Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting
Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites:...
Saved in:
Published in | Journal of materials research and technology Vol. 21; pp. 4138 - 4150 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2238-7854 |
DOI | 10.1016/j.jmrt.2022.11.033 |
Cover
Loading…
Abstract | Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites: the GNPs/Mg and the GNPs/MgO interface. The GNPs/Mg interface has a high degree of lattice distortion and few dislocations. In contrast, the GNPs/MgO interface has lower lattice distortion and more dislocations. GNPs with different failure modes were found on the fracture surface. According to the simulation, the strength of GNPs parallel to the stretching direction is 9.8 × 103 MPa, while the strength of GNPs perpendicular to the stretching direction is 0.5 × 103 MPa. This indicates that the stretching direction and fracture mode of GNPs affect the mechanical properties of the composites. |
---|---|
AbstractList | Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites: the GNPs/Mg and the GNPs/MgO interface. The GNPs/Mg interface has a high degree of lattice distortion and few dislocations. In contrast, the GNPs/MgO interface has lower lattice distortion and more dislocations. GNPs with different failure modes were found on the fracture surface. According to the simulation, the strength of GNPs parallel to the stretching direction is 9.8 × 103 MPa, while the strength of GNPs perpendicular to the stretching direction is 0.5 × 103 MPa. This indicates that the stretching direction and fracture mode of GNPs affect the mechanical properties of the composites. |
Author | Hou, Hua Guo, Qingwei Zhao, Yuhong Li, Limin Li, Muxi Chen, Liwen |
Author_xml | – sequence: 1 givenname: Muxi surname: Li fullname: Li, Muxi organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 2 givenname: Qingwei surname: Guo fullname: Guo, Qingwei organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 3 givenname: Liwen surname: Chen fullname: Chen, Liwen organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 4 givenname: Limin surname: Li fullname: Li, Limin organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 5 givenname: Hua surname: Hou fullname: Hou, Hua organization: School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China – sequence: 6 givenname: Yuhong orcidid: 0000-0003-3333-0869 surname: Zhao fullname: Zhao, Yuhong email: zhaoyuhong@nuc.edu.cn organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China |
BookMark | eNp9kctu1TAQhrMoUkvpC7DyC5zgSxInEpuq3CoVsYFNN9bEGQdHiR2NXUSfgNfGh1M2XXTlkeXvl-f_XldnIQasqreC14KL7t1SLxvlWnIpayFqrtRZdSGl6g-6b5vz6iqlhXMu2qHjvbio_nz1lmLK9GDzAyGDMLGd4o6UPSYWHZsJ9p8YkAUIcV8h44o5MUIfXCSLE7u-H8QHtkEm_5vZuO0x-VzgnXAHKg_GR1YgmyluMAfM3rKUPZEPM7NQxjC_qV45WBNePZ2X1Y9PH7_ffDncfft8e3N9d7Cq4fmAXDVCW6da1JK3Ap3TUjphteythE4hNg0KPo6WWzvpYZyACzcN3cRbsJO6rG5PuVOExezkN6BHE8GbfxeRZgNldbuicb0C2bTAwfXN0JVBW606NTZ967QeS1Z_yjo2mAidsT5D9jFkAr8awc3RiVnM0Yk5OjFCmOKkoPIZ-v8rL0LvTxCWgn55JJOsx1AUeCrtlg38S_hfSJeuUA |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2024_05_221 crossref_primary_10_1016_j_jmrt_2023_08_036 crossref_primary_10_1016_j_jmrt_2024_05_227 crossref_primary_10_1016_j_heliyon_2023_e21364 crossref_primary_10_1007_s11164_024_05347_w crossref_primary_10_1016_j_mtcomm_2023_107249 crossref_primary_10_3390_jcs8030090 crossref_primary_10_1016_j_jallcom_2024_174897 crossref_primary_10_1016_j_mtcomm_2023_107005 crossref_primary_10_1016_j_diamond_2024_111307 crossref_primary_10_1007_s12633_024_02991_0 crossref_primary_10_1016_j_jmrt_2024_02_013 crossref_primary_10_1016_j_jre_2023_08_013 crossref_primary_10_1016_j_comptc_2024_114546 crossref_primary_10_1080_00084433_2024_2428885 crossref_primary_10_1007_s11694_023_02222_x crossref_primary_10_1016_j_jma_2024_01_024 crossref_primary_10_1007_s10904_023_02945_w crossref_primary_10_1016_j_diamond_2024_111383 crossref_primary_10_1016_j_measurement_2023_113940 crossref_primary_10_1016_j_icheatmasstransfer_2024_107834 crossref_primary_10_1016_j_surfin_2024_104743 crossref_primary_10_3390_molecules28207218 crossref_primary_10_1007_s11164_024_05287_5 crossref_primary_10_3390_ma17164004 crossref_primary_10_1016_j_jmmm_2023_171347 crossref_primary_10_1016_j_mtcomm_2023_107639 crossref_primary_10_1088_1402_4896_ad17ae crossref_primary_10_1016_j_matchemphys_2023_128659 crossref_primary_10_1007_s12633_023_02696_w crossref_primary_10_1039_D3RA06815C crossref_primary_10_1007_s11082_024_06342_6 crossref_primary_10_1016_j_mtcomm_2023_107355 crossref_primary_10_1177_13506501241246845 crossref_primary_10_1142_S0219455424502122 crossref_primary_10_1016_j_dt_2023_11_017 crossref_primary_10_1016_j_heliyon_2023_e22559 crossref_primary_10_1021_acsomega_3c06883 crossref_primary_10_1016_j_corsci_2023_111341 crossref_primary_10_1016_j_jma_2024_12_001 crossref_primary_10_1080_01694243_2023_2289770 crossref_primary_10_3390_coatings14050584 crossref_primary_10_1016_j_clay_2024_107280 crossref_primary_10_1016_j_vacuum_2024_113484 crossref_primary_10_1021_acsanm_3c03910 crossref_primary_10_1016_j_inoche_2023_111700 crossref_primary_10_1007_s11665_023_09102_x crossref_primary_10_1016_j_ultras_2024_107249 crossref_primary_10_1016_j_dt_2024_04_018 crossref_primary_10_1016_j_polymertesting_2023_108202 crossref_primary_10_1016_j_mtcomm_2023_107662 crossref_primary_10_1007_s10924_024_03260_2 crossref_primary_10_1080_01694243_2023_2242111 crossref_primary_10_1038_s41598_024_64204_3 crossref_primary_10_1080_15376494_2023_2269553 crossref_primary_10_1007_s43939_025_00239_1 crossref_primary_10_1016_j_coco_2023_101783 crossref_primary_10_1080_15376494_2024_2385008 crossref_primary_10_1016_j_diamond_2024_111484 crossref_primary_10_3389_fmats_2024_1269608 crossref_primary_10_3390_ma17163939 crossref_primary_10_1088_1402_4896_ad007c crossref_primary_10_1016_j_matchar_2024_113690 crossref_primary_10_3390_met13101761 crossref_primary_10_1177_09544089241239817 crossref_primary_10_1515_rams_2023_0342 crossref_primary_10_1016_j_jmrt_2024_09_156 crossref_primary_10_1080_15376494_2023_2263446 crossref_primary_10_1016_j_jallcom_2023_172346 crossref_primary_10_1016_j_jmrt_2023_09_252 crossref_primary_10_1016_j_jmrt_2023_10_069 crossref_primary_10_1016_j_jpcs_2023_111713 crossref_primary_10_1080_15376494_2023_2264897 crossref_primary_10_1007_s40195_024_01680_6 crossref_primary_10_1080_13640461_2025_2476826 crossref_primary_10_1088_2053_1591_ad3db5 crossref_primary_10_1016_j_diamond_2023_110645 crossref_primary_10_1016_j_matchar_2023_112854 crossref_primary_10_1016_j_msea_2024_146347 crossref_primary_10_1016_j_matdes_2025_113586 crossref_primary_10_1016_j_mtcomm_2024_108363 crossref_primary_10_1080_10406638_2023_2276251 crossref_primary_10_3389_fmats_2023_1305793 crossref_primary_10_1515_zna_2024_0131 crossref_primary_10_1038_s41598_024_52100_9 crossref_primary_10_1021_acsomega_3c07994 crossref_primary_10_1088_1361_6528_ad090a crossref_primary_10_1016_j_colsurfa_2023_132921 crossref_primary_10_1016_j_ijbiomac_2024_131914 crossref_primary_10_1080_25740881_2023_2289067 crossref_primary_10_1016_j_molliq_2023_122585 crossref_primary_10_1080_00084433_2023_2289800 crossref_primary_10_1177_09544089231221545 crossref_primary_10_1007_s11837_023_06189_4 crossref_primary_10_1016_j_ceramint_2024_06_340 crossref_primary_10_1007_s11665_024_09867_9 crossref_primary_10_1016_j_diamond_2024_110819 crossref_primary_10_1016_j_jmrt_2023_09_200 crossref_primary_10_1080_15376494_2023_2264843 crossref_primary_10_1007_s10853_024_09334_9 crossref_primary_10_1016_j_jmrt_2025_03_094 crossref_primary_10_1007_s40195_024_01673_5 crossref_primary_10_1002_adem_202301256 crossref_primary_10_1016_j_vacuum_2024_113509 crossref_primary_10_3390_ma17092124 crossref_primary_10_1142_S0218625X25500465 crossref_primary_10_1080_15376494_2023_2286637 crossref_primary_10_1016_j_cscm_2024_e03018 crossref_primary_10_1088_2053_1591_ad5cdc crossref_primary_10_1016_j_apm_2025_115963 crossref_primary_10_1016_j_envres_2023_117113 crossref_primary_10_1016_j_csite_2023_103551 crossref_primary_10_1016_j_jmrt_2023_11_080 crossref_primary_10_1080_15397734_2024_2305773 crossref_primary_10_1016_j_pmatsci_2023_101191 crossref_primary_10_1016_j_jmrt_2024_01_018 crossref_primary_10_1021_acsaelm_3c01219 crossref_primary_10_1016_j_ccr_2024_216421 crossref_primary_10_1016_j_heliyon_2024_e29436 crossref_primary_10_1016_j_rineng_2024_101846 crossref_primary_10_1007_s11082_023_05613_y crossref_primary_10_1016_j_jmrt_2023_09_157 crossref_primary_10_1016_j_chemphys_2025_112608 crossref_primary_10_1016_j_ijhydene_2024_04_320 crossref_primary_10_1016_j_ijlmm_2024_12_004 crossref_primary_10_1080_15397734_2023_2295532 crossref_primary_10_1007_s40962_023_01177_5 crossref_primary_10_1016_j_aej_2023_11_033 crossref_primary_10_3390_mi15091156 crossref_primary_10_1016_j_ceramint_2024_05_361 crossref_primary_10_1016_j_diamond_2023_110560 crossref_primary_10_1016_j_ceramint_2024_06_408 crossref_primary_10_1016_j_jpcs_2024_112050 crossref_primary_10_1016_j_synthmet_2024_117687 crossref_primary_10_1016_j_jpcs_2024_112055 crossref_primary_10_1016_j_polymer_2023_126428 crossref_primary_10_1038_s41598_024_66379_1 crossref_primary_10_3390_met13091619 crossref_primary_10_1016_j_aej_2023_10_010 crossref_primary_10_1016_j_ijhydene_2024_02_366 crossref_primary_10_1016_j_arabjc_2023_105198 crossref_primary_10_1007_s40195_023_01560_5 crossref_primary_10_1016_j_envres_2023_117163 crossref_primary_10_1016_j_jiec_2023_11_052 crossref_primary_10_1016_j_ijoes_2023_100344 crossref_primary_10_1088_1361_6439_ad3658 crossref_primary_10_1016_j_jmrt_2023_09_105 crossref_primary_10_1038_s41524_023_01139_9 crossref_primary_10_1016_j_msea_2023_145562 crossref_primary_10_1016_j_icheatmasstransfer_2024_108346 crossref_primary_10_1016_j_matdes_2023_112086 crossref_primary_10_1080_15376494_2023_2275170 crossref_primary_10_1016_j_msea_2024_146939 crossref_primary_10_1007_s00339_023_07021_1 crossref_primary_10_1016_j_sna_2023_115002 crossref_primary_10_3389_fmats_2023_1236266 crossref_primary_10_1007_s12540_023_01557_w crossref_primary_10_1038_s41598_023_46153_5 crossref_primary_10_1016_j_powtec_2025_120695 crossref_primary_10_1080_01495739_2024_2325980 crossref_primary_10_1080_15376494_2024_2344020 crossref_primary_10_1016_j_inoche_2023_111216 crossref_primary_10_1016_j_jelechem_2024_118299 crossref_primary_10_1016_j_csite_2023_103815 crossref_primary_10_1063_5_0199003 crossref_primary_10_1016_j_aej_2023_12_006 crossref_primary_10_1080_15376494_2023_2242849 crossref_primary_10_1016_j_diamond_2024_111319 crossref_primary_10_1016_j_cscm_2023_e02356 crossref_primary_10_1002_app_54847 crossref_primary_10_1080_00084433_2024_2357859 crossref_primary_10_1016_j_jmrt_2024_07_082 |
Cites_doi | 10.1103/PhysRevB.70.245416 10.1016/j.jmst.2014.08.002 10.1016/j.carbon.2017.10.090 10.1126/sciadv.abf3039 10.1016/j.jallcom.2018.11.148 10.1006/jcph.1995.1039 10.1177/0021998320933345 10.1016/j.jallcom.2020.155125 10.1016/j.jmst.2018.12.009 10.1016/j.msea.2018.07.056 10.1016/j.jmrt.2021.06.052 10.1016/0025-5416(86)90261-2 10.1016/j.matdes.2022.110555 10.1016/j.jiec.2014.08.024 10.1016/j.matdes.2018.02.038 10.1016/j.matdes.2017.11.048 10.1016/j.carbon.2018.10.095 10.1016/j.actamat.2004.12.026 10.1007/s11665-018-3391-x 10.1016/j.matdes.2015.09.063 10.1016/j.msea.2019.138681 10.1016/j.scriptamat.2005.12.017 10.1016/j.msea.2021.140793 10.1016/j.actamat.2018.01.040 10.1016/j.msea.2018.10.067 10.1016/j.compositesa.2012.02.015 10.1103/PhysRevB.73.024116 10.1016/j.pmatsci.2021.100868 10.1063/1.481208 10.1016/j.intermet.2022.107528 10.1016/j.compositesa.2018.03.014 10.1016/j.carbon.2018.08.009 10.1016/j.jmrt.2019.12.080 10.1016/j.carbon.2015.10.018 10.1016/j.jallcom.2015.10.252 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmrt.2022.11.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 4150 |
ExternalDocumentID | oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b 10_1016_j_jmrt_2022_11_033 S2238785422017392 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ADVLN AFJKZ CITATION |
ID | FETCH-LOGICAL-c340t-e03417cf35e72051eff722f1c728c2a63ee44e10bbc0ccd79bda01fd96d05acd3 |
IEDL.DBID | DOA |
ISSN | 2238-7854 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Tue Jul 01 01:14:35 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Thu Jul 20 20:09:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene nanoplatelets Composites AZ91D alloy Interface |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-e03417cf35e72051eff722f1c728c2a63ee44e10bbc0ccd79bda01fd96d05acd3 |
ORCID | 0000-0003-3333-0869 |
OpenAccessLink | https://doaj.org/article/f83a245a0af84965a07c7363b485f77b |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b crossref_citationtrail_10_1016_j_jmrt_2022_11_033 crossref_primary_10_1016_j_jmrt_2022_11_033 elsevier_sciencedirect_doi_10_1016_j_jmrt_2022_11_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2022 2022-11-00 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November-December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sun, Mendelev, Becker, Kudin, Haxhimali, Asta (bib12) 2006; 73 Yuan, Zeng, Liu, Luo, Wu, Wang (bib34) 2016; 96 Stuart, Tutein, Harrison (bib13) 2000; 112 Li, Browning, Christensen, Strachan (bib11) 2012; 43 Chen, Zhao, Hou, Zhang, Liang, Li (bib5) 2019; 778 Zang, Chen, Zhang, Wang, Chen, Jin (bib6) 2021; 14 Zhang, Wang, Kuang, Zhang, Li, Zhao (bib18) 2018; 148 Wang, Zhao, Wang, Zhu, Wang, Sheng (bib30) 2018; 139 Xin, Zhao, Mahjoub, Jiang, Yadav, Nomoto (bib1) 2021; 7 Shao, Liu, Zhang, Li, Chen, Ma (bib24) 2019; 739 Chen, Zhao (bib25) 2022; 124 Zhao, Zhang, Hou, Chen, Wang (bib20) 2019; 35 Sammalkorpi, Krasheninnikov, Kuronen, Nordlund, Kaski (bib14) 2004; 70 Zhang, Shen, Jia (bib28) 2020; 9 Yuan, Zhou, Liao, Liu, Luo (bib8) 2018; 127 Sun, Li, Dai, Zhao, Li, Wang (bib32) 2020; 835 Chen, Zhao, Li, Li, Hou, Hou (bib7) 2021; 804 Fadavi Boostani, Yazdani, Taherzadeh Mousavian, Tahamtan, Azari Khosroshahi, Wei (bib29) 2015; 88 Das, Harimkar (bib31) 2014; 30 Zhou (bib15) 2019; 56 Zhao (bib19) 2022; 144 Moelans, Blanpain, Wollants (bib21) 2005; 53 Chu, Wang, Li, Huang, Geng, Zhao (bib16) 2018; 140 Zhao, Liu, Hou, Chen (bib27) 2022; 216 Zhang, Chen (bib36) 2006; 54 Chu, Wang, Liu, Li, Jia, Zhang (bib17) 2019; 143 Chu, Wang, Li, Wang, Huang, Geng (bib23) 2018; 109 Guler, Say, Dikici (bib4) 2020; 54 Cheng, Zhao, Xu, Wang, Sun, Hou (bib22) 2020; 772 Chu, Wang, Wang, Li, Geng, Huang (bib26) 2018; 144 Kandemir (bib3) 2018; 27 Rashad, Pan, Tang, Asif, Hussain, Gou (bib35) 2015; 23 Meng, Hu, Wang, Zhang, Shi, Xiang (bib2) 2018; 733 Arsenault (bib33) 1986; 81 Plimpton (bib10) 1995; 117 Zhang, Zhan (bib9) 2016; 658 Kandemir (10.1016/j.jmrt.2022.11.033_bib3) 2018; 27 Zhang (10.1016/j.jmrt.2022.11.033_bib28) 2020; 9 Sun (10.1016/j.jmrt.2022.11.033_bib32) 2020; 835 Chu (10.1016/j.jmrt.2022.11.033_bib23) 2018; 109 Meng (10.1016/j.jmrt.2022.11.033_bib2) 2018; 733 Zhang (10.1016/j.jmrt.2022.11.033_bib18) 2018; 148 Yuan (10.1016/j.jmrt.2022.11.033_bib34) 2016; 96 Das (10.1016/j.jmrt.2022.11.033_bib31) 2014; 30 Wang (10.1016/j.jmrt.2022.11.033_bib30) 2018; 139 Chen (10.1016/j.jmrt.2022.11.033_bib7) 2021; 804 Shao (10.1016/j.jmrt.2022.11.033_bib24) 2019; 739 Zhao (10.1016/j.jmrt.2022.11.033_bib19) 2022; 144 Rashad (10.1016/j.jmrt.2022.11.033_bib35) 2015; 23 Sun (10.1016/j.jmrt.2022.11.033_bib12) 2006; 73 Zhang (10.1016/j.jmrt.2022.11.033_bib36) 2006; 54 Chu (10.1016/j.jmrt.2022.11.033_bib16) 2018; 140 Chu (10.1016/j.jmrt.2022.11.033_bib26) 2018; 144 Zhao (10.1016/j.jmrt.2022.11.033_bib27) 2022; 216 Moelans (10.1016/j.jmrt.2022.11.033_bib21) 2005; 53 Cheng (10.1016/j.jmrt.2022.11.033_bib22) 2020; 772 Stuart (10.1016/j.jmrt.2022.11.033_bib13) 2000; 112 Fadavi Boostani (10.1016/j.jmrt.2022.11.033_bib29) 2015; 88 Zhou (10.1016/j.jmrt.2022.11.033_bib15) 2019; 56 Arsenault (10.1016/j.jmrt.2022.11.033_bib33) 1986; 81 Li (10.1016/j.jmrt.2022.11.033_bib11) 2012; 43 Guler (10.1016/j.jmrt.2022.11.033_bib4) 2020; 54 Yuan (10.1016/j.jmrt.2022.11.033_bib8) 2018; 127 Zhang (10.1016/j.jmrt.2022.11.033_bib9) 2016; 658 Sammalkorpi (10.1016/j.jmrt.2022.11.033_bib14) 2004; 70 Zhao (10.1016/j.jmrt.2022.11.033_bib20) 2019; 35 Xin (10.1016/j.jmrt.2022.11.033_bib1) 2021; 7 Chen (10.1016/j.jmrt.2022.11.033_bib5) 2019; 778 Zang (10.1016/j.jmrt.2022.11.033_bib6) 2021; 14 Plimpton (10.1016/j.jmrt.2022.11.033_bib10) 1995; 117 Chu (10.1016/j.jmrt.2022.11.033_bib17) 2019; 143 Chen (10.1016/j.jmrt.2022.11.033_bib25) 2022; 124 |
References_xml | – volume: 144 year: 2022 ident: bib19 article-title: Stability of phase boundary between L12-Ni3Al phases: a phase field study publication-title: Intermetallics – volume: 23 start-page: 243 year: 2015 end-page: 250 ident: bib35 article-title: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method publication-title: J Ind Eng Chem – volume: 733 start-page: 414 year: 2018 end-page: 418 ident: bib2 article-title: Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction publication-title: Mater Sci Eng A – volume: 54 start-page: 4473 year: 2020 end-page: 4485 ident: bib4 article-title: The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites publication-title: J Compos Mater – volume: 144 start-page: 290 year: 2018 end-page: 303 ident: bib26 article-title: Interface design of graphene/copper composites by matrix alloying with titanium publication-title: Mater Des – volume: 124 year: 2022 ident: bib25 article-title: From classical thermodynamics to phase-field method publication-title: Prog Mater Sci – volume: 772 year: 2020 ident: bib22 article-title: Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates publication-title: Mater Sci Eng A – volume: 54 start-page: 1321 year: 2006 end-page: 1326 ident: bib36 article-title: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength publication-title: Scripta Mater – volume: 9 start-page: 2495 year: 2020 end-page: 2505 ident: bib28 article-title: Processing and mechanical properties of Mg-2.8Al-0.8Zn alloy containing bimodal size distribution publication-title: J Mater Res Technol – volume: 81 start-page: 175 year: 1986 end-page: 187 ident: bib33 article-title: Dislocation generation due to differences between the coefficients of thermal expansion publication-title: Mater Sci Eng – volume: 127 start-page: 177 year: 2018 end-page: 186 ident: bib8 article-title: Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets publication-title: Carbon – volume: 88 start-page: 983 year: 2015 end-page: 989 ident: bib29 article-title: Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites publication-title: Mater Des – volume: 804 year: 2021 ident: bib7 article-title: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions publication-title: Mater Sci Eng A – volume: 53 start-page: 1771 year: 2005 end-page: 1781 ident: bib21 article-title: A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles publication-title: Acta Mater – volume: 139 start-page: 954 year: 2018 end-page: 963 ident: bib30 article-title: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process publication-title: Carbon – volume: 148 start-page: 86 year: 2018 end-page: 99 ident: bib18 article-title: Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification publication-title: Acta Mater – volume: 143 start-page: 85 year: 2019 end-page: 96 ident: bib17 article-title: Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites publication-title: Carbon – volume: 30 start-page: 1059 year: 2014 end-page: 1070 ident: bib31 article-title: Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites publication-title: J Mater Sci Technol – volume: 778 start-page: 359 year: 2019 end-page: 374 ident: bib5 article-title: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process publication-title: J Alloys Compd – volume: 109 start-page: 267 year: 2018 end-page: 279 ident: bib23 article-title: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene publication-title: Compos Appl Sci Manuf – volume: 56 start-page: 240 year: 2019 end-page: 248 ident: bib15 article-title: Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites publication-title: Acta Metall Sin – volume: 216 year: 2022 ident: bib27 article-title: Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study publication-title: Mater Des – volume: 73 year: 2006 ident: bib12 article-title: Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg publication-title: Phys Rev B – volume: 739 start-page: 329 year: 2019 end-page: 334 ident: bib24 article-title: Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering publication-title: Mater Sci Eng A – volume: 835 year: 2020 ident: bib32 article-title: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process publication-title: J Alloys Compd – volume: 27 start-page: 3014 year: 2018 end-page: 3023 ident: bib3 article-title: Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing publication-title: J Mater Eng Perform – volume: 35 start-page: 1044 year: 2019 end-page: 1052 ident: bib20 article-title: Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process publication-title: J Mater Sci Technol – volume: 7 start-page: 9 year: 2021 ident: bib1 article-title: Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition publication-title: Sci Adv – volume: 140 start-page: 85 year: 2018 end-page: 94 ident: bib16 article-title: Thermal properties of graphene/metal composites with aligned graphene publication-title: Mater Des – volume: 96 start-page: 843 year: 2016 end-page: 855 ident: bib34 article-title: Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO publication-title: Carbon – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib10 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys – volume: 43 start-page: 1293 year: 2012 end-page: 1300 ident: bib11 article-title: Atomistic simulations on multilayer graphene reinforced epoxy composites publication-title: Compos Appl Sci Manuf – volume: 112 start-page: 6472 year: 2000 end-page: 6486 ident: bib13 article-title: A reactive potential for hydrocarbons with intermolecular interactions publication-title: J Chem Phys – volume: 70 year: 2004 ident: bib14 article-title: Mechanical properties of carbon nanotubes with vacancies and related defects publication-title: Phys Rev B – volume: 14 start-page: 195 year: 2021 end-page: 201 ident: bib6 article-title: Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing publication-title: J Mater Res Technol – volume: 658 start-page: 663 year: 2016 end-page: 671 ident: bib9 article-title: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties publication-title: J Alloys Compd – volume: 70 year: 2004 ident: 10.1016/j.jmrt.2022.11.033_bib14 article-title: Mechanical properties of carbon nanotubes with vacancies and related defects publication-title: Phys Rev B doi: 10.1103/PhysRevB.70.245416 – volume: 30 start-page: 1059 year: 2014 ident: 10.1016/j.jmrt.2022.11.033_bib31 article-title: Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2014.08.002 – volume: 127 start-page: 177 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib8 article-title: Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets publication-title: Carbon doi: 10.1016/j.carbon.2017.10.090 – volume: 7 start-page: 9 year: 2021 ident: 10.1016/j.jmrt.2022.11.033_bib1 article-title: Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition publication-title: Sci Adv doi: 10.1126/sciadv.abf3039 – volume: 778 start-page: 359 year: 2019 ident: 10.1016/j.jmrt.2022.11.033_bib5 article-title: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.11.148 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.jmrt.2022.11.033_bib10 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – volume: 54 start-page: 4473 year: 2020 ident: 10.1016/j.jmrt.2022.11.033_bib4 article-title: The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites publication-title: J Compos Mater doi: 10.1177/0021998320933345 – volume: 835 year: 2020 ident: 10.1016/j.jmrt.2022.11.033_bib32 article-title: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.155125 – volume: 35 start-page: 1044 year: 2019 ident: 10.1016/j.jmrt.2022.11.033_bib20 article-title: Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2018.12.009 – volume: 733 start-page: 414 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib2 article-title: Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.07.056 – volume: 56 start-page: 240 year: 2019 ident: 10.1016/j.jmrt.2022.11.033_bib15 article-title: Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites publication-title: Acta Metall Sin – volume: 14 start-page: 195 year: 2021 ident: 10.1016/j.jmrt.2022.11.033_bib6 article-title: Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.06.052 – volume: 81 start-page: 175 year: 1986 ident: 10.1016/j.jmrt.2022.11.033_bib33 article-title: Dislocation generation due to differences between the coefficients of thermal expansion publication-title: Mater Sci Eng doi: 10.1016/0025-5416(86)90261-2 – volume: 216 year: 2022 ident: 10.1016/j.jmrt.2022.11.033_bib27 article-title: Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study publication-title: Mater Des doi: 10.1016/j.matdes.2022.110555 – volume: 23 start-page: 243 year: 2015 ident: 10.1016/j.jmrt.2022.11.033_bib35 article-title: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2014.08.024 – volume: 144 start-page: 290 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib26 article-title: Interface design of graphene/copper composites by matrix alloying with titanium publication-title: Mater Des doi: 10.1016/j.matdes.2018.02.038 – volume: 140 start-page: 85 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib16 article-title: Thermal properties of graphene/metal composites with aligned graphene publication-title: Mater Des doi: 10.1016/j.matdes.2017.11.048 – volume: 143 start-page: 85 year: 2019 ident: 10.1016/j.jmrt.2022.11.033_bib17 article-title: Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites publication-title: Carbon doi: 10.1016/j.carbon.2018.10.095 – volume: 53 start-page: 1771 year: 2005 ident: 10.1016/j.jmrt.2022.11.033_bib21 article-title: A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles publication-title: Acta Mater doi: 10.1016/j.actamat.2004.12.026 – volume: 27 start-page: 3014 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib3 article-title: Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing publication-title: J Mater Eng Perform doi: 10.1007/s11665-018-3391-x – volume: 88 start-page: 983 year: 2015 ident: 10.1016/j.jmrt.2022.11.033_bib29 article-title: Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites publication-title: Mater Des doi: 10.1016/j.matdes.2015.09.063 – volume: 772 year: 2020 ident: 10.1016/j.jmrt.2022.11.033_bib22 article-title: Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138681 – volume: 54 start-page: 1321 year: 2006 ident: 10.1016/j.jmrt.2022.11.033_bib36 article-title: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2005.12.017 – volume: 804 year: 2021 ident: 10.1016/j.jmrt.2022.11.033_bib7 article-title: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2021.140793 – volume: 148 start-page: 86 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib18 article-title: Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification publication-title: Acta Mater doi: 10.1016/j.actamat.2018.01.040 – volume: 739 start-page: 329 year: 2019 ident: 10.1016/j.jmrt.2022.11.033_bib24 article-title: Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.10.067 – volume: 43 start-page: 1293 year: 2012 ident: 10.1016/j.jmrt.2022.11.033_bib11 article-title: Atomistic simulations on multilayer graphene reinforced epoxy composites publication-title: Compos Appl Sci Manuf doi: 10.1016/j.compositesa.2012.02.015 – volume: 73 year: 2006 ident: 10.1016/j.jmrt.2022.11.033_bib12 article-title: Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.024116 – volume: 124 year: 2022 ident: 10.1016/j.jmrt.2022.11.033_bib25 article-title: From classical thermodynamics to phase-field method publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2021.100868 – volume: 112 start-page: 6472 year: 2000 ident: 10.1016/j.jmrt.2022.11.033_bib13 article-title: A reactive potential for hydrocarbons with intermolecular interactions publication-title: J Chem Phys doi: 10.1063/1.481208 – volume: 144 year: 2022 ident: 10.1016/j.jmrt.2022.11.033_bib19 article-title: Stability of phase boundary between L12-Ni3Al phases: a phase field study publication-title: Intermetallics doi: 10.1016/j.intermet.2022.107528 – volume: 109 start-page: 267 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib23 article-title: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene publication-title: Compos Appl Sci Manuf doi: 10.1016/j.compositesa.2018.03.014 – volume: 139 start-page: 954 year: 2018 ident: 10.1016/j.jmrt.2022.11.033_bib30 article-title: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process publication-title: Carbon doi: 10.1016/j.carbon.2018.08.009 – volume: 9 start-page: 2495 year: 2020 ident: 10.1016/j.jmrt.2022.11.033_bib28 article-title: Processing and mechanical properties of Mg-2.8Al-0.8Zn alloy containing bimodal size distribution publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2019.12.080 – volume: 96 start-page: 843 year: 2016 ident: 10.1016/j.jmrt.2022.11.033_bib34 article-title: Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO publication-title: Carbon doi: 10.1016/j.carbon.2015.10.018 – volume: 658 start-page: 663 year: 2016 ident: 10.1016/j.jmrt.2022.11.033_bib9 article-title: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.10.252 |
SSID | ssj0001596081 |
Score | 2.6134024 |
SecondaryResourceType | review_article |
Snippet | Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 4138 |
SubjectTerms | AZ91D alloy Composites Graphene nanoplatelets Interface |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAaAGxUCofuKGwjh-xc2wLVYVULlBpxSXys9qqm43SIrW_gL_NjOMt20sPHGN5ksgzmRk733xDyEfhmMUfulUy4AKlE65yWvAqGKtbI1vfRNwonn9vzi7kt4Va7JCTTS0MwiqL7598evbWZWReVnM-LJfzHxDYjDZKcohhGsI8-GEhTS7iWxz_O2dRkKPnXqU4v0KBUjszwbyuViNCKjn_jGSeQjyKT5nGfytMbYWe05fkRckZ6dH0WntkJ_b75PkWk-Ar8uccgXUTGezvMVLbBzrgOfuIhKl0nWhmpgbHRnvbr4drSDFBYzd0jJk6FdaBHv1q6y90hZz9dxSh5ojnAuFhjBmmTt09LV1zVvayx-pHCg5ixDeg3t4ggPo1uTj9-vPkrCo9FiovJLutIoMwpn0SKmoOH2hMSXOeaq-58dw2IkYpY82c88z7oFsXLKtTaJvAlPVBvCG7_bqPbwllTeBJKh98nWSMtfGG-br11rq2Ns7PSL1Z2c4XAnLsg3HdbZBmVx1qo0NtwM6kA23MyKcHmWGi33hy9jEq7GEmUmfngfV42RXb6ZIRlktlmU0GyfIt016LRjhpVNLazYjaqLt7ZIlwq-UTD3_3n3LvyTO8muobD8guWEr8AInOrTvMlvwXuGT_LQ priority: 102 providerName: Elsevier |
Title | Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting |
URI | https://dx.doi.org/10.1016/j.jmrt.2022.11.033 https://doaj.org/article/f83a245a0af84965a07c7363b485f77b |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugB8WjV5SUfuKEUvxI7xxaoWqRyotKKS2SPbUTVza7SIsEv4G8zE2ercCmXXnKI_JJnMjN2vvmGsbc6CE8_dKvs0ASaoEMVrFZVdN62zrTQJDooXnxpzi7N52W9nJX6IkxYoQcuG_c-O-2Vqb3w2RG3uRcWrG50MK7O1gayvujzZoepkh-MkflYoRTdn6usq82UMVPAXVergYCUSh0RhafW_3ilkbx_5pxmDuf0CXs8RYr8uKzwKdtJ_TO2N-MPfM7-XBCcrlDA_hwS933kG7pdH4gmla8zH_mo0Zzx3vfrzTUGliinGz6kkTAVUuTH31r5ka-Iqf8XJ4A5obiw82ZIIzidh998qpWz8t97ynnkaBYGWgEHf0Ow6X12efrp64ezaqqsUIE24rZKAp2XhazrZBV-lilnq1SWYJUD5RudkjFJihBAAETbhuiFzLFtoqg9RH3Advt1nw4ZF01U2dQQQWaTknTgBMgWvA-tdAEWTG53toOJdpyqX1x3W3zZVUfS6EgaeB7pUBoL9u6uz6aQbtzb-oQEdteSCLPHF6hG3aRG3f_UaMHqrbi7KfYoMQUO9eOeyV88xOQv2SMasqQ4vmK7qDbpNcY6t-HNqNb4PF-e_AXtOP8j |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQ9oD7FFtr60FuVrmM7sXMEWrS0LJeCtOol8hMtYrNRAIn-gv5tZhIvXS4cek08ieWZzIydb74h5LOwzOAP3SxqcIHSCptZJXjmtVGVlpUrA24Upyfl5Ez-mBWzDXKwqoVBWGXy_YNP7711ujJOqzlu5_PxLwhsWulCcohhCsL8E_IUsgGF_RuOZvv_DloKSNL7ZqUokKFEKp4ZcF4Xiw4xlZx_RTZPIR4EqJ7Hfy1OrcWew5dkKyWNdG-Y1yuyEZrX5MUaleAb8neKyLqBDfamC9Q0nrZ40N4hYypdRtpTU4Nno41plu0l5JigsivahZ47FRaC7v2u8m90gaT9txSx5gjoAuG2Cz1Ondo_NLXNWZjzBssfKXiIDmdAnblCBPVbcnb4_fRgkqUmC5kTkl1ngUEcUy6KIigOX2iIUXEec6e4dtyUIgQpQ86sdcw5ryrrDcujr0rPCuO8eEc2m2UTtgllpedRFs67PMoQcu00c3nljLFVrq0bkXy1srVLDOTYCOOyXkHNLmrURo3agK1JDdoYkS_3Mu3Av_Ho6H1U2P1I5M7uLyy78zoZTx21MFwWhpmokS3fMOWUKIWVuohK2REpVuquH5giPGr-yMvf_6fcJ_Jscjo9ro-PTn7ukOd4Zyh23CWbYDXhA2Q91_Zjb9V3i4wCWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+properties+of+graphene+nanoplatelets+reinforced+AZ91D+matrix+composites+prepared+by+electromagnetic+stirring+casting&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Muxi+Li&rft.au=Qingwei+Guo&rft.au=Liwen+Chen&rft.au=Limin+Li&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=2238-7854&rft.volume=21&rft.spage=4138&rft.epage=4150&rft_id=info:doi/10.1016%2Fj.jmrt.2022.11.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |