Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy

•19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emergi...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials letters Vol. 2; p. 100023
Main Authors Camdzic, Dino, Dickman, Rebecca A., Aga, Diana S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emerging and legacy contaminants added to scientific literature. This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs.
AbstractList This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs.
•19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emerging and legacy contaminants added to scientific literature. This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs.
ArticleNumber 100023
Author Dickman, Rebecca A.
Aga, Diana S.
Camdzic, Dino
Author_xml – sequence: 1
  givenname: Dino
  surname: Camdzic
  fullname: Camdzic, Dino
– sequence: 2
  givenname: Rebecca A.
  surname: Dickman
  fullname: Dickman, Rebecca A.
– sequence: 3
  givenname: Diana S.
  orcidid: 0000-0001-6512-7713
  surname: Aga
  fullname: Aga, Diana S.
  email: dianaaga@buffalo.edu
BookMark eNp9UU1r3DAUFCWFpmn-QE_6A97qyV7ZhlxK6EcgkEtyFs9P8lYbrWQkb8D9E_3LlbOlhBxyGjF6M9Kb-cjOQgyWsc8gNiBAfdlvfuFvv5FCQiGEkPU7di6VUlUPIM5enD-wy5z360gHUNfinP25jzN6jsFw8phzlSdLbnRUKPRLdpnHkU82Vc8zU_TL6I8xRfSPi-f5OOQZA9nMXeA2PLkUw8GG1TPjYfLl4phd2PFwJG8x8QPugp2Lf7I5hlXK1yfnFDPFafnE3o_os738hxfs4fu3--uf1e3dj5vrr7cV1Y2YKyMMDeOgBmlAkK1bHHogJdutgW1LSlDXGkViW7DDfsQaFKq-Qdm00NRNfcFuTr4m4l5PyR0wLTqi089ETDuNqXzTWw3WILUSRDfKZqR-KACAQhqBraC-eMmTF5UlcrLjfz8Qem1I7_XakF4b0qeGiqh7JSI34-ximBM6_7b06iS1JaAnZ5PO5GxJ0rhUkiwbuLfkfwG1jLH3
CitedBy_id crossref_primary_10_1002_jssc_202400235
crossref_primary_10_1002_adfm_202409932
crossref_primary_10_1007_s00216_024_05426_2
crossref_primary_10_1080_19440049_2024_2423868
crossref_primary_10_1039_D4EM00546E
crossref_primary_10_1039_D4SU00152D
crossref_primary_10_1177_11786302241310430
crossref_primary_10_1021_acs_jpcc_3c07125
crossref_primary_10_3390_w15203577
crossref_primary_10_1038_s41467_024_49809_6
crossref_primary_10_1016_j_jenvman_2022_114655
crossref_primary_10_1002_jcc_26939
crossref_primary_10_1021_acs_est_2c02251
crossref_primary_10_1021_acsnanoscienceau_3c00022
crossref_primary_10_1021_jacs_2c09866
crossref_primary_10_1021_jacs_4c00443
crossref_primary_10_1021_acs_est_2c04864
crossref_primary_10_1021_jacsau_4c00220
crossref_primary_10_1016_j_trac_2023_117062
crossref_primary_10_1021_acsomega_3c06239
crossref_primary_10_1007_s11356_022_23901_0
crossref_primary_10_1016_j_chemosphere_2024_141270
crossref_primary_10_1039_D4RA08214A
crossref_primary_10_1021_acs_analchem_2c05354
crossref_primary_10_1021_acs_analchem_3c04404
crossref_primary_10_1021_acsestwater_4c00631
crossref_primary_10_1021_acsomega_4c09483
crossref_primary_10_1021_acs_est_3c01220
crossref_primary_10_3390_pollutants4010009
crossref_primary_10_3390_toxics11040335
Cites_doi 10.1007/s00216-016-0110-z
10.1039/C9EW00645A
10.1016/j.chroma.2016.10.060
10.1038/35085548
10.1016/j.chroma.2007.06.068
10.1007/BF02493363
10.1021/ac301201y
10.1016/j.reprotox.2011.11.005
10.1016/j.chemosphere.2018.12.186
10.1071/EN20008
10.1016/j.envpol.2019.02.018
10.1016/j.chroma.2005.05.064
10.1016/j.yrtph.2010.09.008
10.1016/j.jhazmat.2020.123478
10.1021/es0512475
10.1007/s00216-006-1008-y
10.1016/j.chemosphere.2014.05.044
10.1136/oemed-2017-104651
10.1021/acs.est.8b02492
10.1016/j.jchromb.2017.09.036
10.1021/es9003894
10.1039/C9EW00765B
10.1016/j.aca.2018.11.037
10.1016/j.chemosphere.2020.127115
10.1016/j.jhazmat.2013.03.016
10.1016/j.envpol.2018.03.017
10.1002/ieam.258
10.1039/C7JA00051K
10.1016/j.trac.2019.02.024
10.1021/es4000824
10.1039/C8JA00050F
10.1021/acs.est.6b05843
10.1021/es048245p
10.1016/j.envres.2019.108648
10.1016/j.envres.2018.08.004
10.1016/j.jhazmat.2017.02.006
10.1021/ac9910280
10.1021/es302274g
10.1002/cmr.a.21422
10.1016/j.chroma.2013.02.085
10.1016/S1044-0305(96)00073-6
10.1021/acsomega.8b02279
10.1021/jp049372a
10.1002/jms.856
10.1016/j.chemosphere.2016.01.014
10.1016/j.envpol.2010.07.019
10.1016/j.trac.2019.05.015
10.1016/j.trac.2019.02.021
10.1016/j.jhazmat.2020.122271
10.1016/j.envint.2018.06.009
10.1016/j.scitotenv.2020.143944
10.1021/ac0100648
10.1016/j.jhazmat.2020.123706
10.1016/j.pnmrs.2012.10.001
10.1021/acs.est.6b05005
10.1021/acs.analchem.6b04746
10.1007/s00216-006-0902-7
10.1016/j.chemosphere.2018.06.024
10.1039/C9EW00663J
10.1016/0584-8547(84)80042-7
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.hazl.2021.100023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2666-9110
ExternalDocumentID oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9
10_1016_j_hazl_2021_100023
S2666911021000113
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
AAFWJ
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-d0dcbfb6b2d10ce37ab91c6275d157c60c87d6c05c878a9fa316a694a24714343
IEDL.DBID DOA
ISSN 2666-9110
IngestDate Wed Aug 27 01:17:35 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 01:31:44 EDT 2025
Fri Feb 23 02:42:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nontarget analysis
Perfluorooctanoic acid
PFAS
Electrospray LC–MS
Biosolids
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-d0dcbfb6b2d10ce37ab91c6275d157c60c87d6c05c878a9fa316a694a24714343
ORCID 0000-0001-6512-7713
OpenAccessLink https://doaj.org/article/1edac72108f24fc9bf2411a02d0a70c9
ParticipantIDs doaj_primary_oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9
crossref_primary_10_1016_j_hazl_2021_100023
crossref_citationtrail_10_1016_j_hazl_2021_100023
elsevier_sciencedirect_doi_10_1016_j_hazl_2021_100023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Journal of hazardous materials letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Anderson, Long, Porter, Anderson (bib0025) 2016; 150
Rauert, Shoieb, Schuster, Eng, Harner (bib0260) 2018; 238
Guardian, Antle, Vexelman, Aga, Simpson (bib0120) 2021; 402
USEPA (bib0290) 2007
Ellis, Mabury, Martin, Muir (bib0080) 2001; 412
Gremmel, Fromel, Knepper (bib0110) 2017; 409
Ateia, Maroli, Tharayil, Karanfil (bib0030) 2019; 220
Choi, Lee, Kim, Mun, Park, Jeon (bib0060) 2021; 402
Kelly, Ikonomou, Blair, Surridge, Hoover, Grace, Gobas (bib0185) 2009; 43
Zacs, Bartkevics (bib0330) 2016; 1473
Houtz, Sedlak (bib0135) 2012; 46
Shoemaker, Tettenhorst (bib0275) 2018
3M Company Technical Bulletin (bib0005) 1995
Mejia-Avendaño, Munoz, Sauvé, Liu (bib0215) 2017; 89
Guardian, Boongaling, Bernardo-Boongaling, Gamonchuang, Boontongto, Burakham, Arnnok, Aga (bib0115) 2020; 256
Hepburn, Madden, Szabo, Coggan, Clarke, Currell (bib0125) 2019; 248
Winkens, Giovanoulis, Koponen, Vestergren, Berger, Karvonen, Pekkanen, Kiviranta, Cousins (bib0310) 2018; 119
USEPA (bib0285) 2020
William, Dolbier (bib0305) 2009
Buck, Franklin, Berger, Conder, Cousins, T.; de Voogt, Jensen, Kannan, Mabury, van Leeuwen (bib0050) 2011; 7
Venkatesan, Halden (bib0295) 2013; 252-253
Mullin, Katz, Riddell, Plumb, Burgess, Yeung, Jogsten (bib0230) 2019; 118
Wei, Xu, Zhao (bib0300) 2019; 5
Gallen, Eaglesham, Drage, Nguyen, Mueller (bib0095) 2018; 208
Ellis, Martin, Muir, Mabury (bib0075) 2000; 72
Jahnke, Ahrens, Ebinghaus, Berger, Barber, Temme (bib0155) 2007; 387
Azua Jamari, Behrens, Raab, Krupp, Feldmann (bib0035) 2018; 33
Ahmadireskety, Da Silva, Townsend, Yost, Solo-Gabriele, Bowden (bib0015) 2021; 760
Barzen-Hanson, Roberts, Choyke, Oetjen, McAlees, Riddell, McCrindle, Ferguson, Higgins, Field (bib0040) 2017; 51
Li, Fletcher, Mucs, Scott, Lindh, Tallving, Jakobsson (bib0200) 2018; 75
C8 Science Panel (bib0055) 2021
Gordon (bib0105) 2011; 59
Möller, Ahrens, Surm, Westerveld, Van Der Wielen, Ebinghaus, De Voogt (bib0220) 2010; 158
Qin, McNee, Gleisner, Raab, Kyeremeh, Jaspars, Krupp, Deng, Feldmann (bib0255) 2012; 84
Domingo, Nadal (bib0070) 2019; 177
Hu, Noll, Li, Makarov, Hardman, Graham Cooks (bib0140) 2005; 40
Mattes, Russell, Tishchenko, Liu, Cichewicz, Robinson (bib0210) 2016; 45A
Abbott, Wood, Watkins, Tatum-Gibbs, Das, Lau (bib0010) 2012; 33
Berger, Haukås (bib0045) 2005; 1081
Jamari, Dohmann, Raab, Krupp, Feldmann (bib0165) 2017; 32
Yu, Guo, Yang, Jin, Wang, Shi, Zhang, Yu, Wei (bib0325) 2018; 52
Peng, Hu, Zhao, Hu (bib0240) 2013; 1288
Sari Erkan (bib0265) 2019; 5
Akhbarizadeh, Dobaradaran, Schmidt, Nabipour, Spitz (bib0020) 2020; 392
Gallen, Drage, Eaglesham, Grant, Bowman, Mueller (bib0090) 2017; 331
Huang, Hwangbo, Chen, Liu, Kameoka, Chu (bib0145) 2018; 3
Hutchinson, Rieck, Wu (bib0150) 2020; 17
Koch, Aro, Wang, Yeung (bib0190) 2020; 123
Moody, Kwan, Martin, Muir, Mabury (bib0225) 2001; 73
Prevedouros, Cousins, Buck, Korzeniowski (bib0250) 2006; 40
Jiang, Gao, Zhang (bib0175) 2015
Zhang, Szostek, McCausland, Wolstenholme, Lu, Wang, Buck (bib0335) 2013; 47
Scheringer, Trier, Cousins, T.; De Voogt, Fletcher, Wang, Webster (bib0270) 2014; 114
Point, Holsen, Fernando, Hopke, Crimmins (bib0245) 2019; 5
Dittrich, Vorberg, Funk, Beyer (bib0065) 1984; 39
Jahnke, Huber, Temme, Kylin, Berger (bib0160) 2007; 1164
Liu, D’Agostino, Qu, Jiang, Martin (bib0205) 2019; 121
Zhang, Wen, Wen, Ma, Hu, Wu, Luo, Zhang (bib0340) 2018; 1072
Kebarle, Tang (bib0180) 1993; 65
Yu, Hallac, Chiguru, Mason (bib0320) 2013; 70
Lang, Allred, Field, Levis, Barlaz (bib0195) 2017; 51
González-Barreiro, Martínez-Carballo, Sitka, Scharf, Gans (bib0100) 2006; 386
Jamari, Dohmann, Raab, Krupp, Feldmann (bib0170) 2019; 1053
Yen, Judith, Voyksner (bib0315) 1996; 7
Smeraglia, S. F. B, Watson (bib0280) 2002; 55
Pachkowski, Post, Stern (bib0235) 2019; 171
Higgins, Field, Criddle, Luthy (bib0130) 2005; 39
Ellis, Denkenberger, Burrow, Mabury (bib0085) 2004; 108
Qin (10.1016/j.hazl.2021.100023_bib0255) 2012; 84
Shoemaker (10.1016/j.hazl.2021.100023_bib0275) 2018
Gallen (10.1016/j.hazl.2021.100023_bib0090) 2017; 331
Ellis (10.1016/j.hazl.2021.100023_bib0085) 2004; 108
Higgins (10.1016/j.hazl.2021.100023_bib0130) 2005; 39
William (10.1016/j.hazl.2021.100023_bib0305) 2009
Rauert (10.1016/j.hazl.2021.100023_bib0260) 2018; 238
Hu (10.1016/j.hazl.2021.100023_bib0140) 2005; 40
Dittrich (10.1016/j.hazl.2021.100023_bib0065) 1984; 39
Guardian (10.1016/j.hazl.2021.100023_bib0115) 2020; 256
Jahnke (10.1016/j.hazl.2021.100023_bib0155) 2007; 387
Akhbarizadeh (10.1016/j.hazl.2021.100023_bib0020) 2020; 392
3M Company Technical Bulletin (10.1016/j.hazl.2021.100023_bib0005) 1995
Ateia (10.1016/j.hazl.2021.100023_bib0030) 2019; 220
Abbott (10.1016/j.hazl.2021.100023_bib0010) 2012; 33
C8 Science Panel (10.1016/j.hazl.2021.100023_bib0055) 2021
Möller (10.1016/j.hazl.2021.100023_bib0220) 2010; 158
Smeraglia (10.1016/j.hazl.2021.100023_bib0280) 2002; 55
Point (10.1016/j.hazl.2021.100023_bib0245) 2019; 5
Scheringer (10.1016/j.hazl.2021.100023_bib0270) 2014; 114
Buck (10.1016/j.hazl.2021.100023_bib0050) 2011; 7
Gremmel (10.1016/j.hazl.2021.100023_bib0110) 2017; 409
Sari Erkan (10.1016/j.hazl.2021.100023_bib0265) 2019; 5
Huang (10.1016/j.hazl.2021.100023_bib0145) 2018; 3
Jamari (10.1016/j.hazl.2021.100023_bib0165) 2017; 32
Choi (10.1016/j.hazl.2021.100023_bib0060) 2021; 402
Ellis (10.1016/j.hazl.2021.100023_bib0075) 2000; 72
Barzen-Hanson (10.1016/j.hazl.2021.100023_bib0040) 2017; 51
Li (10.1016/j.hazl.2021.100023_bib0200) 2018; 75
Yu (10.1016/j.hazl.2021.100023_bib0325) 2018; 52
Mejia-Avendaño (10.1016/j.hazl.2021.100023_bib0215) 2017; 89
Ellis (10.1016/j.hazl.2021.100023_bib0080) 2001; 412
Mullin (10.1016/j.hazl.2021.100023_bib0230) 2019; 118
USEPA (10.1016/j.hazl.2021.100023_bib0285) 2020
Gallen (10.1016/j.hazl.2021.100023_bib0095) 2018; 208
Kelly (10.1016/j.hazl.2021.100023_bib0185) 2009; 43
Liu (10.1016/j.hazl.2021.100023_bib0205) 2019; 121
Moody (10.1016/j.hazl.2021.100023_bib0225) 2001; 73
Venkatesan (10.1016/j.hazl.2021.100023_bib0295) 2013; 252-253
Kebarle (10.1016/j.hazl.2021.100023_bib0180) 1993; 65
Jamari (10.1016/j.hazl.2021.100023_bib0170) 2019; 1053
Koch (10.1016/j.hazl.2021.100023_bib0190) 2020; 123
Peng (10.1016/j.hazl.2021.100023_bib0240) 2013; 1288
Houtz (10.1016/j.hazl.2021.100023_bib0135) 2012; 46
Zhang (10.1016/j.hazl.2021.100023_bib0340) 2018; 1072
Pachkowski (10.1016/j.hazl.2021.100023_bib0235) 2019; 171
Lang (10.1016/j.hazl.2021.100023_bib0195) 2017; 51
Zhang (10.1016/j.hazl.2021.100023_bib0335) 2013; 47
Jahnke (10.1016/j.hazl.2021.100023_bib0160) 2007; 1164
Prevedouros (10.1016/j.hazl.2021.100023_bib0250) 2006; 40
Hutchinson (10.1016/j.hazl.2021.100023_bib0150) 2020; 17
Hepburn (10.1016/j.hazl.2021.100023_bib0125) 2019; 248
Domingo (10.1016/j.hazl.2021.100023_bib0070) 2019; 177
Wei (10.1016/j.hazl.2021.100023_bib0300) 2019; 5
Ahmadireskety (10.1016/j.hazl.2021.100023_bib0015) 2021; 760
Jiang (10.1016/j.hazl.2021.100023_bib0175) 2015
Mattes (10.1016/j.hazl.2021.100023_bib0210) 2016; 45A
Azua Jamari (10.1016/j.hazl.2021.100023_bib0035) 2018; 33
Yu (10.1016/j.hazl.2021.100023_bib0320) 2013; 70
Gordon (10.1016/j.hazl.2021.100023_bib0105) 2011; 59
Berger (10.1016/j.hazl.2021.100023_bib0045) 2005; 1081
Zacs (10.1016/j.hazl.2021.100023_bib0330) 2016; 1473
Yen (10.1016/j.hazl.2021.100023_bib0315) 1996; 7
Guardian (10.1016/j.hazl.2021.100023_bib0120) 2021; 402
USEPA (10.1016/j.hazl.2021.100023_bib0290) 2007
Anderson (10.1016/j.hazl.2021.100023_bib0025) 2016; 150
González-Barreiro (10.1016/j.hazl.2021.100023_bib0100) 2006; 386
Winkens (10.1016/j.hazl.2021.100023_bib0310) 2018; 119
References_xml – volume: 40
  start-page: 430
  year: 2005
  end-page: 443
  ident: bib0140
  article-title: The Orbitrap: a new mass spectrometer
  publication-title: J. Mass Spectrom.
– volume: 17
  start-page: 558
  year: 2020
  end-page: 567
  ident: bib0150
  article-title: Advanced PFAS precursor digestion methods for biosolids
  publication-title: Environ. Chem.
– volume: 33
  start-page: 491
  year: 2012
  end-page: 505
  ident: bib0010
  article-title: Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues
  publication-title: Reprod. Toxicol.
– volume: 72
  start-page: 726
  year: 2000
  end-page: 731
  ident: bib0075
  article-title: Development of an19F NMR method for the analysis of fluorinated acids in environmental water samples
  publication-title: Anal. Chem.
– volume: 119
  start-page: 493
  year: 2018
  end-page: 502
  ident: bib0310
  article-title: Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms – implications for indoor exposure
  publication-title: Environ. Int.
– volume: 108
  start-page: 10099
  year: 2004
  end-page: 10106
  ident: bib0085
  article-title: The use of 19F NMR to interpret the structural properties of perfluorocarboxylate acids: a possible correlation with their environmental disposition
  publication-title: J. Phys. Chem. A
– volume: 386
  start-page: 2123
  year: 2006
  end-page: 2132
  ident: bib0100
  article-title: Method optimization for determination of selected perfluorinated alkylated substances in water samples
  publication-title: Anal. Bioanal. Chem.
– year: 2009
  ident: bib0305
  article-title: Guide to Fluorine NMR for Organic Chemists
– volume: 409
  start-page: 1643
  year: 2017
  end-page: 1655
  ident: bib0110
  article-title: HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples
  publication-title: Anal. Bioanal. Chem.
– volume: 46
  start-page: 9342
  year: 2012
  end-page: 9349
  ident: bib0135
  article-title: Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff
  publication-title: Environ. Sci. Technol.
– volume: 387
  start-page: 965
  year: 2007
  end-page: 975
  ident: bib0155
  article-title: An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples
  publication-title: Anal. Bioanal. Chem.
– volume: 121
  start-page: 115420
  year: 2019
  ident: bib0205
  article-title: High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples
  publication-title: Trac Trends Anal. Chem.
– volume: 220
  start-page: 866
  year: 2019
  end-page: 882
  ident: bib0030
  article-title: The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review
  publication-title: Chemosphere
– year: 2007
  ident: bib0290
  article-title: Method 1694 for Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS
– volume: 114
  start-page: 337
  year: 2014
  end-page: 339
  ident: bib0270
  article-title: Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs)
  publication-title: Chemosphere
– year: 2020
  ident: bib0285
  article-title: CompTox Chemistry Dashboard PFAS Master List of PFAS Substances
– volume: 158
  start-page: 3243
  year: 2010
  end-page: 3250
  ident: bib0220
  article-title: Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed
  publication-title: Environ. Pollut.
– volume: 1164
  start-page: 1
  year: 2007
  end-page: 9
  ident: bib0160
  article-title: Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air
  publication-title: J. Chromatogr. A
– volume: 5
  start-page: 1876
  year: 2019
  end-page: 1886
  ident: bib0245
  article-title: Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues
  publication-title: Environ. Sci. Water Res. Technol.
– year: 2018
  ident: bib0275
  publication-title: Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
– volume: 5
  start-page: 2027
  year: 2019
  end-page: 2040
  ident: bib0265
  article-title: Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: a comparative study
  publication-title: Environ. Sci. Water Res. Technol.
– year: 1995
  ident: bib0005
  article-title: 3M The Leader in Electro-fluorinations
– volume: 1288
  start-page: 48
  year: 2013
  end-page: 53
  ident: bib0240
  article-title: Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography–electrospray tandem mass spectrometry
  publication-title: J. Chromatogr. A
– volume: 1081
  start-page: 210
  year: 2005
  end-page: 217
  ident: bib0045
  article-title: Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota
  publication-title: J. Chromatogr. A
– volume: 1053
  start-page: 22
  year: 2019
  end-page: 31
  ident: bib0170
  article-title: Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS)
  publication-title: Anal. Chim. Acta
– volume: 89
  start-page: 2539
  year: 2017
  end-page: 2546
  ident: bib0215
  article-title: Assessment of the influence of soil characteristics and hydrocarbon fuel cocontamination on the solvent extraction of perfluoroalkyl and polyfluoroalkyl substances
  publication-title: Anal. Chem.
– volume: 32
  start-page: 942
  year: 2017
  end-page: 950
  ident: bib0165
  article-title: Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS
  publication-title: J. Anal. At. Spectrom.
– volume: 412
  start-page: 321
  year: 2001
  end-page: 324
  ident: bib0080
  article-title: Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment
  publication-title: Nature
– volume: 70
  start-page: 25
  year: 2013
  end-page: 49
  ident: bib0320
  article-title: New frontiers and developing applications in 19F NMR
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– start-page: 177
  year: 2015
  end-page: 201
  ident: bib0175
  article-title: Metabolic Effects PFAS
– volume: 39
  start-page: 3946
  year: 2005
  end-page: 3956
  ident: bib0130
  article-title: Quantitative determination of perfluorochemicals in sediments and domestic sludge
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 46
  year: 2018
  end-page: 51
  ident: bib0200
  article-title: Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water
  publication-title: Occup. Environ. Med.
– volume: 208
  start-page: 975
  year: 2018
  end-page: 983
  ident: bib0095
  article-title: A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants
  publication-title: Chemosphere
– volume: 238
  start-page: 94
  year: 2018
  end-page: 102
  ident: bib0260
  article-title: Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 2047
  year: 2017
  end-page: 2057
  ident: bib0040
  article-title: Discovery of 40 Classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater
  publication-title: Environ. Sci. Technol.
– volume: 150
  start-page: 678
  year: 2016
  end-page: 685
  ident: bib0025
  article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties
  publication-title: Chemosphere
– volume: 33
  start-page: 1304
  year: 2018
  end-page: 1309
  ident: bib0035
  article-title: Plasma processes to detect fluorine with ICPMS/MS as [M–F]+: an argument for building a negative mode ICPMS/MS
  publication-title: J. Anal. At. Spectrom.
– volume: 123
  start-page: 115423
  year: 2020
  ident: bib0190
  article-title: Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples
  publication-title: Trac Trends Anal. Chem.
– volume: 171
  start-page: 452
  year: 2019
  end-page: 469
  ident: bib0235
  article-title: The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression
  publication-title: Environ. Res.
– volume: 84
  start-page: 6213
  year: 2012
  end-page: 6219
  ident: bib0255
  article-title: Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biologica
  publication-title: Anal. Chem.
– volume: 52
  start-page: 8205
  year: 2018
  end-page: 8214
  ident: bib0325
  article-title: Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China
  publication-title: Environ. Sci. Technol.
– volume: 402
  start-page: 123706
  year: 2021
  ident: bib0060
  article-title: Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: application of LC-HRMS based suspect and non-target screening
  publication-title: J. Hazard. Mater.
– volume: 43
  start-page: 4037
  year: 2009
  end-page: 4043
  ident: bib0185
  article-title: Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure
  publication-title: Environ. Sci. Technol.
– volume: 73
  start-page: 2200
  year: 2001
  end-page: 2206
  ident: bib0225
  article-title: Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and19F NMR
  publication-title: Anal. Chem.
– volume: 1473
  start-page: 109
  year: 2016
  end-page: 121
  ident: bib0330
  article-title: Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography – orbitrap mass spectrometry
  publication-title: J. Chromatogr. A
– volume: 55
  year: 2002
  ident: bib0280
  article-title: Matrix effects and selectivity issues in LC-MS-MS
  publication-title: Chromatographia
– volume: 1072
  start-page: 25
  year: 2018
  end-page: 33
  ident: bib0340
  article-title: Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry
  publication-title: J. Chromatogr. B
– volume: 3
  start-page: 17447
  year: 2018
  ident: bib0145
  article-title: Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution
  publication-title: ACS Omega
– volume: 5
  start-page: 1814
  year: 2019
  end-page: 1835
  ident: bib0300
  article-title: Treatment of per- and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 177
  start-page: 108648
  year: 2019
  ident: bib0070
  article-title: Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature
  publication-title: Environ. Res.
– volume: 402
  start-page: 123478
  year: 2021
  ident: bib0120
  article-title: Resolving unknown isomers of emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples using COSMO-RS-derived retention factor and mass fragmentation patterns
  publication-title: J. Hazard. Mater.
– volume: 392
  start-page: 122271
  year: 2020
  ident: bib0020
  article-title: Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature
  publication-title: J. Hazard. Mater.
– volume: 331
  start-page: 132
  year: 2017
  end-page: 141
  ident: bib0090
  article-title: Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates
  publication-title: J. Hazard. Mater.
– volume: 256
  start-page: 127115
  year: 2020
  ident: bib0115
  article-title: Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries
  publication-title: Chemosphere
– year: 2021
  ident: bib0055
  article-title: The Science Panel Website
– volume: 39
  start-page: 349
  year: 1984
  end-page: 363
  ident: bib0065
  article-title: Determination of some nonmetals by using diatomic molecular absorbance in a hot graphite furnace
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
– volume: 59
  start-page: 64
  year: 2011
  end-page: 80
  ident: bib0105
  article-title: Toxicological evaluation of ammonium 4,8-dioxa-3H-perfluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing
  publication-title: Regul. Toxicol. Pharmacol.
– volume: 248
  start-page: 101
  year: 2019
  end-page: 113
  ident: bib0125
  article-title: Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct
  publication-title: Environ. Pollut.
– volume: 760
  start-page: 143944
  year: 2021
  ident: bib0015
  article-title: Evaluation of extraction workflows for quantitative analysis of per- and polyfluoroalkyl substances: a case study using soil adjacent to a landfill
  publication-title: Sci. Total Environ.
– volume: 45A
  start-page: e21422
  year: 2016
  ident: bib0210
  article-title: Application of 19F quantitative NMR to pharmaceutical analysis
  publication-title: Concepts Magn. Reson. Part A
– volume: 7
  start-page: 513
  year: 2011
  end-page: 541
  ident: bib0050
  article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins
  publication-title: Integr. Environ. Assess. Manag.
– volume: 47
  start-page: 4227
  year: 2013
  end-page: 4235
  ident: bib0335
  article-title: 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions
  publication-title: Environ. Sci. Technol.
– volume: 118
  start-page: 828
  year: 2019
  end-page: 839
  ident: bib0230
  article-title: Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): review of current approaches and environmental levels
  publication-title: Trac Trends Anal. Chem.
– volume: 252-253
  start-page: 413
  year: 2013
  end-page: 418
  ident: bib0295
  article-title: National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey
  publication-title: J. Hazard. Mater.
– volume: 65
  start-page: 972A
  year: 1993
  end-page: 986A
  ident: bib0180
  article-title: From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry
  publication-title: Anal. Chem.
– volume: 40
  start-page: 32
  year: 2006
  end-page: 44
  ident: bib0250
  article-title: Sources, fate and transport of perfluorocarboxylates
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 1106
  year: 1996
  end-page: 1108
  ident: bib0315
  article-title: Processes that affect electrospray ionization-mass spectrometry of nucleobases and nucleosides
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 51
  start-page: 2197
  year: 2017
  end-page: 2205
  ident: bib0195
  article-title: National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate
  publication-title: Environ. Sci. Technol.
– start-page: 177
  year: 2015
  ident: 10.1016/j.hazl.2021.100023_bib0175
– volume: 409
  start-page: 1643
  issue: 6
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0110
  article-title: HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-016-0110-z
– volume: 5
  start-page: 1814
  issue: 11
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0300
  article-title: Treatment of per- and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C9EW00645A
– volume: 1473
  start-page: 109
  year: 2016
  ident: 10.1016/j.hazl.2021.100023_bib0330
  article-title: Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography – orbitrap mass spectrometry
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.10.060
– volume: 412
  start-page: 321
  issue: 6844
  year: 2001
  ident: 10.1016/j.hazl.2021.100023_bib0080
  article-title: Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment
  publication-title: Nature
  doi: 10.1038/35085548
– volume: 1164
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.hazl.2021.100023_bib0160
  article-title: Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.06.068
– volume: 55
  year: 2002
  ident: 10.1016/j.hazl.2021.100023_bib0280
  article-title: Matrix effects and selectivity issues in LC-MS-MS
  publication-title: Chromatographia
  doi: 10.1007/BF02493363
– volume: 84
  start-page: 6213
  issue: 14
  year: 2012
  ident: 10.1016/j.hazl.2021.100023_bib0255
  article-title: Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biologica
  publication-title: Anal. Chem.
  doi: 10.1021/ac301201y
– volume: 33
  start-page: 491
  issue: 4
  year: 2012
  ident: 10.1016/j.hazl.2021.100023_bib0010
  article-title: Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2011.11.005
– volume: 220
  start-page: 866
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0030
  article-title: The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.186
– volume: 17
  start-page: 558
  year: 2020
  ident: 10.1016/j.hazl.2021.100023_bib0150
  article-title: Advanced PFAS precursor digestion methods for biosolids
  publication-title: Environ. Chem.
  doi: 10.1071/EN20008
– volume: 248
  start-page: 101
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0125
  article-title: Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.018
– volume: 1081
  start-page: 210
  issue: 2
  year: 2005
  ident: 10.1016/j.hazl.2021.100023_bib0045
  article-title: Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.05.064
– volume: 59
  start-page: 64
  issue: 1
  year: 2011
  ident: 10.1016/j.hazl.2021.100023_bib0105
  article-title: Toxicological evaluation of ammonium 4,8-dioxa-3H-perfluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2010.09.008
– volume: 402
  start-page: 123478
  year: 2021
  ident: 10.1016/j.hazl.2021.100023_bib0120
  article-title: Resolving unknown isomers of emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples using COSMO-RS-derived retention factor and mass fragmentation patterns
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123478
– volume: 40
  start-page: 32
  issue: 1
  year: 2006
  ident: 10.1016/j.hazl.2021.100023_bib0250
  article-title: Sources, fate and transport of perfluorocarboxylates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0512475
– volume: 387
  start-page: 965
  issue: 3
  year: 2007
  ident: 10.1016/j.hazl.2021.100023_bib0155
  article-title: An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-1008-y
– volume: 114
  start-page: 337
  year: 2014
  ident: 10.1016/j.hazl.2021.100023_bib0270
  article-title: Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.05.044
– volume: 75
  start-page: 46
  issue: 1
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0200
  article-title: Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oemed-2017-104651
– volume: 52
  start-page: 8205
  issue: 15
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0325
  article-title: Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02492
– volume: 1072
  start-page: 25
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0340
  article-title: Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2017.09.036
– volume: 43
  start-page: 4037
  issue: 11
  year: 2009
  ident: 10.1016/j.hazl.2021.100023_bib0185
  article-title: Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9003894
– volume: 65
  start-page: 972A
  issue: 22
  year: 1993
  ident: 10.1016/j.hazl.2021.100023_bib0180
  article-title: From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry
  publication-title: Anal. Chem.
– volume: 5
  start-page: 1876
  issue: 11
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0245
  article-title: Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C9EW00765B
– year: 2009
  ident: 10.1016/j.hazl.2021.100023_bib0305
– volume: 1053
  start-page: 22
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0170
  article-title: Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS)
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.11.037
– volume: 256
  start-page: 127115
  year: 2020
  ident: 10.1016/j.hazl.2021.100023_bib0115
  article-title: Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127115
– volume: 252-253
  start-page: 413
  year: 2013
  ident: 10.1016/j.hazl.2021.100023_bib0295
  article-title: National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.03.016
– volume: 238
  start-page: 94
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0260
  article-title: Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.017
– year: 2007
  ident: 10.1016/j.hazl.2021.100023_bib0290
– volume: 7
  start-page: 513
  issue: 4
  year: 2011
  ident: 10.1016/j.hazl.2021.100023_bib0050
  article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins
  publication-title: Integr. Environ. Assess. Manag.
  doi: 10.1002/ieam.258
– year: 1995
  ident: 10.1016/j.hazl.2021.100023_bib0005
– volume: 32
  start-page: 942
  issue: 5
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0165
  article-title: Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C7JA00051K
– volume: 123
  start-page: 115423
  year: 2020
  ident: 10.1016/j.hazl.2021.100023_bib0190
  article-title: Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples
  publication-title: Trac Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.02.024
– volume: 47
  start-page: 4227
  issue: 9
  year: 2013
  ident: 10.1016/j.hazl.2021.100023_bib0335
  article-title: 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4000824
– volume: 33
  start-page: 1304
  issue: 8
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0035
  article-title: Plasma processes to detect fluorine with ICPMS/MS as [M–F]+: an argument for building a negative mode ICPMS/MS
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C8JA00050F
– volume: 51
  start-page: 2047
  issue: 4
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0040
  article-title: Discovery of 40 Classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05843
– volume: 39
  start-page: 3946
  issue: 11
  year: 2005
  ident: 10.1016/j.hazl.2021.100023_bib0130
  article-title: Quantitative determination of perfluorochemicals in sediments and domestic sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048245p
– volume: 177
  start-page: 108648
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0070
  article-title: Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.108648
– volume: 171
  start-page: 452
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0235
  article-title: The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2018.08.004
– volume: 331
  start-page: 132
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0090
  article-title: Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.02.006
– year: 2020
  ident: 10.1016/j.hazl.2021.100023_bib0285
– volume: 72
  start-page: 726
  issue: 4
  year: 2000
  ident: 10.1016/j.hazl.2021.100023_bib0075
  article-title: Development of an19F NMR method for the analysis of fluorinated acids in environmental water samples
  publication-title: Anal. Chem.
  doi: 10.1021/ac9910280
– volume: 46
  start-page: 9342
  issue: 17
  year: 2012
  ident: 10.1016/j.hazl.2021.100023_bib0135
  article-title: Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302274g
– volume: 45A
  start-page: e21422
  issue: 5
  year: 2016
  ident: 10.1016/j.hazl.2021.100023_bib0210
  article-title: Application of 19F quantitative NMR to pharmaceutical analysis
  publication-title: Concepts Magn. Reson. Part A
  doi: 10.1002/cmr.a.21422
– volume: 1288
  start-page: 48
  year: 2013
  ident: 10.1016/j.hazl.2021.100023_bib0240
  article-title: Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography–electrospray tandem mass spectrometry
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.02.085
– volume: 7
  start-page: 1106
  issue: 11
  year: 1996
  ident: 10.1016/j.hazl.2021.100023_bib0315
  article-title: Processes that affect electrospray ionization-mass spectrometry of nucleobases and nucleosides
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(96)00073-6
– volume: 3
  start-page: 17447
  issue: 12
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0145
  article-title: Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02279
– volume: 108
  start-page: 10099
  issue: 46
  year: 2004
  ident: 10.1016/j.hazl.2021.100023_bib0085
  article-title: The use of 19F NMR to interpret the structural properties of perfluorocarboxylate acids: a possible correlation with their environmental disposition
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp049372a
– volume: 40
  start-page: 430
  issue: 4
  year: 2005
  ident: 10.1016/j.hazl.2021.100023_bib0140
  article-title: The Orbitrap: a new mass spectrometer
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.856
– volume: 150
  start-page: 678
  year: 2016
  ident: 10.1016/j.hazl.2021.100023_bib0025
  article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.014
– volume: 158
  start-page: 3243
  issue: 10
  year: 2010
  ident: 10.1016/j.hazl.2021.100023_bib0220
  article-title: Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.07.019
– volume: 118
  start-page: 828
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0230
  article-title: Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): review of current approaches and environmental levels
  publication-title: Trac Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.05.015
– year: 2021
  ident: 10.1016/j.hazl.2021.100023_bib0055
– volume: 121
  start-page: 115420
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0205
  article-title: High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples
  publication-title: Trac Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.02.021
– volume: 392
  start-page: 122271
  year: 2020
  ident: 10.1016/j.hazl.2021.100023_bib0020
  article-title: Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122271
– volume: 119
  start-page: 493
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0310
  article-title: Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms – implications for indoor exposure
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.06.009
– volume: 760
  start-page: 143944
  year: 2021
  ident: 10.1016/j.hazl.2021.100023_bib0015
  article-title: Evaluation of extraction workflows for quantitative analysis of per- and polyfluoroalkyl substances: a case study using soil adjacent to a landfill
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143944
– volume: 73
  start-page: 2200
  issue: 10
  year: 2001
  ident: 10.1016/j.hazl.2021.100023_bib0225
  article-title: Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and19F NMR
  publication-title: Anal. Chem.
  doi: 10.1021/ac0100648
– volume: 402
  start-page: 123706
  year: 2021
  ident: 10.1016/j.hazl.2021.100023_bib0060
  article-title: Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: application of LC-HRMS based suspect and non-target screening
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123706
– volume: 70
  start-page: 25
  year: 2013
  ident: 10.1016/j.hazl.2021.100023_bib0320
  article-title: New frontiers and developing applications in 19F NMR
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2012.10.001
– year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0275
– volume: 51
  start-page: 2197
  issue: 4
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0195
  article-title: National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05005
– volume: 89
  start-page: 2539
  issue: 4
  year: 2017
  ident: 10.1016/j.hazl.2021.100023_bib0215
  article-title: Assessment of the influence of soil characteristics and hydrocarbon fuel cocontamination on the solvent extraction of perfluoroalkyl and polyfluoroalkyl substances
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04746
– volume: 386
  start-page: 2123
  issue: 7–8
  year: 2006
  ident: 10.1016/j.hazl.2021.100023_bib0100
  article-title: Method optimization for determination of selected perfluorinated alkylated substances in water samples
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0902-7
– volume: 208
  start-page: 975
  year: 2018
  ident: 10.1016/j.hazl.2021.100023_bib0095
  article-title: A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.06.024
– volume: 5
  start-page: 2027
  issue: 11
  year: 2019
  ident: 10.1016/j.hazl.2021.100023_bib0265
  article-title: Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: a comparative study
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C9EW00663J
– volume: 39
  start-page: 349
  issue: 2
  year: 1984
  ident: 10.1016/j.hazl.2021.100023_bib0065
  article-title: Determination of some nonmetals by using diatomic molecular absorbance in a hot graphite furnace
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
  doi: 10.1016/0584-8547(84)80042-7
SSID ssj0002811330
Score 2.3976364
Snippet •19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in...
This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100023
SubjectTerms Biosolids
Electrospray LC–MS
Nontarget analysis
Perfluorooctanoic acid
PFAS
Title Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy
URI https://dx.doi.org/10.1016/j.hazl.2021.100023
https://doaj.org/article/1edac72108f24fc9bf2411a02d0a70c9
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xbtwwDBWKTF2KFm3Qa9JCQ7dAqGTLuvOYFgmCAumUANkMipLSJI59uLsMl6G_0F8uafkCd0mXLhYg0JQh0iYpk49CfLZB--gqo1KVSmVJh9SiqEFhTQERYG1D4kDx_Ic7u7Tfr6qrSasvzgnL8MB5476YGAApTNGLVNiEtafBGNBF0DDXOJTukc2bBFO3w5GRobX4gIUMkOM3Wo8VMzm56yc88n-HwnCWgC7Kv6zSAN4_MU4Tg3P6WrwaPUV5nJ_wjXgRu7fi90VP3rKk8F8i-72KKyU524emMrqI7JNcxpUaaJZ9u03tQ7_qob3btnJNn4kNy3ktbzo5KXIjnmtgoOC15Ez4a9kxzjGs5D1cd1znKCks7xmcI8qhOJNBMPvl9p24PD25-Hamxp4KCkurNyrogD5554tgNMZyDr42yFDFwVRzdBoX8-BQVzQuoE5QGgeutlBY7pRuy32x1_VdfC8kWf5QFRGcD6W1CKArXyaNCYlhqP1MmN2eNjgCjnPfi7bZZZbdNiyHhuXQZDnMxNHTPcsMt_Es9VcW1RMlQ2UPE6RAzahAzb8UaCaqnaCb0evI3gSxunlm8Q__Y_ED8ZJZ5uLGQ7G3WT3Ej-TlbPynQaHpev7r5A_ntP2K
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+and+class-specific+analysis+of+per-+and+polyfluoroalkyl+substances+in+environmental+samples+using+nuclear+magnetic+resonance+spectroscopy&rft.jtitle=Journal+of+hazardous+materials+letters&rft.au=Dino+Camdzic&rft.au=Rebecca+A.+Dickman&rft.au=Diana+S.+Aga&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2666-9110&rft.eissn=2666-9110&rft.volume=2&rft.spage=100023&rft_id=info:doi/10.1016%2Fj.hazl.2021.100023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9110&client=summon