A macroquantification approach for region-of-interest assessment in emission tomography
In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either...
Saved in:
Published in | Journal of computer assisted tomography Vol. 37; no. 5; p. 770 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either on an image reconstruction involving iterative ROI-wise regularization or on an ROI uniformity assumption. The technique allows a very fast computation of the ROI activities and covariance matrix in the least squares sense using a low-dimensional model of the tomographic problem. The macroquantification approach is evaluated through Monte Carlo simulations using a numerical thorax phantom, without taking into account the measurement artifacts and assuming a perfect a priori ROI definition. Various tumor ROI configurations and count rates are considered to reflect clinical situations. The results show that our technique yields low-bias ROI estimations that turn out to be more accurate than classical estimates relying on pixel summation. Macroquantification also provides an approximation for the ROI variance that describes the effective variance obtained through the simulations fairly well. The technique is then validated using single photon emission computed tomography (SPECT) data from a physical phantom composed of cylinders filled with different Tc concentrations for the task of ROI comparison. Here again, the study shows excellent agreement between the measured and predicted values of the ROI variance resulting in efficient estimations of ROI ratios and highly accurate ROI comparisons. In its simplest formulation, macroquantification has a short computation time, making it an ideal technique for quantitative ROI assessment that is compatible with a wide range of routine clinical applications. |
---|---|
AbstractList | In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs). Macroquantification implies a rearrangement of the emission projection data into macroprojections and a redefinition of the system matrix based either on an image reconstruction involving iterative ROI-wise regularization or on an ROI uniformity assumption. The technique allows a very fast computation of the ROI activities and covariance matrix in the least squares sense using a low-dimensional model of the tomographic problem. The macroquantification approach is evaluated through Monte Carlo simulations using a numerical thorax phantom, without taking into account the measurement artifacts and assuming a perfect a priori ROI definition. Various tumor ROI configurations and count rates are considered to reflect clinical situations. The results show that our technique yields low-bias ROI estimations that turn out to be more accurate than classical estimates relying on pixel summation. Macroquantification also provides an approximation for the ROI variance that describes the effective variance obtained through the simulations fairly well. The technique is then validated using single photon emission computed tomography (SPECT) data from a physical phantom composed of cylinders filled with different Tc concentrations for the task of ROI comparison. Here again, the study shows excellent agreement between the measured and predicted values of the ROI variance resulting in efficient estimations of ROI ratios and highly accurate ROI comparisons. In its simplest formulation, macroquantification has a short computation time, making it an ideal technique for quantitative ROI assessment that is compatible with a wide range of routine clinical applications. |
Author | Bouallègue, Fayçal Ben |
Author_xml | – sequence: 1 givenname: Fayçal Ben surname: Bouallègue fullname: Bouallègue, Fayçal Ben organization: From the Department of Biophysics and Nuclear Medicine, Montpellier Medical University, Montpellier, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24045256$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKAzEYRoMo9qJvIJIXmJrbJJNlGbQKBUEGXJZM5k8bcZIxSRd9eyvq6sAH54OzQJchBkDojpIVJVo9vLXdivSEcuC0Ydr2ahgu0JzWnFWcinqGFjl_EEIV5-IazZggoma1nKP3NR6NTfHraELxzltTfAzYTFOKxh6wiwkn2J-3KrrKhwIJcsEmZ8h5hFCwDxhGn_OPVuIY98lMh9MNunLmM8PtH5eoe3rs2udq-7p5adfbynJBSgWK1E66Xg5cWBh00_De0v5MUI0iSkrJjOPKaMc1MO1Io4UV2gxa1tyyJbr_vZ2O_QjDbkp-NOm0-w9k3zk7Vkk |
CitedBy_id | crossref_primary_10_1109_JSEN_2016_2546182 crossref_primary_10_1002_mp_13366 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/RCT.0b013e31829cb7dd |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-3145 |
ExternalDocumentID | 24045256 |
Genre | Journal Article |
GroupedDBID | --- .-D .55 .GJ .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ 8L- AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AASOK AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHQNM AHRYX AHVBC AI. AINUH AJIOK AJNWD AJNYG AJZMW ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BQLVK BS7 C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 G8K GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ JF9 JG8 JK3 JK8 K8S KD2 KMI L-C M18 N4W N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA OJAPA OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RLZ S4R S4S T8P TEORI TSPGW TWZ V2I VH1 VVN W3M WF8 WOQ WOW X3V X3W X7M XXN XYM YFH YOC ZCG ZFV ZGI ZXP ZZMQN |
ID | FETCH-LOGICAL-c340t-e705f6fb6d34ced9883bc1b988e787076662af37a9f39e29f0894c49ad9653c2 |
IngestDate | Sat Sep 28 07:53:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c340t-e705f6fb6d34ced9883bc1b988e787076662af37a9f39e29f0894c49ad9653c2 |
PMID | 24045256 |
ParticipantIDs | pubmed_primary_24045256 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computer assisted tomography |
PublicationTitleAlternate | J Comput Assist Tomogr |
PublicationYear | 2013 |
SSID | ssj0017334 |
Score | 2.081308 |
Snippet | In this article, we propose a quantification methodology for estimating the statistical parameters of the activity inside regions of interest (ROIs).... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 770 |
SubjectTerms | Algorithms Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Pattern Recognition, Automated - methods Phantoms, Imaging Reproducibility of Results Sensitivity and Specificity Thoracic Neoplasms - diagnostic imaging Tomography, Emission-Computed - instrumentation Tomography, Emission-Computed - methods |
Title | A macroquantification approach for region-of-interest assessment in emission tomography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24045256 |
Volume | 37 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-QLyI77fk4E2i22Y32RyrKCK0B6noTbJ5iGC3HupBf72Tl1vaio_LdpvsDiXfdJhMZr5B6LhlDTOmpYmBXQ5xHjQpW0oRYZUF71wz7Q_auz12fZffPBQPTRK7ry4ZVafqY2ZdyX9QhTHA1VXJ_gHZL6EwAPeAL1wBYbj-CuPOyUAqZ9plSPkJYCaacJ9B6BovDGsytMQRQ7hGHCfyi4zT84UA0C5iBk7oYJy-etphVbEBhBPglENPvuKzDt_ky4s_fS-f3kLqsHz33zlIOY-FZzHM4Fo-iBRmMMk0OnrDQP6YbGcgbIk6UowZQh7agUwZ6ED8e3vRbyKwbaEqrvX447DMrwMPGjgc7uSV_Tw7QZudpubRPC-dAey5ME48XuKU5qmOUvCzWT_HsURHERM7Du959FfRSkQAdwL-a2jO1OtoqRuTIjbQfQfPUAOc1ACDGuBpNcCNGuDnGic1wA2mm6h_ddm_uCaxXwZRNM9GxPCssMxWTNNcGS3KklaqVcGncWaZw061LS3lUlgqTFvYrBS5yoXUghVUtbfQQj2szQ7CGchjhVaUWZnnmsqqFJkE11kqYSzPdtF2WJHH18CJ8pjWau_bmX203OjVAVq08Cc0h-DRjaojj84nSe5Ogw |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+macroquantification+approach+for+region-of-interest+assessment+in+emission+tomography&rft.jtitle=Journal+of+computer+assisted+tomography&rft.au=Bouall%C3%A8gue%2C+Fay%C3%A7al+Ben&rft.date=2013-09-01&rft.eissn=1532-3145&rft.volume=37&rft.issue=5&rft.spage=770&rft_id=info:doi/10.1097%2FRCT.0b013e31829cb7dd&rft_id=info%3Apmid%2F24045256&rft_id=info%3Apmid%2F24045256&rft.externalDocID=24045256 |