Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting

Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites:...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 21; pp. 4138 - 4150
Main Authors Li, Muxi, Guo, Qingwei, Chen, Liwen, Li, Limin, Hou, Hua, Zhao, Yuhong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2238-7854
DOI10.1016/j.jmrt.2022.11.033

Cover

Loading…
Abstract Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites: the GNPs/Mg and the GNPs/MgO interface. The GNPs/Mg interface has a high degree of lattice distortion and few dislocations. In contrast, the GNPs/MgO interface has lower lattice distortion and more dislocations. GNPs with different failure modes were found on the fracture surface. According to the simulation, the strength of GNPs parallel to the stretching direction is 9.8 × 103 MPa, while the strength of GNPs perpendicular to the stretching direction is 0.5 × 103 MPa. This indicates that the stretching direction and fracture mode of GNPs affect the mechanical properties of the composites.
AbstractList Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure, mechanical properties and strengthening behavior of the composites were investigated. Two types of bonding interfaces were found in the composites: the GNPs/Mg and the GNPs/MgO interface. The GNPs/Mg interface has a high degree of lattice distortion and few dislocations. In contrast, the GNPs/MgO interface has lower lattice distortion and more dislocations. GNPs with different failure modes were found on the fracture surface. According to the simulation, the strength of GNPs parallel to the stretching direction is 9.8 × 103 MPa, while the strength of GNPs perpendicular to the stretching direction is 0.5 × 103 MPa. This indicates that the stretching direction and fracture mode of GNPs affect the mechanical properties of the composites.
Author Hou, Hua
Guo, Qingwei
Zhao, Yuhong
Li, Limin
Li, Muxi
Chen, Liwen
Author_xml – sequence: 1
  givenname: Muxi
  surname: Li
  fullname: Li, Muxi
  organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 2
  givenname: Qingwei
  surname: Guo
  fullname: Guo, Qingwei
  organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 3
  givenname: Liwen
  surname: Chen
  fullname: Chen, Liwen
  organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 4
  givenname: Limin
  surname: Li
  fullname: Li, Limin
  organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 5
  givenname: Hua
  surname: Hou
  fullname: Hou, Hua
  organization: School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
– sequence: 6
  givenname: Yuhong
  orcidid: 0000-0003-3333-0869
  surname: Zhao
  fullname: Zhao, Yuhong
  email: zhaoyuhong@nuc.edu.cn
  organization: School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
BookMark eNp9kctu1TAQhrMoUkvpC7DyC5zgSxInEpuq3CoVsYFNN9bEGQdHiR2NXUSfgNfGh1M2XXTlkeXvl-f_XldnIQasqreC14KL7t1SLxvlWnIpayFqrtRZdSGl6g-6b5vz6iqlhXMu2qHjvbio_nz1lmLK9GDzAyGDMLGd4o6UPSYWHZsJ9p8YkAUIcV8h44o5MUIfXCSLE7u-H8QHtkEm_5vZuO0x-VzgnXAHKg_GR1YgmyluMAfM3rKUPZEPM7NQxjC_qV45WBNePZ2X1Y9PH7_ffDncfft8e3N9d7Cq4fmAXDVCW6da1JK3Ap3TUjphteythE4hNg0KPo6WWzvpYZyACzcN3cRbsJO6rG5PuVOExezkN6BHE8GbfxeRZgNldbuicb0C2bTAwfXN0JVBW606NTZ967QeS1Z_yjo2mAidsT5D9jFkAr8awc3RiVnM0Yk5OjFCmOKkoPIZ-v8rL0LvTxCWgn55JJOsx1AUeCrtlg38S_hfSJeuUA
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_05_221
crossref_primary_10_1016_j_jmrt_2023_08_036
crossref_primary_10_1016_j_jmrt_2024_05_227
crossref_primary_10_1016_j_heliyon_2023_e21364
crossref_primary_10_1007_s11164_024_05347_w
crossref_primary_10_1016_j_mtcomm_2023_107249
crossref_primary_10_3390_jcs8030090
crossref_primary_10_1016_j_jallcom_2024_174897
crossref_primary_10_1016_j_mtcomm_2023_107005
crossref_primary_10_1016_j_diamond_2024_111307
crossref_primary_10_1007_s12633_024_02991_0
crossref_primary_10_1016_j_jmrt_2024_02_013
crossref_primary_10_1016_j_jre_2023_08_013
crossref_primary_10_1016_j_comptc_2024_114546
crossref_primary_10_1080_00084433_2024_2428885
crossref_primary_10_1007_s11694_023_02222_x
crossref_primary_10_1016_j_jma_2024_01_024
crossref_primary_10_1007_s10904_023_02945_w
crossref_primary_10_1016_j_diamond_2024_111383
crossref_primary_10_1016_j_measurement_2023_113940
crossref_primary_10_1016_j_icheatmasstransfer_2024_107834
crossref_primary_10_1016_j_surfin_2024_104743
crossref_primary_10_3390_molecules28207218
crossref_primary_10_1007_s11164_024_05287_5
crossref_primary_10_3390_ma17164004
crossref_primary_10_1016_j_jmmm_2023_171347
crossref_primary_10_1016_j_mtcomm_2023_107639
crossref_primary_10_1088_1402_4896_ad17ae
crossref_primary_10_1016_j_matchemphys_2023_128659
crossref_primary_10_1007_s12633_023_02696_w
crossref_primary_10_1039_D3RA06815C
crossref_primary_10_1007_s11082_024_06342_6
crossref_primary_10_1016_j_mtcomm_2023_107355
crossref_primary_10_1177_13506501241246845
crossref_primary_10_1142_S0219455424502122
crossref_primary_10_1016_j_dt_2023_11_017
crossref_primary_10_1016_j_heliyon_2023_e22559
crossref_primary_10_1021_acsomega_3c06883
crossref_primary_10_1016_j_corsci_2023_111341
crossref_primary_10_1016_j_jma_2024_12_001
crossref_primary_10_1080_01694243_2023_2289770
crossref_primary_10_3390_coatings14050584
crossref_primary_10_1016_j_clay_2024_107280
crossref_primary_10_1016_j_vacuum_2024_113484
crossref_primary_10_1021_acsanm_3c03910
crossref_primary_10_1016_j_inoche_2023_111700
crossref_primary_10_1007_s11665_023_09102_x
crossref_primary_10_1016_j_ultras_2024_107249
crossref_primary_10_1016_j_dt_2024_04_018
crossref_primary_10_1016_j_polymertesting_2023_108202
crossref_primary_10_1016_j_mtcomm_2023_107662
crossref_primary_10_1007_s10924_024_03260_2
crossref_primary_10_1080_01694243_2023_2242111
crossref_primary_10_1038_s41598_024_64204_3
crossref_primary_10_1080_15376494_2023_2269553
crossref_primary_10_1007_s43939_025_00239_1
crossref_primary_10_1016_j_coco_2023_101783
crossref_primary_10_1080_15376494_2024_2385008
crossref_primary_10_1016_j_diamond_2024_111484
crossref_primary_10_3389_fmats_2024_1269608
crossref_primary_10_3390_ma17163939
crossref_primary_10_1088_1402_4896_ad007c
crossref_primary_10_1016_j_matchar_2024_113690
crossref_primary_10_3390_met13101761
crossref_primary_10_1177_09544089241239817
crossref_primary_10_1515_rams_2023_0342
crossref_primary_10_1016_j_jmrt_2024_09_156
crossref_primary_10_1080_15376494_2023_2263446
crossref_primary_10_1016_j_jallcom_2023_172346
crossref_primary_10_1016_j_jmrt_2023_09_252
crossref_primary_10_1016_j_jmrt_2023_10_069
crossref_primary_10_1016_j_jpcs_2023_111713
crossref_primary_10_1080_15376494_2023_2264897
crossref_primary_10_1007_s40195_024_01680_6
crossref_primary_10_1080_13640461_2025_2476826
crossref_primary_10_1088_2053_1591_ad3db5
crossref_primary_10_1016_j_diamond_2023_110645
crossref_primary_10_1016_j_matchar_2023_112854
crossref_primary_10_1016_j_msea_2024_146347
crossref_primary_10_1016_j_matdes_2025_113586
crossref_primary_10_1016_j_mtcomm_2024_108363
crossref_primary_10_1080_10406638_2023_2276251
crossref_primary_10_3389_fmats_2023_1305793
crossref_primary_10_1515_zna_2024_0131
crossref_primary_10_1038_s41598_024_52100_9
crossref_primary_10_1021_acsomega_3c07994
crossref_primary_10_1088_1361_6528_ad090a
crossref_primary_10_1016_j_colsurfa_2023_132921
crossref_primary_10_1016_j_ijbiomac_2024_131914
crossref_primary_10_1080_25740881_2023_2289067
crossref_primary_10_1016_j_molliq_2023_122585
crossref_primary_10_1080_00084433_2023_2289800
crossref_primary_10_1177_09544089231221545
crossref_primary_10_1007_s11837_023_06189_4
crossref_primary_10_1016_j_ceramint_2024_06_340
crossref_primary_10_1007_s11665_024_09867_9
crossref_primary_10_1016_j_diamond_2024_110819
crossref_primary_10_1016_j_jmrt_2023_09_200
crossref_primary_10_1080_15376494_2023_2264843
crossref_primary_10_1007_s10853_024_09334_9
crossref_primary_10_1016_j_jmrt_2025_03_094
crossref_primary_10_1007_s40195_024_01673_5
crossref_primary_10_1002_adem_202301256
crossref_primary_10_1016_j_vacuum_2024_113509
crossref_primary_10_3390_ma17092124
crossref_primary_10_1142_S0218625X25500465
crossref_primary_10_1080_15376494_2023_2286637
crossref_primary_10_1016_j_cscm_2024_e03018
crossref_primary_10_1088_2053_1591_ad5cdc
crossref_primary_10_1016_j_apm_2025_115963
crossref_primary_10_1016_j_envres_2023_117113
crossref_primary_10_1016_j_csite_2023_103551
crossref_primary_10_1016_j_jmrt_2023_11_080
crossref_primary_10_1080_15397734_2024_2305773
crossref_primary_10_1016_j_pmatsci_2023_101191
crossref_primary_10_1016_j_jmrt_2024_01_018
crossref_primary_10_1021_acsaelm_3c01219
crossref_primary_10_1016_j_ccr_2024_216421
crossref_primary_10_1016_j_heliyon_2024_e29436
crossref_primary_10_1016_j_rineng_2024_101846
crossref_primary_10_1007_s11082_023_05613_y
crossref_primary_10_1016_j_jmrt_2023_09_157
crossref_primary_10_1016_j_chemphys_2025_112608
crossref_primary_10_1016_j_ijhydene_2024_04_320
crossref_primary_10_1016_j_ijlmm_2024_12_004
crossref_primary_10_1080_15397734_2023_2295532
crossref_primary_10_1007_s40962_023_01177_5
crossref_primary_10_1016_j_aej_2023_11_033
crossref_primary_10_3390_mi15091156
crossref_primary_10_1016_j_ceramint_2024_05_361
crossref_primary_10_1016_j_diamond_2023_110560
crossref_primary_10_1016_j_ceramint_2024_06_408
crossref_primary_10_1016_j_jpcs_2024_112050
crossref_primary_10_1016_j_synthmet_2024_117687
crossref_primary_10_1016_j_jpcs_2024_112055
crossref_primary_10_1016_j_polymer_2023_126428
crossref_primary_10_1038_s41598_024_66379_1
crossref_primary_10_3390_met13091619
crossref_primary_10_1016_j_aej_2023_10_010
crossref_primary_10_1016_j_ijhydene_2024_02_366
crossref_primary_10_1016_j_arabjc_2023_105198
crossref_primary_10_1007_s40195_023_01560_5
crossref_primary_10_1016_j_envres_2023_117163
crossref_primary_10_1016_j_jiec_2023_11_052
crossref_primary_10_1016_j_ijoes_2023_100344
crossref_primary_10_1088_1361_6439_ad3658
crossref_primary_10_1016_j_jmrt_2023_09_105
crossref_primary_10_1038_s41524_023_01139_9
crossref_primary_10_1016_j_msea_2023_145562
crossref_primary_10_1016_j_icheatmasstransfer_2024_108346
crossref_primary_10_1016_j_matdes_2023_112086
crossref_primary_10_1080_15376494_2023_2275170
crossref_primary_10_1016_j_msea_2024_146939
crossref_primary_10_1007_s00339_023_07021_1
crossref_primary_10_1016_j_sna_2023_115002
crossref_primary_10_3389_fmats_2023_1236266
crossref_primary_10_1007_s12540_023_01557_w
crossref_primary_10_1038_s41598_023_46153_5
crossref_primary_10_1016_j_powtec_2025_120695
crossref_primary_10_1080_01495739_2024_2325980
crossref_primary_10_1080_15376494_2024_2344020
crossref_primary_10_1016_j_inoche_2023_111216
crossref_primary_10_1016_j_jelechem_2024_118299
crossref_primary_10_1016_j_csite_2023_103815
crossref_primary_10_1063_5_0199003
crossref_primary_10_1016_j_aej_2023_12_006
crossref_primary_10_1080_15376494_2023_2242849
crossref_primary_10_1016_j_diamond_2024_111319
crossref_primary_10_1016_j_cscm_2023_e02356
crossref_primary_10_1002_app_54847
crossref_primary_10_1080_00084433_2024_2357859
crossref_primary_10_1016_j_jmrt_2024_07_082
Cites_doi 10.1103/PhysRevB.70.245416
10.1016/j.jmst.2014.08.002
10.1016/j.carbon.2017.10.090
10.1126/sciadv.abf3039
10.1016/j.jallcom.2018.11.148
10.1006/jcph.1995.1039
10.1177/0021998320933345
10.1016/j.jallcom.2020.155125
10.1016/j.jmst.2018.12.009
10.1016/j.msea.2018.07.056
10.1016/j.jmrt.2021.06.052
10.1016/0025-5416(86)90261-2
10.1016/j.matdes.2022.110555
10.1016/j.jiec.2014.08.024
10.1016/j.matdes.2018.02.038
10.1016/j.matdes.2017.11.048
10.1016/j.carbon.2018.10.095
10.1016/j.actamat.2004.12.026
10.1007/s11665-018-3391-x
10.1016/j.matdes.2015.09.063
10.1016/j.msea.2019.138681
10.1016/j.scriptamat.2005.12.017
10.1016/j.msea.2021.140793
10.1016/j.actamat.2018.01.040
10.1016/j.msea.2018.10.067
10.1016/j.compositesa.2012.02.015
10.1103/PhysRevB.73.024116
10.1016/j.pmatsci.2021.100868
10.1063/1.481208
10.1016/j.intermet.2022.107528
10.1016/j.compositesa.2018.03.014
10.1016/j.carbon.2018.08.009
10.1016/j.jmrt.2019.12.080
10.1016/j.carbon.2015.10.018
10.1016/j.jallcom.2015.10.252
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2022.11.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 4150
ExternalDocumentID oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b
10_1016_j_jmrt_2022_11_033
S2238785422017392
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ADVLN
AFJKZ
CITATION
ID FETCH-LOGICAL-c340t-e03417cf35e72051eff722f1c728c2a63ee44e10bbc0ccd79bda01fd96d05acd3
IEDL.DBID DOA
ISSN 2238-7854
IngestDate Wed Aug 27 01:31:28 EDT 2025
Tue Jul 01 01:14:35 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Thu Jul 20 20:09:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graphene nanoplatelets
Composites
AZ91D alloy
Interface
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-e03417cf35e72051eff722f1c728c2a63ee44e10bbc0ccd79bda01fd96d05acd3
ORCID 0000-0003-3333-0869
OpenAccessLink https://doaj.org/article/f83a245a0af84965a07c7363b485f77b
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b
crossref_citationtrail_10_1016_j_jmrt_2022_11_033
crossref_primary_10_1016_j_jmrt_2022_11_033
elsevier_sciencedirect_doi_10_1016_j_jmrt_2022_11_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November-December 2022
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sun, Mendelev, Becker, Kudin, Haxhimali, Asta (bib12) 2006; 73
Yuan, Zeng, Liu, Luo, Wu, Wang (bib34) 2016; 96
Stuart, Tutein, Harrison (bib13) 2000; 112
Li, Browning, Christensen, Strachan (bib11) 2012; 43
Chen, Zhao, Hou, Zhang, Liang, Li (bib5) 2019; 778
Zang, Chen, Zhang, Wang, Chen, Jin (bib6) 2021; 14
Zhang, Wang, Kuang, Zhang, Li, Zhao (bib18) 2018; 148
Wang, Zhao, Wang, Zhu, Wang, Sheng (bib30) 2018; 139
Xin, Zhao, Mahjoub, Jiang, Yadav, Nomoto (bib1) 2021; 7
Shao, Liu, Zhang, Li, Chen, Ma (bib24) 2019; 739
Chen, Zhao (bib25) 2022; 124
Zhao, Zhang, Hou, Chen, Wang (bib20) 2019; 35
Sammalkorpi, Krasheninnikov, Kuronen, Nordlund, Kaski (bib14) 2004; 70
Zhang, Shen, Jia (bib28) 2020; 9
Yuan, Zhou, Liao, Liu, Luo (bib8) 2018; 127
Sun, Li, Dai, Zhao, Li, Wang (bib32) 2020; 835
Chen, Zhao, Li, Li, Hou, Hou (bib7) 2021; 804
Fadavi Boostani, Yazdani, Taherzadeh Mousavian, Tahamtan, Azari Khosroshahi, Wei (bib29) 2015; 88
Das, Harimkar (bib31) 2014; 30
Zhou (bib15) 2019; 56
Zhao (bib19) 2022; 144
Moelans, Blanpain, Wollants (bib21) 2005; 53
Chu, Wang, Li, Huang, Geng, Zhao (bib16) 2018; 140
Zhao, Liu, Hou, Chen (bib27) 2022; 216
Zhang, Chen (bib36) 2006; 54
Chu, Wang, Liu, Li, Jia, Zhang (bib17) 2019; 143
Chu, Wang, Li, Wang, Huang, Geng (bib23) 2018; 109
Guler, Say, Dikici (bib4) 2020; 54
Cheng, Zhao, Xu, Wang, Sun, Hou (bib22) 2020; 772
Chu, Wang, Wang, Li, Geng, Huang (bib26) 2018; 144
Kandemir (bib3) 2018; 27
Rashad, Pan, Tang, Asif, Hussain, Gou (bib35) 2015; 23
Meng, Hu, Wang, Zhang, Shi, Xiang (bib2) 2018; 733
Arsenault (bib33) 1986; 81
Plimpton (bib10) 1995; 117
Zhang, Zhan (bib9) 2016; 658
Kandemir (10.1016/j.jmrt.2022.11.033_bib3) 2018; 27
Zhang (10.1016/j.jmrt.2022.11.033_bib28) 2020; 9
Sun (10.1016/j.jmrt.2022.11.033_bib32) 2020; 835
Chu (10.1016/j.jmrt.2022.11.033_bib23) 2018; 109
Meng (10.1016/j.jmrt.2022.11.033_bib2) 2018; 733
Zhang (10.1016/j.jmrt.2022.11.033_bib18) 2018; 148
Yuan (10.1016/j.jmrt.2022.11.033_bib34) 2016; 96
Das (10.1016/j.jmrt.2022.11.033_bib31) 2014; 30
Wang (10.1016/j.jmrt.2022.11.033_bib30) 2018; 139
Chen (10.1016/j.jmrt.2022.11.033_bib7) 2021; 804
Shao (10.1016/j.jmrt.2022.11.033_bib24) 2019; 739
Zhao (10.1016/j.jmrt.2022.11.033_bib19) 2022; 144
Rashad (10.1016/j.jmrt.2022.11.033_bib35) 2015; 23
Sun (10.1016/j.jmrt.2022.11.033_bib12) 2006; 73
Zhang (10.1016/j.jmrt.2022.11.033_bib36) 2006; 54
Chu (10.1016/j.jmrt.2022.11.033_bib16) 2018; 140
Chu (10.1016/j.jmrt.2022.11.033_bib26) 2018; 144
Zhao (10.1016/j.jmrt.2022.11.033_bib27) 2022; 216
Moelans (10.1016/j.jmrt.2022.11.033_bib21) 2005; 53
Cheng (10.1016/j.jmrt.2022.11.033_bib22) 2020; 772
Stuart (10.1016/j.jmrt.2022.11.033_bib13) 2000; 112
Fadavi Boostani (10.1016/j.jmrt.2022.11.033_bib29) 2015; 88
Zhou (10.1016/j.jmrt.2022.11.033_bib15) 2019; 56
Arsenault (10.1016/j.jmrt.2022.11.033_bib33) 1986; 81
Li (10.1016/j.jmrt.2022.11.033_bib11) 2012; 43
Guler (10.1016/j.jmrt.2022.11.033_bib4) 2020; 54
Yuan (10.1016/j.jmrt.2022.11.033_bib8) 2018; 127
Zhang (10.1016/j.jmrt.2022.11.033_bib9) 2016; 658
Sammalkorpi (10.1016/j.jmrt.2022.11.033_bib14) 2004; 70
Zhao (10.1016/j.jmrt.2022.11.033_bib20) 2019; 35
Xin (10.1016/j.jmrt.2022.11.033_bib1) 2021; 7
Chen (10.1016/j.jmrt.2022.11.033_bib5) 2019; 778
Zang (10.1016/j.jmrt.2022.11.033_bib6) 2021; 14
Plimpton (10.1016/j.jmrt.2022.11.033_bib10) 1995; 117
Chu (10.1016/j.jmrt.2022.11.033_bib17) 2019; 143
Chen (10.1016/j.jmrt.2022.11.033_bib25) 2022; 124
References_xml – volume: 144
  year: 2022
  ident: bib19
  article-title: Stability of phase boundary between L12-Ni3Al phases: a phase field study
  publication-title: Intermetallics
– volume: 23
  start-page: 243
  year: 2015
  end-page: 250
  ident: bib35
  article-title: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method
  publication-title: J Ind Eng Chem
– volume: 733
  start-page: 414
  year: 2018
  end-page: 418
  ident: bib2
  article-title: Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction
  publication-title: Mater Sci Eng A
– volume: 54
  start-page: 4473
  year: 2020
  end-page: 4485
  ident: bib4
  article-title: The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites
  publication-title: J Compos Mater
– volume: 144
  start-page: 290
  year: 2018
  end-page: 303
  ident: bib26
  article-title: Interface design of graphene/copper composites by matrix alloying with titanium
  publication-title: Mater Des
– volume: 124
  year: 2022
  ident: bib25
  article-title: From classical thermodynamics to phase-field method
  publication-title: Prog Mater Sci
– volume: 772
  year: 2020
  ident: bib22
  article-title: Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates
  publication-title: Mater Sci Eng A
– volume: 54
  start-page: 1321
  year: 2006
  end-page: 1326
  ident: bib36
  article-title: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength
  publication-title: Scripta Mater
– volume: 9
  start-page: 2495
  year: 2020
  end-page: 2505
  ident: bib28
  article-title: Processing and mechanical properties of Mg-2.8Al-0.8Zn alloy containing bimodal size distribution
  publication-title: J Mater Res Technol
– volume: 81
  start-page: 175
  year: 1986
  end-page: 187
  ident: bib33
  article-title: Dislocation generation due to differences between the coefficients of thermal expansion
  publication-title: Mater Sci Eng
– volume: 127
  start-page: 177
  year: 2018
  end-page: 186
  ident: bib8
  article-title: Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets
  publication-title: Carbon
– volume: 88
  start-page: 983
  year: 2015
  end-page: 989
  ident: bib29
  article-title: Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites
  publication-title: Mater Des
– volume: 804
  year: 2021
  ident: bib7
  article-title: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions
  publication-title: Mater Sci Eng A
– volume: 53
  start-page: 1771
  year: 2005
  end-page: 1781
  ident: bib21
  article-title: A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles
  publication-title: Acta Mater
– volume: 139
  start-page: 954
  year: 2018
  end-page: 963
  ident: bib30
  article-title: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process
  publication-title: Carbon
– volume: 148
  start-page: 86
  year: 2018
  end-page: 99
  ident: bib18
  article-title: Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification
  publication-title: Acta Mater
– volume: 143
  start-page: 85
  year: 2019
  end-page: 96
  ident: bib17
  article-title: Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites
  publication-title: Carbon
– volume: 30
  start-page: 1059
  year: 2014
  end-page: 1070
  ident: bib31
  article-title: Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites
  publication-title: J Mater Sci Technol
– volume: 778
  start-page: 359
  year: 2019
  end-page: 374
  ident: bib5
  article-title: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process
  publication-title: J Alloys Compd
– volume: 109
  start-page: 267
  year: 2018
  end-page: 279
  ident: bib23
  article-title: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene
  publication-title: Compos Appl Sci Manuf
– volume: 56
  start-page: 240
  year: 2019
  end-page: 248
  ident: bib15
  article-title: Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites
  publication-title: Acta Metall Sin
– volume: 216
  year: 2022
  ident: bib27
  article-title: Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study
  publication-title: Mater Des
– volume: 73
  year: 2006
  ident: bib12
  article-title: Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg
  publication-title: Phys Rev B
– volume: 739
  start-page: 329
  year: 2019
  end-page: 334
  ident: bib24
  article-title: Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering
  publication-title: Mater Sci Eng A
– volume: 835
  year: 2020
  ident: bib32
  article-title: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process
  publication-title: J Alloys Compd
– volume: 27
  start-page: 3014
  year: 2018
  end-page: 3023
  ident: bib3
  article-title: Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing
  publication-title: J Mater Eng Perform
– volume: 35
  start-page: 1044
  year: 2019
  end-page: 1052
  ident: bib20
  article-title: Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process
  publication-title: J Mater Sci Technol
– volume: 7
  start-page: 9
  year: 2021
  ident: bib1
  article-title: Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition
  publication-title: Sci Adv
– volume: 140
  start-page: 85
  year: 2018
  end-page: 94
  ident: bib16
  article-title: Thermal properties of graphene/metal composites with aligned graphene
  publication-title: Mater Des
– volume: 96
  start-page: 843
  year: 2016
  end-page: 855
  ident: bib34
  article-title: Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO
  publication-title: Carbon
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib10
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
– volume: 43
  start-page: 1293
  year: 2012
  end-page: 1300
  ident: bib11
  article-title: Atomistic simulations on multilayer graphene reinforced epoxy composites
  publication-title: Compos Appl Sci Manuf
– volume: 112
  start-page: 6472
  year: 2000
  end-page: 6486
  ident: bib13
  article-title: A reactive potential for hydrocarbons with intermolecular interactions
  publication-title: J Chem Phys
– volume: 70
  year: 2004
  ident: bib14
  article-title: Mechanical properties of carbon nanotubes with vacancies and related defects
  publication-title: Phys Rev B
– volume: 14
  start-page: 195
  year: 2021
  end-page: 201
  ident: bib6
  article-title: Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing
  publication-title: J Mater Res Technol
– volume: 658
  start-page: 663
  year: 2016
  end-page: 671
  ident: bib9
  article-title: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties
  publication-title: J Alloys Compd
– volume: 70
  year: 2004
  ident: 10.1016/j.jmrt.2022.11.033_bib14
  article-title: Mechanical properties of carbon nanotubes with vacancies and related defects
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.70.245416
– volume: 30
  start-page: 1059
  year: 2014
  ident: 10.1016/j.jmrt.2022.11.033_bib31
  article-title: Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2014.08.002
– volume: 127
  start-page: 177
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib8
  article-title: Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.090
– volume: 7
  start-page: 9
  year: 2021
  ident: 10.1016/j.jmrt.2022.11.033_bib1
  article-title: Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf3039
– volume: 778
  start-page: 359
  year: 2019
  ident: 10.1016/j.jmrt.2022.11.033_bib5
  article-title: Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.11.148
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.jmrt.2022.11.033_bib10
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1039
– volume: 54
  start-page: 4473
  year: 2020
  ident: 10.1016/j.jmrt.2022.11.033_bib4
  article-title: The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites
  publication-title: J Compos Mater
  doi: 10.1177/0021998320933345
– volume: 835
  year: 2020
  ident: 10.1016/j.jmrt.2022.11.033_bib32
  article-title: Microstructures and properties of graphene-nanoplatelet-reinforced magnesium-matrix composites fabricated by an in situ reaction process
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.155125
– volume: 35
  start-page: 1044
  year: 2019
  ident: 10.1016/j.jmrt.2022.11.033_bib20
  article-title: Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2018.12.009
– volume: 733
  start-page: 414
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib2
  article-title: Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.07.056
– volume: 56
  start-page: 240
  year: 2019
  ident: 10.1016/j.jmrt.2022.11.033_bib15
  article-title: Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites
  publication-title: Acta Metall Sin
– volume: 14
  start-page: 195
  year: 2021
  ident: 10.1016/j.jmrt.2022.11.033_bib6
  article-title: Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.06.052
– volume: 81
  start-page: 175
  year: 1986
  ident: 10.1016/j.jmrt.2022.11.033_bib33
  article-title: Dislocation generation due to differences between the coefficients of thermal expansion
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(86)90261-2
– volume: 216
  year: 2022
  ident: 10.1016/j.jmrt.2022.11.033_bib27
  article-title: Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2022.110555
– volume: 23
  start-page: 243
  year: 2015
  ident: 10.1016/j.jmrt.2022.11.033_bib35
  article-title: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2014.08.024
– volume: 144
  start-page: 290
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib26
  article-title: Interface design of graphene/copper composites by matrix alloying with titanium
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.02.038
– volume: 140
  start-page: 85
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib16
  article-title: Thermal properties of graphene/metal composites with aligned graphene
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.11.048
– volume: 143
  start-page: 85
  year: 2019
  ident: 10.1016/j.jmrt.2022.11.033_bib17
  article-title: Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.095
– volume: 53
  start-page: 1771
  year: 2005
  ident: 10.1016/j.jmrt.2022.11.033_bib21
  article-title: A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.12.026
– volume: 27
  start-page: 3014
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib3
  article-title: Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3391-x
– volume: 88
  start-page: 983
  year: 2015
  ident: 10.1016/j.jmrt.2022.11.033_bib29
  article-title: Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.09.063
– volume: 772
  year: 2020
  ident: 10.1016/j.jmrt.2022.11.033_bib22
  article-title: Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.138681
– volume: 54
  start-page: 1321
  year: 2006
  ident: 10.1016/j.jmrt.2022.11.033_bib36
  article-title: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2005.12.017
– volume: 804
  year: 2021
  ident: 10.1016/j.jmrt.2022.11.033_bib7
  article-title: Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2021.140793
– volume: 148
  start-page: 86
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib18
  article-title: Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.01.040
– volume: 739
  start-page: 329
  year: 2019
  ident: 10.1016/j.jmrt.2022.11.033_bib24
  article-title: Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.10.067
– volume: 43
  start-page: 1293
  year: 2012
  ident: 10.1016/j.jmrt.2022.11.033_bib11
  article-title: Atomistic simulations on multilayer graphene reinforced epoxy composites
  publication-title: Compos Appl Sci Manuf
  doi: 10.1016/j.compositesa.2012.02.015
– volume: 73
  year: 2006
  ident: 10.1016/j.jmrt.2022.11.033_bib12
  article-title: Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.73.024116
– volume: 124
  year: 2022
  ident: 10.1016/j.jmrt.2022.11.033_bib25
  article-title: From classical thermodynamics to phase-field method
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2021.100868
– volume: 112
  start-page: 6472
  year: 2000
  ident: 10.1016/j.jmrt.2022.11.033_bib13
  article-title: A reactive potential for hydrocarbons with intermolecular interactions
  publication-title: J Chem Phys
  doi: 10.1063/1.481208
– volume: 144
  year: 2022
  ident: 10.1016/j.jmrt.2022.11.033_bib19
  article-title: Stability of phase boundary between L12-Ni3Al phases: a phase field study
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2022.107528
– volume: 109
  start-page: 267
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib23
  article-title: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene
  publication-title: Compos Appl Sci Manuf
  doi: 10.1016/j.compositesa.2018.03.014
– volume: 139
  start-page: 954
  year: 2018
  ident: 10.1016/j.jmrt.2022.11.033_bib30
  article-title: Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.009
– volume: 9
  start-page: 2495
  year: 2020
  ident: 10.1016/j.jmrt.2022.11.033_bib28
  article-title: Processing and mechanical properties of Mg-2.8Al-0.8Zn alloy containing bimodal size distribution
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.12.080
– volume: 96
  start-page: 843
  year: 2016
  ident: 10.1016/j.jmrt.2022.11.033_bib34
  article-title: Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.018
– volume: 658
  start-page: 663
  year: 2016
  ident: 10.1016/j.jmrt.2022.11.033_bib9
  article-title: Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2015.10.252
SSID ssj0001596081
Score 2.6134024
SecondaryResourceType review_article
Snippet Graphene nanoplatelets (GNPs) reinforced AZ91D (GNPs/AZ91D) composites were prepared by semi-solid electromagnetic stirring casting. The microstructure,...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 4138
SubjectTerms AZ91D alloy
Composites
Graphene nanoplatelets
Interface
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAaAGxUCofuKGwjh-xc2wLVYVULlBpxSXys9qqm43SIrW_gL_NjOMt20sPHGN5ksgzmRk733xDyEfhmMUfulUy4AKlE65yWvAqGKtbI1vfRNwonn9vzi7kt4Va7JCTTS0MwiqL7598evbWZWReVnM-LJfzHxDYjDZKcohhGsI8-GEhTS7iWxz_O2dRkKPnXqU4v0KBUjszwbyuViNCKjn_jGSeQjyKT5nGfytMbYWe05fkRckZ6dH0WntkJ_b75PkWk-Ar8uccgXUTGezvMVLbBzrgOfuIhKl0nWhmpgbHRnvbr4drSDFBYzd0jJk6FdaBHv1q6y90hZz9dxSh5ojnAuFhjBmmTt09LV1zVvayx-pHCg5ixDeg3t4ggPo1uTj9-vPkrCo9FiovJLutIoMwpn0SKmoOH2hMSXOeaq-58dw2IkYpY82c88z7oFsXLKtTaJvAlPVBvCG7_bqPbwllTeBJKh98nWSMtfGG-br11rq2Ns7PSL1Z2c4XAnLsg3HdbZBmVx1qo0NtwM6kA23MyKcHmWGi33hy9jEq7GEmUmfngfV42RXb6ZIRlktlmU0GyfIt016LRjhpVNLazYjaqLt7ZIlwq-UTD3_3n3LvyTO8muobD8guWEr8AInOrTvMlvwXuGT_LQ
  priority: 102
  providerName: Elsevier
Title Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting
URI https://dx.doi.org/10.1016/j.jmrt.2022.11.033
https://doaj.org/article/f83a245a0af84965a07c7363b485f77b
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugB8WjV5SUfuKEUvxI7xxaoWqRyotKKS2SPbUTVza7SIsEv4G8zE2ercCmXXnKI_JJnMjN2vvmGsbc6CE8_dKvs0ASaoEMVrFZVdN62zrTQJDooXnxpzi7N52W9nJX6IkxYoQcuG_c-O-2Vqb3w2RG3uRcWrG50MK7O1gayvujzZoepkh-MkflYoRTdn6usq82UMVPAXVergYCUSh0RhafW_3ilkbx_5pxmDuf0CXs8RYr8uKzwKdtJ_TO2N-MPfM7-XBCcrlDA_hwS933kG7pdH4gmla8zH_mo0Zzx3vfrzTUGliinGz6kkTAVUuTH31r5ka-Iqf8XJ4A5obiw82ZIIzidh998qpWz8t97ynnkaBYGWgEHf0Ow6X12efrp64ezaqqsUIE24rZKAp2XhazrZBV-lilnq1SWYJUD5RudkjFJihBAAETbhuiFzLFtoqg9RH3Advt1nw4ZF01U2dQQQWaTknTgBMgWvA-tdAEWTG53toOJdpyqX1x3W3zZVUfS6EgaeB7pUBoL9u6uz6aQbtzb-oQEdteSCLPHF6hG3aRG3f_UaMHqrbi7KfYoMQUO9eOeyV88xOQv2SMasqQ4vmK7qDbpNcY6t-HNqNb4PF-e_AXtOP8j
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQ9oD7FFtr60FuVrmM7sXMEWrS0LJeCtOol8hMtYrNRAIn-gv5tZhIvXS4cek08ieWZzIydb74h5LOwzOAP3SxqcIHSCptZJXjmtVGVlpUrA24Upyfl5Ez-mBWzDXKwqoVBWGXy_YNP7711ujJOqzlu5_PxLwhsWulCcohhCsL8E_IUsgGF_RuOZvv_DloKSNL7ZqUokKFEKp4ZcF4Xiw4xlZx_RTZPIR4EqJ7Hfy1OrcWew5dkKyWNdG-Y1yuyEZrX5MUaleAb8neKyLqBDfamC9Q0nrZ40N4hYypdRtpTU4Nno41plu0l5JigsivahZ47FRaC7v2u8m90gaT9txSx5gjoAuG2Cz1Ondo_NLXNWZjzBssfKXiIDmdAnblCBPVbcnb4_fRgkqUmC5kTkl1ngUEcUy6KIigOX2iIUXEec6e4dtyUIgQpQ86sdcw5ryrrDcujr0rPCuO8eEc2m2UTtgllpedRFs67PMoQcu00c3nljLFVrq0bkXy1srVLDOTYCOOyXkHNLmrURo3agK1JDdoYkS_3Mu3Av_Ho6H1U2P1I5M7uLyy78zoZTx21MFwWhpmokS3fMOWUKIWVuohK2REpVuquH5giPGr-yMvf_6fcJ_Jscjo9ro-PTn7ukOd4Zyh23CWbYDXhA2Q91_Zjb9V3i4wCWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+properties+of+graphene+nanoplatelets+reinforced+AZ91D+matrix+composites+prepared+by+electromagnetic+stirring+casting&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Muxi+Li&rft.au=Qingwei+Guo&rft.au=Liwen+Chen&rft.au=Limin+Li&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=2238-7854&rft.volume=21&rft.spage=4138&rft.epage=4150&rft_id=info:doi/10.1016%2Fj.jmrt.2022.11.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f83a245a0af84965a07c7363b485f77b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon