A macroquantification approach for region-of-interest assessment in emission tomography

In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer assisted tomography Vol. 37; no. 5; p. 770
Main Author Bouallègue, Fayçal Ben
Format Journal Article
LanguageEnglish
Published United States 01.09.2013
Subjects
Online AccessGet more information

Cover

Loading…
Abstract In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either on an image reconstruction involving iterative ROI-wise regularization or on an ROI uniformity assumption. The technique allows a very fast computation of the ROI activities and covariance matrix in the least squares sense using a low-dimensional model of the tomographic problem. The macroquantification approach is evaluated through Monte Carlo simulations using a numerical thorax phantom, without taking into account the measurement artifacts and assuming a perfect a priori ROI definition. Various tumor ROI configurations and count rates are considered to reflect clinical situations. The results show that our technique yields low-bias ROI estimations that turn out to be more accurate than classical estimates relying on pixel summation. Macroquantification also provides an approximation for the ROI variance that describes the effective variance obtained through the simulations fairly well. The technique is then validated using single photon emission computed tomography (SPECT) data from a physical phantom composed of cylinders filled with different Tc concentrations for the task of ROI comparison. Here again, the study shows excellent agreement between the measured and predicted values of the ROI variance resulting in efficient estimations of ROI ratios and highly accurate ROI comparisons. In its simplest formulation, macroquantification has a short computation time, making it an ideal technique for quantitative ROI assessment that is compatible with a wide range of routine clinical applications.
AbstractList In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either on an image reconstruction involving iterative ROI-wise regularization or on an ROI uniformity assumption. The technique allows a very fast computation of the ROI activities and covariance matrix in the least squares sense using a low-dimensional model of the tomographic problem. The macroquantification approach is evaluated through Monte Carlo simulations using a numerical thorax phantom, without taking into account the measurement artifacts and assuming a perfect a priori ROI definition. Various tumor ROI configurations and count rates are considered to reflect clinical situations. The results show that our technique yields low-bias ROI estimations that turn out to be more accurate than classical estimates relying on pixel summation. Macroquantification also provides an approximation for the ROI variance that describes the effective variance obtained through the simulations fairly well. The technique is then validated using single photon emission computed tomography (SPECT) data from a physical phantom composed of cylinders filled with different Tc concentrations for the task of ROI comparison. Here again, the study shows excellent agreement between the measured and predicted values of the ROI variance resulting in efficient estimations of ROI ratios and highly accurate ROI comparisons. In its simplest formulation, macroquantification has a short computation time, making it an ideal technique for quantitative ROI assessment that is compatible with a wide range of routine clinical applications.
Author Bouallègue, Fayçal Ben
Author_xml – sequence: 1
  givenname: Fayçal Ben
  surname: Bouallègue
  fullname: Bouallègue, Fayçal Ben
  organization: From the Department of Biophysics and Nuclear Medicine, Montpellier Medical University, Montpellier, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24045256$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKAzEYRoMo9qJvIJIXmJrbJJNlGbQKBUEGXJZM5k8bcZIxSRd9eyvq6sAH54OzQJchBkDojpIVJVo9vLXdivSEcuC0Ydr2ahgu0JzWnFWcinqGFjl_EEIV5-IazZggoma1nKP3NR6NTfHraELxzltTfAzYTFOKxh6wiwkn2J-3KrrKhwIJcsEmZ8h5hFCwDxhGn_OPVuIY98lMh9MNunLmM8PtH5eoe3rs2udq-7p5adfbynJBSgWK1E66Xg5cWBh00_De0v5MUI0iSkrJjOPKaMc1MO1Io4UV2gxa1tyyJbr_vZ2O_QjDbkp-NOm0-w9k3zk7Vkk
CitedBy_id crossref_primary_10_1109_JSEN_2016_2546182
crossref_primary_10_1002_mp_13366
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/RCT.0b013e31829cb7dd
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1532-3145
ExternalDocumentID 24045256
Genre Journal Article
GroupedDBID ---
.-D
.55
.GJ
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
8L-
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AASOK
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABVCZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHQNM
AHRYX
AHVBC
AI.
AINUH
AJIOK
AJNWD
AJNYG
AJZMW
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
G8K
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
M18
N4W
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OJAPA
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RLZ
S4R
S4S
T8P
TEORI
TSPGW
TWZ
V2I
VH1
VVN
W3M
WF8
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
ZCG
ZFV
ZGI
ZXP
ZZMQN
ID FETCH-LOGICAL-c340t-e705f6fb6d34ced9883bc1b988e787076662af37a9f39e29f0894c49ad9653c2
IngestDate Sat Sep 28 07:53:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-e705f6fb6d34ced9883bc1b988e787076662af37a9f39e29f0894c49ad9653c2
PMID 24045256
ParticipantIDs pubmed_primary_24045256
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computer assisted tomography
PublicationTitleAlternate J Comput Assist Tomogr
PublicationYear 2013
SSID ssj0017334
Score 2.081308
Snippet In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs)....
SourceID pubmed
SourceType Index Database
StartPage 770
SubjectTerms Algorithms
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Pattern Recognition, Automated - methods
Phantoms, Imaging
Reproducibility of Results
Sensitivity and Specificity
Thoracic Neoplasms - diagnostic imaging
Tomography, Emission-Computed - instrumentation
Tomography, Emission-Computed - methods
Title A macroquantification approach for region-of-interest assessment in emission tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/24045256
Volume 37
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-QLyI77fk4E2i22Y32RyrKCK0B6noTbJ5iGC3HupBf72Tl1vaio_LdpvsDiXfdJhMZr5B6LhlDTOmpYmBXQ5xHjQpW0oRYZUF71wz7Q_auz12fZffPBQPTRK7ry4ZVafqY2ZdyX9QhTHA1VXJ_gHZL6EwAPeAL1wBYbj-CuPOyUAqZ9plSPkJYCaacJ9B6BovDGsytMQRQ7hGHCfyi4zT84UA0C5iBk7oYJy-etphVbEBhBPglENPvuKzDt_ky4s_fS-f3kLqsHz33zlIOY-FZzHM4Fo-iBRmMMk0OnrDQP6YbGcgbIk6UowZQh7agUwZ6ED8e3vRbyKwbaEqrvX447DMrwMPGjgc7uSV_Tw7QZudpubRPC-dAey5ME48XuKU5qmOUvCzWT_HsURHERM7Du959FfRSkQAdwL-a2jO1OtoqRuTIjbQfQfPUAOc1ACDGuBpNcCNGuDnGic1wA2mm6h_ddm_uCaxXwZRNM9GxPCssMxWTNNcGS3KklaqVcGncWaZw061LS3lUlgqTFvYrBS5yoXUghVUtbfQQj2szQ7CGchjhVaUWZnnmsqqFJkE11kqYSzPdtF2WJHH18CJ8pjWau_bmX203OjVAVq08Cc0h-DRjaojj84nSe5Ogw
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+macroquantification+approach+for+region-of-interest+assessment+in+emission+tomography&rft.jtitle=Journal+of+computer+assisted+tomography&rft.au=Bouall%C3%A8gue%2C+Fay%C3%A7al+Ben&rft.date=2013-09-01&rft.eissn=1532-3145&rft.volume=37&rft.issue=5&rft.spage=770&rft_id=info:doi/10.1097%2FRCT.0b013e31829cb7dd&rft_id=info%3Apmid%2F24045256&rft_id=info%3Apmid%2F24045256&rft.externalDocID=24045256