Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies

Thorough characterization of probabilities of detection (POD) and quantification uncertainties is fundamentally important to understand the place of aerial measurement technologies in alternative means of emission limitation (AMEL) or alternate fugitive emissions management programs (Alt-FEMP); moni...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 288; p. 113499
Main Authors Conrad, Bradley M., Tyner, David R., Johnson, Matthew R.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thorough characterization of probabilities of detection (POD) and quantification uncertainties is fundamentally important to understand the place of aerial measurement technologies in alternative means of emission limitation (AMEL) or alternate fugitive emissions management programs (Alt-FEMP); monitoring, reporting, and verification (MRV) efforts; and surveys designed to support measurement-based emissions inventories and mitigation tracking. This paper presents a robust framework for deriving continuous probability of detection functions and quantification uncertainty models for example aerial measurement techniques based on controlled release data. Using extensive fully- and semi-blinded controlled release experiments to test Bridger Photonics Inc.'s Gas Mapping LiDAR (GML)™, as well as available semi- and non-blinded controlled release data for Kairos LeakSurveyor™ and NASA/JPL AVIRIS-NG technologies, robust POD functions are derived that enable calculation of detection probability for any given source rate, wind speed, and flight altitude. Uncertainty models are separately developed that independently address measurement bias, bias variability, and measurement precision, allowing for a distribution of the true source rate to be directly calculated from the source rate estimated by the technology. Derived results demonstrate the potential of all three technologies in methane detection and mitigation, and the developed methodology can be readily applied to characterize other techniques or update POD and uncertainty models following future controlled release experiments. Finally, the analyzed results also demonstrate the importance of using controlled release data from a range of sites and times to avoid underestimating measurement uncertainties. [Display omitted] •Generalized method presented to derive aerial methane detection sensitivity.•Generalized error model also developed to derive quantification uncertainty.•Continuous probability of detection functions derived for three aerial technologies.•Results give detection probability for any source, wind, and flight altitude.•Enables use of aerial data in MRV, AMEL/Alt-FEMP, and measurement-based inventories.
AbstractList Thorough characterization of probabilities of detection (POD) and quantification uncertainties is fundamentally important to understand the place of aerial measurement technologies in alternative means of emission limitation (AMEL) or alternate fugitive emissions management programs (Alt-FEMP); monitoring, reporting, and verification (MRV) efforts; and surveys designed to support measurement-based emissions inventories and mitigation tracking. This paper presents a robust framework for deriving continuous probability of detection functions and quantification uncertainty models for example aerial measurement techniques based on controlled release data. Using extensive fully- and semi-blinded controlled release experiments to test Bridger Photonics Inc.'s Gas Mapping LiDAR (GML)™, as well as available semi- and non-blinded controlled release data for Kairos LeakSurveyor™ and NASA/JPL AVIRIS-NG technologies, robust POD functions are derived that enable calculation of detection probability for any given source rate, wind speed, and flight altitude. Uncertainty models are separately developed that independently address measurement bias, bias variability, and measurement precision, allowing for a distribution of the true source rate to be directly calculated from the source rate estimated by the technology. Derived results demonstrate the potential of all three technologies in methane detection and mitigation, and the developed methodology can be readily applied to characterize other techniques or update POD and uncertainty models following future controlled release experiments. Finally, the analyzed results also demonstrate the importance of using controlled release data from a range of sites and times to avoid underestimating measurement uncertainties. [Display omitted] •Generalized method presented to derive aerial methane detection sensitivity.•Generalized error model also developed to derive quantification uncertainty.•Continuous probability of detection functions derived for three aerial technologies.•Results give detection probability for any source, wind, and flight altitude.•Enables use of aerial data in MRV, AMEL/Alt-FEMP, and measurement-based inventories.
ArticleNumber 113499
Author Johnson, Matthew R.
Conrad, Bradley M.
Tyner, David R.
Author_xml – sequence: 1
  givenname: Bradley M.
  surname: Conrad
  fullname: Conrad, Bradley M.
– sequence: 2
  givenname: David R.
  surname: Tyner
  fullname: Tyner, David R.
– sequence: 3
  givenname: Matthew R.
  surname: Johnson
  fullname: Johnson, Matthew R.
  email: Matthew.Johnson@carleton.ca
BookMark eNp9kNtKAzEQhoMoWKsP4F1eYGuym2129UrEEwiC6HWYJLM2ZZvUJBV9Al_b1AreeTUw_N8cviOy74NHQk45m3HG52fLWUw4q1ndzDhvRN_vkQnvZF8xycQ-mTDWiErUrTwkRyktGeNtJ_mEfD0FvUmZrmPQoN3ossNEw0AtZjTZBU_BW_q2AZ_d4Az8tDbeYMzgfP6kQ4gUMDoY6QrzAjz-sef0-gNW67GM3MbyIiJScFGHWGIltPBhDK9l5TE5GGBMePJbp-Tl5vr56q56eLy9v7p8qEwjWK5Q1kIwNLWUQ9MKpqGWFuVczOt5L3vsddMJYNAAb63orOCm1602HKztGNPNlPDdXBNDShEHtY5uBfFTcaa2JtVSFZNqa1LtTBbmYsdgOezdYVTJOCwKrIvlT2WD-4f-BuvtgYA
CitedBy_id crossref_primary_10_1038_s43247_023_00769_7
crossref_primary_10_2118_219445_PA
crossref_primary_10_1021_acs_est_3c00229
crossref_primary_10_1021_acs_est_4c02333
crossref_primary_10_1021_acs_est_2c08582
crossref_primary_10_1021_acs_est_3c08972
crossref_primary_10_1038_s43247_023_01081_0
crossref_primary_10_1021_acs_est_3c05245
crossref_primary_10_1021_acs_est_3c07722
crossref_primary_10_1021_acs_estlett_3c00613
crossref_primary_10_5194_amt_16_6065_2023
crossref_primary_10_1021_acs_energyfuels_4c00908
crossref_primary_10_1088_1748_9326_ace271
crossref_primary_10_1088_2515_7620_ad3129
crossref_primary_10_1021_acs_est_3c06062
crossref_primary_10_3390_s24082419
Cites_doi 10.1073/pnas.1605617113
10.1029/2019GL085707
10.1080/10962247.2018.1515123
10.1016/j.rse.2016.03.032
10.1021/acs.est.1c03071
10.1016/S0034-4257(98)00064-9
10.1038/s43247-023-00769-7
10.1021/acs.est.0c01213
10.1016/j.rse.2021.112418
10.1021/acs.est.0c01212
10.5194/amt-14-2127-2021
10.1016/j.wep.2014.03.001
10.1021/acs.est.1c06458
10.1525/elementa.373
10.1016/j.apenergy.2020.115327
10.1088/1748-9326/ab751d
10.1021/acs.est.1c01572
10.5194/amt-12-5655-2019
10.1088/1748-9326/ab7b99
10.1038/s41586-019-1720-3
10.1021/acs.estlett.1c00173
10.5194/amt-11-5673-2018
10.5194/amt-10-3429-2017
10.1525/elementa.426
10.1109/TGRS.2020.2976888
10.5194/amt-8-4383-2015
10.1016/j.rse.2021.112681
10.5194/amt-10-3833-2017
10.1080/01621459.1995.10476572
10.1021/acs.est.5b06068
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.rse.2023.113499
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2023_113499
S0034425723000500
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABEFU
ABXDB
ADMUD
ADVLN
AFFNX
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FA8
FEDTE
FGOYB
G-2
G8K
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
RIG
SEN
SEP
VOH
WUQ
XOL
ID FETCH-LOGICAL-c340t-e72440ec277f3540ba27de764626979e9b384a0a3a15d48d41c9b5bc1add800b3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Sep 12 17:12:59 EDT 2024
Fri Feb 23 02:38:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Methane
MRV
Monitoring, reporting, and verification
Quantification uncertainty
Measurement-based inventories
Oil and gas
Alt-FEMP
AMEL
Remote sensing
Aerial detection sensitivity
Fugitive emissions
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-e72440ec277f3540ba27de764626979e9b384a0a3a15d48d41c9b5bc1add800b3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0034425723000500
ParticipantIDs crossref_primary_10_1016_j_rse_2023_113499
elsevier_sciencedirect_doi_10_1016_j_rse_2023_113499
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Thorpe, Frankenberg, Aubrey, Roberts, Nottrott, Rahn, Sauer, Dubey, Costigan, Arata, Steffke, Hills, Haselwimmer, Charlesworth, Funk, Green, Lundeen, Boardman, Eastwood, Sarture, Nolte, Mccubbin, Thompson, McFadden (bb0220) 2016; 179
NOAA (bb0185) 2020
Schwietzke, Harrison, Lauderdale, Branson, Conley, George, Jordan, Jersey, Zhang, Mairs, Pétron, Schnell (bb0200) 2019; 69
AER (bb0005) 2021
Johnson, Conrad, Tyner (bib254) 2023
Sherwin, Chen, Ravikumar, Brandt (bb0205) 2021; 9
IPCC (bb0135) 2018
Kemp, Ravikumar (bb0165) 2021; 55
Ravikumar, Sreedhara, Wang, Englander, Roda-Stuart, Bell, Zimmerle, Lyon, Mogstad, Ratner, Brandt (bb0195) 2019; 7
Hanna, Briggs, Hosker (bb0120) 1982
Fox, Barchyn, Risk, Ravikumar, Hugenholtz (bb0095) 2019; 14
Krautwurst, Gerilowski, Jonsson, Thompson, Kolyer, Iraci, Thorpe, Horstjann, Eastwood, Leifer, Vigil, Krings, Borchardt, Buchwitz, Fladeland, Burrows, Bovensmann (bb0175) 2017; 10
Hunter, Thorpe (bb0125) 2017
Kreitinger, Thorpe (bb0180) 2018
Arias, Bellouin, Coppola, Jones, Krinner, Marotzke, Naik, Palmer, Plattner, Rogelj, Rojas, Sillmann, Storelvmo, Thorne, Trewin, Rao, Adhikary, Allan, Armour, Bala, Barimalala, Berger, Canadell, Cassou, Cherchi, Collins, Collins, Connors, Corti, Cruz, Dentener, Dereczynski, Di Luca, Niang, Doblas-Reyes, Dosio, Douville, Engelbrecht, Eyring, Fischer, Forster, Fox-Kemper, Fuglestvedt, Fyfe, Gillett, Goldfarb, Gorodetskaya, Gutierrez, Hamdi, Hawkins, Hewitt, Hope, Islam, Jones, Kaufman, Kopp, Kosaka, Kossin, Krakovska, Lee, Li, Mauritsen, Maycock, Meinshausen, Min, Monteiro, Ngo-Duc, Otto, Pinto, Pirani, Raghavan, Ranasinghe, Ruane, Ruiz, Sallée, Samset, Sathyendranath, Seneviratne, Sörensson, Szopa, Takayabu, Tréguier, van den Hurk, Vautard, von Schuckmann, Zaehle, Zhang, Zickfeld (bb0015) 2021
(bb0040) 2021
Berman, Wetherley, Jones (bb0030) 2021
Hamlin, Green, Mouroulis, Eastwood, Wilson, Dudik, Paine (bb0115) 2011
Rashid, Speck, Osedach, Perroni, Pomerantz (bb0190) 2020; 275
Cusworth, Duren, Thorpe, Tseng, Thompson, Guha, Newman, Foster, Miller (bb0065) 2020; 15
Kemp, Ravikumar, Brandt (bb0170) 2016; 50
Thorpe, Frankenberg, Thompson, Duren, Aubrey, Bue, Green, Gerilowski, Krings, Borchardt, Kort, Sweeney, Conley, Roberts, Dennison (bb0225) 2017; 10
Apple Inc. (bb0010) 2022
(bib251) 2023
CCAC (bb0050) 2021
Branson, Jones, Berman (bb0035) 2021
Snipes, Taylor (bb0210) 2014; 3
Chen, Sherwin, Berman, Jones, Gordon, Wetherley, Kort, Brandt (bb0055) 2022; 56
Thompson, Leifer, Bovensmann, Eastwood, Fladeland, Frankenberg, Gerilowski, Green, Kratwurst, Krings, Luna, Thorpe (bb0215) 2015; 8
Johnson, Tyner, Szekeres (bb0145) 2021; 259
(accessed 2.14.23).
Bridger Photonics, 2021. Why is it Important that ExxonMobil Submitted Gas Mapping LiDAR™ for EPA Approval?. Available at
Tyner, Johnson (bb0240) 2021; 55
Frankenberg, Thorpe, Thompson, Hulley, Kort, Vance, Borchardt, Krings, Gerilowski, Sweeney, Conley, Bue, Aubrey, Hook, Green (bb0100) 2016; 113
Bell, Rutherford, Brandt, Sherwin, Vaughn, Zimmerle (bib253) 2022; 10
Bell, Vaughn, Zimmerle (bb0025) 2020; 8
Cusworth, Duren, Thorpe, Olson-Duvall, Heckler, Chapman, Eastwood, Helmlinger, Green, Asner, Dennison, Miller (bb0070) 2021; 8
Kass, Raftery (bb0160) 1995; 90
Kairos Aerospace (bb0155) 2022
ARPA-E (bb0020) 2018
Varon, Jacob, McKeever, Jervis, Durak, Xia, Huang (bb0245) 2018; 11
Guha, Newman, Fairley, Dinh, Duca, Conley, Smith, Thorpe, Duren, Cusworth, Foster, Fischer, Jeong, Yesiller, Hanson, Martien (bb0110) 2020; 54
Thorpe, Duren, Conley, Prasad, Bue, Yadav, Foster, Rafiq, Hopkins, Smith, Fischer, Thompson, Frankenberg, McCubbin, Eastwood, Green, Miller (bb0230) 2020; 15
Jervis, McKeever, Durak, Sloan, Gains, Varon, Ramier, Strupler, Tarrant (bb0140) 2021; 14
Thorpe, O’Handley, Emmitt, DeCola, Hopkins, Yadav, Guha, Newman, Herner, Falk, Duren (bb0235) 2021; 266
European Commission (bb0085) 2021
Varon, Jacob, Jervis, McKeever (bb0250) 2020; 54
Foote, Dennison, Thorpe, Thompson, Jongaramrungruang, Frankenberg, Joshi (bb0090) 2020; 58
Green, Eastwood, Sarture, Chrien, Aronsson, Chippendale, Faust, Pavri, Chovit, Solis, Olah, Williams (bb0105) 1998; 65
Cusworth, Jacob, Varon, Chan Miller, Liu, Chance, Thorpe, Duren, Miller, Thompson, Frankenberg, Guanter, Randles (bb0060) 2019; 12
Elder, Thompson, Thorpe, Hanke, Walter Anthony, Miller (bb0080) 2020; 47
Duren, Thorpe, Foster, Rafiq, Hopkins, Yadav, Bue, Thompson, Conley, Colombi, Frankenberg, McCubbin, Eastwood, Falk, Herner, Croes, Green, Miller (bb0075) 2019; 575
Varon (10.1016/j.rse.2023.113499_bb0250) 2020; 54
Hamlin (10.1016/j.rse.2023.113499_bb0115) 2011
IPCC (10.1016/j.rse.2023.113499_bb0135) 2018
(10.1016/j.rse.2023.113499_bb0040) 2021
(10.1016/j.rse.2023.113499_bib251) 2023
Kass (10.1016/j.rse.2023.113499_bb0160) 1995; 90
Chen (10.1016/j.rse.2023.113499_bb0055) 2022; 56
Thorpe (10.1016/j.rse.2023.113499_bb0230) 2020; 15
Berman (10.1016/j.rse.2023.113499_bb0030) 2021
Foote (10.1016/j.rse.2023.113499_bb0090) 2020; 58
CCAC (10.1016/j.rse.2023.113499_bb0050)
Green (10.1016/j.rse.2023.113499_bb0105) 1998; 65
Johnson (10.1016/j.rse.2023.113499_bb0145) 2021; 259
Apple Inc. (10.1016/j.rse.2023.113499_bb0010)
Branson (10.1016/j.rse.2023.113499_bb0035) 2021
Snipes (10.1016/j.rse.2023.113499_bb0210) 2014; 3
Duren (10.1016/j.rse.2023.113499_bb0075) 2019; 575
ARPA-E (10.1016/j.rse.2023.113499_bb0020)
Hunter (10.1016/j.rse.2023.113499_bb0125) 2017
Kemp (10.1016/j.rse.2023.113499_bb0165) 2021; 55
10.1016/j.rse.2023.113499_bib252
Frankenberg (10.1016/j.rse.2023.113499_bb0100) 2016; 113
Thompson (10.1016/j.rse.2023.113499_bb0215) 2015; 8
Varon (10.1016/j.rse.2023.113499_bb0245) 2018; 11
European Commission (10.1016/j.rse.2023.113499_bb0085) 2021
Kreitinger (10.1016/j.rse.2023.113499_bb0180) 2018
Arias (10.1016/j.rse.2023.113499_bb0015) 2021
AER (10.1016/j.rse.2023.113499_bb0005)
Rashid (10.1016/j.rse.2023.113499_bb0190) 2020; 275
Guha (10.1016/j.rse.2023.113499_bb0110) 2020; 54
Sherwin (10.1016/j.rse.2023.113499_bb0205) 2021; 9
Schwietzke (10.1016/j.rse.2023.113499_bb0200) 2019; 69
NOAA (10.1016/j.rse.2023.113499_bb0185)
Krautwurst (10.1016/j.rse.2023.113499_bb0175) 2017; 10
Thorpe (10.1016/j.rse.2023.113499_bb0225) 2017; 10
Bell (10.1016/j.rse.2023.113499_bb0025) 2020; 8
Kairos Aerospace (10.1016/j.rse.2023.113499_bb0155)
Jervis (10.1016/j.rse.2023.113499_bb0140) 2021; 14
Cusworth (10.1016/j.rse.2023.113499_bb0060) 2019; 12
Kemp (10.1016/j.rse.2023.113499_bb0170) 2016; 50
Cusworth (10.1016/j.rse.2023.113499_bb0070) 2021; 8
Bell (10.1016/j.rse.2023.113499_bib253) 2022; 10
Thorpe (10.1016/j.rse.2023.113499_bb0235) 2021; 266
Johnson (10.1016/j.rse.2023.113499_bib254) 2023
Thorpe (10.1016/j.rse.2023.113499_bb0220) 2016; 179
Ravikumar (10.1016/j.rse.2023.113499_bb0195) 2019; 7
Cusworth (10.1016/j.rse.2023.113499_bb0065) 2020; 15
Hanna (10.1016/j.rse.2023.113499_bb0120) 1982
Fox (10.1016/j.rse.2023.113499_bb0095) 2019; 14
Elder (10.1016/j.rse.2023.113499_bb0080) 2020; 47
Tyner (10.1016/j.rse.2023.113499_bb0240) 2021; 55
References_xml – year: 2018
  ident: bb0135
  article-title: Summary for policymakers
  publication-title: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels
  contributor:
    fullname: IPCC
– year: 2021
  ident: bb0085
  article-title: Proposal for a Regulation of the European Parliament and of the Council on Methane Emissions Reduction in the Energy Sector and Amending Regulation (EU) 2019/942
  contributor:
    fullname: European Commission
– volume: 10
  start-page: 3429
  year: 2017
  end-page: 3452
  ident: bb0175
  article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Bovensmann
– volume: 10
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib253
  article-title: Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Zimmerle
– volume: 65
  start-page: 227
  year: 1998
  end-page: 248
  ident: bb0105
  article-title: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Williams
– volume: 11
  start-page: 5673
  year: 2018
  end-page: 5686
  ident: bb0245
  article-title: Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Huang
– volume: 275
  year: 2020
  ident: bb0190
  article-title: Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance
  publication-title: Appl. Energy
  contributor:
    fullname: Pomerantz
– volume: 69
  start-page: 71
  year: 2019
  end-page: 88
  ident: bb0200
  article-title: Aerially guided leak detection and repair: a pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
  publication-title: J. Air Waste Manage. Assoc.
  contributor:
    fullname: Schnell
– volume: 9
  year: 2021
  ident: bb0205
  article-title: Single-blind test of airplane-based hyperspectral methane detection via controlled releases
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Brandt
– year: 2021
  ident: bb0035
  article-title: Methane Emissions Quantification (No. Version 2)
  contributor:
    fullname: Berman
– volume: 54
  start-page: 9254
  year: 2020
  end-page: 9264
  ident: bb0110
  article-title: Assessment of regional methane emission inventories through airborne quantification in the San Francisco Bay Area
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Martien
– volume: 575
  start-page: 180
  year: 2019
  end-page: 184
  ident: bb0075
  article-title: California’s methane super-emitters
  publication-title: Nature
  contributor:
    fullname: Miller
– year: 2021
  ident: bb0030
  article-title: Kairos Aerospace Technical White Paper: Methane Detection (Version 1F)
  contributor:
    fullname: Jones
– volume: 14
  year: 2019
  ident: bb0095
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Hugenholtz
– year: 2020
  ident: bb0185
  article-title: High-Resolution Rapid Refresh (HRRR) Model [WWW Document]
  contributor:
    fullname: NOAA
– year: 2018
  ident: bb0020
  article-title: Impact Sheet - Bridger Photonics (MONITOR) [WWW Document]
  contributor:
    fullname: ARPA-E
– year: 2017
  ident: bb0125
  article-title: Gas Mapping LiDAR Aerial Verification Program Final Report. Alberta Upstream Petroleum Research Fund Project 17-ARPC-03
  contributor:
    fullname: Thorpe
– volume: 3
  start-page: 3
  year: 2014
  end-page: 9
  ident: bb0210
  article-title: Model selection and Akaike information criteria: an example from wine ratings and prices
  publication-title: Wine Econ. Policy
  contributor:
    fullname: Taylor
– volume: 8
  start-page: 32
  year: 2020
  ident: bb0025
  article-title: Evaluation of next generation emission measurement technologies under repeatable test protocols
  publication-title: Elem. Sci. Anth
  contributor:
    fullname: Zimmerle
– volume: 47
  year: 2020
  ident: bb0080
  article-title: Airborne mapping reveals emergent power law of Arctic methane emissions
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Miller
– year: 2022
  ident: bb0010
  article-title: Dark Sky API [WWW Document]. URL
  contributor:
    fullname: Apple Inc.
– volume: 55
  start-page: 9773
  year: 2021
  end-page: 9783
  ident: bb0240
  article-title: Where the methane is—insights from novel airborne LiDAR measurements combined with ground survey data
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Johnson
– year: 2023
  ident: bib254
  article-title: Creating Measurement-Based Oil and Gas Sector Methane Inventories using Source-Resolved Aerial Surveys
  publication-title: Submitt. to Commun. Earth Environ.
  contributor:
    fullname: Tyner
– volume: 15
  year: 2020
  ident: bb0065
  article-title: Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Miller
– volume: 8
  start-page: 4383
  year: 2015
  end-page: 4397
  ident: bb0215
  article-title: Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Thorpe
– volume: 55
  start-page: 9140
  year: 2021
  end-page: 9149
  ident: bb0165
  article-title: New technologies can cost effectively reduce oil and gas methane emissions, but policies will require careful design to establish mitigation equivalence
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Ravikumar
– year: 2023
  ident: bib251
  publication-title: Methane Waste Rule: Approved ALARM Technologies. New Mexico Energy, Minerals and Natural Resources Department (ENMRD)
– year: 2021
  ident: bb0050
  article-title: Global Methane Pledge [WWW Document]
  contributor:
    fullname: CCAC
– volume: 266
  year: 2021
  ident: bb0235
  article-title: Improved methane emission estimates using AVIRIS-NG and an Airborne Doppler Wind Lidar
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Duren
– volume: 113
  start-page: 9734
  year: 2016
  end-page: 9739
  ident: bb0100
  article-title: Airborne methane remote measurements reveal heavytail flux distribution in Four Corners region
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Green
– volume: 58
  start-page: 6480
  year: 2020
  end-page: 6492
  ident: bb0090
  article-title: Fast and accurate retrieval of methane concentration from imaging spectrometer data using sparsity prior
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Joshi
– volume: 10
  start-page: 3833
  year: 2017
  end-page: 3850
  ident: bb0225
  article-title: Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Dennison
– start-page: 33
  year: 2021
  end-page: 144
  ident: bb0015
  article-title: Technical summary
  publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  contributor:
    fullname: Zickfeld
– volume: 14
  start-page: 2127
  year: 2021
  end-page: 2140
  ident: bb0140
  article-title: The GHGSat-D imaging spectrometer
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Tarrant
– volume: 259
  year: 2021
  ident: bb0145
  article-title: Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Szekeres
– volume: 50
  start-page: 4546
  year: 2016
  end-page: 4553
  ident: bb0170
  article-title: Comparing natural gas leakage detection technologies using an open-source “virtual gas field” simulator
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brandt
– start-page: 1
  year: 2011
  end-page: 7
  ident: bb0115
  article-title: Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments
  publication-title: 2011 Aerospace Conference
  contributor:
    fullname: Paine
– volume: 12
  start-page: 5655
  year: 2019
  end-page: 5668
  ident: bb0060
  article-title: Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Randles
– year: 2021
  ident: bb0040
  publication-title: Gas Mapping LiDARTM [WWW Document]
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  ident: bb0160
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
  contributor:
    fullname: Raftery
– volume: 15
  year: 2020
  ident: bb0230
  article-title: Methane emissions from underground gas storage in California
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Miller
– year: 1982
  ident: bb0120
  article-title: Handbook on Atmospheric Diffusion
  contributor:
    fullname: Hosker
– volume: 54
  start-page: 10246
  year: 2020
  end-page: 10253
  ident: bb0250
  article-title: Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: McKeever
– year: 2018
  ident: bb0180
  article-title: High-Sensitivity Gas-Mapping 3D Imager and Method of Operation
  contributor:
    fullname: Thorpe
– volume: 179
  start-page: 104
  year: 2016
  end-page: 115
  ident: bb0220
  article-title: Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG)
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: McFadden
– volume: 56
  start-page: 4317
  year: 2022
  end-page: 4323
  ident: bb0055
  article-title: Quantifying regional methane emissions in the New Mexico Permian Basin with a comprehensive aerial survey
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brandt
– volume: 8
  start-page: 567
  year: 2021
  end-page: 573
  ident: bb0070
  article-title: Intermittency of large methane emitters in the Permian Basin
  publication-title: Environ. Sci. Technol. Lett.
  contributor:
    fullname: Miller
– year: 2021
  ident: bb0005
  article-title: Alternative Fugitive Emission Management Program Approvals [WWW Document]
  contributor:
    fullname: AER
– volume: 7
  start-page: 37
  year: 2019
  ident: bb0195
  article-title: Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge
  publication-title: Elem. Sci. Anth
  contributor:
    fullname: Brandt
– year: 2022
  ident: bb0155
  article-title: Methane Detection from a Unique Perspective [WWW Document]
  contributor:
    fullname: Kairos Aerospace
– volume: 113
  start-page: 9734
  year: 2016
  ident: 10.1016/j.rse.2023.113499_bb0100
  article-title: Airborne methane remote measurements reveal heavytail flux distribution in Four Corners region
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1605617113
  contributor:
    fullname: Frankenberg
– year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0030
  contributor:
    fullname: Berman
– volume: 47
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0080
  article-title: Airborne mapping reveals emergent power law of Arctic methane emissions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL085707
  contributor:
    fullname: Elder
– volume: 69
  start-page: 71
  year: 2019
  ident: 10.1016/j.rse.2023.113499_bb0200
  article-title: Aerially guided leak detection and repair: a pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2018.1515123
  contributor:
    fullname: Schwietzke
– volume: 179
  start-page: 104
  year: 2016
  ident: 10.1016/j.rse.2023.113499_bb0220
  article-title: Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.032
  contributor:
    fullname: Thorpe
– volume: 55
  start-page: 9140
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0165
  article-title: New technologies can cost effectively reduce oil and gas methane emissions, but policies will require careful design to establish mitigation equivalence
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03071
  contributor:
    fullname: Kemp
– year: 2018
  ident: 10.1016/j.rse.2023.113499_bb0135
  article-title: Summary for policymakers
  contributor:
    fullname: IPCC
– volume: 14
  year: 2019
  ident: 10.1016/j.rse.2023.113499_bb0095
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Fox
– volume: 65
  start-page: 227
  year: 1998
  ident: 10.1016/j.rse.2023.113499_bb0105
  article-title: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00064-9
  contributor:
    fullname: Green
– year: 2023
  ident: 10.1016/j.rse.2023.113499_bib254
  article-title: Creating Measurement-Based Oil and Gas Sector Methane Inventories using Source-Resolved Aerial Surveys
  publication-title: Submitt. to Commun. Earth Environ.
  doi: 10.1038/s43247-023-00769-7
  contributor:
    fullname: Johnson
– volume: 54
  start-page: 10246
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0250
  article-title: Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01213
  contributor:
    fullname: Varon
– volume: 259
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0145
  article-title: Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112418
  contributor:
    fullname: Johnson
– volume: 54
  start-page: 9254
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0110
  article-title: Assessment of regional methane emission inventories through airborne quantification in the San Francisco Bay Area
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01212
  contributor:
    fullname: Guha
– volume: 14
  start-page: 2127
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0140
  article-title: The GHGSat-D imaging spectrometer
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-2127-2021
  contributor:
    fullname: Jervis
– year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0040
– volume: 3
  start-page: 3
  year: 2014
  ident: 10.1016/j.rse.2023.113499_bb0210
  article-title: Model selection and Akaike information criteria: an example from wine ratings and prices
  publication-title: Wine Econ. Policy
  doi: 10.1016/j.wep.2014.03.001
  contributor:
    fullname: Snipes
– year: 1982
  ident: 10.1016/j.rse.2023.113499_bb0120
  contributor:
    fullname: Hanna
– volume: 56
  start-page: 4317
  year: 2022
  ident: 10.1016/j.rse.2023.113499_bb0055
  article-title: Quantifying regional methane emissions in the New Mexico Permian Basin with a comprehensive aerial survey
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06458
  contributor:
    fullname: Chen
– year: 2018
  ident: 10.1016/j.rse.2023.113499_bb0180
  contributor:
    fullname: Kreitinger
– volume: 9
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0205
  article-title: Single-blind test of airplane-based hyperspectral methane detection via controlled releases
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Sherwin
– volume: 7
  start-page: 37
  year: 2019
  ident: 10.1016/j.rse.2023.113499_bb0195
  article-title: Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge
  publication-title: Elem. Sci. Anth
  doi: 10.1525/elementa.373
  contributor:
    fullname: Ravikumar
– ident: 10.1016/j.rse.2023.113499_bb0010
  contributor:
    fullname: Apple Inc.
– volume: 275
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0190
  article-title: Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115327
  contributor:
    fullname: Rashid
– volume: 15
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0230
  article-title: Methane emissions from underground gas storage in California
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab751d
  contributor:
    fullname: Thorpe
– volume: 55
  start-page: 9773
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0240
  article-title: Where the methane is—insights from novel airborne LiDAR measurements combined with ground survey data
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c01572
  contributor:
    fullname: Tyner
– volume: 10
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.rse.2023.113499_bib253
  article-title: Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Bell
– volume: 12
  start-page: 5655
  year: 2019
  ident: 10.1016/j.rse.2023.113499_bb0060
  article-title: Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-5655-2019
  contributor:
    fullname: Cusworth
– volume: 15
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0065
  article-title: Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7b99
  contributor:
    fullname: Cusworth
– ident: 10.1016/j.rse.2023.113499_bb0185
  contributor:
    fullname: NOAA
– year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0035
  contributor:
    fullname: Branson
– volume: 575
  start-page: 180
  year: 2019
  ident: 10.1016/j.rse.2023.113499_bb0075
  article-title: California’s methane super-emitters
  publication-title: Nature
  doi: 10.1038/s41586-019-1720-3
  contributor:
    fullname: Duren
– year: 2023
  ident: 10.1016/j.rse.2023.113499_bib251
– ident: 10.1016/j.rse.2023.113499_bb0050
  contributor:
    fullname: CCAC
– volume: 8
  start-page: 567
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0070
  article-title: Intermittency of large methane emitters in the Permian Basin
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00173
  contributor:
    fullname: Cusworth
– ident: 10.1016/j.rse.2023.113499_bb0005
  contributor:
    fullname: AER
– volume: 11
  start-page: 5673
  year: 2018
  ident: 10.1016/j.rse.2023.113499_bb0245
  article-title: Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-5673-2018
  contributor:
    fullname: Varon
– year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0085
  contributor:
    fullname: European Commission
– start-page: 1
  year: 2011
  ident: 10.1016/j.rse.2023.113499_bb0115
  article-title: Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments
  contributor:
    fullname: Hamlin
– volume: 10
  start-page: 3429
  year: 2017
  ident: 10.1016/j.rse.2023.113499_bb0175
  article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-3429-2017
  contributor:
    fullname: Krautwurst
– start-page: 33
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0015
  article-title: Technical summary
  contributor:
    fullname: Arias
– volume: 8
  start-page: 32
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0025
  article-title: Evaluation of next generation emission measurement technologies under repeatable test protocols
  publication-title: Elem. Sci. Anth
  doi: 10.1525/elementa.426
  contributor:
    fullname: Bell
– volume: 58
  start-page: 6480
  year: 2020
  ident: 10.1016/j.rse.2023.113499_bb0090
  article-title: Fast and accurate retrieval of methane concentration from imaging spectrometer data using sparsity prior
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2976888
  contributor:
    fullname: Foote
– volume: 8
  start-page: 4383
  year: 2015
  ident: 10.1016/j.rse.2023.113499_bb0215
  article-title: Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-8-4383-2015
  contributor:
    fullname: Thompson
– volume: 266
  year: 2021
  ident: 10.1016/j.rse.2023.113499_bb0235
  article-title: Improved methane emission estimates using AVIRIS-NG and an Airborne Doppler Wind Lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112681
  contributor:
    fullname: Thorpe
– volume: 10
  start-page: 3833
  year: 2017
  ident: 10.1016/j.rse.2023.113499_bb0225
  article-title: Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-3833-2017
  contributor:
    fullname: Thorpe
– ident: 10.1016/j.rse.2023.113499_bb0155
  contributor:
    fullname: Kairos Aerospace
– volume: 90
  start-page: 773
  year: 1995
  ident: 10.1016/j.rse.2023.113499_bb0160
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
  contributor:
    fullname: Kass
– ident: 10.1016/j.rse.2023.113499_bib252
– year: 2017
  ident: 10.1016/j.rse.2023.113499_bb0125
  contributor:
    fullname: Hunter
– ident: 10.1016/j.rse.2023.113499_bb0020
  contributor:
    fullname: ARPA-E
– volume: 50
  start-page: 4546
  year: 2016
  ident: 10.1016/j.rse.2023.113499_bb0170
  article-title: Comparing natural gas leakage detection technologies using an open-source “virtual gas field” simulator
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06068
  contributor:
    fullname: Kemp
SSID ssj0015871
Score 2.5357752
Snippet Thorough characterization of probabilities of detection (POD) and quantification uncertainties is fundamentally important to understand the place of aerial...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 113499
SubjectTerms Aerial detection sensitivity
Alt-FEMP
AMEL
Fugitive emissions
Measurement-based inventories
Methane
Monitoring, reporting, and verification
MRV
Oil and gas
Quantification uncertainty
Remote sensing
Title Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies
URI https://dx.doi.org/10.1016/j.rse.2023.113499
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hEIIFQQFRHpUHJqTQtL7UMVuFCgUkBgQSW2QnjihDWtpUogsrf5uznfCQYGGMc5Yj3_nu7Hy-D-BY6lDJUJtAUOwKMDcYaIy6gZEqlinXvdS4ap-3veEDXj9Gj0twXt-FsbDKyvd7n-68ddXSrmazPRmN7B1fjtbiKIm2VUzsvp1GsYvz9O0T5tGJYuFZ8zgGVrr-s-kwXtOZrZTZ5ZbZBF35119i07d4c7EJG1WiyPr-W7ZgyRQN2B183Uujl9XCnDVgrSIzf1o0YPXSsfUutuH9bqzns5JZ1hhfj5v2xWycs8yUDoJVMFVk7GWuPGTIaYlRpPM4gXLBKKVlyhkps1zTqjBffc_Y4FXZ4sIzJ1aSVRimRlOyKhIr6zN7GnIHHi4G9-fDoGJeCFKOYRkYQVE_NGlXiNweDGnVFZkRPaTtjxTSSM1jVKHiqhNlGGfYSaWOdNohb0kZqOa7sFyMC7MHLESR8VzFeSZixJTLOLdZByrZQ0UNTTip5zyZ-AIbSY08e05IQYlVUOIV1ASstZL8sJKEAsDf3fb_1-0A1u2Tx-kcwnI5nZsjSkFK3XI21oKV_tXN8PYDmjbdtg
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQEIILggHiTQ6ckCq6xV0abmgajNcOCCRuVdKmYhw62DqJ_QL-Nk7SMpDgwjWJ1Sp2bCf58hngWOpQyVCbQFDsCjA3GGiM2oGRKpYp153UOLbPQaf_iNdP0dMCdOu3MBZWWfl-79Odt65aTqvZPH0dDu0bX47W4iiJtiwmtG9fxEi0sAGL51c3_cHXZUIUC184j2NgBerLTQfzGk8sWWab2-Im6BhgfwlP30LOxRqsVrkiO_e_sw4LpmjCVm_-NI06q7U5acJyVc_8edaEpUtXsHe2AR_3Iz2dlMwWjvGU3LQ1ZqOcZaZ0KKyCqSJjb1PlUUNOUYyCnYcKlDNGWS1Tzk6ZLTetCjOXPWO9d2X5hSduWEmGYZgajsmwaFhZH9vTJzfh8aL30O0HVfGFIOUYloERFPhDk7aFyO3ZkFZtkRnRQdoBSSGN1DxGFSquWlGGcYatVOpIpy1ymJSEar4FjWJUmG1gIYqM5yrOMxEjplzGuU08UMkOKmrYgZN6zpNXz7GR1OCzl4QUlFgFJV5BO4C1VpIfhpJQDPhbbPd_Ykew3H-4u01urwY3e7BiezxsZx8a5XhqDigjKfVhZXGfRN7gbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+probabilities+of+detection+and+quantification+uncertainty+for+aerial+methane+detection%3A+Examples+for+three+airborne+technologies&rft.jtitle=Remote+sensing+of+environment&rft.au=Conrad%2C+Bradley+M.&rft.au=Tyner%2C+David+R.&rft.au=Johnson%2C+Matthew+R.&rft.date=2023-04-01&rft.issn=0034-4257&rft.volume=288&rft.spage=113499&rft_id=info:doi/10.1016%2Fj.rse.2023.113499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2023_113499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon