end-page: 348 ident: bib44 article-title: Tracing and prediction analysis of an urban pipeline leakage accident based on the catastrophe DBN model publication-title: J. Nat. Gas Sci. Eng. – volume: 111 start-page: 678 year: 2017 end-page: 686 ident: bib53 article-title: Failure probability analysis of the urban buried gas pipelines using Bayesian networks publication-title: Process Saf. Environ. Protect. – volume: 35 start-page: 278 year: 2015 end-page: 291 ident: bib61 article-title: Risk analysis of dust explosion scenarios using Bayesian networks publication-title: Risk Anal. – year: 2020 ident: bib14 article-title: 11th Report of the European Gas Pipeline Incident Data Group – year: 2020 ident: bib42 article-title: Code for Design of City Gas Engineering: GB 50028-2006 – volume: 9 start-page: 92 year: 2013 end-page: 97 ident: bib21 article-title: Application of Fault Tree + software for quantitative risk analysis of long-distance natural gas pipeline publication-title: Journal of Safety Science and Technology – volume: 36 start-page: 4 year: 2012 end-page: 18 ident: bib28 article-title: The role of expert opinion in environmental modelling publication-title: Environ. Model. Software – volume: 27 start-page: 412 issue: 4 year: 1997 ident: 10.1016/j.jlp.2023.105027_bib4 article-title: Sensitivity analysis in discrete Bayesian networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. doi: 10.1109/3468.594909 – volume: 113 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib47 article-title: Risk analysis of grounding accidents by mapping a fault tree into a Bayesian network publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102764 – volume: 34 start-page: 2098 issue: 12 year: 2014 ident: 10.1016/j.jlp.2023.105027_bib37 article-title: A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas on board a floating storage and regasification unit publication-title: Risk Anal. doi: 10.1111/risa.12245 – volume: 15 start-page: 98 issue: 3 year: 2019 ident: 10.1016/j.jlp.2023.105027_bib67 article-title: Risk analysis on operation of above-water lifting pipeline maintenance based on JSA-BN publication-title: Journal of Safety Science and Technology – volume: 39 start-page: 38 issue: 2 year: 2015 ident: 10.1016/j.jlp.2023.105027_bib36 article-title: Spatio-temporal changes of population density and exploration on urbanization pattern in China:2000-2010 publication-title: City Planning Review – volume: 1 start-page: 105 year: 2002 ident: 10.1016/j.jlp.2023.105027_bib43 article-title: Progress of accidental release source and mechanism models publication-title: Journal of Nanjing Tech University (Natural Science Edition) – volume: 108 start-page: 729 year: 2015 ident: 10.1016/j.jlp.2023.105027_bib29 article-title: Utilisation of Fuzzy Fault Tree Analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2015.09.008 – start-page: 317 year: 2000 ident: 10.1016/j.jlp.2023.105027_bib52 article-title: Making sensitivity analysis computationally efficient publication-title: Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000) – volume: 233 year: 2023 ident: 10.1016/j.jlp.2023.105027_bib33 article-title: Exploring hazardous chemical explosion accidents with association rules and Bayesian networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109099 – volume: 51 start-page: 42 year: 2018 ident: 10.1016/j.jlp.2023.105027_bib5 article-title: Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2017.11.005 – volume: 35 start-page: 278 issue: 2 year: 2015 ident: 10.1016/j.jlp.2023.105027_bib61 article-title: Risk analysis of dust explosion scenarios using Bayesian networks publication-title: Risk Anal. doi: 10.1111/risa.12283 – volume: 17 start-page: 41 issue: 7 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib8 article-title: Analysis on leakage and explosion accidents in high consequence areas of gas pipeline based on UHBs publication-title: Journal of Safety Science and Technology – volume: 223 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib46 article-title: BaNTERA: a Bayesian network for third-party excavation risk assessment publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108507 – volume: 117 start-page: 694 year: 2018 ident: 10.1016/j.jlp.2023.105027_bib63 article-title: A probabilistic analysis model of oil pipeline accidents based on an integrated Event-Evolution-Bayesian (EEB) model publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2018.06.017 – volume: 110 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib3 article-title: Most fatal oil & gas pipeline accidents through history: a lessons learned approach publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104446 – year: 1986 ident: 10.1016/j.jlp.2023.105027_bib38 – volume: 103 start-page: 163 year: 2016 ident: 10.1016/j.jlp.2023.105027_bib30 article-title: Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2016.06.006 – volume: 36 start-page: 4 issue: S1 year: 2012 ident: 10.1016/j.jlp.2023.105027_bib28 article-title: The role of expert opinion in environmental modelling publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2012.01.011 – year: 2022 ident: 10.1016/j.jlp.2023.105027_bib39 – volume: 134 start-page: 178 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib11 article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2019.11.038 – volume: 91 start-page: 46 issue: 1–2 year: 2013 ident: 10.1016/j.jlp.2023.105027_bib25 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2012.01.005 – volume: 103 start-page: 353 year: 2015 ident: 10.1016/j.jlp.2023.105027_bib34 article-title: Building an effective system for carbon reduction management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.10.053 – volume: 225 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib19 article-title: A methodology to assess the causation relationship of seafarers' unsafe acts for ship grounding accidents based on Bayesian SEM publication-title: Ocean Coast Manag. doi: 10.1016/j.ocecoaman.2022.106189 – volume: 135 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib20 article-title: Hazardous chemical leakage accidents and emergency evacuation response from 2009 to 2018 in China: a review publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.105101 – volume: 15 start-page: 55 issue: 5 year: 2019 ident: 10.1016/j.jlp.2023.105027_bib56 article-title: Dynamic risk analysis of urban buried gas pipeline network based on Bayesian network publication-title: Journal of Safety Science and Technology – volume: 225 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib15 article-title: A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108613 – volume: 25 start-page: 8 issue: 1 year: 2012 ident: 10.1016/j.jlp.2023.105027_bib17 article-title: Handling and updating uncertain information in bow-tie analysis publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2011.06.018 – volume: 38 start-page: 259 issue: 2 year: 2004 ident: 10.1016/j.jlp.2023.105027_bib41 article-title: An influencing mapping approach to constructing Bayesian networks publication-title: Decis. Support Syst. doi: 10.1016/S0167-9236(03)00095-2 – volume: 111 start-page: 678 year: 2017 ident: 10.1016/j.jlp.2023.105027_bib53 article-title: Failure probability analysis of the urban buried gas pipelines using Bayesian networks publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2017.08.040 – volume: 156 start-page: 134 year: 2016 ident: 10.1016/j.jlp.2023.105027_bib51 article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.07.022 – volume: 142 start-page: 515 year: 2015 ident: 10.1016/j.jlp.2023.105027_bib57 article-title: Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.06.013 – volume: 11 issue: 7 year: 2017 ident: 10.1016/j.jlp.2023.105027_bib59 article-title: Fuzzy bayesian network-bow-tie analysis of gas leakage during biomass gasification publication-title: PLoS One doi: 10.1371/journal.pone.0160045 – volume: 148 start-page: 46 year: 2016 ident: 10.1016/j.jlp.2023.105027_bib40 article-title: Bayesian approach for the reliability assessment of corroded interdependent pipe networks publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2016.11.002 – volume: 279 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib7 article-title: Safety and security of oil and gas pipeline transportation: a systematic analysis of research trends and future needs using WoS publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123583 – volume: 63 start-page: 397 issue: 3 year: 1975 ident: 10.1016/j.jlp.2023.105027_bib35 article-title: An introduction to the application of interpretive structural modeling publication-title: Proc. IEEE doi: 10.1109/PROC.1975.9765 – year: 2019 ident: 10.1016/j.jlp.2023.105027_bib50 – start-page: 1737 year: 2008 ident: 10.1016/j.jlp.2023.105027_bib23 – year: 2022 ident: 10.1016/j.jlp.2023.105027_bib32 – volume: 46 start-page: 126 year: 2017 ident: 10.1016/j.jlp.2023.105027_bib58 article-title: Probabilistic analysis of natural gas pipeline network accident based on Bayesian network publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2017.01.025 – volume: 200 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib26 article-title: Identifying the influential contributing factors to micro-enterprises’ workplace accidents using a hybrid D-DEMATEL-IFISM method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117059 – volume: 73 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib22 article-title: Influencing factors and their influencing mechanisms on urban resilience in China publication-title: Sustain. Cities Soc. – volume: 9 start-page: 92 issue: 1 year: 2013 ident: 10.1016/j.jlp.2023.105027_bib21 article-title: Application of Fault Tree + software for quantitative risk analysis of long-distance natural gas pipeline publication-title: Journal of Safety Science and Technology – volume: 61 start-page: 49 year: 2019 ident: 10.1016/j.jlp.2023.105027_bib31 article-title: Analysis on accident-causing factors of urban buried gas pipeline network by combining DEMATEL, ISM and BN methods publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2019.06.001 – volume: 18 start-page: 83 issue: 2 year: 2005 ident: 10.1016/j.jlp.2023.105027_bib13 article-title: Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2004.12.003 – volume: 25 start-page: 505 issue: 3 year: 2012 ident: 10.1016/j.jlp.2023.105027_bib48 article-title: Risk analysis for oil & gas pipelines: a sustainability assessment approach using fuzzy based bow-tie analysis publication-title: Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2011.12.007 – year: 2020 ident: 10.1016/j.jlp.2023.105027_bib14 – volume: 1 start-page: 349 issue: 3 year: 2021 ident: 10.1016/j.jlp.2023.105027_bib27 article-title: An investigation of mitigating the safety and security risks allied with oil and gas pipeline projects publication-title: Journal of Pipeline Science and Engineering doi: 10.1016/j.jpse.2021.08.002 – volume: 36 start-page: 1001 issue: 9 year: 2017 ident: 10.1016/j.jlp.2023.105027_bib45 article-title: Risk analysis of Sichuan-to-East gas pipeline based on fault tree and Bayesian network publication-title: Oil Gas Storage Transp. – volume: 148 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib62 article-title: Safety barriers in the chemical process industries: a state-of-the-art review on their classification, assessment, and management publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105647 – volume: 31 start-page: 540 issue: 6 year: 2013 ident: 10.1016/j.jlp.2023.105027_bib65 article-title: Natural gas pipeline environmental risk impact analysis publication-title: Energy Conserv. Technol. – volume: 29 start-page: 53 issue: 3 year: 2022 ident: 10.1016/j.jlp.2023.105027_bib18 article-title: New progress in China's oil and gas pipeline construction in 2021 publication-title: International Petroleum Economics – volume: 103 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib66 article-title: A risk assessment model of a sewer pipeline in an underground utility tunnel based on a Bayesian network publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103473 – year: 2020 ident: 10.1016/j.jlp.2023.105027_bib42 – volume: 51 start-page: 70 issue: 2 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib12 