Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy
•19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emergi...
Saved in:
Published in | Journal of hazardous materials letters Vol. 2; p. 100023 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emerging and legacy contaminants added to scientific literature.
This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs. |
---|---|
AbstractList | This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs. •19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in complex matrix, such as biosolids.•Patterns within and between classes of PFAS with different headgroups demonstrated.•Reference data for emerging and legacy contaminants added to scientific literature. This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl substances (PFASs). Our results demonstrate that the intensity of the terminal -CF3 signal can be used to determine the total PFASs regardless of headgroup. Characteristic chemical shifts of different classes of PFASs can also be observed, and are useful for differentiating between classes of PFAS. The NMR spectra of PFASs with ether linkages (e.g. GenX) show characteristic reference signals for both -CF2 and -CF3 signals that are useful for detection. Notably, 19F-NMR can differentiate between PFASs, non-PFAS, and F− ions, eliminating the need for sample clean-up even for complex samples. To illustrate this, the 19F-NMR spectra of perfluorooctane sulfonic acid (PFOS) in biosolids extract and in clean solvent spiked with PFOS standard were compared, and showed a difference of < 0.3 % in their signal intensities. The lack of matrix effect is contrary to the suppression or enhancement observed in PFAS analysis by liquid chromatography with mass spectrometry, the most commonly used method for quantifying PFASs. This paper presents 19F-NMR reference spectra for 34 PFASs and discusses the complementarity of this method with other approaches for the total and class-specific analysis of PFASs. |
ArticleNumber | 100023 |
Author | Dickman, Rebecca A. Aga, Diana S. Camdzic, Dino |
Author_xml | – sequence: 1 givenname: Dino surname: Camdzic fullname: Camdzic, Dino – sequence: 2 givenname: Rebecca A. surname: Dickman fullname: Dickman, Rebecca A. – sequence: 3 givenname: Diana S. orcidid: 0000-0001-6512-7713 surname: Aga fullname: Aga, Diana S. email: dianaaga@buffalo.edu |
BookMark | eNp9UU1r3DAUFCWFpmn-QE_6A97qyV7ZhlxK6EcgkEtyFs9P8lYbrWQkb8D9E_3LlbOlhBxyGjF6M9Kb-cjOQgyWsc8gNiBAfdlvfuFvv5FCQiGEkPU7di6VUlUPIM5enD-wy5z360gHUNfinP25jzN6jsFw8phzlSdLbnRUKPRLdpnHkU82Vc8zU_TL6I8xRfSPi-f5OOQZA9nMXeA2PLkUw8GG1TPjYfLl4phd2PFwJG8x8QPugp2Lf7I5hlXK1yfnFDPFafnE3o_os738hxfs4fu3--uf1e3dj5vrr7cV1Y2YKyMMDeOgBmlAkK1bHHogJdutgW1LSlDXGkViW7DDfsQaFKq-Qdm00NRNfcFuTr4m4l5PyR0wLTqi089ETDuNqXzTWw3WILUSRDfKZqR-KACAQhqBraC-eMmTF5UlcrLjfz8Qem1I7_XakF4b0qeGiqh7JSI34-ximBM6_7b06iS1JaAnZ5PO5GxJ0rhUkiwbuLfkfwG1jLH3 |
CitedBy_id | crossref_primary_10_1002_jssc_202400235 crossref_primary_10_1002_adfm_202409932 crossref_primary_10_1007_s00216_024_05426_2 crossref_primary_10_1080_19440049_2024_2423868 crossref_primary_10_1039_D4EM00546E crossref_primary_10_1039_D4SU00152D crossref_primary_10_1177_11786302241310430 crossref_primary_10_1021_acs_jpcc_3c07125 crossref_primary_10_3390_w15203577 crossref_primary_10_1038_s41467_024_49809_6 crossref_primary_10_1016_j_jenvman_2022_114655 crossref_primary_10_1002_jcc_26939 crossref_primary_10_1021_acs_est_2c02251 crossref_primary_10_1021_acsnanoscienceau_3c00022 crossref_primary_10_1021_jacs_2c09866 crossref_primary_10_1021_jacs_4c00443 crossref_primary_10_1021_acs_est_2c04864 crossref_primary_10_1021_jacsau_4c00220 crossref_primary_10_1016_j_trac_2023_117062 crossref_primary_10_1021_acsomega_3c06239 crossref_primary_10_1007_s11356_022_23901_0 crossref_primary_10_1016_j_chemosphere_2024_141270 crossref_primary_10_1039_D4RA08214A crossref_primary_10_1021_acs_analchem_2c05354 crossref_primary_10_1021_acs_analchem_3c04404 crossref_primary_10_1021_acsestwater_4c00631 crossref_primary_10_1021_acsomega_4c09483 crossref_primary_10_1021_acs_est_3c01220 crossref_primary_10_3390_pollutants4010009 crossref_primary_10_3390_toxics11040335 |
Cites_doi | 10.1007/s00216-016-0110-z 10.1039/C9EW00645A 10.1016/j.chroma.2016.10.060 10.1038/35085548 10.1016/j.chroma.2007.06.068 10.1007/BF02493363 10.1021/ac301201y 10.1016/j.reprotox.2011.11.005 10.1016/j.chemosphere.2018.12.186 10.1071/EN20008 10.1016/j.envpol.2019.02.018 10.1016/j.chroma.2005.05.064 10.1016/j.yrtph.2010.09.008 10.1016/j.jhazmat.2020.123478 10.1021/es0512475 10.1007/s00216-006-1008-y 10.1016/j.chemosphere.2014.05.044 10.1136/oemed-2017-104651 10.1021/acs.est.8b02492 10.1016/j.jchromb.2017.09.036 10.1021/es9003894 10.1039/C9EW00765B 10.1016/j.aca.2018.11.037 10.1016/j.chemosphere.2020.127115 10.1016/j.jhazmat.2013.03.016 10.1016/j.envpol.2018.03.017 10.1002/ieam.258 10.1039/C7JA00051K 10.1016/j.trac.2019.02.024 10.1021/es4000824 10.1039/C8JA00050F 10.1021/acs.est.6b05843 10.1021/es048245p 10.1016/j.envres.2019.108648 10.1016/j.envres.2018.08.004 10.1016/j.jhazmat.2017.02.006 10.1021/ac9910280 10.1021/es302274g 10.1002/cmr.a.21422 10.1016/j.chroma.2013.02.085 10.1016/S1044-0305(96)00073-6 10.1021/acsomega.8b02279 10.1021/jp049372a 10.1002/jms.856 10.1016/j.chemosphere.2016.01.014 10.1016/j.envpol.2010.07.019 10.1016/j.trac.2019.05.015 10.1016/j.trac.2019.02.021 10.1016/j.jhazmat.2020.122271 10.1016/j.envint.2018.06.009 10.1016/j.scitotenv.2020.143944 10.1021/ac0100648 10.1016/j.jhazmat.2020.123706 10.1016/j.pnmrs.2012.10.001 10.1021/acs.est.6b05005 10.1021/acs.analchem.6b04746 10.1007/s00216-006-0902-7 10.1016/j.chemosphere.2018.06.024 10.1039/C9EW00663J 10.1016/0584-8547(84)80042-7 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.hazl.2021.100023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-9110 |
ExternalDocumentID | oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9 10_1016_j_hazl_2021_100023 S2666911021000113 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 AAFWJ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c340t-d0dcbfb6b2d10ce37ab91c6275d157c60c87d6c05c878a9fa316a694a24714343 |
IEDL.DBID | DOA |
ISSN | 2666-9110 |
IngestDate | Wed Aug 27 01:17:35 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 01:31:44 EDT 2025 Fri Feb 23 02:42:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nontarget analysis Perfluorooctanoic acid PFAS Electrospray LC–MS Biosolids |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-d0dcbfb6b2d10ce37ab91c6275d157c60c87d6c05c878a9fa316a694a24714343 |
ORCID | 0000-0001-6512-7713 |
OpenAccessLink | https://doaj.org/article/1edac72108f24fc9bf2411a02d0a70c9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9 crossref_primary_10_1016_j_hazl_2021_100023 crossref_citationtrail_10_1016_j_hazl_2021_100023 elsevier_sciencedirect_doi_10_1016_j_hazl_2021_100023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Anderson, Long, Porter, Anderson (bib0025) 2016; 150 Rauert, Shoieb, Schuster, Eng, Harner (bib0260) 2018; 238 Guardian, Antle, Vexelman, Aga, Simpson (bib0120) 2021; 402 USEPA (bib0290) 2007 Ellis, Mabury, Martin, Muir (bib0080) 2001; 412 Gremmel, Fromel, Knepper (bib0110) 2017; 409 Ateia, Maroli, Tharayil, Karanfil (bib0030) 2019; 220 Choi, Lee, Kim, Mun, Park, Jeon (bib0060) 2021; 402 Kelly, Ikonomou, Blair, Surridge, Hoover, Grace, Gobas (bib0185) 2009; 43 Zacs, Bartkevics (bib0330) 2016; 1473 Houtz, Sedlak (bib0135) 2012; 46 Shoemaker, Tettenhorst (bib0275) 2018 3M Company Technical Bulletin (bib0005) 1995 Mejia-Avendaño, Munoz, Sauvé, Liu (bib0215) 2017; 89 Guardian, Boongaling, Bernardo-Boongaling, Gamonchuang, Boontongto, Burakham, Arnnok, Aga (bib0115) 2020; 256 Hepburn, Madden, Szabo, Coggan, Clarke, Currell (bib0125) 2019; 248 Winkens, Giovanoulis, Koponen, Vestergren, Berger, Karvonen, Pekkanen, Kiviranta, Cousins (bib0310) 2018; 119 USEPA (bib0285) 2020 William, Dolbier (bib0305) 2009 Buck, Franklin, Berger, Conder, Cousins, T.; de Voogt, Jensen, Kannan, Mabury, van Leeuwen (bib0050) 2011; 7 Venkatesan, Halden (bib0295) 2013; 252-253 Mullin, Katz, Riddell, Plumb, Burgess, Yeung, Jogsten (bib0230) 2019; 118 Wei, Xu, Zhao (bib0300) 2019; 5 Gallen, Eaglesham, Drage, Nguyen, Mueller (bib0095) 2018; 208 Ellis, Martin, Muir, Mabury (bib0075) 2000; 72 Jahnke, Ahrens, Ebinghaus, Berger, Barber, Temme (bib0155) 2007; 387 Azua Jamari, Behrens, Raab, Krupp, Feldmann (bib0035) 2018; 33 Ahmadireskety, Da Silva, Townsend, Yost, Solo-Gabriele, Bowden (bib0015) 2021; 760 Barzen-Hanson, Roberts, Choyke, Oetjen, McAlees, Riddell, McCrindle, Ferguson, Higgins, Field (bib0040) 2017; 51 Li, Fletcher, Mucs, Scott, Lindh, Tallving, Jakobsson (bib0200) 2018; 75 C8 Science Panel (bib0055) 2021 Gordon (bib0105) 2011; 59 Möller, Ahrens, Surm, Westerveld, Van Der Wielen, Ebinghaus, De Voogt (bib0220) 2010; 158 Qin, McNee, Gleisner, Raab, Kyeremeh, Jaspars, Krupp, Deng, Feldmann (bib0255) 2012; 84 Domingo, Nadal (bib0070) 2019; 177 Hu, Noll, Li, Makarov, Hardman, Graham Cooks (bib0140) 2005; 40 Mattes, Russell, Tishchenko, Liu, Cichewicz, Robinson (bib0210) 2016; 45A Abbott, Wood, Watkins, Tatum-Gibbs, Das, Lau (bib0010) 2012; 33 Berger, Haukås (bib0045) 2005; 1081 Jamari, Dohmann, Raab, Krupp, Feldmann (bib0165) 2017; 32 Yu, Guo, Yang, Jin, Wang, Shi, Zhang, Yu, Wei (bib0325) 2018; 52 Peng, Hu, Zhao, Hu (bib0240) 2013; 1288 Sari Erkan (bib0265) 2019; 5 Akhbarizadeh, Dobaradaran, Schmidt, Nabipour, Spitz (bib0020) 2020; 392 Gallen, Drage, Eaglesham, Grant, Bowman, Mueller (bib0090) 2017; 331 Huang, Hwangbo, Chen, Liu, Kameoka, Chu (bib0145) 2018; 3 Hutchinson, Rieck, Wu (bib0150) 2020; 17 Koch, Aro, Wang, Yeung (bib0190) 2020; 123 Moody, Kwan, Martin, Muir, Mabury (bib0225) 2001; 73 Prevedouros, Cousins, Buck, Korzeniowski (bib0250) 2006; 40 Jiang, Gao, Zhang (bib0175) 2015 Zhang, Szostek, McCausland, Wolstenholme, Lu, Wang, Buck (bib0335) 2013; 47 Scheringer, Trier, Cousins, T.; De Voogt, Fletcher, Wang, Webster (bib0270) 2014; 114 Point, Holsen, Fernando, Hopke, Crimmins (bib0245) 2019; 5 Dittrich, Vorberg, Funk, Beyer (bib0065) 1984; 39 Jahnke, Huber, Temme, Kylin, Berger (bib0160) 2007; 1164 Liu, D’Agostino, Qu, Jiang, Martin (bib0205) 2019; 121 Zhang, Wen, Wen, Ma, Hu, Wu, Luo, Zhang (bib0340) 2018; 1072 Kebarle, Tang (bib0180) 1993; 65 Yu, Hallac, Chiguru, Mason (bib0320) 2013; 70 Lang, Allred, Field, Levis, Barlaz (bib0195) 2017; 51 González-Barreiro, Martínez-Carballo, Sitka, Scharf, Gans (bib0100) 2006; 386 Jamari, Dohmann, Raab, Krupp, Feldmann (bib0170) 2019; 1053 Yen, Judith, Voyksner (bib0315) 1996; 7 Smeraglia, S. F. B, Watson (bib0280) 2002; 55 Pachkowski, Post, Stern (bib0235) 2019; 171 Higgins, Field, Criddle, Luthy (bib0130) 2005; 39 Ellis, Denkenberger, Burrow, Mabury (bib0085) 2004; 108 Qin (10.1016/j.hazl.2021.100023_bib0255) 2012; 84 Shoemaker (10.1016/j.hazl.2021.100023_bib0275) 2018 Gallen (10.1016/j.hazl.2021.100023_bib0090) 2017; 331 Ellis (10.1016/j.hazl.2021.100023_bib0085) 2004; 108 Higgins (10.1016/j.hazl.2021.100023_bib0130) 2005; 39 William (10.1016/j.hazl.2021.100023_bib0305) 2009 Rauert (10.1016/j.hazl.2021.100023_bib0260) 2018; 238 Hu (10.1016/j.hazl.2021.100023_bib0140) 2005; 40 Dittrich (10.1016/j.hazl.2021.100023_bib0065) 1984; 39 Guardian (10.1016/j.hazl.2021.100023_bib0115) 2020; 256 Jahnke (10.1016/j.hazl.2021.100023_bib0155) 2007; 387 Akhbarizadeh (10.1016/j.hazl.2021.100023_bib0020) 2020; 392 3M Company Technical Bulletin (10.1016/j.hazl.2021.100023_bib0005) 1995 Ateia (10.1016/j.hazl.2021.100023_bib0030) 2019; 220 Abbott (10.1016/j.hazl.2021.100023_bib0010) 2012; 33 C8 Science Panel (10.1016/j.hazl.2021.100023_bib0055) 2021 Möller (10.1016/j.hazl.2021.100023_bib0220) 2010; 158 Smeraglia (10.1016/j.hazl.2021.100023_bib0280) 2002; 55 Point (10.1016/j.hazl.2021.100023_bib0245) 2019; 5 Scheringer (10.1016/j.hazl.2021.100023_bib0270) 2014; 114 Buck (10.1016/j.hazl.2021.100023_bib0050) 2011; 7 Gremmel (10.1016/j.hazl.2021.100023_bib0110) 2017; 409 Sari Erkan (10.1016/j.hazl.2021.100023_bib0265) 2019; 5 Huang (10.1016/j.hazl.2021.100023_bib0145) 2018; 3 Jamari (10.1016/j.hazl.2021.100023_bib0165) 2017; 32 Choi (10.1016/j.hazl.2021.100023_bib0060) 2021; 402 Ellis (10.1016/j.hazl.2021.100023_bib0075) 2000; 72 Barzen-Hanson (10.1016/j.hazl.2021.100023_bib0040) 2017; 51 Li (10.1016/j.hazl.2021.100023_bib0200) 2018; 75 Yu (10.1016/j.hazl.2021.100023_bib0325) 2018; 52 Mejia-Avendaño (10.1016/j.hazl.2021.100023_bib0215) 2017; 89 Ellis (10.1016/j.hazl.2021.100023_bib0080) 2001; 412 Mullin (10.1016/j.hazl.2021.100023_bib0230) 2019; 118 USEPA (10.1016/j.hazl.2021.100023_bib0285) 2020 Gallen (10.1016/j.hazl.2021.100023_bib0095) 2018; 208 Kelly (10.1016/j.hazl.2021.100023_bib0185) 2009; 43 Liu (10.1016/j.hazl.2021.100023_bib0205) 2019; 121 Moody (10.1016/j.hazl.2021.100023_bib0225) 2001; 73 Venkatesan (10.1016/j.hazl.2021.100023_bib0295) 2013; 252-253 Kebarle (10.1016/j.hazl.2021.100023_bib0180) 1993; 65 Jamari (10.1016/j.hazl.2021.100023_bib0170) 2019; 1053 Koch (10.1016/j.hazl.2021.100023_bib0190) 2020; 123 Peng (10.1016/j.hazl.2021.100023_bib0240) 2013; 1288 Houtz (10.1016/j.hazl.2021.100023_bib0135) 2012; 46 Zhang (10.1016/j.hazl.2021.100023_bib0340) 2018; 1072 Pachkowski (10.1016/j.hazl.2021.100023_bib0235) 2019; 171 Lang (10.1016/j.hazl.2021.100023_bib0195) 2017; 51 Zhang (10.1016/j.hazl.2021.100023_bib0335) 2013; 47 Jahnke (10.1016/j.hazl.2021.100023_bib0160) 2007; 1164 Prevedouros (10.1016/j.hazl.2021.100023_bib0250) 2006; 40 Hutchinson (10.1016/j.hazl.2021.100023_bib0150) 2020; 17 Hepburn (10.1016/j.hazl.2021.100023_bib0125) 2019; 248 Domingo (10.1016/j.hazl.2021.100023_bib0070) 2019; 177 Wei (10.1016/j.hazl.2021.100023_bib0300) 2019; 5 Ahmadireskety (10.1016/j.hazl.2021.100023_bib0015) 2021; 760 Jiang (10.1016/j.hazl.2021.100023_bib0175) 2015 Mattes (10.1016/j.hazl.2021.100023_bib0210) 2016; 45A Azua Jamari (10.1016/j.hazl.2021.100023_bib0035) 2018; 33 Yu (10.1016/j.hazl.2021.100023_bib0320) 2013; 70 Gordon (10.1016/j.hazl.2021.100023_bib0105) 2011; 59 Berger (10.1016/j.hazl.2021.100023_bib0045) 2005; 1081 Zacs (10.1016/j.hazl.2021.100023_bib0330) 2016; 1473 Yen (10.1016/j.hazl.2021.100023_bib0315) 1996; 7 Guardian (10.1016/j.hazl.2021.100023_bib0120) 2021; 402 USEPA (10.1016/j.hazl.2021.100023_bib0290) 2007 Anderson (10.1016/j.hazl.2021.100023_bib0025) 2016; 150 González-Barreiro (10.1016/j.hazl.2021.100023_bib0100) 2006; 386 Winkens (10.1016/j.hazl.2021.100023_bib0310) 2018; 119 |
References_xml | – volume: 40 start-page: 430 year: 2005 end-page: 443 ident: bib0140 article-title: The Orbitrap: a new mass spectrometer publication-title: J. Mass Spectrom. – volume: 17 start-page: 558 year: 2020 end-page: 567 ident: bib0150 article-title: Advanced PFAS precursor digestion methods for biosolids publication-title: Environ. Chem. – volume: 33 start-page: 491 year: 2012 end-page: 505 ident: bib0010 article-title: Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues publication-title: Reprod. Toxicol. – volume: 72 start-page: 726 year: 2000 end-page: 731 ident: bib0075 article-title: Development of an19F NMR method for the analysis of fluorinated acids in environmental water samples publication-title: Anal. Chem. – volume: 119 start-page: 493 year: 2018 end-page: 502 ident: bib0310 article-title: Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms – implications for indoor exposure publication-title: Environ. Int. – volume: 108 start-page: 10099 year: 2004 end-page: 10106 ident: bib0085 article-title: The use of 19F NMR to interpret the structural properties of perfluorocarboxylate acids: a possible correlation with their environmental disposition publication-title: J. Phys. Chem. A – volume: 386 start-page: 2123 year: 2006 end-page: 2132 ident: bib0100 article-title: Method optimization for determination of selected perfluorinated alkylated substances in water samples publication-title: Anal. Bioanal. Chem. – year: 2009 ident: bib0305 article-title: Guide to Fluorine NMR for Organic Chemists – volume: 409 start-page: 1643 year: 2017 end-page: 1655 ident: bib0110 article-title: HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples publication-title: Anal. Bioanal. Chem. – volume: 46 start-page: 9342 year: 2012 end-page: 9349 ident: bib0135 article-title: Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff publication-title: Environ. Sci. Technol. – volume: 387 start-page: 965 year: 2007 end-page: 975 ident: bib0155 article-title: An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples publication-title: Anal. Bioanal. Chem. – volume: 121 start-page: 115420 year: 2019 ident: bib0205 article-title: High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples publication-title: Trac Trends Anal. Chem. – volume: 220 start-page: 866 year: 2019 end-page: 882 ident: bib0030 article-title: The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review publication-title: Chemosphere – year: 2007 ident: bib0290 article-title: Method 1694 for Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS – volume: 114 start-page: 337 year: 2014 end-page: 339 ident: bib0270 article-title: Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs) publication-title: Chemosphere – year: 2020 ident: bib0285 article-title: CompTox Chemistry Dashboard PFAS Master List of PFAS Substances – volume: 158 start-page: 3243 year: 2010 end-page: 3250 ident: bib0220 article-title: Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed publication-title: Environ. Pollut. – volume: 1164 start-page: 1 year: 2007 end-page: 9 ident: bib0160 article-title: Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air publication-title: J. Chromatogr. A – volume: 5 start-page: 1876 year: 2019 end-page: 1886 ident: bib0245 article-title: Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues publication-title: Environ. Sci. Water Res. Technol. – year: 2018 ident: bib0275 publication-title: Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) – volume: 5 start-page: 2027 year: 2019 end-page: 2040 ident: bib0265 article-title: Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: a comparative study publication-title: Environ. Sci. Water Res. Technol. – year: 1995 ident: bib0005 article-title: 3M The Leader in Electro-fluorinations – volume: 1288 start-page: 48 year: 2013 end-page: 53 ident: bib0240 article-title: Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography–electrospray tandem mass spectrometry publication-title: J. Chromatogr. A – volume: 1081 start-page: 210 year: 2005 end-page: 217 ident: bib0045 article-title: Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota publication-title: J. Chromatogr. A – volume: 1053 start-page: 22 year: 2019 end-page: 31 ident: bib0170 article-title: Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS) publication-title: Anal. Chim. Acta – volume: 89 start-page: 2539 year: 2017 end-page: 2546 ident: bib0215 article-title: Assessment of the influence of soil characteristics and hydrocarbon fuel cocontamination on the solvent extraction of perfluoroalkyl and polyfluoroalkyl substances publication-title: Anal. Chem. – volume: 32 start-page: 942 year: 2017 end-page: 950 ident: bib0165 article-title: Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS publication-title: J. Anal. At. Spectrom. – volume: 412 start-page: 321 year: 2001 end-page: 324 ident: bib0080 article-title: Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment publication-title: Nature – volume: 70 start-page: 25 year: 2013 end-page: 49 ident: bib0320 article-title: New frontiers and developing applications in 19F NMR publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – start-page: 177 year: 2015 end-page: 201 ident: bib0175 article-title: Metabolic Effects PFAS – volume: 39 start-page: 3946 year: 2005 end-page: 3956 ident: bib0130 article-title: Quantitative determination of perfluorochemicals in sediments and domestic sludge publication-title: Environ. Sci. Technol. – volume: 75 start-page: 46 year: 2018 end-page: 51 ident: bib0200 article-title: Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water publication-title: Occup. Environ. Med. – volume: 208 start-page: 975 year: 2018 end-page: 983 ident: bib0095 article-title: A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants publication-title: Chemosphere – volume: 238 start-page: 94 year: 2018 end-page: 102 ident: bib0260 article-title: Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network publication-title: Environ. Pollut. – volume: 51 start-page: 2047 year: 2017 end-page: 2057 ident: bib0040 article-title: Discovery of 40 Classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater publication-title: Environ. Sci. Technol. – volume: 150 start-page: 678 year: 2016 end-page: 685 ident: bib0025 article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties publication-title: Chemosphere – volume: 33 start-page: 1304 year: 2018 end-page: 1309 ident: bib0035 article-title: Plasma processes to detect fluorine with ICPMS/MS as [M–F]+: an argument for building a negative mode ICPMS/MS publication-title: J. Anal. At. Spectrom. – volume: 123 start-page: 115423 year: 2020 ident: bib0190 article-title: Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples publication-title: Trac Trends Anal. Chem. – volume: 171 start-page: 452 year: 2019 end-page: 469 ident: bib0235 article-title: The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression publication-title: Environ. Res. – volume: 84 start-page: 6213 year: 2012 end-page: 6219 ident: bib0255 article-title: Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biologica publication-title: Anal. Chem. – volume: 52 start-page: 8205 year: 2018 end-page: 8214 ident: bib0325 article-title: Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China publication-title: Environ. Sci. Technol. – volume: 402 start-page: 123706 year: 2021 ident: bib0060 article-title: Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: application of LC-HRMS based suspect and non-target screening publication-title: J. Hazard. Mater. – volume: 43 start-page: 4037 year: 2009 end-page: 4043 ident: bib0185 article-title: Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure publication-title: Environ. Sci. Technol. – volume: 73 start-page: 2200 year: 2001 end-page: 2206 ident: bib0225 article-title: Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and19F NMR publication-title: Anal. Chem. – volume: 1473 start-page: 109 year: 2016 end-page: 121 ident: bib0330 article-title: Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography – orbitrap mass spectrometry publication-title: J. Chromatogr. A – volume: 55 year: 2002 ident: bib0280 article-title: Matrix effects and selectivity issues in LC-MS-MS publication-title: Chromatographia – volume: 1072 start-page: 25 year: 2018 end-page: 33 ident: bib0340 article-title: Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry publication-title: J. Chromatogr. B – volume: 3 start-page: 17447 year: 2018 ident: bib0145 article-title: Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution publication-title: ACS Omega – volume: 5 start-page: 1814 year: 2019 end-page: 1835 ident: bib0300 article-title: Treatment of per- and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects publication-title: Environ. Sci. Water Res. Technol. – volume: 177 start-page: 108648 year: 2019 ident: bib0070 article-title: Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature publication-title: Environ. Res. – volume: 402 start-page: 123478 year: 2021 ident: bib0120 article-title: Resolving unknown isomers of emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples using COSMO-RS-derived retention factor and mass fragmentation patterns publication-title: J. Hazard. Mater. – volume: 392 start-page: 122271 year: 2020 ident: bib0020 article-title: Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature publication-title: J. Hazard. Mater. – volume: 331 start-page: 132 year: 2017 end-page: 141 ident: bib0090 article-title: Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates publication-title: J. Hazard. Mater. – volume: 256 start-page: 127115 year: 2020 ident: bib0115 article-title: Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries publication-title: Chemosphere – year: 2021 ident: bib0055 article-title: The Science Panel Website – volume: 39 start-page: 349 year: 1984 end-page: 363 ident: bib0065 article-title: Determination of some nonmetals by using diatomic molecular absorbance in a hot graphite furnace publication-title: Spectrochim. Acta Part B At. Spectrosc. – volume: 59 start-page: 64 year: 2011 end-page: 80 ident: bib0105 article-title: Toxicological evaluation of ammonium 4,8-dioxa-3H-perfluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing publication-title: Regul. Toxicol. Pharmacol. – volume: 248 start-page: 101 year: 2019 end-page: 113 ident: bib0125 article-title: Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct publication-title: Environ. Pollut. – volume: 760 start-page: 143944 year: 2021 ident: bib0015 article-title: Evaluation of extraction workflows for quantitative analysis of per- and polyfluoroalkyl substances: a case study using soil adjacent to a landfill publication-title: Sci. Total Environ. – volume: 45A start-page: e21422 year: 2016 ident: bib0210 article-title: Application of 19F quantitative NMR to pharmaceutical analysis publication-title: Concepts Magn. Reson. Part A – volume: 7 start-page: 513 year: 2011 end-page: 541 ident: bib0050 article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins publication-title: Integr. Environ. Assess. Manag. – volume: 47 start-page: 4227 year: 2013 end-page: 4235 ident: bib0335 article-title: 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions publication-title: Environ. Sci. Technol. – volume: 118 start-page: 828 year: 2019 end-page: 839 ident: bib0230 article-title: Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): review of current approaches and environmental levels publication-title: Trac Trends Anal. Chem. – volume: 252-253 start-page: 413 year: 2013 end-page: 418 ident: bib0295 article-title: National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey publication-title: J. Hazard. Mater. – volume: 65 start-page: 972A year: 1993 end-page: 986A ident: bib0180 article-title: From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry publication-title: Anal. Chem. – volume: 40 start-page: 32 year: 2006 end-page: 44 ident: bib0250 article-title: Sources, fate and transport of perfluorocarboxylates publication-title: Environ. Sci. Technol. – volume: 7 start-page: 1106 year: 1996 end-page: 1108 ident: bib0315 article-title: Processes that affect electrospray ionization-mass spectrometry of nucleobases and nucleosides publication-title: J. Am. Soc. Mass Spectrom. – volume: 51 start-page: 2197 year: 2017 end-page: 2205 ident: bib0195 article-title: National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate publication-title: Environ. Sci. Technol. – start-page: 177 year: 2015 ident: 10.1016/j.hazl.2021.100023_bib0175 – volume: 409 start-page: 1643 issue: 6 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0110 article-title: HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-016-0110-z – volume: 5 start-page: 1814 issue: 11 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0300 article-title: Treatment of per- and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C9EW00645A – volume: 1473 start-page: 109 year: 2016 ident: 10.1016/j.hazl.2021.100023_bib0330 article-title: Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography – orbitrap mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.10.060 – volume: 412 start-page: 321 issue: 6844 year: 2001 ident: 10.1016/j.hazl.2021.100023_bib0080 article-title: Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment publication-title: Nature doi: 10.1038/35085548 – volume: 1164 start-page: 1 issue: 1–2 year: 2007 ident: 10.1016/j.hazl.2021.100023_bib0160 article-title: Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2007.06.068 – volume: 55 year: 2002 ident: 10.1016/j.hazl.2021.100023_bib0280 article-title: Matrix effects and selectivity issues in LC-MS-MS publication-title: Chromatographia doi: 10.1007/BF02493363 – volume: 84 start-page: 6213 issue: 14 year: 2012 ident: 10.1016/j.hazl.2021.100023_bib0255 article-title: Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biologica publication-title: Anal. Chem. doi: 10.1021/ac301201y – volume: 33 start-page: 491 issue: 4 year: 2012 ident: 10.1016/j.hazl.2021.100023_bib0010 article-title: Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2011.11.005 – volume: 220 start-page: 866 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0030 article-title: The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.186 – volume: 17 start-page: 558 year: 2020 ident: 10.1016/j.hazl.2021.100023_bib0150 article-title: Advanced PFAS precursor digestion methods for biosolids publication-title: Environ. Chem. doi: 10.1071/EN20008 – volume: 248 start-page: 101 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0125 article-title: Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.018 – volume: 1081 start-page: 210 issue: 2 year: 2005 ident: 10.1016/j.hazl.2021.100023_bib0045 article-title: Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.05.064 – volume: 59 start-page: 64 issue: 1 year: 2011 ident: 10.1016/j.hazl.2021.100023_bib0105 article-title: Toxicological evaluation of ammonium 4,8-dioxa-3H-perfluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2010.09.008 – volume: 402 start-page: 123478 year: 2021 ident: 10.1016/j.hazl.2021.100023_bib0120 article-title: Resolving unknown isomers of emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples using COSMO-RS-derived retention factor and mass fragmentation patterns publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123478 – volume: 40 start-page: 32 issue: 1 year: 2006 ident: 10.1016/j.hazl.2021.100023_bib0250 article-title: Sources, fate and transport of perfluorocarboxylates publication-title: Environ. Sci. Technol. doi: 10.1021/es0512475 – volume: 387 start-page: 965 issue: 3 year: 2007 ident: 10.1016/j.hazl.2021.100023_bib0155 article-title: An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-1008-y – volume: 114 start-page: 337 year: 2014 ident: 10.1016/j.hazl.2021.100023_bib0270 article-title: Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.044 – volume: 75 start-page: 46 issue: 1 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0200 article-title: Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2017-104651 – volume: 52 start-page: 8205 issue: 15 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0325 article-title: Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02492 – volume: 1072 start-page: 25 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0340 article-title: Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2017.09.036 – volume: 43 start-page: 4037 issue: 11 year: 2009 ident: 10.1016/j.hazl.2021.100023_bib0185 article-title: Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure publication-title: Environ. Sci. Technol. doi: 10.1021/es9003894 – volume: 65 start-page: 972A issue: 22 year: 1993 ident: 10.1016/j.hazl.2021.100023_bib0180 article-title: From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry publication-title: Anal. Chem. – volume: 5 start-page: 1876 issue: 11 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0245 article-title: Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C9EW00765B – year: 2009 ident: 10.1016/j.hazl.2021.100023_bib0305 – volume: 1053 start-page: 22 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0170 article-title: Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS) publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.11.037 – volume: 256 start-page: 127115 year: 2020 ident: 10.1016/j.hazl.2021.100023_bib0115 article-title: Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127115 – volume: 252-253 start-page: 413 year: 2013 ident: 10.1016/j.hazl.2021.100023_bib0295 article-title: National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.03.016 – volume: 238 start-page: 94 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0260 article-title: Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.017 – year: 2007 ident: 10.1016/j.hazl.2021.100023_bib0290 – volume: 7 start-page: 513 issue: 4 year: 2011 ident: 10.1016/j.hazl.2021.100023_bib0050 article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins publication-title: Integr. Environ. Assess. Manag. doi: 10.1002/ieam.258 – year: 1995 ident: 10.1016/j.hazl.2021.100023_bib0005 – volume: 32 start-page: 942 issue: 5 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0165 article-title: Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS publication-title: J. Anal. At. Spectrom. doi: 10.1039/C7JA00051K – volume: 123 start-page: 115423 year: 2020 ident: 10.1016/j.hazl.2021.100023_bib0190 article-title: Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples publication-title: Trac Trends Anal. Chem. doi: 10.1016/j.trac.2019.02.024 – volume: 47 start-page: 4227 issue: 9 year: 2013 ident: 10.1016/j.hazl.2021.100023_bib0335 article-title: 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es4000824 – volume: 33 start-page: 1304 issue: 8 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0035 article-title: Plasma processes to detect fluorine with ICPMS/MS as [M–F]+: an argument for building a negative mode ICPMS/MS publication-title: J. Anal. At. Spectrom. doi: 10.1039/C8JA00050F – volume: 51 start-page: 2047 issue: 4 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0040 article-title: Discovery of 40 Classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05843 – volume: 39 start-page: 3946 issue: 11 year: 2005 ident: 10.1016/j.hazl.2021.100023_bib0130 article-title: Quantitative determination of perfluorochemicals in sediments and domestic sludge publication-title: Environ. Sci. Technol. doi: 10.1021/es048245p – volume: 177 start-page: 108648 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0070 article-title: Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108648 – volume: 171 start-page: 452 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0235 article-title: The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression publication-title: Environ. Res. doi: 10.1016/j.envres.2018.08.004 – volume: 331 start-page: 132 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0090 article-title: Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.02.006 – year: 2020 ident: 10.1016/j.hazl.2021.100023_bib0285 – volume: 72 start-page: 726 issue: 4 year: 2000 ident: 10.1016/j.hazl.2021.100023_bib0075 article-title: Development of an19F NMR method for the analysis of fluorinated acids in environmental water samples publication-title: Anal. Chem. doi: 10.1021/ac9910280 – volume: 46 start-page: 9342 issue: 17 year: 2012 ident: 10.1016/j.hazl.2021.100023_bib0135 article-title: Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff publication-title: Environ. Sci. Technol. doi: 10.1021/es302274g – volume: 45A start-page: e21422 issue: 5 year: 2016 ident: 10.1016/j.hazl.2021.100023_bib0210 article-title: Application of 19F quantitative NMR to pharmaceutical analysis publication-title: Concepts Magn. Reson. Part A doi: 10.1002/cmr.a.21422 – volume: 1288 start-page: 48 year: 2013 ident: 10.1016/j.hazl.2021.100023_bib0240 article-title: Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography–electrospray tandem mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2013.02.085 – volume: 7 start-page: 1106 issue: 11 year: 1996 ident: 10.1016/j.hazl.2021.100023_bib0315 article-title: Processes that affect electrospray ionization-mass spectrometry of nucleobases and nucleosides publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(96)00073-6 – volume: 3 start-page: 17447 issue: 12 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0145 article-title: Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution publication-title: ACS Omega doi: 10.1021/acsomega.8b02279 – volume: 108 start-page: 10099 issue: 46 year: 2004 ident: 10.1016/j.hazl.2021.100023_bib0085 article-title: The use of 19F NMR to interpret the structural properties of perfluorocarboxylate acids: a possible correlation with their environmental disposition publication-title: J. Phys. Chem. A doi: 10.1021/jp049372a – volume: 40 start-page: 430 issue: 4 year: 2005 ident: 10.1016/j.hazl.2021.100023_bib0140 article-title: The Orbitrap: a new mass spectrometer publication-title: J. Mass Spectrom. doi: 10.1002/jms.856 – volume: 150 start-page: 678 year: 2016 ident: 10.1016/j.hazl.2021.100023_bib0025 article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.014 – volume: 158 start-page: 3243 issue: 10 year: 2010 ident: 10.1016/j.hazl.2021.100023_bib0220 article-title: Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.07.019 – volume: 118 start-page: 828 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0230 article-title: Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): review of current approaches and environmental levels publication-title: Trac Trends Anal. Chem. doi: 10.1016/j.trac.2019.05.015 – year: 2021 ident: 10.1016/j.hazl.2021.100023_bib0055 – volume: 121 start-page: 115420 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0205 article-title: High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples publication-title: Trac Trends Anal. Chem. doi: 10.1016/j.trac.2019.02.021 – volume: 392 start-page: 122271 year: 2020 ident: 10.1016/j.hazl.2021.100023_bib0020 article-title: Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122271 – volume: 119 start-page: 493 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0310 article-title: Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms – implications for indoor exposure publication-title: Environ. Int. doi: 10.1016/j.envint.2018.06.009 – volume: 760 start-page: 143944 year: 2021 ident: 10.1016/j.hazl.2021.100023_bib0015 article-title: Evaluation of extraction workflows for quantitative analysis of per- and polyfluoroalkyl substances: a case study using soil adjacent to a landfill publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143944 – volume: 73 start-page: 2200 issue: 10 year: 2001 ident: 10.1016/j.hazl.2021.100023_bib0225 article-title: Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and19F NMR publication-title: Anal. Chem. doi: 10.1021/ac0100648 – volume: 402 start-page: 123706 year: 2021 ident: 10.1016/j.hazl.2021.100023_bib0060 article-title: Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: application of LC-HRMS based suspect and non-target screening publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123706 – volume: 70 start-page: 25 year: 2013 ident: 10.1016/j.hazl.2021.100023_bib0320 article-title: New frontiers and developing applications in 19F NMR publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2012.10.001 – year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0275 – volume: 51 start-page: 2197 issue: 4 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0195 article-title: National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05005 – volume: 89 start-page: 2539 issue: 4 year: 2017 ident: 10.1016/j.hazl.2021.100023_bib0215 article-title: Assessment of the influence of soil characteristics and hydrocarbon fuel cocontamination on the solvent extraction of perfluoroalkyl and polyfluoroalkyl substances publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04746 – volume: 386 start-page: 2123 issue: 7–8 year: 2006 ident: 10.1016/j.hazl.2021.100023_bib0100 article-title: Method optimization for determination of selected perfluorinated alkylated substances in water samples publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0902-7 – volume: 208 start-page: 975 year: 2018 ident: 10.1016/j.hazl.2021.100023_bib0095 article-title: A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.06.024 – volume: 5 start-page: 2027 issue: 11 year: 2019 ident: 10.1016/j.hazl.2021.100023_bib0265 article-title: Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: a comparative study publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C9EW00663J – volume: 39 start-page: 349 issue: 2 year: 1984 ident: 10.1016/j.hazl.2021.100023_bib0065 article-title: Determination of some nonmetals by using diatomic molecular absorbance in a hot graphite furnace publication-title: Spectrochim. Acta Part B At. Spectrosc. doi: 10.1016/0584-8547(84)80042-7 |
SSID | ssj0002811330 |
Score | 2.3976364 |
Snippet | •19Fluorine nuclear magnetic resonance (19F-NMR) spectra for 34 perfluoroalkyl substances (PFAS) collected.•Methodology shown to not have matrix effects in... This study reveals unique information that fluorine nuclear magnetic resonance (19F-NMR) spectroscopy provides in the analysis of per- and polyfluoroalkyl... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100023 |
SubjectTerms | Biosolids Electrospray LC–MS Nontarget analysis Perfluorooctanoic acid PFAS |
Title | Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy |
URI | https://dx.doi.org/10.1016/j.hazl.2021.100023 https://doaj.org/article/1edac72108f24fc9bf2411a02d0a70c9 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xbtwwDBWKTF2KFm3Qa9JCQ7dAqGTLuvOYFgmCAumUANkMipLSJI59uLsMl6G_0F8uafkCd0mXLhYg0JQh0iYpk49CfLZB--gqo1KVSmVJh9SiqEFhTQERYG1D4kDx_Ic7u7Tfr6qrSasvzgnL8MB5476YGAApTNGLVNiEtafBGNBF0DDXOJTukc2bBFO3w5GRobX4gIUMkOM3Wo8VMzm56yc88n-HwnCWgC7Kv6zSAN4_MU4Tg3P6WrwaPUV5nJ_wjXgRu7fi90VP3rKk8F8i-72KKyU524emMrqI7JNcxpUaaJZ9u03tQ7_qob3btnJNn4kNy3ktbzo5KXIjnmtgoOC15Ez4a9kxzjGs5D1cd1znKCks7xmcI8qhOJNBMPvl9p24PD25-Hamxp4KCkurNyrogD5554tgNMZyDr42yFDFwVRzdBoX8-BQVzQuoE5QGgeutlBY7pRuy32x1_VdfC8kWf5QFRGcD6W1CKArXyaNCYlhqP1MmN2eNjgCjnPfi7bZZZbdNiyHhuXQZDnMxNHTPcsMt_Es9VcW1RMlQ2UPE6RAzahAzb8UaCaqnaCb0evI3gSxunlm8Q__Y_ED8ZJZ5uLGQ7G3WT3Ej-TlbPynQaHpev7r5A_ntP2K |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+and+class-specific+analysis+of+per-+and+polyfluoroalkyl+substances+in+environmental+samples+using+nuclear+magnetic+resonance+spectroscopy&rft.jtitle=Journal+of+hazardous+materials+letters&rft.au=Dino+Camdzic&rft.au=Rebecca+A.+Dickman&rft.au=Diana+S.+Aga&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2666-9110&rft.eissn=2666-9110&rft.volume=2&rft.spage=100023&rft_id=info:doi/10.1016%2Fj.hazl.2021.100023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1edac72108f24fc9bf2411a02d0a70c9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9110&client=summon |