article-title: Comparative analysis of domestic and foreign oil pipeline leakage cases disposal publication-title: Protection on Oil & Gas Pipelines – year: 2017 ident: 10.1016/j.jlp.2023.105027_bib49 article-title: Risk analysis on leakage failure of natural gas pipelines by fuzzy bayesian network with a Bow-Tie model publication-title: Sci. Program. – volume: 104 start-page: 164 year: 2018 ident: 10.1016/j.jlp.2023.105027_bib55 article-title: Work safety in China's thirteenth five-year plan period (2016-2020): current status, new challenges and future tasks publication-title: Saf. Sci. doi: 10.1016/j.ssci.2018.01.012 – volume: 20 start-page: 1690 issue: 5 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib64 article-title: Analysis for the pipeline leakage risk of the submarine crude oil based on the DEMATEL and logical tree publication-title: J. Saf. Environ. – volume: 57 start-page: 339 year: 2018 ident: 10.1016/j.jlp.2023.105027_bib44 article-title: Tracing and prediction analysis of an urban pipeline leakage accident based on the catastrophe DBN model publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2018.07.019 – volume: 202 year: 2020 ident: 10.1016/j.jlp.2023.105027_bib6 – volume: 96 start-page: 925 issue: 8 year: 2011 ident: 10.1016/j.jlp.2023.105027_bib24 article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.03.012 – volume: 29 start-page: 45 issue: 17 year: 2011 ident: 10.1016/j.jlp.2023.105027_bib60 article-title: Fault tree analysis on liquid natural gas leakage publication-title: Sci. Technol. Rev. – volume: 103 start-page: 51 year: 2018 ident: 10.1016/j.jlp.2023.105027_bib54 article-title: Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM publication-title: Saf. Sci. doi: 10.1016/j.ssci.2017.11.007 – volume: 66 start-page: 284 year: 2019 ident: 10.1016/j.jlp.2023.105027_bib2 article-title: Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.04.010 – year: 2021 ident: 10.1016/j.jlp.2023.105027_bib9 |
SSID | ssj0017087 |
Score | 2.4619708 |
Snippet | Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105027 |
SubjectTerms | Accident evolution analysis Bayesian network Gas leakage Natural gas pipeline Probabilistic risk analysis |
Title | An integrated EDIB model for probabilistic risk analysis of natural gas pipeline leakage accidents |
URI | https://dx.doi.org/10.1016/j.jlp.2023.105027 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYEB8RTlUXlgQjLNw4mTsZRWLYguUKlb5Dg2aonSiIaV344vj6pIwMCY6KxYZ-f8Rfnu-wCubeVJZmA_DWzfoiyMFTWoPqY69FUgDcZnDJuTn6b-eMYe5t68BYOmFwZplXXtr2p6Wa3rO706m718seg9G3CApA4E0dhSiQ2_jHHc5befG5qHza3SJA-DKUY3fzZLjtcyRclKx0W3WwuNZX46m7bOm9EB7NdAkfSruRxCS2VHsLclH3gMcT8jG7mHhAzvJ3ekdLYhBokStIop5XNRiZkghZyIWoGErDQpFT3NA17FmuSLHNvSFUmVeDMFhggp0Wy0WJ_AbDR8GYxp7ZlApcusgqogYeYllaiBkzhOEghHKuGJRHueFjoIhdbC5pInTDrKDqWZiRtrJs2KafNx555CO1tl6gyIp7SvTFjCXcU8HofCd7lCwT87jJnkHbCabEWyFhRHX4s0aphjy8gkOMIER1WCO3CzGZJXahp_BbNmCaJvWyIy1f73Yef_G3YBu3hVMXEvoV28f6grgzeKuFtuqC7s9CeP4-kXZXHU_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckKJmcbZjKa1Sulxopd4sx7FRS9VGNPw_nixVkYAD12RGscb2-EWeeQ_gwZKuoBr2G4HlmQYNY2loVB8bKvRkIDTGpxSbk0djL5rSl5k7q0Gn6oXBssoy9xc5Pc_W5ZNWGc1WOp-3XjU4wKIOBNHYUhnsQQPZqdw6NNr9QTTeXib4Zq6Th_YGOlSXm3mZ12KJrJW2g4K3JmrL_HQ87Rw5vWM4KrEiaRfDOYGaXJ3C4Q6D4BnE7RXZMj4kpPvcfyK5uA3RYJSgWkzOoItkzASryAkvSUjIWpGc1FN_4I1vSDpPsTNdkqXk7zrHEC4E6o1mm3OY9rqTTmSUsgmGcKiZGTJIqN6nAmlwEttOAm4LyV2eKNdVXAUhV4pbvvATKmxphUKPxIkVFXrSlP6_cy6gvlqv5CUQVypParPEdyR1_TjknuNL5PyzwpgKvwlmFS0mSk5xlLZYsqp4bMF0gBkGmBUBbsLj1iUtCDX-MqbVFLBvq4LphP-729X_3O5hP5qMhmzYHw-u4QDfFIW5N1DPPj7lrYYfWXxXLq8vvrPXrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+EDIB+model+for+probabilistic+risk+analysis+of+natural+gas+pipeline+leakage+accidents&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Chen%2C+Xing-lin&rft.au=Lin%2C+Wei-dong&rft.au=Liu%2C+Chun-xiang&rft.au=Yang%2C+Fu-qiang&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0950-4230&rft.volume=83&rft_id=info:doi/10.1016%2Fj.jlp.2023.105027&rft.externalDocID=S0950423023000578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon |